GRASP para el problema de fijación de precios basado en preferencias

XVI Congreso Nacional sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB)

Raúl Fauste-Jiménez (r.fauste.2020@alumnos.urjc.es)
Sergio Salazar (sergio.salazar@urjc.es)
Isaac Lozano-Osorio (isaac.lozano@urjc.es)
Jesús Sánchez-Oro (jesus.sanchezoro@urjc.es)

IntroducciónPropuesta algorítmicaResultadosConclusiones00000000000000000

Índice

Índice

- 1 Introducción
 - Definición formal del problema
 - Revisión de la literatura
- Propuesta algorítmica
 - Greedy Randomized Adaptive Search Procedure
 - Fase constructiva
 - Fase de mejora
- Resultados
 - Experimentos preliminares
 - Experimento final
- 4 Conclusiones

- El Rank Pricing Problem (RPP) es un problema
 \(\mathcal{NP}\)-Completo que busca maximizar el beneficio de una
 empresa, asignando el precio a sus productos, en función de
 unos presupuestos y preferencias.
- Cada cliente comprará, como mucho, un solo producto y se considera una cantidad ilimitada de cada producto.
- Aplicaciones del mundo real:
 - Retroalimentación empresarial.
 - Industria automovilística o electrónica.

Introducción

Índice

Definición formal del problema

Dado un conjunto de **productos** $I = \{i_1, ..., i_n\}$ y un conjunto de **clientes** $K = \{k_1, ..., k_t\}$, donde cada $k \in K$ tiene un subconjunto de productos preferidos $I^k \subseteq I$ tal que k no comprará ningún producto que no pertenezca a I^k . Cada cliente $k \in K$ tiene un valor de preferencia para cada producto $i \in I$, representado por p_i^k .

Cada cliente tiene un **presupuesto** fijo (b).

La **solución** consiste en obtener un **vector de precios** S que determine el precio de cada producto y que maximice el beneficio.

Resultados

Modelo

$$\max_{S} \sum_{k \in K} \sum_{i \in I^k} s_i x_i^k
s.t.
s_i \ge 0, \forall i \in I,$$
(1)

donde $\forall k \in K$, x_i^k es la solución óptima del problema mostrado en la Ecuación (2).

$$\max_{x^{k}} \sum_{i \in I^{k}} p_{i}^{k} x_{i}^{k}$$
s.t.
$$\sum_{i \in I^{k}} x_{i}^{k} \leq 1,$$

$$\sum_{i \in I^{k}} s_{i} x_{i}^{k} \leq b^{k},$$

$$x_{i}^{k} \in \{0, 1\}, \quad \forall i \in I^{k}, \forall k \in K$$

$$(2)$$

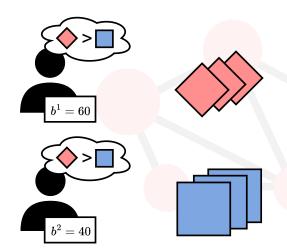
 Introducción
 Propuesta algorítmica
 Resultados
 Conclusiones

 ○○○●○○
 ○○○○
 ○○○

Introducción

Ejemplo

Índice



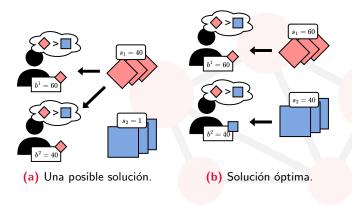
 Introducción
 Propuesta algorítmica
 Resultados

 ○○○●○
 ○○○

Introducción

Ejemplo

Índice



Los **precios** de la **solución óptima** pertenecen al conjunto de **presupuestos**.

Conclusiones

Introducción

Revisión de la literatura

Código no disponible y solo 3 instancias.

Resultados

Índice

Greedy Randomized Adaptive Search Procedure (GRASP)

Propuesto por Feo y Resende en 1989.

Algoritmo 1 GRASP(α ,I,B)

- 1: $S_b \leftarrow \emptyset$
- 2: for $i \in 1 \dots it$ do
- 3: $S \leftarrow Constructivo(\alpha, I, B)$
- 4: $S \leftarrow Mejora(S, I)$
- 5: **if** $RPP(S) > RPP(S_h)$ **then**
- $S_b \leftarrow S$ 6:
- 7: end if
- 8: end for
- 9: **return** *S*_b

Propuesta algorítmica

Fase constructiva

Índice

- El criterio voraz elegido es el basado en función objetivo (pueden ocurrir empates).
- Se establece un umbral para determinar los candidatos entre los que elegir aleatoriamente.

$$u = v_{max} - \alpha \cdot (v_{max} - v_{min})$$

• Se utiliza un parámetro α para calcular el **umbral** que determina el espacio a la aleatoriedad.

Propuesta algorítmica

Fase de mejora

Índice

Se usa el operador Intercambiar(S, i, j) que **intercambiará los precios** asignados a los elementos $i, j \in I$. En concreto, dada una solución S compuesta por la asignación:

$$S = (s_1, \ldots, s_{i-1}, s_i, s_{i+1}, \ldots, s_{j-1}, s_j, s_{j+1}, \ldots s_n)$$

intercambiará los valores de los elementos i, j, obteniendo la solución:

$$S = (s_1, \ldots, s_{i-1}, s_j, s_{i+1}, \ldots, s_{j-1}, s_i, s_{j+1}, \ldots s_n)$$

Se analizan las dos conocidas estrategias de exploración: first improvement y best improvement.

