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Abstract

The recent expansion of electronic commerce has promoted the development of numerous
sectors around it. Among these sectors are those related to the supply chain management.
Within the supply chain, logistic warehouses play a key role, being responsible for receiving,
storing, and collecting products, which must be delivered to other warehouses or final customers.
Generally, the objective of the operations in a warehouse are devoted to reducing delivery times.
To that aim it is important to have efficient storage and collection strategies.

There are multiple problems within logistic warehouses that need to be solved. Many of
these problems can be defined as optimization problems. Among them, problems related to the
order picking process stands out. Order picking can be tackled with different picking policies.
Among the best-known order picking policies, we can find “Strict Order Picking” and “Order
Batching”. The former one is characterized by picking each order individually, i.e. the picker
starts a new collection route each time a new order needs to be picked. On the other hand, the
Order Batching policy is characterized by the fact that orders are grouped into batches, and the
collection of all the orders associated with the same batch is carried out on the same picking
route, normally by a single picker.

This Doctoral Thesis focuses on solving several optimization problems belonging to the
family of Order Batching Problems (OBP), which appear when a batch collection policy is
used in the picking process of a warehouse. More specifically, this Doctoral Thesis focuses
on solving the task of determining the grouping of orders into batches, commonly named as
“batching”. The resolution of a problem belonging to the OBP family implies also addressing
other tasks such as: determining the next batch to be picked, selecting the order picker who
will carry out the picking, establishing the picking route within the warehouse, determining
the time that a picker must wait before starting a new route, etc. These tasks vary depending
on the variant of the problem studied. A possible classification of the variants would divide
them into Offline/Online, depending on the availability of information regarding to the arrival
of new orders. It is also possible to classify them as single picker/multiple pickers depending on
whether there are one or several pickers collecting the orders simultaneously. Variants of the
problem can also be identified according to the objective function studied.

This Doctoral thesis focuses on the online variants of the problem, which are characterized
by being dynamic optimization problems where orders arrive at the system continuously, i.e.,
while the collection process is undergo. In this context, there is no information about the next
order that will arrive at the system. This type of scenario could be considered the most realistic
nowadays, given that the online sale of products is continuously happening, as e-Commerce
platforms operate 24 hours a day. Among the different online variants of the OBP family, in
this Doctoral Thesis, the batching task is studied both: single picker context, and multiple
pickers context. In addition, the task that determines the time window is also highlighted and
studied. This task occurs only in online variants of the problem and it has been little studied in
the literature, but it has a great impact on the obtained results. Determining the time window
consists of determining the best time for the picker to leave and collect the generated batch.
Delaying the start of the picking route means that new orders may arrive at the system, which
could benefit a better composition of the remaining batches.
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The resolution of the batching task belongs to the NP-hard computational complexity class,
so it is not possible to efficiently determine the optimal solution to the problem in a reasonable
amount of time, when the size of the problem is large, as it is the case in most real situations.

Heuristic and metaheuristic techniques are used to address the problems described above,
since these techniques provide high-quality solutions for NP-Hard problems in short computing
times. Heuristics are used both to generate an initial solution to the problem (constructive
heuristics) and to search for better-quality solutions in the neighborhood about a given solution
(search heuristics). The latter present the difficulty of being trapped in local optima, that
is, in the best possible solution within a specific neighborhood. Metaheuristics are high-level
heuristics capable of escaping from a local optimum and reaching others belonging to different
neighborhoods. In the case of this Doctoral Thesis, different construction and local search
algorithms have been proposed to solve the problems, together with the use of the Variable
Neighborhood Search and Greedy Randomized Adaptive Search Procedure metaheuristics. The
algorithms proposed for each of the different variants studied have been able to improve, in their
respective contexts, the existing algorithms in the state of the art. Finally, we point out that the
most relevant results obtained have been published in prestigious international scientific forums.
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Resumen

La reciente expansión del comercio electrónico ha impulsado el desarrollo de numerosos
sectores a su alrededor, entre los que se encuentran todos aquellos relacionados con la cadena
de suministro. Los almacenes loǵısticos juegan un papel clave en dicha cadena, siendo los
responsables de la recepción, almacenaje y posterior recogida de productos, que deben ser
servidos a otros almacenes o a clientes finales. De manera general, se persigue el objetivo de
reducir los tiempos de entrega, para lo que es relevante disponer de estrategias de almacenaje y
recogida eficaces.

Dentro de los almacenes loǵısticos, deben resolverse múltiples problemas que pueden ser
enunciados como problemas de optimización. Entre ellos, destacan los problemas relacionados
con la recogida de pedidos, que puede seguir diferentes estrategias o poĺıticas de recogida. Entre
las más conocidas se encuentran las poĺıticas Strict Order Picking y Order Batching. La primera,
está caracterizada por realizar una recogida individual de los pedidos, es decir, el operario inicia
una nueva ruta de recogida cada vez que recoge un nuevo pedido. Por otro lado, la poĺıtica
Order Batching se caracteriza porque los pedidos son agrupados en lotes y la recogida de todos
los pedidos asociados al mismo lote se realiza en una misma ruta, normalmente por un único
operario.

Esta Tesis Doctoral se centra en la resolución de algunos problemas de optimización
pertenecientes a la familia denominada Order Batching Problems (OBP), que aparecen cuando
se emplea una poĺıtica de recogida por lotes. De manera más concreta, esta Tesis Doctoral está
centrada en la resolución de la tarea consistente en determinar la agrupación de pedidos en
lotes, comúnmente denominada batching, si bien, la resolución de un problema perteneciente
a la familia OBP implica abordar también otras tareas tales como: determinar el siguiente
lote a recoger, seleccionar el operario que realizará la recogida, establecer la ruta de recogida
dentro del almacén, determinar el tiempo que un operario debe esperar antes de iniciar una
nueva ruta, etc. Estas tareas vaŕıan según la variante del problema estudiada. Una posible
clasificación de las variantes las dividiŕıa en Offline/Online, según la disponibilidad de la infor-
mación relativa a la llegada de nuevos pedidos. También es posible clasificarlas como Single
Picker/Multiple Pickers según se disponga de uno o varios operarios recogiendo los pedidos
simultáneamente. Las variantes también pueden diferenciarse según la función objetivo que se
estudie. Esta Tesis Doctoral se centra en las variantes Online del problema, que se caracterizan
por ser problemas de optimización dinámica donde los pedidos llegan al sistema de manera
continuada, es decir, mientras que el proceso de recogida está en marcha. En este contexto, no
se tiene ninguna información del siguiente pedido que llegará al sistema. Este tipo de escenario
podŕıa considerarse como el más realista hoy en d́ıa, dado que la venta de productos online
es continua, al estar las plataformas de comercio electrónico 24h al d́ıa operativas. Entre las
diferentes variantes Online del OBP, en esta Tesis Doctoral se estudia la tarea de batching tanto
en contextos con un único operario, como en contextos con múltiples operarios. Además, se
destaca la identificación y el estudio de la tarea que determina el tiempo de ventana. Esta tarea
solo se da en las variantes Online del problema y ha sido muy poco estudiada en la literatura,
pero tiene un gran impacto sobre los resultados obtenidos. Determinar el tiempo de ventana
consiste en determinar el mejor momento de salida del operario para realizar la recogida del lote
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generado. Retrasar el tiempo de salida del operario produce que puedan llegar nuevos pedidos
al sistema, lo que podŕıa beneficiar una mejor composición de los lotes restantes.

La resolución de la tarea de batching tiene una complejidad computacional NP-Dif́ıcil, de
manera que no es posible determinar de manera eficiente la solución óptima al problema en
un tiempo razonable, cuando el tamaño del problema es grande, como es el caso de la mayoŕıa
de las situaciones reales. Para abordar los problemas descritos anteriormente se emplean
técnicas heuŕısticas y metaheuŕısticas, ya que estas técnicas son capaces de ofrecer soluciones
de gran calidad, en un corto periodo de tiempo, para problemas NP-Dif́ıciles. Las heuŕısticas
son empleadas tanto para generar una solución inicial al problema (a través de heuŕısticas
constructivas) como para buscar soluciones de mejor calidad en la vecindad de una solución
dada (heuŕısticas de búsqueda). No obstante, estas presentan la dificultad de quedar atrapadas
en óptimos locales, es decir, en la mejor solución posible dentro de una vecindad concreta.
Las metaheuŕısticas son heuŕısticas de nivel superior que complementan a las heuŕısticas de
búsqueda, siendo capaces de escapar de un óptimo local y alcanzar otros pertenecientes a distintas
vecindades. En el caso de esta Tesis Doctoral se han propuesto diferentes algoritmos constructivos
y de búsqueda para la resolución de los problemas anteriormente mencionados, junto con la
utilización de las metaheuŕısticas Variable Neighborhood Search y Greedy Randomized Adaptive
Search Procedure. Los algoritmos propuestos para cada una de las diferentes variantes estudiadas
han sido capaces de mejorar, en sus respectivos contextos, a los algoritmos existentes en el estado
del arte. Por último, hay que destacar que los resultados más relevantes obtenidos durante
el desarrollo de esta Tesis Doctoral han sido publicados en foros cient́ıficos internacionales de
reconocido prestigio.

v



Tesis Doctoral Online Order Batching Problem

Acronym List

» ACO: Ant Colony Optimization

» ALNS: Adaptive Large Neighborhood Search

» AMRs: Autonomous mobile robots

» AS/RS: Automated Storage and Retrieval System

» BVNS: Basic Variable Neighborhood Search

» C&W: Clarke and Wright

» CL: Candidate List

» EDD: Earliest Due Date

» ESD: Earliest Start Date

» FCFS: First Come, First Served

» GA: Genetic Algorithm

» GRASP: Greedy Randomized Adaptive Search Procedure

» GVNS: General Variable Neighborhood Search

» ILS: Iterated Local Search

» JCR: Journal Citation Reports

» MDP: Markov Decision Process

» MO-VNS: Multi-Objective Variable Neighborhood Search

» OBP: Order Batching Problem

» OOBP: Online Order Batching Problem

» P/D: Pick-up and Delivery

» PSO: Particle Swarm Optimization

» PVNS: Parallel Variable Neighborhood Search

» RCL: Restricted Candidate List

» RVND: Random Variable Neighborhood Descent

» RVNS: Reduced Variable Neighborhood Search

vi



Tesis Doctoral Online Order Batching Problem

» SJR: Scimago Journal & Country Rank

» SVNS: Skewed Variable Neighborhood Search

» TS: Tabu Search

» TSP: Travelling Salesman Problem

» UML: Unified Modeling Language

» VFS: Variable Formulation Search

» VND: Variable Neighborhood Descent

» VNDS: Variable Neighborhood Decomposition Search

» VNS: Variable Neighborhood Search

vii



Contents

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acronyms List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Optimization problems in logistic warehouses . . . . . . . . . . . . . . . . . . . . 5
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Scientific methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Heuristic optimization methodologies . . . . . . . . . . . . . . . . . . . . 8

1.5 Hypothesis and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Structure of the memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Online Order Batching Problem 19
2.1 Processes involved in Online Order Batching Problem . . . . . . . . . . . . . . . 21

2.1.1 Orchestration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Routing task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Batching task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.4 Selecting/sequencing task . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.5 Assigning task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.6 Waiting task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.7 Sorting task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Joint variants of the Online Order Batching Problem . . . . . . . . . . . . . . . 32
2.3 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Time-window constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 S-Shape routing constraints . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 Warehouse layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.2 Characteristics of the instance sets in the literature . . . . . . . . . . . . 47

