

A Variable Neighborhood Search approach for the S-labeling problem

The 10th International Conference On Variable Neighborhood Search

June, 05, 2024, Lorient

Marcos Robles – marcos.robles@urjc.es

Sergio Cavero – sergio.cavero@urjc.es

Eduardo G. Pardo – eduardo.pardo@urjc.es

- 1. Introduction
- 2. The S-labeling problem
- 3. Previous works
- 4. Our proposal
- 5. Algorithmic results
- 6. Conclusions and future work

1. Introduction

- 2. The S-labeling problem
- 3. Previous works
- 4. Our proposal
- 5. Algorithmic results
- 6. Conclusions and future work

Introduction – Graph Labeling Problems

- Graph Labeling Problems are a kind of **combinatorial optimization problems**.
- A labeling of a graph consist of assigning labels to each vertex of an input graph to optimize a certain objective function.

Introduction – Graph Labeling Problems

- Graph Labeling Problems are a kind of **combinatorial optimization problems**.
- A labeling of a graph consist of assigning labels to each vertex of an input graph to optimize a certain objective function.

RHOOD

luan Carlos

М**‡**С 2024

Introduction – Graph Labeling Problems

- Graph Labeling Problems are a kind of **combinatorial optimization problems**.
- A labeling of a graph consist of assigning labels to each vertex of an input graph to optimize a certain objective function.

RHOOD

luan Carlos

М**‡**С 2024

Introduction – Graph Labeling (2)

• Graph Labeling Problems has been found to have a lot of real-world applications:

Network optimization

Circuit desing

Numerical analysis

Information retrieval

Introduction – Graph Labeling (3)

• Graph Labeling Problems has been found to have a lot of real-world applications:

Computational biology

Scheduling

Graph theory

Archaeology

Index

1. Introduction

2. The S-labeling problem

- 1. Applications
- 2. Problem description
- 3. Previous works
- 4. Our proposal
- 5. Algorithmic results
- 6. Conclusions and future work

Practical applications for the S-labeling

- The S-labeling problem was originally proposed in in the context of the matrix packaging [7].
 - Matrix packaging consists of permutating the rows and columns of a sparse matrix to make calculations or storage easier.
- The S-labeling problem is a specific case of matrix packaging in which the matrix is zero trace
 symmetric (0, 1)-matrix, which represents an undirected graph.

Practical applications for the S-labeling

- By applying the S-labeling to a sparse matrix we get a new one that is **easier to compute**.
- Example of one of the instances used:

Before

Practical applications for the S-labeling

- By applying the S-labeling to a sparse matrix we get a new one that is **easier to compute**.
- Example of one of the instances used:

Practical applications for the S-labeling (2)

- The S-labeling is **only useful** when applied to **sparse** matrices.
- For example, the solution for **complete graphs** is **trivial**.

Complete graph

Problem description

Given a graph labeling φ, we define the objective function value as the sum of the evaluation of each edge.

М**‡**С 2024

• We evaluate an edge as the **minimum label** assigned to the vertices of that edge.

Problem description

- Given a graph labeling φ, we define the objective function value as the sum of the evaluation of each edge.
- We evaluate an edge as the **minimum label** assigned to the vertices of that edge.

Problem description

Given a graph labeling φ, we define the objective function value as the sum of the evaluation of each edge.

М**‡**С 2024

• We evaluate an edge as the **minimum label** assigned to the vertices of that edge.