Introducción Propuesta algorítmica

Resultados

Entorno experimental

- Lenguaje de programación: Java 21.
- Características del servidor: Ubuntu Server 20.04 en AMD **EPYC 7282**, **16 cores y 8 GB** de RAM.
- Métricas:
 - F.O: media de la función objetivo.
 - Tiempo (s): tiempo medio de ejecución en segundos.
 - GAP(%): desviación media de la mejor solución conocida.
 - #Óptimos: veces que el algoritmo es capaz de alcanzar la solución óptima del experimento.
- Instancias: 3 + 33 nuevas con un presupuesto de 1 a 1000, para los clientes de 30 a 200, y de 5 a 150 productos.

Introducción Propuesta algorítmica

Resultados

Experimentos preliminares

Se utilizó irace con un **conjunto preliminar** del 20% de instancias para obtener la mejor configuración.

Los mejores parámetros encontrados fueron:

- Búsqueda local: Best Improvement.
- Aleatoriedad: $\alpha = 0.01$.
- Condición de parada: 87 iteraciones.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., y Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.

Resultados

Experimento final: GRASP vs Estado del Arte

Propuesta más reciente del estado del arte: Variable Neighborhood Search (VNS).

	GRASP				VNS			
Instancias	F.0	Tiempo (s)	GAP (%)	#Óptimo	F.0	Tiempo (s)	GAP (%)	#Óptimo
30×5	807	0,18	0,00	1	807	600,00	0,00	1
30×25	1018	1,93	2,30	0	960	600,00	7,87	0
60×50	1962	39,30	2,73	0	1842	600,00	8,68	0
Total	1262,33	13,74	1,68	1	1203,00	600,00	5,52	1

Tabla 1: Comparativa GRASP frente a VNS.

Las 3 instancias del estado del arte van de 30 a 60 **clientes**, y de 5 a 50 **productos**.

Resultados

Índice

Experimento final: GRASP vs Gurobi

Las **nuevas instancias** generadas van de 100 **a** 200 **clientes** y de 25 a 150 **productos**.

Algoritmo	F.O.	Tiempo (s)	GAP. (%)	#Óp <mark>timos</mark>
GRASP	3762,89	201,59	2,85%	1
Gurobi	38833,72	12465,24	0,00%	18

Tabla 2: Comparativa GRASP frente a Gurobi.

Gurobi no es capaz de generar una solución para instancias \geq 200 clientes y \geq 50 productos.

 Introducción
 Propuesta algorítmica
 Resultados
 Conclusiones

 ○○○○○
 ○○○●
 ○○○

Resultados

Índice

Experimento final: GRASP vs Gurobi

Instancias	F.0	Tiempo (s)	Instan <mark>cias</mark>	F.O	Tiempo (s)
200×50 ₋ 0	85146	678,62	200×100 ₀	90803	4929,35
$200 \times 50_{-}1$	85269	666,88	200×100 ₋ 1	95345	4278,20
200×50 ₋ 2	84620	675,62	200×100 ₋ 2	98065	4493,50
200×50 ₋ 3	88054	629,00	200×100_3	94881	4338,71
200×50 ₋ 4	88629	624,93	200×100_4	85678	4672,00
200×150 ₀	93015	17039,00	200×150_3	97056	16426,00
200×150 ₋ 1	96212	15124,42	200×150_4	99797	14056,74
200×150 ₋ 2	102741	15087,95			

Tabla 3: Resultados GRASP en instancias $K \ge 200$ e $I \ge 50$.

Introducción Propuesta algorítmica

Conclusiones

Índice

◆ Los resultados son prometedores.

① Trabajos futuros:

- Obtener el código del estado del arte para poder evaluar frente al resto de instancias.
- Añadir alguna componente que fomente la **diversidad** ($\alpha = 0.01$).
- Estudiar los parámetros más detalladamente.
- Incorporar técnicas de aprendizaje automático para guiar la exploración del espacio de soluciones.
- Trabajar en problemas relacionados como RPPT y CRPP.

Resultados

Conclusiones

Introducción Propuesta algorítmica

Agradecimientos

Índice

Este trabajo ha sido financiado gracias a:

- Ministerio de Ciencia e Innovación con ref.
 PID2021-126605NB-I00 y PID2021-125709OA-C22 financiado por MCIN /AEI /10.13039/501100011033 and by ERDF A way of making Europe.
- CIRMA: "This work has been supported by Comunidad Autónoma de Madrid, CIRMA-CM Project (TEC-2024/COM-404)".
- Cátedra ENIA: Ministerio para la Transformación Digital y de la Función Pública (Ref. TSI-100930-2023-3).

GRASP para el problema de fijación de precios basado en preferencias

XVI Congreso Nacional sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB)

Raúl Fauste-Jiménez (r.fauste.2020@alumnos.urjc.es)
Sergio Salazar (sergio.salazar@urjc.es)
Isaac Lozano-Osorio (isaac.lozano@urjc.es)
Jesús Sánchez-Oro (jesus.sanchezoro@urjc.es)