3 State of the art 51
3.1 Order Batching Problems: Taxonomy and literature review . . . . . . . . . . . . 56

4 Online Order Batching Problem with a Single Picker 103
4.1 New VNS Variants for the Online Order Batching Problem . . . . . . . . . . . . 105
4.2 GRASP with Variable Neighborhood Descent for the online order batching problem118

5 Online Order Batching Problem with Multiple Pickers 151
5.1 Basic VNS for a Variant of the Online Order Batching Problem . . . . . . . . . 153
5.2 A heuristic approach for the online order batching problem with multiple pickers 174

viii



Tesis Doctoral Online Order Batching Problem

6 Online Order Batching Problem with Time window 195
6.1 Fixed versus variable time window warehousing strategies in real time . . . . . . 197
6.2 A comparative study of the influence of the time-window strategy in online order

batching problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7 Conclusions and future work 255
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

7.1.1 Online Order Batching Problem with a Single Picker . . . . . . . . . . . 256
7.1.2 Online Order Batching Problem with Multiple Pickers . . . . . . . . . . 257
7.1.3 Online Order Batching Problem with Time Window . . . . . . . . . . . . 258

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

ix



List of Tables

Table 1.1 Characteristics of some of the most relevant metaheuristics. . . . . . . . . 9

Table 2.1 Parameters and variables for the General OOBP. . . . . . . . . . . . . . . 37
Table 2.2 Parameters and variables for the S-Shape routing algorithm. . . . . . . . . 42
Table 2.3 Warehouse characteristics and the work parameters used in this Doctoral

Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 2.4 Characteristics reviewed in the instances related to OBP. . . . . . . . . . 47
Table 2.5 Characteristics of instances used in articles related to OBP. . . . . . . . . 49

Table 3.1 Classification of authors by number of publication with more than 2 articles
of OBP in JCR and SJR index. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 7.1 Publications related to Online Order Batching Problem grouped by variant.261

x



List of Figures

Figure 1.1 Global online retail e-commerce growth (2017-2025). Data source: Insider
Intelligence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 Methodological process to obtain the results for the publication of this
Doctoral Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.3 Diagram of GRASP process. . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 1.4 Illustration of several steps within a GVNS process. . . . . . . . . . . . . 15

Figure 2.1 Sequence of tasks involved in order batching problems. . . . . . . . . . . 19
Figure 2.2 Example of an optimal route in a logistic warehouse. . . . . . . . . . . . 24
Figure 2.3 Example of an S-shape route in a logistic warehouse. . . . . . . . . . . . 25
Figure 2.4 Example of an Return route in a logistic warehouse. . . . . . . . . . . . . 26
Figure 2.5 Example of an Mid-Point route in a logistic warehouse. . . . . . . . . . . 26
Figure 2.6 Example of an Largest-Gap route in a logistic warehouse. . . . . . . . . . 27
Figure 2.7 Example of an Composite route in a logistic warehouse. . . . . . . . . . . 27
Figure 2.8 Example of an Combined route in a logistic warehouse. . . . . . . . . . . 28
Figure 2.9 Different types of commercial sorting cards from several companies. . . . 32
Figure 2.10 Timeline with the different timestamps that we can find in the OBP. . . 34
Figure 2.11 Relationship between objective functions and OBP variant classification. 35
Figure 2.12 UML Class Diagram of an Order Batching instance. . . . . . . . . . . . . 44
Figure 2.13 Example of different layouts of the picking zone in a warehouses. . . . . . 45
Figure 2.14 Example of the layout of the logistic warehouse used in this Doctoral Thesis. 46

Figure 3.1 Publications index in JCR and SJR classified by year and grouped by
variant of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 7.1 Timeline with milestones of the publications obtained in this Doctoral
Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

xi





Chapter 1

Introduction

This Doctoral Thesis addresses the study of several variants of the Online Order Batching
Problem (OOBP). The OOBP is an optimization problem that occurs during the picking of
orders in logistic warehouses. Logistic warehouses are devoted to manage goods that need to
be received, stored, and picked for a later delivery. They are an essential part of the supply
chain, and optimization of its management plays an important role in the reduction of costs
and improvement of the quality of service offered to the final customer. Among the activities
that occur within a warehouse, order picking is one of the most important and requires a large
amount of resources.

In this chapter, we first contextualize the research carried out and explain the motivations
that led us to do this research. Then, we present the general concept of an optimization problem.
In addition, we examine different types of optimization problems and review the techniques
used to solve them. Later, we focus on the optimization problems within the supply chain. We
continue by presenting the scientific methodology that we follow in this Doctoral Thesis, as well
as the approximate optimization methodology used to solve the problem studied here. Finally,
we propose the hypothesis and objectives of this Doctoral Thesis and summarize the structure
of the rest of the document.

1.1 Context and motivation
Nowadays, there is a boom in electronic commerce (e-Commerce) where new customers con-
tinuously increase the demand for products that are sold online. This increase means that
companies must improve their logistic processes to provide customers with their products as
soon as possible and at a lower cost. Specifically, consumers want to receive new products
purchased in a very short period of time, and this behavior is becoming more prevalent in society.
The way to reduce delivery time is to develop new systems and improve current procedures in
supply chain management. Amazon1 is one of the best examples, since it has become one of
the leaders in the world of e-Commerce retail in the last few years. Amazon, among others,
has very fast delivery times, with some products delivered even in less than 12 hours. Amazon
has become a leader due to the early digitalization of its production system and the associated
reduction in operating expenses [78]. This fact has forced other companies involved in retail
commerce to invest a large amount of resources to improve their processes. Enhancing the
process is the only way to remain competitive in an increasingly globalized market.

E-Commerce retail is still a growing sector compared to traditional retail [86]. This trend
can be seen in Figure 1.1, where the results of the last few years and a forecast for the next
few years are shown. This figure includes total sales in trillions of dollars, the percentage of

1Amazon.com Inc.
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e-Commerce sales over total retail sales, and the percentage of change from e-Commerce sales
at the retail level in the period 2017 to 2025. The data presented in this figure are consolidated
up to 2021 and are an estimate from that point on. As we can observe, it is expected that in a
few years, worldwide e-Commerce will reach around 24% of total retail sales.

The strong growth of the market has led us to place our interest in the optimization of e-
commerce processes related to the supply chain. In particular, we focus on finding technological
solutions that improve productivity in supply chain management and, therefore, in retail
e-Commerce.
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Figure 1.1: Global online retail e-commerce growth (2017-2025). Data source: Insider Intelli-
gence.

There are many processes within supply chain management that need to be optimized with
new solutions, leading to an overall improvement in cost and/or time. If we pay attention to
Amazon, we can see a strong expansion of its logistic centers in all its areas of influence, as well
as a strong investment in digitalizing the processes in logistic warehouses [166]. We often find
many optimization problems in the supply chain, so we want to participate in the search for new
solutions to help the global market. But there are many problems and decisions to be solved in
the supply chain [114, 194]. These decisions are classified according to its execution deadlines,
resulting in three levels of decision (operational, tactical, and strategic) in the management of
the supply chain and, more specifically, in the logistic of a warehouse [54]. Here, we review
some necessary decisions in the logistic of a warehouse which are related to order picking.

The sets of decisions at each decision level can be very different, and only one decision can
include several optimization problems. Strategic decisions are decisions that are executed in the
long term (3 to 5 years). Tactical decisions are decisions that are executed in the medium term
(1 to 3 years). Finally, operational decisions are decisions that are executed in the short term
(up to 1 year). Among strategic decisions, we can find: the design of the warehouse layout and
its location, the level of mechanization and the system used, or the origin of the products to be
processed in the warehouse (frozen, large volumes, or weights), among others. Among tactical
decisions, we can find the placement of items in the warehouse, the type and capacity of the
picking systems, the number of pickers, assigned tasks and their work shifts, or the number of
the pick-up and delivery (P/D) points (also known as depot) and its location, among others.
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Finally, operational decisions typically correspond to the set of tasks (Routing, Batching, among
others) that we need to address when solving the order-picking process. All decisions that affect
the order picking for each level of management can be found in [94], this paper is attached to
this Doctoral Thesis in Section 3.1.

In this Doctoral Thesis, we focus on an operational-level problem. Specifically, the order
picking problem, because there are many studies in the state of the art where it is confirmed
that it is the most important operation in cost, for example, according to the author, Colin
Drury affirmed in 1988, [59] the order picking task supports 65% of the total operational
costs for a typical warehouse. Other authors, Robert G. Coyle et al. in 1996, [45], detailed
that between 50% and 75% of the total operational costs of a warehouse are attributed to
picking operations. Years later, Edward Frazelle in 2002 [82] identified order picking as the
most expensive operational task in manual and automatic warehouses, because it represents
around 55% of overall expenses. Subsequently, James A. Tompkins et al. in 2003 and 2010 [270]
published talking from the cost perspective that order picking tasks represent approximately
55% of the total operational costs. Later, in 2006, Alan Rushton et al. [245] wrote that the
order picking process accounts for about 50% of the direct labor costs of a warehouse. In the
literature, much research on the importance of the order picking process in logistic warehouses
has been conducted, motivating us to contribute new solutions to the problem. We can find
more information on the cost of collect and storage orders in [246, 257].

The problems studied in this Doctoral Thesis are order picking, when the pick policy is by
batches. In this case, the problem is known as order batching. But other decisions at all levels
directly affect the order batching problem. Some of these decisions define the variant of the
problem to be addressed, and other decisions are part of problem instances. In addition, we
need to solve several operational decisions, also known as tasks, to address the order batching
problem. We can find detailed information on the different variants of the problem and its
instances in Chapter 2, as well as the details of the problem that we address.

1.2 Optimization problems
Operational research is a field of mathematics in which optimization problems are studied.
Optimization problems are found in multiple application fields, such as economics, finance,
biology, or engineering, among others. Since the 17th century, scientists and mathematicians
have tried to develop new methods to address these types of problem. However, operational
research did not begin to be studied as a branch of applied mathematics until the first half of
the 20th century. The term linear programming was also coined at the same time. Since then,
linear programming has defined some particular optimization problems in which the objective
function can be expressed as a linear function. Later, in the middle of the 20th century, George
Dantzig published the well-known Simplex algorithm [159] to solve linear programming problems
[253, 260].

Optimization problems consist of finding the best value, maximum, or minimum in a real
function. This value is known as the optimal value, and the function is known as the objective
function. In addition, problems have different constraints that are applied to the variables that
represent the solution. The target of the problem is to find the optimal value in the function
domain. In this sense, the search can be performed in the entire function domain or only in part
of it. The selected domain is limited by the constraints of the problem. Among all possible sets
of solutions, those which satisfy the constraints of the problem are named feasible solutions.

Optimization problems can be defined from a mathematical perspective. The problem
consists of one or more objective functions (f). Having f : A→ R and A ⊆ Rn, the domain A
of the function f is known as a set of solutions. The set of solutions is delimited by a set of
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constraints that the solutions in A must satisfy. Each constraint is an equation or inequation
that limits A. All elements of A that satisfy the set of all constraints of the problem are known
as feasible solutions or candidate solutions. When the optimization problem minimizes f , it
consists of finding the element x0, such that x0 ∈ A : f(x0) ≤ f(x), ∀ x ∈ A. Similarly, in
the case where the optimization problem maximizes f , consists of finding the element x0, we
can define it as x0 ∈ A : f(x0) ≥ f(x), ∀ x ∈ A. The standard form to define a continuous
optimization problem is:

minimize/maximize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

where:

• f : Rn → R is the objective function to be minimized / maximized in the n-variable vector
x,

• gi(x) ≤ 0 are called inequality constraints

• hj(x) = 0 are called equality constraints, and

• m ≥ 0 and p ≥ 0.

