Constructivo GRASP para la Optimización de una Planta de Producción en la Industria Automotriz

XVI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados

Sergio Cavero, Isaac Lozano-Osorio y Manuel Laguna sergio.cavero@urjc.es, isaac.lozano@urjc.es, manuel.laguna@colorado.edu

28 de mayo de 2025

Universidad Rey Juan Carlos Madrid, Spain

GRASP en la Industria Automotriz

- Motivación
- 2. Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

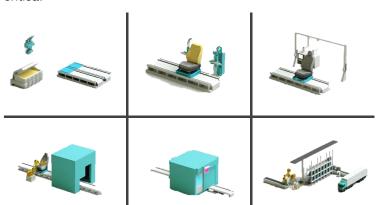
- 1. Motivación
- 2. Definición del problema
- 3. Estado del arte
- 4. Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

GRASP en la Industria Automotriz

Sergio Cavero et al.

1 Motivación

- Definición del problema
- Estado del arte
 Propuesta
- algorítmica
- 5. Experimentación
- 6. Conclusiones


- Motivación
- 2. Definición del problema
- Estado del arte
- 4. Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

¿Cómo se fabrica un asiento de un coche?

La planificación de la producción de asientos en la industria automotriz es un proceso complejo en el que cada fase es crítica.

GRASP en la Industria Automotriz

Sergio Cavero et al.

1 Motivación

- 2. Definición del problema
- 3. Estado del arte
- 4. Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

¿Cómo se fabrica un asiento de un coche?

La planificación de la producción de asientos en la industria automotriz es un **proceso complejo** en el que cada fase es crítica.

GRASP en la Industria Automotriz

Sergio Cavero et al.

1 Motivación

- 2. Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

GRASP en la Industria Automotriz

Sergio Cavero et al.

1. Motivación

- 2. Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

¿Por qué es necesario abordar este problema?

- Mantener los niveles de inventario dentro de los rangos establecidos y adaptar la producción a la capacidad operativa de cada planta.
- Actualmente, la planificación se realiza de forma manual, utilizando hojas de cálculo y conocimiento experto, lo que limita la eficiencia, escalabilidad y capacidad de respuesta.
- ► Cada planta presenta **configuraciones específicas**, tipos de producción distintos y restricciones particulares, lo que hace inviable una solución única y genérica.

¿Cómo abordar el problema?

- Entender el problema (reuniones con responsables de planta).
- 2. Definir datos de entrada.
- 3. Formalizar el problema (modelo MIP).
- 4. Generar datos de prueba: escenarios, predicciones, límites
- 5. Desarrollar heurística.
- 6. Comparar heurística con soluciones óptimas.

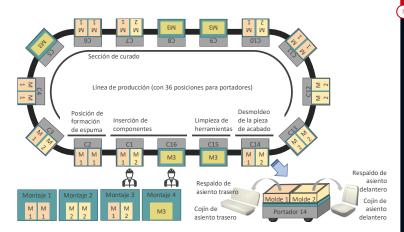
Además, se ha implementado un **entorno de análisis y visualización** para facilitar la interpretación y validación de las soluciones generadas.

GRASP en la Industria Automotriz

Sergio Cavero et al.

1. Motivación

- Definición del problema
- 3. Estado del arte
- algorítmica
- 5. Experimentación
- 6. Conclusiones


- GRASP en la Industria Automotriz
- Sergio Cavero et al.
- Motivación
- 2. Definición del problema
- Estado del arte
 Propuesta
- algorítmica
- 5. Experimentación
- 6. Conclusiones

- 1. Motivación
- 2. Definición del problema
- 3. Estado del arte
- 4. Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

GRASP en la Industria Automotriz

Sergio Cavero et al.

Motivación

2. Definición del problema

- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

Restricciones principales

- ► Capacidad máxima por línea de producción.
- ► Número limitado de portadores y moldes.
- ► Compatibilidades: molde-línea, molde-molde, portador-línea, etc.
- ► Inventario dentro de límites (mínimo y máximo) y variable durante el horizonte de planificación.
- ▶ Demanda totalmente satisfecha.
- ► Cambios de portadores/moldes limitados.
- ► Turnos de los trabajadores.
- La producción de una parte depende de la producción de otras partes.
- Horario de producción de la planta.

GRASP en la Industria Automotriz

Sergio Cavero et al.

