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Introduction

The problem belongs to the family of Social Network
Influence.

Minimize the influence propagation by selecting a set of
nodes that block propagation.

Real-world applications:

Reduce rumors or fake news.
Advertising, authentic reviews, and advanced filters.
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Introduction
Solution Representation

Given a:

Social Network (SN), G = (V ,E ), where the set of vertices V
represents the users, and the set of edges E indicates the
relations among users in the SN.

A set of Malicious Nodes (MN), with |MN| ≥ 1.

A certain diffusion model µ.

The solution consists of selecting a set of blockers B will be
responsible for reducing the propagation of misinformation
(B ⊆ V \ MN, with |B| = b), where b is a fixed constraint
The aim of IMP is to minimize the number of active nodes
following a specific Influence Diffusion Model (IDM).
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Introduction
Influence Diffusion Model

Evaluation of the influence requires the definition of an Influence
Diffusion Model (IDM). This model is responsible for deciding
which nodes are affected by the information received from their
neighboring nodes in the SN.
The most extended IDMs are:

Independent Cascade Model (ICM)

Weighted Cascade Model (WCM)

Tri-Valency Model (TV)

All of them are based on assigning an influence probability to each
relational link in the SN.
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Introduction
Influence Diffusion Model

ICM, which is one of the most widely used IDMs, considers
that the probability of influence is the same for each link and is
usually a small probability, being 1% a widely accepted value.

WCM considers that the probability that a user v will be
influenced by an user u is proportional to the in-degree of user
v , i.e., the number of users that can eventually influence the
user v . Therefore, the probability of influencing the user v is
defined as 1/din(v), where din(v) is the in-degree of user v .

TV randomly selects the edge probabilities from the set
(1%, 0.1%, 0.001%).
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Introduction
Objective Function

Given a solution S , the objective function of IMP is evaluated as
follows:

IMP(S)← argmin
B⊆V\MN

φµ(G , {MN, B}) (1)

where φµ(G , {MN, B}) represents the spread ability of MN when both
sets MN and B spread two opposite messages.
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Introduction
Example: Influence Minimization Problem
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Figure 1: Initial Social Network. MN are highlighted in red.

For the sake of simplicity, it is assumed that all nodes with 0.1% or
more TV value will be activated.
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Figure 2: S1 = {B,F} and IMP(S1) = 3.

For the sake of simplicity, it is assumed that all nodes with 0.1% or
more TV value will be activated.
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Introduction
Example: Influence Minimization Problem

HGDC

BA FE

0.001%0.1%0.001%

1%

0.1%1%

0.1%

0.1%

1%

1/2 1/2 1/2

1/21/11/1 1/2

1/2 1/1

Figure 3: S2 = {E,D}, IMP(S2) = 1.

For the sake of simplicity, it is assumed that all nodes with 0.1% or
more TV value will be activated.
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Introduction
Literature Review

It has been shown to be NP-hard (Budak, 2011).
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Surveys highlight that studies on heuristics and metaheuristics are
scarce in this family of problem.
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From data to problem-specific knowledge
What distinguishes a good from a bad solution?

Methodology proposed by Florian Arnold and Kenneth
Sörensen in 2019.

Main contributions:
1 A framework to derive problem-specific knowledge.
2 A case study demonstrates that these findings can make a

good heuristic even better.
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From data to problem-specific knowledge
Features Generation

The features selected based on well-known metrics in Social
Network Analysis. Features are dependent on the instance
normalization is needed. The following metrics have been used for
normalization:

Number of nodes (I1)

Number of edges (I2)

Number of total connected components (I3)

Average in-degree (I4)

Average out-degree (I5)

Number of communities (I6)
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From data to problem-specific knowledge
Features Generation

The features considered to characterize a solution in this work are
the following (normalization metric between parentheses):

S1: nodes that can be influenced (I1)

S2: edges that can propagate influence (I2)

S3: total connected components influenced (I3)

S4: average sum of blockers in-degree (I4)

S5: average sum blockers out-degree (I5)

S6: total number of communities influenced (I6)

S7: sum of blockers ranking in the instance according to its
out-degree (I1)

S8: average sum of blockers probability to neighbors

S9: average activation probability to MN from blockers

S10: sum of distance to MN from blockers
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From data to problem-specific knowledge
Representative Dataset Generation

The dataset contains two classes of solutions: good (1) and bad
quality solutions (0).

Bad quality solutions: are created by a random blockers
selection.

Good-quality solutions: using the best algorithm in the
literature that includes some randomization.

Notice that if the exact objective function is known, more classes
can be generated, for instance, according to deviation to the exact
values.
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From data to problem-specific knowledge
Dataset Classification Results
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Figure 4: Decision Tree.
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From data to problem-specific knowledge
Heuristic Proposal

The prediction accuracy obtained with decision tree classifier is
99.87%.

Average sum of the propagation blockers neighbors (S8) and the
average sum blockers in-degree (S4) are the key features for IMP.

The proposed heuristic uses this features as the greedy criterion to
generate high-quality solutions.

Blockers with more than 1.965 average sum of the propagation
blockers neighbors in decreasing order by in-degree.
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Results
Experimental environment

Programming language: Java 17 and Python 3.10.

Metaheuristic Optimization framewoRK (MORK) 13.

Features of the experimental machine: AMD EPYC 7282 16
virtual cores CPU with 32GB of RAM.

Instances: 8 per each IDM (state-of-the-art instances range
between 4039 and 1134890 nodes).

Performance metrics:

Avg.: objective function value.
Time (s): run time measured in seconds.
Dev.: average deviation from the best known solution.
#B: times that the algorithm is able to reach the best solution
in the experiment.
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Results
Competitive test between state-of-the-art and our heuristic approach

GR gin
b Avg. Time (s) Dev. #B Avg. Time (s) Dev. #B

W
C
M

(1
) 20 10077.13 28.40 0.02% 7 10077.02 28.34 0.00% 8

40 9750.55 55.49 0.01% 7 9750.50 55.80 0.03% 7
60 9513.50 81.54 0.34% 6 9512.33 81.99 0.05% 7
80 9301.72 106.63 0.44% 6 9299.53 107.71 0.03% 7
100 9137.11 131.14 0.91% 5 9132.98 132.87 0.00% 8

9556.00 80.64 0.34% 31 9554.47 81.34 0.02% 37

T
V
(2
)

20 15716.42 211.56 0.00% 8 15716.42 199.17 0.00% 8
40 14979.66 413.64 0.00% 8 14979.66 387.90 0.00% 8
60 14465.62 604.81 0.00% 8 14465.62 569.66 0.00% 8
80 13411.32 781.76 0.01% 7 13411.30 739.35 0.00% 8
100 13004.12 952.28 0.00% 8 13004.21 899.81 0.01% 7

14315.43 592.81 0.00% 39 14315.44 559.18 0.00% 39

Table 1: A comparison between state-of-the-art method and a heuristic
approach based on the best features identified by a supervised algorithm.
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Conclusions

The proposed algorithm obtains competitive results compared
to the state of the art.

Future work: further exploration of metaheuristic algorithms
and additional supervised learning algorithms to deepen the
understanding of the solutions.
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