There are many types of optimization problems. A possible classification can be derived
from the nature of the problem. Each optimization problem has a different and specific way
of solving it. However, there are other possible classifications, so the same problem can often
be classified into different categories, and thus different approaches can be used to solve it.
Next, we review the most common categories of optimization problems. The best known is
the convex programming problem [16]. The main characteristic of convex programming is that
every local optimal is a global minimum. Other types of optimization problems are linear
programming problems [253, 260]. The characteristics of identifying a linear programming
problem are that the objective function and the constraints are linear. Among the optimization
problems, we can also find geometric programming problems [17, 64]. The characteristics of
identifying a problem of geometric programming are that the objective function is a polynomial
2 and the constraints are posynomials and monomials. Other types of optimization problems
are semidefinite programming problems [83]. In this kind of problem, the variables in the
problem are vectors and the objective function is linear, but the constraints on real variables are
replaced by constraints on semidefinite matrices. Also, one should note that some variants of
the optimization problems reviewed can be framed in convex programming. Additionally, linear
integer programming problems, classified within the linear programming family [253, 260], are
characterized by restricting the variables of the problem to be integer numbers. Furthermore,
there is a special case within linear integer programming problems, denoted as linear binary
programming [46, 211] (0-1 programming). In this case, linear binary programming problems
are characterized because some problem variables are restricted to be 0 or 1. Other types of
optimization problems are non-linear programming problems [13]. In non-linear programming,
the objective function is non-linear, and the constraints can be linear and/or non-linear. Among

2Note that the term posynomial is not equivalent to the term polynomial. Particularly, polynomial’s exponents
must be non-negative integers, but its independent variables and coefficients can be arbitrary real numbers. On
the other hand, the polynomial’s exponents can be arbitrary real numbers, but its independent variables and
coefficients must be positive real numbers. [64].
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them, quadratic programming problems [112] are those non-linear programming problems in
which the objective function is quadratic and the constraints can be linear and/or quadratic.
Other types of optimization problems are stochastic programming problems [14, 258]. The
characteristic of identifying a problem as stochastic is that some variable in the objective function
or constraints of the problem are random or stochastic variables. Other types of optimization
problems are known as combinatorial optimization problems. The characteristic of identifying
an optimization problem as combinatorial is that the set of feasible solutions is discrete or can
be reduced to a discrete set. Another family of optimization problems is the multi-objective
optimization problem [20, 68]. In multi-objective optimization problems, there is more than
one objective function to optimize, and the objective functions considered are opposed to each
other. In addition, there are a large number of optimal solutions. The set of optimal solutions
is known as the Pareto frontier [173]. Then, the Pareto frontier can be defined as an optimal
solution set that contains solutions that are not dominated by any other feasible solution.

As we have seen before, an optimization problem can be classified into different categories at
the same time. The problem studied in this Doctoral Thesis is classified as a combinational
optimization problem, because the feasible solution set is a discrete set. But the problem can
also be mathematically expressed as to be classified as a binary linear programming problem;
because the objective function and constraints are linear, and some variables can only have
binary values (0 and 1). In this Doctoral Thesis, we tackle different variants of the problem,
which are denoted as online. The characteristic of online variants is that the arrival of orders to
the system is dynamic. Then, it is normal to model arrival orders with a random variable and
to assume that the random variable follows a Poisson distribution [228]. This problem can then
also be classified as a stochastic programming problem because some constraint depends on a
random variable. But in this case, we are not going to solve the problem by following stochastic
programming techniques. In this Doctoral Thesis, we will use simulation techniques [195] to
solve different variants of the problem. Simulation techniques consist of simulating the values of
the random variable in the problem, so we can solve it as a non-stochastic problem and use the
same techniques applied to solve offline variants of the problem.

Generally, optimization problems can be solved in different ways. There are exact and
approximate methods. The exact methods are able to return the optimal solution, but they can
only solve small problems or some easy variants of the problem. However, many optimization
problems are classified as NP-hard. In these cases, these problems cannot be optimally solved
in polynomial time [295], so the use of approximate methods is required. Approximate methods
are capable of returning a solution close to the optimal one, and can find a solution to problems
of all sizes, in a reasonable amount of time [153, 294]. Furthermore, we can find an approximate
method with an error bound (ϵ) [154]. Only this type of approximate method with an error
bound can be applied in some variants of optimization problems.

In this Doctoral Thesis, we use approximate methods. Among the approximate methods, we
have used heuristic and metaheuristic methods to solve the problems studied. These techniques
are detailed in depth in the following sections.

1.3 Optimization problems in logistic warehouses
There are many different tasks to tackle in logistic warehouses, such as managing and processing
articles distributed in the warehouse. Among these tasks, we find the reception of products, the
management of their storage and inventory, the collection of orders, the packaging of orders,
the product returns, the generation of routes within the warehouse, etc. [54, 149]. Solving
each task might involve tackling one or more optimization problems. Furthermore, different
factors affect the correct management of the task, such as: the number of workers, the layout

5



Tesis Doctoral Online Order Batching Problem

of the warehouse [194], or the type of product. This Doctoral Thesis is mainly focused on the
order-picking task, which results in most of the operational costs in a logistic warehouse. All
tasks and factors involved in order picking are compiled and classified in [94]. This article is
attached in Section 3.1 of this Doctoral Thesis.

There are several policies that can be followed to deal with order picking. The order-by-order
approach, also known as strict order picking, is probably the most common and simple picking
policy. It consists of collecting all items associated to a single order in the same picking tour.
However, we can also use an article-by-article approach, where a determined number of items of
the same type belonging to one or more orders can be collected in the same picking tour, or a
batch approach. The batch approach consists of generating groups of orders that will be picked
together. This approach can also generate batches of articles, or batches of articles/orders by
picking zone [222]. In this Doctoral Thesis, we study the order picking policy that considers
batching of orders, since it is considered one of the most efficient ones [69].

Solving the order-picking process implies handling a set of tasks, which might vary depending
on the variant of the problem tackled. Particularly, some tasks such as batch generation or
route generation in the warehouse, are common to all order batching problems. However, other
tasks depend on the number of pickers. In particular, if the number of pickers is larger than one,
the task of assigning batches to pickers appears. Similarly, the sequencing task is only needed
when dealing with some objectives, such as balancing the workload or reducing the tardiness
associated with delivery.

Most of the tasks can be solved individually; however, there are dependencies among them,
and if we solve some of these tasks together, then we can obtain better results. In [52] it is
stated that the effort to tackle batching and routing tasks together can represent savings of up
to 35% of the cost compared to handling batching and routing tasks separately. In Section 2.1,
we review the tasks that we need to handle within the online order batching problems and the
relationships among them.

When solving an order batching problem, we can look for the optimization of different
objectives with commercial or managerial interest, such as economic savings, quality of service,
or the welfare of workers, among others. Each objective is represented as an objective function
in an optimization problem. In this Doctoral Thesis, we study several objective functions related
to the Online Order Batching Problem. For each variant of the problem studied, we optimize
only one objective simultaneously (i.e., we do not solve multi-objective optimization problems).
However, in some cases we report the evaluation of the solutions using more than one function,
which helps us to analyze the relation between the objectives. In Section 2.3, we review the
main objective functions related to order picking problems.

Finally, we would like to highlight that the variants of the problem tackled in this Doctoral
Thesis are dynamic optimization problems. Among dynamic optimization problems, the online
category corresponds to problems where the instance changes over time. In this case, orders
arrive at the system continuously. Then, we do not have any information about the next orders
that will arrive at the system in a determinate moment. As we explained before, we solve this
type of problem by simulation. Specifically, we simulate the orders that come into the system.
This type of problem is more difficult to solve than the static variants, but is also more realistic.

1.4 Methodology
In this section, we detail the scientific methodology followed in this Doctoral Thesis, together
with the main techniques and methods used to achieve the established goals. The scientific
findings of this Doctoral Thesis have been obtained following the scientific method, which is
explained in Section 1.4.1. As a result, several papers have been published. To complement the
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scientific methodology, we used several heuristic optimization methods to solve the different
optimization problems tackled in this Doctoral Thesis. These methods are reviewed in Section
1.4.2.

1.4.1 Scientific methodology
In Figure 1.2 we graphically present the scientific methodology followed in this Doctoral Thesis.
The figure details the flow and steps followed since the beginning of an investigation until the
end of it, when the research is published as a scientific article. In this process, each problem
tackled is identified and the state of the art of the problem is studied. Then, a hypothesis
is stated and an algorithm proposal is performed to validate the hypothesis. This process is
repeated until the hypothesis is validated and the results are published. It is worth mentioning
that this process has been followed iteratively for each of the articles published as a result of
the research carried out in this Doctoral Thesis.
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Figure 1.2: Methodological process to obtain the results for the publication of this Doctoral
Thesis.

Taking a closer look, in this Doctoral Thesis we have tackled several variants of the OOBP
following the next steps:

• Perform a detailed study of the main variants related to order-picking systems in logistic
warehouses.

• Select an identified variant of the problem from the previous step. The variant is discrimi-
nated according to their practical interest, previous publications, availability of material,
etc.

• Study the selected variant from an optimization point of view: objective function, con-
straints, and instances used.

• Reproduce the previous algorithms in the state of the art to compare with our future
proposals.
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• Propose efficient heuristic methods to build initial high-quality solutions and improve
them.

• Choose the more suitable metaheuristic methodology for the problem to reach different
local optima in each instance.

• Compare the algorithms proposed with the state-of-the-art methods over the reference
data sets.

• Elaborate and publish the results of the research in high-impact international journals.

1.4.2 Heuristic optimization methodologies
In this Doctoral Thesis, we used an approximated optimization methodology based on heuristic
and metaheuristic algorithms. Generally speaking, an approximate optimization method does
not guarantee that a globally optimal solution can be found. Within approximate optimization
methods, we can find heuristics [113] and metaheuristics [110, 206]. The main characteristics of
heuristics are: each heuristic is characterized to provide a solution to one kind of optimization
problem; heuristics are not generic strategies suitable for different problems, i.e. we must
develop a new heuristic for each problem; heuristics are usually deterministic algorithms, i.e.,
they always return the same result for the same instance; heuristics return very good solutions
in very short time for some kinds of problem, sometimes better than metaheuristics methods.
Heuristic methods can be further classified into constructive heuristics (i.e., heuristics that
generate an initial solution) or search heuristics (i.e., the heuristics which try to improve a given
feasible solution). On the other hand, we can find metaheuristic methods. Metaheuristics are
made up of one or more heuristic components. The main characteristics of the metaheuristics
are: they are generic strategies for different problems, i.e., these can be adapted to work in
each kind of problem; they are based on efficiently exploring the search space in order to find
near–optimal solutions; metaheuristics are usually non-deterministic algorithms because they
use a random process to explore the search space; metaheuristics use very different techniques
to find the best solution to an optimization problem, so it is very common to combine different
intensification techniques with diversification techniques to escape from a local optimal, or with
complex learning processes, i.e., all these strategies guide the search process in the solution
space. In addiction, the results obtained when using metaheuristics are usually better than
those obtained just with heuristics in most scenarios. There is a wide variety of metaheuristic
methods that can be classified into a taxonomy. Specifically, there are several articles that
define different taxonomies for metaheuristics algorithms. One of the last reviews [263] the most
important published taxonomies of the past few years [79, 199, 261].