1. Motivación

2. Definición del

- 3. Estado del arte
- algorítmica
- 5. Experimentación
- 6. Conclusiones

GRASP en la Industria Automotriz

Sergio Cavero et al.

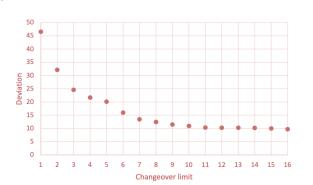
1. Motivación

2. Definición del problema

- Estado del arte
 Propuesta
- algorítmica
- Experimentación
 - 6. Conclusiones

Objetivo principal

- Minimizar el número de cambios de portadores (número de operaciones).
- Mantener los inventarios dentro de los intervalos de equilibrio (desviación respecto a los inventarios objetivo).


En escenarios especialmente complejos, se plantea como objetivo adicional reducir el número de partes en escasez.

Análisis de los objetivos mediante el MIP

- ► MIP 1: Minimizar nº de operaciones.
- ► MIP 2: Minimizar la desviación respecto a los inventarios.
- ► MIP 3: Minimizar la desviación sujeta a un nº de operaciones.

GRASP en la Industria Automotriz

Sergio Cavero et al.

1. Motivación

2. Definición del problema

- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

- GRASP en la Industria Automotriz
- Sergio Cavero et al.
- 1. Motivación
- Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

- 1. Motivación
- Definición del problema
- 3. Estado del arte
- 4. Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

3. Estado del arte

"No hay dos problemas iguales"

- ► Se han propuesto modelos MIP con descomposición para reducir costes en plantas cerámicas [1].
- ► En la industria del neumático se extiende el lot-sizing incluyendo moldes, tiempos de arranque y múltiples recursos [2].
- ► En la fundición de ruedas de aluminio se busca minimizar cambios ignorando restricciones de inventario [3].
- ► Se ha estudiado la minimización de cambios en líneas heterogéneas de producción de piezas metálicas para asientos de coche [4].

Aunque estos trabajos ofrecen ideas útiles, ninguno aborda directamente el problema con todas sus restricciones y particularidades reales.

GRASP en la Industria

- 1. Motivación
- 2. Definición del problema

- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

3. Estado del arte

¿Qué aprendemos del estado del arte?

- ► Hay enfoques exactos y heurísticos bien establecidos para problemas muy concretos.
- ► Se confirma la complejidad del problema.
- ► Los modelos existentes no contemplan todas nuestras restricciones reales
- Las soluciones propuestas no garantizan factibilidad operativa.
- ► Se requiere una heurística específica y eficiente.

GRASP en la Industria Automotriz

- 1. Motivación
- Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- Experimentación
 - 6. Conclusiones

- 1. Motivación
- 2. Definición del problema
- Estado del arte
- 4. Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

GRASP en la Industria Automotriz

Sergio Cavero et al.

- 1. Motivación
- Definición del problema
- 3. Estado del arte

- 5. Experimentación
- 6. Conclusiones

Constructivo GRASP

- ▶ Un algoritmo constructivo basado en GRASP [5].
- ► Objetivo: obtener soluciones factibles.
- ► Criterios:
 - 1. Reducir escasez de piezas.
 - 2. Minimizar cambios de portadores.
 - 3. Mantener inventarios equilibrados.
- ► Estrategias avanzadas:
 - "Factorización" de la función objetivo.
 - ► Reducción de las distintas vecindades.
- Se realizan ciertas simplificaciones para poder abordarlo de manera heurística.

GRASP en la Industria Automotriz

Sergio Cavero et al.

- Motivación
- 2. Definición del problema
- 3. Estado del arte

- 5. Experimentación
- 6. Conclusiones

Representación de una solución

- Se define un "catálogo" de portadores con un conjunto de montajes (varios moldes).
- Una solución es un conjunto de asignaciones de portadores a pistas, días y franjas horarias.
- ► Cada pista tiene una lista de portadores activos por franja.
- ► Se definen dos operaciones:
 - ► Añadir un portador.
 - Quitar un portador.
- ► Las operaciones se mantienen hasta que se reemplacen.

GRASP en la Industria Automotriz

Sergio Cavero et al.