 $Eval(\varphi', (A, B)) = \min(2, 3) = 2$ $Eval(\varphi', (A, C)) = \min(2, 1) = 1$ $Eval(\varphi', (A, D)) = \min(2, 4) = 2$ $Eval(\varphi', (B, C)) = \min(3, 1) = 1$ $Eval(\varphi', (C, D)) = \min(1, 4) = 1$ $Eval(\varphi', (D, E)) = \min(4, 5) = 4$

Problem description (2)

- Given a graph labeling φ , we define the **objective function value** as the sum of the evaluation of each edge.
- We evaluate an edge as the minimum label assigned to the vertices of that edge.

$$Eval(\varphi', (A, B)) = \min(2, 3) = 2$$

$$Eval(\varphi', (A, C)) = \min(2, 1) = 1$$

$$Eval(\varphi', (A, D)) = \min(2, 4) = 2$$

$$Eval(\varphi', (B, C)) = \min(3, 1) = 1$$

$$Eval(\varphi', (C, D)) = \min(1, 4) = 1$$

$$Eval(\varphi', (D, E)) = \min(4, 5) = 4$$

М**‡**С 2024

 Given a graph labeling φ, we define the objective function value as the sum of the minimum label of the vertices of each edge.

$$O.F.(\varphi') = \sum_{(u,v)\in E} \min(label(\varphi',u), label(\varphi',v))$$

• The objective in the S-labeling is to find the labeling φ^* among all the labelings ϕ that **minimizes the objective function**.

$$\varphi^* = \arg\min_{\varphi \in \Phi} O.F.(\varphi)$$

М**‡**С 2024

- 1. Introduction
- 2. The S-labeling problem
- 3. Previous works
- 4. Our proposal
- 5. Algorithmic results
- 6. Conclusions and future work

Previous works

Index

<u> Jniversidad</u>

Rev Juan Carlos

- 1. Introduction
- 2. The S-labeling problem
- 3. Previous works

4. Our proposal

1. Variable Neighborhood Search variants

M≭C 2024

BORHOOD

- 2. Shake methods
- 3. Local Search methods
- 5. Algorithmic results
- 6. Conclusions and future work

Why VNS?

- Multiple population-based methods have already been studied.
 - We want to study other methods other than population-based metaheuristics.
- VNS have **multiple variants**, that fit different situations.
- We have already used VNS methods on other problems successfully.

Summary of our proposal

1 Random constructive method.

- 3 Different Shake methods• Shuffle, random movement, and inverse.
- 2 Local Searches
 - Swap First Improvement and Insert First-Best.
- 3 VNS variants
 - BVNS, VND and GVNS.

• Basic VNS (BVNS): applies the VNS schema without any modification.

 Variable Neighborhood Descent (VND): removes the Shake step and adds another Local Search to scape from local optimums.

• General VNS (GVNS): replaces the Local Search step in BVNS for a VND.

Shake methods (1)

• **ShuffleShake**: randomly shuffling the label of a subset of vertices with labels in the range [1,k].

VARIABLE NS NEIGHBORHOOD 124 SEARCH

Shake methods (2)

• NeighborhoodShake: execute k random swap and insert movements.

Shake methods (3)

 InverseShake: assign the highest labels to the vertices with the lowest initial labels, and vice versa.

Local Search methods – Movements (1)

• Swap movement: exchange the assigned labels of two vertices.

Local Search methods – Movements (2)

 Insert movement: assign a certain label to a given vertex, displacing the rest of vertices.

Local Search methods - Strategy

- The most common ones are
 - First Improvement (FI): commit the first movement that produces an improvement.
 - •Best Improvement (BI): commit the best movement among all possibles.
- For both movements the **BI** strategy was tested and found **too costly**.
- For the Swap movement we chose the FI strategy, which produced good results and diversified the search.

Local Search methods – Insert strategy

- For the insert movement we also propose a **First**-**Best Strategy** for the **Insert movement**.
- This new strategy surged from the idea that the insert movement produces multiple intermediate states which can be evaluated.

Summary of our proposal

- 1 Random constructive method.
- 2 Local Searches
 - Swap First Improvement and Insert First-Best.
- 3 Different Shake methods
 - Shuffle, random movement, and inverse.
- **3 VNS variants**
 - BVNS, VND and GVNS.

A total of 14 different combinations.