As we can observe by the references, metaheuristic methods can be classified according to
different factors. Among them, we highlight the method proposed to solve the problem (which
can be classified into population-based methods, trajectory-based methods, naturally-inspired
methods, or local search methods, among others. In these classifications, some methods belong
to several categories. For example, the Ant Colony Optimization algorithm can belong to
population methods, multistart methods, and local search methods. In Table 1.1, we present
the main characteristics of some of the best known metaheuristic algorithms in the literature.
This table was inspired by the different taxonomies published in [58].
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Metaheuristic Ref. Acronym
Particle Swarm Optimization [67, 156] PSO Ë Ë Ë

Ant Colony Optimization [43, 57] ACO Ë Ë Ë Ë Ë Ë Ë

Scatter Search [106, 107] SS Ë Ë Ë Ë

Path Relinking [44, 109] PR Ë Ë Ë

Genetic Algorithm [291, 292] GA Ë Ë Ë

Genetic Programming [157, 162] GP Ë Ë Ë Ë

Evolution Strategy [262, 289] ES Ë Ë Ë

Evolutionary Programming [80, 81] EP Ë Ë Ë

Differential Evolution [230, 264] DE Ë Ë Ë

Tabu Search [104, 105] TS Ë Ë Ë Ë

Greedy Randomized Adaptive Search P. [76, 77] GRASP Ë Ë Ë Ë

Variable Neighborhood Search [118, 197] VNS Ë Ë

Adaptive Large Neighbourhood Search [238, 267] ALNS Ë Ë

Simulated annealing [158, 280] SA Ë Ë Ë Ë

Estimation of Distribution Algorithm [168, 169] EDA Ë Ë

Attributed Based Hill Climbing [167, 293] ABHC Ë Ë Ë Ë

Guided Local Search [285, 286] GLS Ë Ë

Iterated Local Search [55, 180] ILS Ë Ë

Stochastic Local Search [142, 143] SLS Ë Ë Ë Ë

Iterated Greedy [47, 48] IG Ë Ë Ë

Memetic Algorithm [200, 231] MA Ë Ë Ë Ë

Table 1.1: Characteristics of some of the most relevant metaheuristics.

In this Doctoral Thesis, we used different metaheuristic methods to solve the different variants
of the problem we tackled. The two methods used in this work are the Greedy Randomized
Adaptive Search Procedure and the Variable Neighborhood Search. They are classified in Table
1.1 as memoryless trajectory-based methods with local search procedures. In addition, the
Greedy Randomized Adaptive Search Procedure is considered a constructive multi-start method.
Both methods are thoroughly reviewed in the next section.

Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) was proposed by Thomas A. Feo and
Mauricio G. C. Resende in 1995 [76]. It is a metaheuristic consisting of a multi-start algorithm
composed of two phases: a construction phase and an improvement phase. The construction
phase hybridizes two components: a greedy selection and a randomization. The percentage
in which each component contributes to the solution is defined by a search parameter named
alpha (α). The α parameter must be adjusted for each problem to improve the performance
of the method. In some cases, the α parameter can be adjusted to be a new random value for
each iteration of the method, which, sometimes, yields a better solution in comparison to fix
its value to a predetermined value. The improvement phase is devoted to improve the solution
provided by the construction phase, and it is originally based on a local search procedure (i.e., a
method that results in a local optimum with respect to a particular neighborhood structure),
but it can also be hybridized with another improvement algorithm (i.e., another metaheuristic).
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In Figure 1.3, we present a diagram that illustrates the GRASP steps.
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Figure 1.3: Diagram of GRASP process.

As we can observe in the figure, the construction phase is one of the key components of
GRASP and the multi-start process is repeated for a number of iterations and it is considered
a search parameter. We have used this GRASP constructive phase to tackle several of the
problems studied in this Doctoral Thesis. To complement this figure, the pseudocode of the
GRASP constructive phase is detailed in Algorithm 1. In particular, this pseudocode represents
one iteration of the constructive phase. The constructive method starts with an empty solution
(Step 2), a Candidate List (CL) with all the items available to be part of a solution (Step 3) and
an alpha value (α) that is generated randomly, where α ∈ U [0, 1] (Step 4). Then, it initiates a
loop that is repeated until CL is empty (Step 5). In the loop, first, it calculates a threshold
(th) value (Step 6) based on the maximum and minimum values obtained from evaluating each
candidate in CL with a greedy function (arg max f(CL)) and (arg min f(CL)) respectively and
the value of the search parameter α. To continue, the procedure constructs a new Restricted
Candidate List (RCL) which is created with a percentage of the best candidates from CL (Step
7) selected as those elements that qualify over th when being evaluated with f . Then, it selects
a new item of RCL at random (Step 8). The selected item is then added to the solution (Step
9). Finally, the selected order is removed from CL (Step 10), and the loop is repeated until CL
becomes empty.

The GRASP methodology has been used to solve the Order Batching Problem in some
articles in the literature [49, 92, 93, 269]. In particular, we propose an adaptation of the GRASP
constructive to handle OBP, consisting of initializing the Candidate List (CL) with all available
orders in the system. Then defining a greedy function f(CL) based on the size of the order
and, therefore, the maximum value (arg max f(CL)) would correspond to the largest order and
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Algorithm 1 Constructive GRASP
1: Function ConstructiveGRASP(instance)
2: solution← ∅
3: CL← instanceItems
4: α← getRandomValue()
5: while CL ̸= ∅ do
6: th← arg max f(CL)− α(arg max f(CL)− arg min f(CL))
7: RCL← buildRestrictedCandidateList(th, f(CL))
8: item← randomOrderSelection(RLC)
9: insertItem(solution, item)

10: CL← CL \ {item}
11: end while
12: return solution

arg min f(CL) to the smallest order. In this case, the randomly selected order from the RCL is
inserted into the first batch that has the available space to perform the insertion. If there is no
space in any of the currently created batches, a new batch is created to perform the insertion.
This method tries to create a compact batch solution with minimum free space in batches,
but the randomization included by GRASP allows the method to produce diverse solutions in
different iterations.

Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic methodology proposed in 1997 by Pierre
Hansen and Nenad Mladenovic. The VNS methodology includes a set of algorithms that follows
a main idea: performing changes in the neighborhood structure during the search to access
better solutions. Based on this concept, VNS algorithms have been able to successfully solve
many optimization problems known to be NP-hard. The different algorithmic schemes that
compose VNS provide different strategies for any kind of optimization problem. Most of these
VNS algorithms can be reviewed in [120, 124].

To understand the VNS methodology, we first need to understand some concepts that we will
detail next. A neighborhood structure is the set of solutions that can be reached from any initial
solution with a particular movement. A movement is defined as a change provoked in a solution
by applying a particular operator, which results in a different (usually feasible) solution. Some
common movements when dealing with combinatorial optimization problems are the insertion or
the interchange/swap of elements in the solution. Within the VNS methodology, a neighborhood
change typically occurs when a solution reaches a local optimum with the aim of escaping from
that basin of attraction, allowing the method to carry on the search. To this aim, the VNS
includes a disturbance or shake procedure. VNS also considers a deterministic improvement
process based on a local search procedure, which explores one neighborhood until the local
optimum is reached. Furthermore, some variants of the methodology consider deterministic
exploration of more than one neighborhood, reaching a point that is locally optimal with respect
to several neighborhoods.

With the previous concepts at hand, the VNS methodology is a versatile and open method-
ology, and many variants based on the same idea have emerged and evolved. Next, we detail
the most important VNS variants introduced in the literature.

• Variable Neighborhood Descent (VND): This method is characterized by the deter-
ministic exploration of several neighborhood structures during the search. The explored
neighborhood structures are visited sequentially and in descendant way, and the solution
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provided is locally optimal with respect to several neighborhoods. This algorithm can
be used as an improvement method within another VNS method or with other different
methodologies, but it can also be used directly to solve the problem [62, 118].

• Basic VNS (BVNS): This algorithm follows the classic structure of VNS and alternates
between a disturbance phase (shake) that performs random changes in the neighbor-
hood and an improvement phase with a single neighborhood structure that performs a
deterministic exploration of the neighborhood [119, 196].

• General VNS (GVNS): This algorithm follows the classic structure of BVNS but replaces
the improvement phase of one neighborhood with an improvement VND procedure, which
explores several neighborhood structures. [122, 198].

• Random VND (RVND): This algorithm is similar to the VND, but in this case, the
neighborhood structures are visited in a random way, compared to the classic VND, where
the neighborhood structures are visited sequentially and in a descendant way [62, 122].

• Reduced VNS (RVNS): This algorithm follows the classic structure of VNS, but it only
includes the random exploration of the neighborhood through the use of a shake procedure
without using a local search procedure to perform a deterministic exploration. It is used
in scenarios where the neighborhood structures are very large and the exploration of all
neighbors results impractical [119, 196].

• Skewed VNS (SVNS): This algorithm follows a multi-start structure together with VND.
In the VNS structure, the disturbance method is replaced by a generator of new solutions
for each loop. The improvement method is usually a VND with several neighborhood
structures [123, 196].

• Variable Neighborhood Decomposition Search (VNDS): This algorithm follows
the classic structure of the VNS, but extends the BVNS into a two-level VNS scheme
based on the decomposition of the problem. It acts on the structure of the neighborhood
in the shake and improvement phases to decompose the problem [121].

• Variable Formulation Search (VFS): This algorithm follows the classic structure
of VNS, but considers alternative changes in the objective function being explored, to
discriminate the best solutions to carry on the search. This variant of VNS is useful when
the problem presents a flat landscape with many different solutions that achieve the same
value of the objective function [123, 216].

• Parallel Variable Neighborhood Search (PVNS): This algorithm follows the classic
structure of VNS, but includes several strategies to run the shake and improvement
methods in parallel. Then, it keeps the best solution of the set on each execution [60, 190].

• Multi-Objective Variable Neighborhood Search (MO-VNS): This algorithm follows
the classic structure of VNS, but the disturbance and improvement methods have been
modified to adapt them to multi-objective scenarios [61].

Among all these VNS schemes, three of them have been used in this Doctoral Thesis to solve
the different variants of OOBP. In particular, the variants used have been the following: BVNS,
VND, and GVNS.

The pseudocode of the Basic VNS scheme is introduced in Algorithm 2. As we can observe,
the method includes three main steps (Shake, Improvement, and NeighborhoodChange). The
Shake performs a stochastic exploration of the neighborhood and is used to escape from the basis
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of attraction, the Improvement is devoted to reach a local optimum starting from a particular
solution and with a predefined neighborhood. Finally, the NeighborhoodChange determines the
next neighborhood to be explored, expressed as the value of the search parameter k.

Algorithm 2 Basic Variable Neighborhood Search
1: function BVNS(solution, kmax, tmax)
2: repeat
3: k ← 1
4: while k ≤ kmax do
5: S ′ ← Shake(solution, k)
6: S ′′ ← Improvement(S ′)
7: k ← NeighborhoodChange(solution, S ′′, k)
8: end while
9: until t < tmax

10: return solution
11: end function

Once we have understood the Basic VNS process, we can jump into the deterministic
exploration of more than one neighborhood structure in a deterministic way at the same time.
In general, the use of different neighborhood structures occurs in the improvement phase. We
search for a local optimum common to all neighborhood structures explored. To that aim, VNS
methodology proposes several algorithms to achieve this. The most well-known algorithm is
Variable Neighborhood Descent (VND). The pseudocode of VND with these ideas can be found
in Algorithm 3. The set of neighborhood structures is defined by N1, ...,Ni when i is the number
of total neighborhood structures. The algorithm loops until one achieves a local optimal for
each neighborhood structures. The method of visiting these neighborhood structures is descent
and ordered, but there are other methods which also perform this task, such as the General
VNS schema, which replaces the Local Search phase of BVNS with a VND. For the sake of
simplicity, we do not include an additional pseudocode of GVNS, since the algorithmic scheme
is equal to the BVNS introduced in Algorithm 2 but replacing the step 6 with a VND.