- 1. Motivación
- Definición del problema
- 3. Estado del arte

- 5. Experimentación
- 6. Conclusiones

Pasos claves del constructivo GRASP

- ► Se generan soluciones mediante inserción/retirada de portadores.
- ► Dos listas de candidatos (RCL):
 - RCL_{add}: priorizar los portadores que reducen escasez (satisfacen más demanda).
 - ► RCL_{drop}: sustituir los portadores menos relevantes (empeoran el inventaro o no afectan a la solución).
- ► Búsqueda local para determinar el periodo en el que realizar el intercambio de portadores.

GRASP en la Industria Automotriz

Sergio Cavero et al.

- 1. Motivación
- 2. Definición del problema
- 3. Estado del arte

- 5. Experimentación
- 6. Conclusiones

Estrategias avanzadas de reducción de vecindarios

- ► Los vecindarios son muy grandes: ¿Qué portador añadir o quitar?, ¿en qué línea?, ¿en qué instante del horizonte?
- Se aplican criterios inteligentes para restringir el vecindario:
 - Solo se considera añadir portadores que producen partes con demanda insatisfecha
 - Solo pueden eliminarse portadores cuyas partes tienen inventario suficiente para cubrir la demanda restante.
 - El intercambio se realiza entre líneas compatibles para los portadores implicados.
 - ► El instante temporal se selecciona lo más tarde posible y se retrocede buscando el primer periodo donde se cumpla toda la demanda afectada.

GRASP en la Industria Automotriz

Sergio Cavero et al.

- 1. Motivación
- 2. Definición del problema
- 3. Estado del arte

- 5. Experimentación
- 6. Conclusiones

Estrategias avanzadas para mejorar la eficiencia

- Cada modificación en la solución implica evaluar su impacto:
 - ► Recalcular la función objetivo.
 - Verificar que todas las restricciones sigan siendo satisfechas.
- ► Algunas mejoras:
 - ► Se aplican actualizaciones incrementales.
 - ► Solo se recalculan los inventarios de las partes directamente afectadas por el cambio.

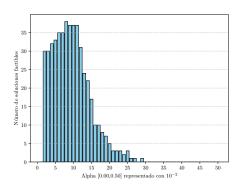
GRASP en la Industria Automotriz

Sergio Cavero et al.

- 1. Motivación
- 2. Definición del problema
- 3. Estado del arte

- 5. Experimentación
- 6. Conclusiones

- GRASP en la Industria Automotriz
- Sergio Cavero et al.
- 1. Motivación
- Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones


- 1. Motivación
- Definición del problema
- 3. Estado del arte
- 4. Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

Influencia del parámetro α

- ► Se evalúan valores de $\alpha \in [0,00,0,50]$.
- ► Se mide el número de soluciones factibles obtenidas.
- ▶ El mejor rendimiento se alcanza con $\alpha = 0.07$.

Número de soluciones factibles según valor α .

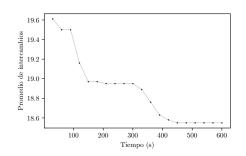
GRASP en la Industria Automotriz

Sergio Cavero et al.

- Motivación
- 2. Definición del problema
- 3. Estado del arte
- Propuesta algorítmica

5. Experimentación

6. Conclusiones



Parameter and the second secon

Evolución temporal del algoritmo

- ► Se analiza la calidad de las soluciones durante 10 min.
- ► Se observa una rápida mejora en los primeros 150 s.
- ► A partir de los 400 s, la mejora se estabiliza.

Evolución temporal del promedio de intercambios necesarios para todas las instancias.

GRASP en la Industria Automotriz

Sergio Cavero et al.

- Motivación
- 2. Definición del problema
- Estado del arte
- Propuesta algorítmica

5. Experimentación

6. Conclusiones

Rey Juan Carlos

Tasa de éxito del algoritmo

La dificultad de cada instancia se determina en función de ciertas características operativas, permitiendo su clasificación como "fácil", "media" o "difícil".

Cuitaria da algoificación	Fásil	Madia	Diffell
Criterio de clasificación	Fácil	Medio	Difícil
Nº días	92%	80%	45%
(# Total instancias)	(12)	(15)	(33)
Capacidad de producción	60%	64%	86 %
(# Total instancias)	(42)	(11)	(7)
Inventario inicial	71 %	56%	50 %
(# Total instancias)	(34)	(16)	(10)
Exigencia de la demanda	93%	62%	48 %
(# Total instancias)	(14)	(21)	(25)
Resumen (todas las instancias)	93%	64%	25 %
(# Total instancias)	(15)	(33)	(12)

GRASP en la Industria Automotriz

Sergio Cavero et al.