Index

- 1. Introduction
- 2. The S-labeling problem
- 3. Previous works
- 4. Our proposal
- 5. Algorithmic results
 - 1. Methods tuning
 - 2. Comparison with the state-of-the-art method

6. Conclusions and future work

BVNS – Tuning

Shake	Inverse	Movement	Shuffle	Inverse	Movement	Shuffle
LS	Insert		Swap			
Avg. O.F.	1539906	1687174	1548403	1489568	1576198	1489481
CPU T. (s)	300	300	300	300	300	300
% Dev.	1.77	10.58	1.95	0.04	4.48	0.04
% Best	0	0	0	45	0	55

- The most effective shake is the **Shuffle**.
- The most effective movement is the **Swap**.
- The best variant is **Shuffle + Swap**.

	VND – Insert&Swap	VND – Swap&Insert
Avg. O.F.	1606570	1629959
CPU T. (s)	303	301
% Dev.	0	1.15
% Best	100	0

• The most effective VND is the Insert&Swap.

GVNS – Tuning

Shake	Inverse	Movement	Shuffle	Inverse	Movement	Shuffle
VND	VND – Insert&Swap			VND – Swap&Insert		
Avg. O.F.	1505096	1524217	1496944	1508176	1531479	1488297
CPU T. (s)	300	300	300	300	300	300
% Dev.	0.67	1.57	0.25	0.74	1.93	0.02
% Best	10	0	15	0	0	75

- The most effective shake is the **Shuffle**.
- The most effective VND is the **Swap&Insert**.
- The best variant is Shuffle + Swap&Insert.

Comparison with the state-of-the-art

	State-of-the-art	BVNS	VND	GVNS	
	Population-based Iterated Greedy (PIG)	Shuffle + Swap	Insert&Swap	Shuffle + Swap&Insert	
Avg. O.F.	1477107	1489481	1606570	1488297	
CPU T. (s)	200	300	303	300	
% Dev.	0.00	0.72	6.17	0.60	
% Best	95	5	0	0	

- Among the proposed VNS methods, the best one is the GVNS and the worst one the VND.
- The VNS results are close to those of the PIG method, but they are still outperformed by the state-of-the-art.

- 1. Introduction
- 2. The S-labeling problem
- 3. Previous works
- 4. Our proposal
- 5. Algorithmic results

6. Conclusions and future work

Conclusions

 We presented 14 different combinations of VNS method for the S-labeling problem. The state-ofthe-art algorithm obtains better results than our proposal.

- The **GVNS** emerged as the **most effective**, with a **deviation lower than 1%**.
- The VND emerged as the least effective, showing that in this problem using effective shake methods is more important than using more local searches.

Future work

Explore new neighborhoods, such as ejection chain.

• Explore alternative **constructive methods**.

 Implement methods which make use of the Slabeling theoretical properties.

A Variable Neighborhood Search approach for the S-labeling problem

The 10th International Conference On Variable Neighborhood Search

June, 05, 2024, Lorient

Marcos Robles – marcos.robles@urjc.es

Sergio Cavero – sergio.cavero@urjc.es

Eduardo G. Pardo – eduardo.pardo@urjc.es

Bibliography

- 1. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Computing Surveys (CSUR) 34(3), 313–356 (2002)
- 2. Fertin, G., Rusu, I., Vialette, S.: The S-labeling problem: An algorithmic tour. Discrete Applied Mathematics 246, 49–61 (2018)
- 3. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Variable neighborhood search. Springer (2019)
- 4. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO Journal on Computational Optimization 5(3), 423–454 (2017)
- Lozano, M., Rodriguez-Tello, E.: Population-based iterated greedy algorithm for th S-labeling problem. Computers & Operations Research 155, 106224 (2023)
- 6. Sinnl, M.: Algorithmic expedients for the S-labeling problem. Computers & Opera tions Research 108, 201–212 (2019)
- 7. Vialette, S.: Packing of (0, 1)-matrices. RAIRO-Theoretical Informatics and Applications 40(4), 519–535 (2006)