Algorithm 3 Variable Neighborhood Descent
1: function VND(solution,N1, ...,Ni)
2: k ← 1
3: kmax ← i
4: best← solution
5: repeat
6: solution′ ← LocalSearch(best,Nk)
7: if eval(solution′) < eval(best) then
8: best← solution′

9: k = 1
10: else
11: k = k + 1
12: end if
13: until k > kmax
14: return best
15: end function

For a better understanding of the GVNS process, in Figure 1.4 we illustrate a few steps of a
search process within a GVNS. In this figure, we can see in a representation of the complete
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process for two rounds of the algorithm when the value of the k parameter is 1 and 4. In the
example, the improvement phase is a VND with three neighborhoods. For each value of k,
we show four states. The first shows the initial solution. The second illustrates the random
perturbation of the initial solution with a shake procedure. The third step illustrates the
improvement of the solution to reach the local optimum with respect to the three neighborhoods
considered. Finally, in the fourth step, the solution obtained in the previous step is compared
with the initial solution and the new value k is updated. We can observe that when the k value
is 1 the solution is caught at a local minimum and cannot escape there until the k value is set
to 4. With the value k set to 4, the method is able to escape from the previous local optimum
and reaches a new zone of the solution space. Again, the VND procedure explores with several
local search methods the different neighborhoods until the method is caught again at a new
local minimum.

1.5 Hypothesis and objectives
In this section, we propose our hypothesis from an earlier overhaul of the state of the art. The
hypothesis is the basis for the research performed in this Doctoral Thesis and was used to
establish the main objectives to achieve.

After a preview review of the state of the art, we identified the possibility of improving the
process that involves the different variants of the online order batching problems in logistic
warehouses. Particularly, we observed that order picking is one of the operational processes that
has a greater impact on the performance of logistic warehouses in supply chain management
[257]. The order-picking task involves optimization problems classified as NP-hard, i.e., they
cannot be solved with an exact method in a reasonable amount of time for real-size instances.
Therefore, we believe that if we apply new heuristic methods to solve these problems, they
could be solved more efficiently compared to the previous proposals in the state of the art. The
most realistic and efficient process for order picking is known as online order batching. At this
point, once we have identified the problem to be solved, we formulate a hypothesis based on the
preview analysis.

Hypothesis: “Order picking systems with dynamic arrival of orders and batching picking policy,
can be improved with the use of new heuristic algorithms combined with the latest advances in
metaheuristics, to obtain high-quality solutions in a short amount of time.”

The main objective of this Doctoral Thesis is to design new heuristic algorithms to improve
the state of the art for each of the variants of the Online Order Batching Problem addressed.
To that aim, we have identified three optimization problems to study in this Doctoral Thesis:
the online order batching problem with a single picker, reviewed in Chapter 4, the online order
batching problem with multiple pickers, reviewed in Chapter 5, and the online order batching
problem with time window, reviewed in Chapter 6.

The specific objectives to achieve the main objective of this Doctoral Thesis for each variant
of the problem studied are detailed next.

» Review and analyze the current state of the art of the studied problems. First,
we need to study the current state of the art of the identified problems and, specifically,
the different techniques and algorithms used to solve the variant of the problem discussed.

» Classify and position the problems identified in the literature. We need to define
unified criteria to classify the problems studied in relation to other problems of the same
family in the literature.
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Figure 1.4: Illustration of several steps within a GVNS process.

» Study and implement the most relevant algorithms in the current state of the
art. For comparison purposes, we need to obtain or implement any relevant previous
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algorithm for each variant of the problem studied.

» Propose, design and implement heuristic algorithms to tackle each problem.
For each variant, we need to propose and develop specific heuristic algorithms to tackle
each task that must be handled within each problem.

» Identify the most suitable metaheuristic schemes for the problem. For each
variant, the proposed heuristic needs to be combined within metaheuristic algorithms. For
that purpose, we need to study the most suitable ones, depending on the characteristics
of the problem.

» Validate the algorithms created for each variant. Once we have implemented all
the algorithms proposed to solve the problem, we need to verify its performance with
instances previously used in the literature.

» Configure the parameters of developed algorithms. The algorithms developed need
to be configured in order to use the most suitable parameters to obtain the best possible
results for the problem. To configure the parameters, it is necessary to perform some
preliminary experiments.

» Compare experimentally our proposals with previous algorithms. Each algorithm
proposed for any variant of the family of problems studied must be compared with previous
algorithms in the state of the art for the problem.

» Write and publish the results achieved. The results obtained in the experiments
must be disseminated by the publication of articles in journals and conferences.

Throughout this dissertation, we present the findings reached in this Doctoral Thesis to
affirmatively respond to the previous hypothesis. Also, at the end of the document, we analyze
the achievement of the proposed objectives.

1.6 Structure of the memory
In this dissertation, we detail the research carried out in this Doctoral Thesis, on the different
variants of the Online Order Batching Problem. First, we present from a general point of view,
the context in which the family of optimization problems is tackled, as well as the scientific
methodology followed, and the main algorithms applied to tackle the problems. Then, we
describe in detail the optimization problems tacked. Next, we review the state of the art of
problems within this family, detailing the characteristics of each variant addressed and the
results obtained. We continue by including a chapter for each of the three variants of the problem
considered. Finally, we present the conclusions of each variant and the general conclusion of the
Doctoral Thesis. In addition to this small previous summary, we structure this memory in the
following chapters.

» Chapter 1. Introduces the concept of optimization problem in general and the opti-
mization problems that occur within logistic warehouses. In addition, it describes the
motivation to realize this Doctoral Thesis, as well as the hypothesis proposed in this work,
the methodology, and the objectives achieved.

» Chapter 2. Presents the family of Online Order Batching Problems addressed in this
Doctoral Thesis. Details the characteristics of each variant studied, as well as each of
the tasks which are needed to be solved, to tackle the different OOBP variants. Also, it
review the instances and main objective functions used in the context of the problem.
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» Chapter 3. Addresses the state-of-the-art of OBP. It presents an article published that
details the state of the art of the whole family of problems. Also, in this article, we present
a new taxonomy of the problem and review all the factors and tasks involved in OBP. In
addition, it contains all the bibliographic information about the published article.

» Chapter 4. It contains two associated publications related to the Online Order Batching
Problem with a Single Picker. In addition, it presents a summary of each publication as
well as all bibliographic information about the articles published.

» Chapter 5. It contains two associated publications related to the Online Order Batching
Problem with Multiple Pickers. In addition, it presents a summary of each publication as
well as all bibliographic information about the articles published.

» Chapter 6. It contains two associated publications related to the Online Order Batching
Problem with Time Window. In addition, it presents a summary of each publication as
well as all bibliographic information about the articles published.

» Chapter 7. Presents general conclusions about this Doctoral Thesis, as well as a particular
conclusion about each problem addressed in this work, future works, and a summary of
the publications obtained in this Doctoral Thesis.
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Chapter 2

Online Order Batching Problem

Order Batching Problems are a family of optimization problems that belong to the operational
level of warehouse management. In particular, this family compiles all problems which consist
of determining an efficient picking operation when it follows the batching policy (i.e., orders are
grouped in batches before being picked). These problems are characterized by several tasks that
need to be addressed in order to solve them. The most common tasks considered when dealing
with problems within this family are batching and routing tasks. The batching task consists of
generating groups of orders (i.e., batches) of a maximum predefined size. On the other hand,
the routing task consists of generating a route in the warehouse to collect the products assigned
to a batch in such a way that all products from the same batch are collected in a single tour by
the same picker. Other well-known tasks that are frequently studied are: sequencing, assigning,
waiting, or sorting, among others. In Figure 2.1 we illustrate the sequence of tasks involved in
order batching problems.

Sorting Batching

Picking

Routing

Waiting

Assigning

Selecting

1

2

3

4
5

6

7

8 ReceivingDelivering

Figure 2.1: Sequence of tasks involved in order batching problems.
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In addition to following an order-batching policy, any variant of the OBP must satisfy
certain constraints, which might vary depending on the particular variant of the problem tackled.
However, some general constraints are: batches cannot exceed certain limits of capacity, volume,
or weight; orders cannot be divided in different batches; a batch cannot be modified when the
picking tour has started. Other characteristics considered in the variants addressed in this
Doctoral Thesis are:

• The sorting policy followed, if not specified, is the sort-while-pick policy. This means that
the products are sorted in its corresponding order while the picking is performed. For
instance, this can be done by carrying different bins in the picking cart.

• The picking process is picker-to-parts. This means that order pickers travel through the
picking zone to collect all items from each batch.

• Customer order collection is done manually by the order pickers. However, sometimes
pickers are assisted by automated systems, such as mechanical picking carts.

• Order pickers maintain a constant speed when traveling through the picking zone.

• Extracting each item from a picking position on the route takes a constant time.

• The depot operations at the beginning and ending of the picking route take a constant
time.

• The warehouse layout is rectangular, and there is only one block and one depot.

• The picking routes start and end at the depot, which is placed on a crossing aisle, either
in the leftmost corner or in the center of the aisle.

The OBP family is quite wide; we can find many variants of the problem. If we review
the classification published in [94], we can find two large groups, based on the availability of
information on the order to collect: offline variants and online variants. Offline variants are
characterized by all the orders must be known before starting the collected process. Offline
variants are the most well known and studied in the literature. In the other case, online variants
are characterized by a lack of information about some orders that are not known before starting
the collection process because they have not arrived at the system yet. Therefore, online variants
are more difficult to solve. Furthermore, offline variants can be considered as a particular case of
online variants. In addition, offline and online variants can be classified in turn by the number of
order pickers used in the picking process into: single-picker variants and multiple-picker variants.
In this case, single-picker variants can be considered as a particular case of multiple-picker
variants. This classification is based on the extra constraints that are necessary to model the
problem when it is online or with multiple pickers. In both cases, we need to include additional
constraints in the model. In this Doctoral Thesis, we focus on different online versions of the
problem.

When dealing with order-picking problems, we can look for the optimization of different
and varying objectives. Some of the objectives of the problem can occur only in determinate
variants. In Section 2.3 of this chapter, we study the main objectives functions, as well as their
application context according to the classification previously proposed. Also, according to this
classification and the objective function used, we find different numbers and types of tasks to
solve. In the next section, we detail each task, the context in which we need to solve them, and
the strategies followed by the proposals in the literature to address them. In addition, we detail
the process to synchronize all tasks involved in the order picking.
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2.1 Processes involved in Online Order Batching Problem
In this Doctoral Thesis, we address several variants of the OOBP with a single picker and with
multiple pickers. As we have previously seen, the online variants do not have information on
the orders that will be collected until each order arrives at the system. This fact means that
the problem is closer to real order picking scenarios than offline variants. But the problem is
also more complex to solve, and it is necessary to have an algorithm to synchronize all tasks
when the order-picking process is simulated. The algorithm to synchronize the tasks involved in
the process is also known as the orchestration algorithm. All these tasks and the orchestration
algorithm are described in the following sections.