- Motivación
- Definición del problema
- 3. Estado del arte
- Propuesta algorítmica

5. Experimentación

6. Conclusiones

Rey Juan Carlos

Comparativa final: Gurobi vs GRASP

- ► Se comparan ambas soluciones sobre las mismas instancias factibles (38).
- GRASP es más lento, pero independiente de software comercial.
- ► El rendimiento en intercambios e inventario es competitivo.

Algoritmo	# Operaciones	Desviación	Tiempo (s)	# Óptimo
Gurobi	16,87	987,12	16,16	38
GRASP (constructivo)	18,55	1069,63	600,00	25

GRASP en la Industria Automotriz

- 1. Motivación
- 2. Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

- GRASP en la Industria Automotriz
- Sergio Cavero et al.
- 1 Motivación
- 2. Definición del problema
- 3. Estado del arte
- 4. Propuesta algorítmica
- 5. Experimentación

- 25 6. Conclusiones

- 4. Propuesta algorítmica
- 6. Conclusiones

1. Motivación

6. Conclusiones

- GRASP en la Industria Automotriz
- Sergio Cavero et al.
- 1. Motivación
- Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

- Se aborda un problema real de planificación en la industria automotriz.
- Se propone un algoritmo heurístico constructivo basado en GRASP
- GRASP proporciona soluciones factibles en algunos escenarios.
- ► Se evita la dependencia de software comercial.
- ► El enfoque demuestra ser eficiente y adaptable a ciertas necesidades operativas.

6. Conclusiones

Trabajos futuros

- Incorporar fases de búsqueda local para refinar soluciones.
- Diseñar mecanismos de reparación para asegurar factibilidad.
- ► Explorar nuevas funciones voraces en la fase constructiva.
- Proponer algoritmos heurísticos capaces de trabajar y mejorar soluciones infactibles.

GRASP en la Industria Automotriz

- Motivación
- Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

Agradecimientos

Esta investigación ha sido parcialmente financiada mediante subvenciones:

- ► PID2021-125709OA-C22, financiado por MCIN/AEI/10.13039/501100011033.
- "Proyectos Impulso de la Universidad Rey Juan Carlos 2024", ref. 2024/SOLCON-135988,
- ► CIRMA-CM, ref. TEC-2024/COM-404, financiado por la Comunidad Autónoma de Madrid.
- ► TSI-100930-2023-3 (MCA07), financiado por el Ministerio para la Transformación Digital y de la Función Pública.

También, los autores agradecen a Better Business Analytics por su colaboración y permitir la difusión de esta investigación.

GRASP en la Industria Automotriz

- 1. Motivación
- Definición del problema
- Estado del arte
 Propuesta
- algorítmica
- Experimentación
- 6. Conclusiones

Constructivo GRASP para la Optimización de una Planta de Producción en la Industria Automotriz

XVI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados

Sergio Cavero, Isaac Lozano-Osorio y Manuel Laguna sergio.cavero@urjc.es, isaac.lozano@urjc.es, manuel.laguna@colorado.edu

28 de mayo de 2025

Universidad Rey Juan Carlos Madrid, Spain

Referencias I

GRASP en la Industria Automotriz

- 1. Motivación
- Definición del problema
- 3. Estado del arte
- Propuesta algorítmica
- 5. Experimentación
- 6. Conclusiones

- R. De Matta and M. Guignard, "Dynamic production scheduling for a process industry," Operations Research, vol. 42, no. 3, pp. 492–503, 1994.
- [2] R. Jans and Z. Degraeve, "An industrial extension of the discrete lot-sizing and scheduling problem," IIE transactions, vol. 36, no. 1, pp. 47–58, 2004.
- [3] M. Güngör, A. T. Ünal, and Z. C. Taşkın, "A parallel machine lot-sizing and scheduling problem with a secondary resource and cumulative demand," *International Journal of Production Research*, vol. 56, no. 9, pp. 3344–3357, 2018.
- [4] J. M. Colmenar, M. Laguna, and R. Martín-Santamaría, "Changeover minimization in the production of metal parts for car seats," Computers & Industrial Engineering, vol. 198, p. 110634, 2024.
- [5] S. Pérez-Peló, J. Sánchez-Oro, and A. Duarte, Greedy Randomized Adaptive Search Procedure, pp. 93–105. Cham: Springer International Publishing, 2023.

