

A Biased Random Key Genetic Algorithm for solving the αneighbor p-center problem

Sergio Pérez-Peló (sergio.perez.pelo@urjc.es) Jesús Sánchez-Oro (jesus.sanchezoro@urjc.es) Abraham Duarte (abraham.duarte@urjc.es)

Outline

- 1. Introduction
- 2. Methodology
 - BRKGA
 - II. Decoder
 - **III.** Local Optimization Phase
- 3. Experiments and results
- 4. Conclusions and future work

- Facility location problems have been extensively studied in the literature.
- **Different variants** of this problem have appeared **over the years**.
- Facility location problems have multiple realworld applications.

- In this work we address the α -neighbor p-center problem.
- A customer must be assigned to α facilities.
- Focuses on **providing a robust** failover **solution**.
 - Situations in which the nearest facility is unavailable for any reason.
- In this work, all the points available in the instance can act as facilities or as clients.

- The objective function is to minimize the maximum distance between each client and its assigned α th facility.
- In mathematical terms, for each client:

$$\alpha distance(a, Z) = min_{S \in Z} \{max_{b \in S} d(a, b)\}$$

where Z is the set of p points selected as facilities; S represents any subset of Z of size α ; a and b are points in the plane; and d(a, b) is de **Euclidean distance** from a to b.

For a whole solution, the objective function value is calculated as:

$$OF(Z, K) = max_{\alpha \in K \setminus Z} \alpha distance(a, Z)$$

where *K* represents the set of points in an instance.

$$n = 6, p = 3, \alpha = 2$$

AGENCIA ESTATAL DE INVESTIGACIÓN

DE CIENCIA, INNOVACIÓN

Universidad Rey Juan <u>Carlos</u>

7

$$n = 6, p = 3, \alpha = 2$$

AGENCIA Estatal de Investigación

DE CIENCIA, INNOVACIÓN

$$n = 6, p = 3, \alpha = 2$$

AGENCIA ESTATAL DE INVESTIGACIÓN

DE CIENCIA, INNOVACIÓN

7

$$n = 6, p = 3, \alpha = 2$$

••• Universidad

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

- Biased Random Key Genetic Algorithm (Gonçalves and Resende, 2011).
 - Based on the behavior of classical genetic algorithms (chromosomes representing solutions encoded in some way).

- Chromosomes encoded by vectors of real numbers in the interval [0, 1].
 - These numbers are commonly known as alleles.
 - Represent the random keys.
- They must be translated into the context of the solution in a **decoding phase**.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

R

 t_e $t - t_e$

AGENCIA ESTATAL DE INVESTIGACIÓN

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

grafo RESEARCH

- It is necessary to define a method to convert the allele values into elements of the solution.
- Each **position** in the chromosome represents the **node** with the **same id**.

Methodology Decoder

Methodology Decoder

Methodology Decoder

AGENCIA ESTATAL DE INVESTIGACIÓN

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

grafo RESEARCH

- Once a diverse population is obtained, a local improvement phase is executed.
- This process is **applied to** the solutions belonging to the **elite set**.
- The algorithm returns the best solution found after the application of the local search method.

 Let us first define the movement that generates the explored **neighborhood** as:

$Swap(Z, a, b) \leftarrow Z \cup \{b\} \setminus \{a\}$

where $a \in Z$ and $b \notin Z$, it is, a represents an open facility and b a demand point in the solution Z.

 The exploration of this neighborhood is quite time-consuming.

- In this work we reduce the number of facilities and clients that are swapped.
 - The facilities that are closed are only those that represent the ath closest facility to some client
 - For each facility, only those clients whose distance to the facility is less than that of its α th closest client are candidates to participate in the movement.
- This neighborhood is explored following a classical **first improvement** strategy.

- The experiments performed in this work are devoted to test the actual state of the proposal in terms of solution quality and computing time.
- As a preliminary experimentation, a representative subset of 39/111 instances has been tested.

Experiments and results

- Instances derived from the TSP-Lib.
 - •37 instances solved with three different α values: 1, 2, 3.
 - Instances proposed in Callaghan et al. (2019)
 - •48 $\leq n \leq 1323$, where n is the number of points.
 - $10 \le p \le 100.$
- Java 17, AMD Ryzen 5 3600 (2.2 GHz) CPU with 16GB RAM.

Experiments and results

- The parameters of the algorithm have been set automatically using the irace package.
 - Population size (t): fixed to 100.
 - •% of elite chromosomes (t_e) : $0.10t \le t_e \le 0.25t$.
 - •% of mutant chromosomes (t_m) : $0.10t \le t_m \le 0.30t$.
 - •Allele inheritance probability (ρ_e): $0.5 \le \rho_e \le 0.8$.
- The proposal is compared against the best method found in literature, a GRASP with strategic oscillation approach (Sánchez-Oro et al., 2022).

Experiments and results

$$t_e = 0.17, t_m = 0.11, \rho_e = 0.79$$

α	Algorithm	Avg.	Time (s)	#Best	Dev (%)
1	BRKGA	698.52	720.92	4	9.34
	GRASP + SO	604.93	301.29	13	0.00
2	BRKGA	1043.71	615.60	5	7.07
	GRASP + SO	995.42	382.08	10	3.85
3	BRKGA	1314.27	530.41	6	5.10
	GRASP + SO	1211.17	414.33	7	2.80

Conclusions and future work

- A novel approach based on BRKGA is proposed for solving the α -neighbor p-Center problem.
- A decoder and a local search method have been proposed.
- The experimental phase shows that the algorithm provides promising quality and computational time performance.
 - However, it still needs to be improved

Conclusions and future work

- New decoders and improvement methods can be proposed.
- A parallel version of the algorithm could provide better results in less computing time.
- Test the approach against instances widely used in facility location problems.

A Biased Random Key Genetic Algorithm for solving the αneighbor p-center problem

Sergio Pérez-Peló (sergio.perez.pelo@urjc.es) Jesús Sánchez-Oro (jesus.sanchezoro@urjc.es) Abraham Duarte (abraham.duarte@urjc.es)