2.1.1 Orchestration algorithm
When we simulate the order picking process in a logistic warehouse, we have to synchronize the
tasks involved in the process (Batching, Routing, Selecting, Sequencing, Assigning, Waiting, and
Sorting). Therefore, we need a method to coordinate all these activities. This method is called
the orchestration or synchronization algorithm. This algorithm is different depending on the
variant of the problem solved because, as we previously reviewed, each variant involves a different
number of tasks to handle. In Figure 1 in [93] (attached in Section 5.2) compiles a general
activity diagram with all tasks involved in OOBP. This diagram represents the fundamentals of
the different orchestration algorithms used in our publications. Next, we detail the pseudocodes
designed for each variant of the problem addressed. In these pseudocodes, we can observe the
sequence in which the tasks are sorted, but here we do not explore the different tasks, which
are detailed in the following sections. It is important to note that since we are handling online
versions of the OBP, the real systems are continuously running, but, for simulation purposes, we
need to observe a particular time horizon. In this case, we have observed the arrival of orders in
a chunk of 4 hours and its corresponding picking.

Orchestration algorithm for OOBP with a single picker

The pseudocode of the orchestration algorithm for OOBP with a single picker is presented in
Algorithm 4 and was used in [89, 92]. This algorithm only considers batching, routing, and
selecting tasks. The assignment task here makes no sense because there is only one picker. The
waiting policy that we follow in this algorithm is the no-wait policy, which means that the picker
leaves to collect the next batch as soon as he/she is available and there is at least one batch
pending.

This orchestration Algorithm 4 receives two input parameters: the time horizon for the
reception of orders (maxTime) and the list of pending orders to collect (listOrders) when
the process starts. Notice that this list of orders contains the orders pending to be collected
from the previous working day. Notice that in this Doctoral Thesis, we consider that all the
orders of the previous day have already been collected. The process starts by initializing
several data structures: pendingOrd contains the orders arrived at the system but not collected
yet; partialSol, contains a partial temporary solution (i.e., a list of batches generated with
the orders in pendingOrd) updated by batchingAlgorithm() in the following iterations; and
bestPartialSol, which contains the best partialSol found with the orders in pendingOrd. Then,
the algorithm enters into a loop (step 5) executed while the maximum execution time has not
been reached and there are orders in the list of pending orders. Within the loop, the algorithm
checks if there are new orders available and updates the list of pending orders (step 7). Then,
the batching algorithm is executed (step 9) and the best partial solution found is updated (step
10), if needed. If there is a picker available (step 11) the most suitable batch of the best partial
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solution (bestSolution) is selected (step 12) and the routing algorithm generates a route to
collect the batch (step 13). Then the picker will collect all orders within the selected batch (step
14). Finally, the list of pending orders and the best partial solution are updated by removing
the collected orders (step 15). The loop is repeated until the stop conditions are met. Note that
the algorithm does not wait until the picker returns from its route but is continuously running
to have the best possible solution with the newly arrived orders available as soon as the picker
becomes available again.

Algorithm 4 Orchestration method for OOBP with a single picker
1: Procedure Orchestration(maxTime, listOrders)
2: pendingOrders← listOrders
3: partialSol ← ∅
4: bestPartialSol ← ∅
5: do
6: if (getCPUTime() < maxTime) then
7: pendingOrders← pendingOrders ∪ getNewOrders()
8: end if
9: partialSol ← batchingAlgorithm(pendingOrders)

10: bestPartialSol ← update(bestPartialSol, partialSol)
11: if isPickerAvailable() then
12: batch← selectBatchAlgorithm(bestPartialSol)
13: route← routingAlgorithm(batch)
14: collect(batch, route)
15: remove(bestPartialSol, pendingOrders, batch)
16: end if
17: while (getCPUTime() < maxTime) || (pendingOrders ̸= ∅)

Orchestration algorithm for the OOBP with multiple pickers

The pseudocode of the orchestration algorithm for OOBP with multiple pickers is presented in
Algorithm 5 and was used in [90, 93]. This new algorithm is an improved version of Algorithm
4 because it also includes the assigning task, to decide which picker collects each batch, and the
waiting task, to decide the best time for a picker to start a new collection route.

The orchestration algorithm presented in Algorithm 5 receives two input parameters: the
time horizon for the reception of orders (maxTime) and the list of pending orders to collect
(listOrders) when the process starts. Notice that this list of orders is the orders pending to
be collected from the previous working day, but, in this Doctoral Thesis, we consider that
all the orders of the previous day have already been collected. Again, the method starts by
initializing several data structures: pendingOrd contains the orders that arrived in the system
but were not collected yet; partialSol, contains a partial temporary solution (i.e., a list of
batches generated with the orders in pendingOrd) updated by batchingAlgorithm() in the
following iterations; and bestPartialSol, which contains the best partialSol found with the
orders in pendingOrd. The algorithm then enters the main loop (step 5), which is executed until
the maximum execution time is reached, and the list of orders pending to be collected becomes
empty. The main loop contains two inner loops. The first loop is run until waitingAlgorithm()
decides that bestPartialSol is in accordance with some quality indicator, so the next batch can
be collected (step 12). In this loop, first, it checks if new orders have reached the system to
update the list of pending orders (step 8). Then, the batching algorithm is run (step 10) and
the best partial solution found is updated (step 11) if needed. In the second loop (step 14),
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for each available picker, the most suitable batch of the best partial solution (bestSolution)
found is chosen by the selecting procedure (step 15). Then, the routing algorithm generates a
route to collect that batch (step 16), and the assignment to the picker is performed (step 17).
The assigning algorithm decides whether the picker and the batch selected for the generated
route are suitable for continuing the process. Note that depending on the objective pursued,
the assignment might not be straightforward (i.e., a currently available picker can be the one
with the larger workload, and the method might determine to wait until another picker becomes
available). Then, the picker collects all orders within the selected batch (step 18). Finally, the
list of pending orders and the best partial solution are updated by removing the collected orders
(step 19). The main loop is repeated until the stop conditions are met. Note that the algorithm
does not wait until the picker returns from its route but is continuously running to have the best
possible solution, including the newly arrived orders, when another picker becomes available
again.

Algorithm 5 Orchestration method for OOBP with multiple pickers
1: Procedure Orchestration(maxTime, listOrders)
2: pendingOrd← listOrders
3: partialSol ← ∅
4: bestPartialSol ← ∅
5: do
6: do
7: if (getCPUTime() < maxTime) then
8: pendingOrders← pendingOrders ∪ getNewOrders()
9: end if

10: partialSol ← batchingAlgorithm(pendingOrd)
11: bestPartialSol ← update(bestPartialSol, partialSol)
12: while (waitingAlgorithm(bestPartialSol)
13:
14: for each picker ∈ getAvailablePickers() do
15: batch← selectingAlgorithm(bestPartialSol)
16: route← routingAlgorithm(batch)
17: if assigningAlgorithm(picker, batch, route) then
18: collect(picker, batch, route)
19: remove(bestPartialSol, pendingOrd, batch)
20: end if
21: end for
22: while (getCPUTime() < maxTime) || (pendingOrders ̸= ∅)

Once we know how the tasks are related among them and their execution time process, we
can study each task individually. In the following sections, we review the routing, batching,
selecting / sequencing, assigning, waiting, and sorting tasks.

2.1.2 Routing task
The generation of routes in a logistic warehouse, known as routing task, consists of finding the
best route through the aisles of the warehouse to collect one or more items. In the context of
this Doctoral Thesis, to collect all the items in a batch. This task is one of the main tasks
that occurs in the order-picking process and appears in any variant of OBP online or offline.
According to various authors in the literature [2, 234, 255], this task can be seen as a particular
case of the Travel Salesman Problem (TSP) [170, 193]. The TSP is a well-known problem in
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the literature, and many different strategies have been used to solve it, including solutions for
large instances.

Different approaches have been used to solve the routing task in logistic warehouses. Specifi-
cally, we can differentiate among: exact methods, heuristic methods, and metaheuristic methods.
We study each of these methods below.

Exact methods

This type of method generates an optimal solution for this task. We have found two different
exact approaches in the literature to solve this task with an exact method: a mathematical model
solved in a commercial solver (such as CPLEX 1 and GUROBI 2); and a dynamic programming
algorithm.

Among the models solved in the literature with commercial solvers, they can be classified
depending on the number of blocks in the warehouse layout that are able to handle. The problem
was solved for a single block in [251, 290] and for multiple blocks in [215, 242, 249, 272]. This
type of method has two disadvantages: First, sometimes the routes generated are not easy to
follow by order pickers, since pickers need to go back to some aisle to pick an item and after
returning for the same path, which might result unnatural. Second, the execution time might
be too long to be applied in real scenarios. For these reasons, exact methods are not used in
practice.

The second type of exact approach is based on dynamic programming. Again, there are
versions of the algorithm for a single block [234], and for two blocks [235]. These algorithms
generate an optimal solution in less time than commercial solvers running a mathematical model.
Then, they can be used together with metaheuristic algorithms to solve the batching task.

In Figure 2.2 we can see an example of a warehouse layout, several picking positions, and an
optimal route to collect the items.

Figure 2.2: Example of an optimal route in a logistic warehouse.

Heuristics methods

This type of method is the most common in the literature related to OBP and its use is very
extended. These algorithms are used to generate routes that are easy to follow for order pickers.

1https://www.ibm.com/products/ilog-cplex-optimization-studio
2https://www.gurobi.com
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Additionally, the generated solutions are of very good quality and are fast to compute, so they
are usually combined with metaheuristic algorithms used to solve the batching task. Among
these methods, we can find S-Shape or traversal, Return, Mid-point, Largest-Gap, Composite,
and Combined. Most of these methods were designed for warehouses with only one block [117].
Later, the methods were extended to warehouses with more than one block [237]. There are
several articles in which these methods were compared among them [221, 223, 236], and also
compared with exact methods. Among the previously described methods, the most used in the
literature are: S-shape, Largest-Gap, and Combined, and they have also been used in different
articles obtained as the result of this Doctoral Thesis. Next, we review some of the most common
heuristic routing methods.

• S-Shape o traversal: In this method, the order picker crosses all parallel aisles with
items to collect. If the number of aisles with items is odd, the picker has to turn around in
the last aisle to go back to the depot, located in the front cross aisle. This method is the
most widely used in the literature because of its simplicity and performance. In Figure
2.3, we can see an example of an S-shaped route in a logistic warehouse.

Figure 2.3: Example of an S-shape route in a logistic warehouse.

• Return: In this method, the order picker enters from the front cross-aisle into the parallel
aisles with items to collect. In each parallel aisle with items, the picker travels through
the aisle until the last item to collect, then turns around to come back to the front cross
aisle, and so on. If there are no more items to collect in the following parallel aisles, the
picker returns to the depot. In Figure 2.4, we can see an example of a return route in a
logistic warehouse.

• Mid-Point: In this method, the order picker enters in the parallel aisles with items to
collect from either the front and the back cross-aisles. The first and last parallel aisles
with items are fully traversed to change from one cross aisle to the other. Items in the
upper half of the warehouse are first collected from the back cross-aisle, and items from
the lower half of the warehouse are collected from the front cross-aisle. In each parallel
aisle, the picker turns around before the middle point of the aisle. In Figure 2.5, we can
see an example of a Mid-Point route in a logistic warehouse.

• Largest-Gap: In this method, orders are collected entering in the parallel aisles from
the front or back cross aisles. In any case, pickers avoid traversing the largest gap in the
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Figure 2.4: Example of an Return route in a logistic warehouse.

Figure 2.5: Example of an Mid-Point route in a logistic warehouse.

aisle without items to collect. A gap is defined as the distance between two consecutive
items to collect or the distance between the first item to collect and its nearest cross-aisle.
The first and last parallel aisles with items to collect are fully traversed to change from
one cross aisle to another. The pickers turn around when they reach the point of the aisle
where the largest gap starts. In Figure 2.6, we can see an example of a Largest-Gap route
in a logistic warehouse.

• Composite: This method is a combination of the S-Shape and Return methods. For
each aisle with items to collect, the algorithm decides which is the best method to use
between Shape and Return. This method was developed in [24, 171, 220]. In Figure 2.7,
we can see an example of a Composite route in a logistic warehouse.

• Combined: This method is a combination of the S-Shape and Largest-Gap methods.
For each aisle with items to collect, the algorithm decides which is the best method to
use. This method was developed in [51]. Later, this method was improved in [189]. In
addition, this method is the best routing strategy among the heuristic ones. In Figure 2.8,
we can see an example of a Combined route in a logistic warehouse.
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Figure 2.6: Example of an Largest-Gap route in a logistic warehouse.

Figure 2.7: Example of an Composite route in a logistic warehouse.

All the heuristic algorithms reviewed above have been defined here for a rectangular-shaped
single-block warehouse. However, most of them have an extended version for two or more blocks
in the literature. We only reviewed the algorithms for a single block because this Doctoral
Thesis only considers this warehouse layout.

Metaheuristic methods

These methods have also been used in the literature to solve the routing task in the context of
the OBP. However, their performance presents very few advantages compared to the methods
previously presented. On one hand, metaheuristic methods cannot compute, or at least confirm,
that a solution is optimal in contrast to exact methods. On the other hand, these methods are
slower than simple heuristics, and the quality of the solutions obtained do not use to be better,
since the computing time is very short. The main advantage of these methods is that they can
be easily adapted to any warehouse layout. Among the metaheuristic algorithms used in the
literature, we highlight: Adaptive Large Neighborhood Search [33], Ant Colony Optimization
[34, 35, 210], Genetic Algorithms [111, 256, 307], or Particle Swarm Optimization [111].

27



Tesis Doctoral Online Order Batching Problem

Figure 2.8: Example of an Combined route in a logistic warehouse.

2.1.3 Batching task
The batching task consists of the generation of batches of orders in a logistic warehouse.
Specifically, it consists of grouping the orders available in the system in batches without
exceeding the maximum predefined capacity. In the variants addressed in this Doctoral Thesis,
orders cannot be split in different batches. The batching task is handled in all variants of OBP
tackled in this Doctoral Thesis. To solve this task, there are heuristic algorithms, metaheuristic
algorithms, and exact algorithms. Next, we review the most outstanding methods from each
group.

Heuristic methods

Heuristic methods were the first type of method used to solve this task, but nowadays they are
in disuse in favor of metaheuristic methods. Heuristic methods generate solutions very fast,
but with a low quality for this task, in comparison with metaheuristics. This type of method
is usually deterministic (i.e., for the same instance, always generate the same solution), and
currently they are often used as constructive procedures for metaheuristic algorithms. Next, we
can see a review of the most relevant heuristic algorithms in the literature.

• First Come, First Served (FCFS) [4, 125, 144]: This algorithm is widely used in
different contexts and problems. In the order batching context, orders are grouped into
batches according to their arrival time. In a compact extension of the algorithm, each
new order attempts to fill each batch previously created before creating a new one. FCFS
has been extensively used in the context of OBP as a baseline method.

• Earliest Due Date (EDD) [25, 279, 312]: This algorithm is also widely used in different
contexts and problems. This is very similar to the FCFS algorithm. The difference is that
orders have a predefined due date, and they are grouped into batches according to their
due date. This algorithm is widely used in variants of the problem in which the objective
function is to minimize the delay in the delivery of products.

• Seed algorithms [52, 70, 151]: These types of algorithms are widely used in the OBP
literature. The algorithms belonging to this family consist of two parts that are repeated
until all orders are processed. For each part, a different strategy can be applied. The first
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part consists of selecting an order as a seed, and the second part consists of finding the
most similar orders to the seed order and adding them to the same batch until the batch
capacity is completed. Then, we need to repeat the process, select another seed order for
a new batch, and so on.

• Saving algorithms [52, 140, 308]: This is a family of greedy algorithms in which orders
are added to the batch in order of the evaluation performed over each order, such that
the order that produces the largest improvement in the objective function is added next.
There are different saving algorithms. The most used Saving algorithm in relation to OBP
is the Clarke and Wright (C&W) method [42] and its extensions, despite the fact that it
was created for other types of context.

Metaheuristic methods

Metaheuristic methods are the type of method most used for order batching because they
generate very good quality solutions in a reasonable amount of time. This type of methods
is used to be non-deterministic (i.e., for each execution of the same instance, they generate
different solutions), because they usually have a stochastic component. Next, we review the
most important metaheuristic algorithms used in the literature for OBP.

• Iterated Local Search (ILS): This algorithm was proposed for the first time in 1995
[284], although the algorithm has been studied by several authors [180, 265]. The algorithm
is a local-search-based algorithm, which consists of two toggle phases. An improvement
phase to reach a local optimum and a perturbation phase to diversify the search. The ILS
algorithm has been used to solve the OBP in [125, 130, 229, 288].

• Variable Neighborhood Search (VNS): This algorithm was proposed in 1997 [197]
and uses an exploration strategy based on changes in the neighborhood structure to escape
from a local optimum. There are a large number of VNS variants based on this principle.
All of these variants were studied in detail in a previous section of the methodology (see
Section 1.4.2). Different variants of VNS have been used to solve the OBP [4, 90, 126, 252].

• Greedy Randomized Adaptive Search Procedure (GRASP): This algorithm was
published in 1995 [76] as a multi-start algorithm. Each repetition of the loop is composed
of two phases: a construction phase and an improvement phase. The construction phase is
the core of GRASP and is based on a greedy heuristic component and a random component.
This algorithm was studied in detail in a previous section of the methodology (see Section
1.4.2). The GRASP algorithm has been used to solve the OBP in [49, 92, 93, 269]

• Genetic Algorithm (GA): This algorithm was published in 1992 [138] and was later
extended in 1994 [291]. The algorithm is based on the evolution of a population of
individuals subjected to certain conditions of stochastic biological nature. The main
operators of this type of algorithms are the mutation and genetic recombination. There
are different variants of GA published in the literature that are used to solve OBP
[146, 160, 214, 213].

• Ant Colony Optimization (ACO): This algorithm was published in 1991 [43, 56]
and is classified as a bioinspired algorithm, since it is based on the natural behavior of
ants when looking for food. When the day starts, the ants move randomly looking for
food. In each movement, the ants leave a trail of pheromones that attract other ants
to the surrounding area, but obtain the shortest route to find the food. Following these
principles, the algorithm toggles between two phases: the diversification phase and the
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intensification phase. There are different variants of ACO published and used to solve the
OBP [6, 38, 130, 229].

• Tabu Search (TS): This algorithm was published in 1989 [104, 105, 108] and is based
on memory structures to remember solutions previously explored. In addition, it uses a
local search to improve the solution and perturbations of the solution to escape from the
local optimum. There are different variants of TS published and used to solve the OBP
[129, 165, 189, 219, 276, 308].

In addition to the metaheuristics that we have mentioned above, there are other metaheuristics
in the literature that have been used to solve different variants of problems related to OBP. In
this Doctoral Thesis, we used variants of the VNS y GRASP methodologies to tackle OOBP.
To get more details about this methodology, visit Section 1.4.2.

Exact methods

This type of method requires a lot of time to complete and obtain the optimal solution. Due
to the fact that the OBP family is known to be a NP-Hard problem, the situation allows
the method to be used only in small instances (approximately up to 20 orders). To solve
these problems with exact methods, there are several mathematical models in the literature.
These models are implemented as mixed-integer linear programming models. In addition,
these are solved in the literature with commercial solvers such as CPLEX and GUROBI. The
implementation of these models is varied; some of them simultaneously solve the routing and
batching task [29, 272, 175]. In other cases, batching is solved optimally, but routing is solved
following a well-known routing heuristic (e.g., S-Shape, Largest-Gap, among others)[204, 205].

In addition, there are other algorithms published in the literature that solve OBP optimally.
Among them, we can highlight a Branch-and-Bound Pricing, based on a linear relaxation at
each node of a branch-and-bound tree solved by Column Generation. It is used in [84, 276];
Branch-and-Cut, based on cutting planes, to improve the linear relaxation of the search tree. It
is used in [21, 275]; Column Generation, based on linear relaxation in a small group of variables
or columns to solve the problem. It is used in [21, 84, 202]; or the Markov Decision Process
(MDP), based on an extension of Markov chains in which the difference is the addition of actions
and rewards to the method. It is used in [23].

2.1.4 Selecting/sequencing task
Selecting and Sequencing are two different tasks, but closely related. Selecting consists of
choosing the next batch to be collected among a set of batches ready to go. On the other hand,
sequencing consists of finding an order (a priority) of all batches available. The use of selecting
or sequencing tasks depends on the variant of the problem tacked and its objective function.
Sometimes these tasks do not need to be addressed.

In the literature, simple heuristics have been used to address the selecting task. Among
these heuristics, we can highlight the following:

• FIRST: This heuristic selects the batch that contains the order with the shortest arrival
time. It is used in [125, 304].

• SHORT: This heuristic selects the batch that has the shortest service time. It is used in
[125].

• LONG: This heuristic selects the batch that has the longest service time. It is used in
[125].
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• SAV: This heuristic selects the batch that contains the order with the largest savings
with respect to collect the associated orders individually. It is used in [125].

• FULL+SHORT: This heuristic selects the fullest. If there are more than one, the ties
are broken by selecting the batch with the shortest service time. This heuristic is used in
this Doctoral Thesis in [92, 93].

The sequencing task is commonly used when the objective function is related to the due date
of the orders, such as minimizing the tardiness or minimizing the earliness. In the literature, we
can find several methodologies to tackle this task. We highlight heuristics such as the Earliest
Due Date algorithm (EDD) used in [12, 312] or Earliest Start Date algorithm (ESD) used in
[126, 252]; metaheuristics, such as the Genetic Algorithm used in [12]; in other cases, this task
is addressed together with batching task using a metaheuristic algorithm. We can find this
approach in [127, 188, 255].

2.1.5 Assigning task
This task consists of assigning each selected batch to a picker. We find only this task in variants
of the problem with multiple pickers. This task mainly affects the balance of the workload
among the pickers, but also influences the completion time, because a better distribution of the
balance of the workload improves this objective function [93]. To solve this task, we use simple
heuristics, such as the first available picker or the picker with a lower workload [90, 127, 304].
In other cases, this task is addressed together with the batching task using a metaheuristic
algorithm. We can find this approach in [6, 190, 279, 252].

2.1.6 Waiting task
This task consists of deciding how long the picker should wait for the arrival of new orders
in the system, which could improve the current distribution of orders in batches. Although
waiting may seem unnatural, it has two main benefits. While waiting, new orders arrive at the
system, and it is possible to improve batch quality. Additionally, metaheuristic algorithms run
longer, which leads to better results. This task can only be found in the online variants. In
the literature, this task is also named the task of determining the time window, and initially it
was proposed as a batching method which grouped in the same batch the orders arriving in a
particular time window. In Chapter 6, we review this task in detail and how it affects several
objective functions. This waiting task is also presented in [95] in an OOBP context.

For a better understanding of this task, we can consult Figure 2 in the article [91] (attached
to this Doctoral Thesis). This figure represents a timeline where each important timestamp is
recorded (new orders received, new batches generated, and picker availability).

To solve this task, different heuristic methods are used in the literature. These heuristics
are classified into two categories: fixed-time window methods, which is based on waiting a
fixed amount of time ([91, 95, 304]); and Variable Time Window, which is based on assigning a
variable waiting time depending on the context. This waiting time for each batch is calculated
using different methods, such as arrival times, service times, and the number of orders or batches
currently in the system. These methods have been used in [91, 95, 125].

2.1.7 Sorting task
Using a batching policy implies that several orders might be collected at the same time. Therefore,
items belonging to different orders are retrieved in the same picking tour and, at some point,
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they have to be separated in different orders. The sorting task consists of classifying the collected
items into different orders. There are two main policies to solve this task in the literature:
the sort-while-pick policy and the pick-and-sort policy. The Sort-while-pick policy consists of
performing the sorting task during the picking process. In this case, the picker carries a sorting
cart with different bins for each order. In Figure 2.9, we can see different types of commercial
sorting carts from several companies. Among others, this sorting policy is used in [92, 130, 5].
On the other hand, the pick-and-sort policy consists of performing the sorting task after the
picking task has been completed. In this case, all collected items belonging to the same batch
are placed in a specific zone of the warehouse to perform the sorting. Among others, we can
find this sorting policy in [282, 177, 151]. Using this sorting policy does not affect the collection
process, but it affects by the value of some objective functions. These sorting policies are
compared in [281], in which we can see the advantages and disadvantages of each policy. The
sorting policy that we use in this Doctoral Thesis is the sort-while-pick.

(a)
IRSG
SKU:S3.S2448LZ.0011

(b)
LLM Handling Equipment Ltd.
SKU:CWSTB.D.CD2

(c)
Equip4work Ltd.
SKU:GP 7603

Figure 2.9: Different types of commercial sorting cards from several companies.

2.2 Joint variants of the Online Order Batching Problem
In recent years, we have observed that there are many related variants of the problem in the
literature, denoted as “Joint Online Order Batching”. This term is used when the problem being
addressed optimizes several tasks at the same time, further than just the batching task [94].
These tasks can be solved together or separately, but solving these tasks together might result
in a better result. In the case of batching and routing tasks, it has been studied that if they
are treated together, they can lead to savings of up to 35% of the total cost [52]. We can find
different joint variants in the literature depending on the tasks handled: batching and routing
[275], batching and sequencing [38], batching and assigning [279], or even batching, sequencing,
and assigning [252].

1https://irsg.com
2https://www.llmhandling.co.uk
3https://www.equip4work.co.uk
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2.3 Objective functions
When we address a problem that belongs to the OBP family, we can search for the optimization
of several objectives. In this section, we review the main objective functions proposed in the
literature. To start, we review the different timestamps used in the OBP to understand some
of the objective functions addressed. In Figure 2.10, we have compiled different timestamps
that occur during the picking process. Also, we have highlighted the relevant time periods that
occur between some pairs of timestamps, which are needed to define the objective functions of
the problem. Among them, we can find:

• The waiting time value of an order is the time that has elapsed since the order arrived
in the system until the picker started collecting the batch that contains the order.

• The service time of a batch is the time required for a batch to be collected. The time
count starts when the batch is assigned to a picker and ends when the batch is delivered
to the warehouse depot. This time consists of setup time, routing time, extraction time,
and blocking time.

• The turnover time for an order is the total time that the order remains in the system
before it is handled. In this research, the time counts start when the order arrives at the
system and end when the batch that contains the order is delivered to the warehouse depot.
This time includes the waiting time of the order and the service time of the batch that
contains the order. It is important to note that, in some other contexts, the turnover time
might also include the time needed to package the items and the time that the package is
awaiting for transportation before leaving the facilities.

• The tardiness for an order is the time that has elapsed since the due date of the order is
reached until the order batch is delivered to the warehouse depot. This period of time
does not appear in all cases, since not all orders have a dude date associated.

• The earliness occurs when an order is delivered to the depot before its due date. It
consists of the time that has elapsed since the order was delivered up to its due date.
Again, this period does not appear in any case, since not all orders include a due date
associated.

• The time window for a picker is the time since the picker is available to collect a new
batch until the picker actually starts collecting it. A detailed description of this period can
be found in Figure 2 of the article [91] (attatched in this Doctoral Thesis in Chapter 6.

• The completion time of the OBP process is the time since the system was started and
the pickers are available until the last batch is delivered to the warehouse depot.

Once the previously introduced periods of time are known, we review the main objective
functions studied in the literature.

• Minimize the Picking Time: Minimize the sum of service times for all processed orders.
We can find this objective function in [4, 69, 91, 187]. In the literature, the picking time
is also known as the retrieval time [141, 241], the travel time [134], or the lead time [85].

• Minimize the Maximum Retrieving Time: Minimize the maximum service time for
all processed orders. This objective function is related to the balance of workload among
batches. We can find this objective function in [85, 190].
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Figure 2.10: Timeline with the different timestamps that we can find in the OBP.

• Minimize the Travel Distance: Minimize the sum of the distance required to collect all
batches in the warehouse. Some authors consider that the distance traveled is closely related
to the picking time [129, 150]. We can find this objective function in [19, 53, 130, 146]

• Minimize the Completion Time: Minimize the time since the system was started and
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Online Multi-picker Single-Picker

Offline

- Tardiness
- Picking-time
- Distance
- Cost

- Completion-time
- Turnover-time

- Workload balance
- Blocking-time

Figure 2.11: Relationship between objective functions and OBP variant classification.

the pickers are available until the last batch is delivered to the warehouse depot. In the
literature, it is also defined as minimizing the maximum completion time of the last batch.
Sometimes, the completion time is also known as the makespan [6, 151, 243]. We can find
this objective function in [87, 125, 175, 304].

• Minimize the Average/Maximum Turnover Time: Minimize the average or maxi-
mum turnover time that an order remains in the system. This time starts when the order
arrives to the system and ends when the order is delivered to the depot. In the literature,
the turnover time is also known as the throughput time [172, 248, 281]. We can find this
objective function in [40, 92, 137, 266].

• Minimize the Sum of Tardiness: Minimize the sum of delays for each order. This
objective function can only be found in problems where orders have a due date associated.
We can find this objective function in [38, 126, 252, 188].

• Minimize the Sum of Earliness: Minimize the sum of all the time that each order has
been delivered in advance with respect to its due date. This objective function can only
be found in problems where orders have a due date associated. We can find this objective
function in [29, 72, 271].

• Minimize the sum of the Costs: The costs related to OBP are variable. We can apply
a cost to different activities involved in the problem, such as the number of pickers, the
travel time or distance, the delay or advance in the deliveries, the number of batches, etc.
It is even possible to consider a combination of the previous ones. This objective function
minimizes the sum of one or more of these costs. We can find this objective function in
[225, 254, 268, 305].

• Minimize the difference in the Workload Balance: This objective function balances
the workload among all pickers. We can only find this objective function in variants with
multiple pickers. The workload can be understood, such as the number of items, the
distance/time traveled, or the number of processed batches, among others. We can find
this objective function in [41, 93, 147, 283].
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• Minimize the Congestion: also known as Minimize the sum of the blocking time.
Blocking occurs when several pickers try to access the same resource at the same time.
These resources might be a narrow aisle, the position of an item, or the depot. Blocking
time is the time that a picker needs to wait to access the resource before another picker
leaves it. We can find this objective function in [1, 34, 35, 116].

• Other objective functions: There are more objective functions that can be identified in the
literature related to OBP variants; however, they are not as frequent as those previously
reviewed. Among them, we can highlight Minimize the Number of batches used in
[147], Minimize the Number of pickers used in [1], or Minimize the Picking error
rate used in [307].

In addition, in the literature, we find problems in which several objectives are processed
at the same time. We can do this through weighted sums of several objectives for a single
objective function [29, 63, 306]. But also some authors address the use of two objectives as a
multi-objective optimization problem. There are different technical approaches to dealing with
this kind of problem. We can find multi-objective approaches related to OBP in [1, 41, 147, 307].

In this Doctoral Thesis, we studied four different single-objective functions: Minimize
the picking time, Minimize the completion time, Minimize the maximum turnover time, and
Minimize the difference between the picking time of each picker (i.e., the workload balance of
the pickers).

To end this section, we have classified how the previous objective functions are related to a
variant within the OBP family. In Figure 2.11, we can see the relationship between objective
functions and the classification of OBP variants. For example, the completion time and the
turnover time make sense only in the online context. On the other hand, the workload balance or
the blocking time make sense only in contexts with multiple pickers. Other objective functions,
such as tardiness, pick-up time, or cost, are used in any context.

2.4 Mathematical model
Once we have reviewed the different tasks involved in the OBP and their main objective functions,
we can study and understand a mathematical model to represent the problem. In this section,
we present a new general mathematical model that can be used for each variant of the problem
addressed in this Doctoral Thesis. First, in Table 2.1, we present the parameters and variables
of the problem. Then, we present the model of the different objective functions tacked. In the
following, we present the general constraints of the problem. Finally, we present the specific
constraints for each different time-window method.

First, in Equation (2.1) we define the random parameter ari. The arrival time of order oi,
which is equal to the sum i times of the random variable Z following an exponential distribution
of the parameter λ:

ari =
i∑
1

Z, ∀ i ∈ {1, . . . , n}, and Z ∼ EXP (λ) (2.1)

To define the four objective functions addressed in this Doctoral Thesis, we first need to
define some of the times that we reviewed in the previous section. First, in Equation (2.2) the
routing time of a batch bj. The routing time is determined by the routing algorithm and the
speed of the picker to travel through the warehouse per unit of time. We choose to model
the S-Shape routing algorithm because it is the most widely used in this Doctoral Thesis, but
this model can be implemented with any other routing algorithm. The routing algorithm is

36



Tesis Doctoral Online Order Batching Problem

Parameters
n → Number of customer orders received in the system
m → Upper bound of the number of batches (a straightforward value

is m = n).
l → Number of order pickers.
vrouting → Routing velocity: number of length units that the picker can

traverse in the warehouse per unit of time.
vextraction→ Number of items that the picker can search and pick per time

unit.
tsetup → Time that the picker needs to initiate a new route with a new

order list and end the route let the collected orders in the depot.
wi → Number of items of order oi for 1 ≤ i ≤ n.

W → Maximum number of articles that can be included in a batch
(device capacity).

Random parameter
ari → Arrival time of order i for 1 ≤ i ≤ n.

Variables
stj → Start time of batch j for 1 ≤ j ≤ m.

xji →


1, if order oi is assigned to batch bj,

for 1 ≤ i ≤ n, and 1 ≤ j ≤ m.

0, otherwise.

yjk →


1, if picker pk is assigned to batch bj,

for 1 ≤ k ≤ l, and 1 ≤ j ≤ m.

0, otherwise.

Table 2.1: Parameters and variables for the General OOBP.
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developed as the function dis(bj) that receives orders in batches bj and returns the distance
traveled to collect these orders. The dis(bj) function with the S-Shape algorithm is presented
at the end of this section.

Trouting(bj) = dis(bj)
vrouting

, ∀j ∈ {1, . . . , m}. (2.2)

Then, in Equation (2.3) the extraction time of a batch bj . We consider that wi is the number
of items in the order oi assigned to bj, and vextraction is the speed of the picker to search and
pick up an item from the warehouse per unit of time.

Textraction(bj) =
n∑

i=1

wixji

vextraction

, ∀j ∈ {1, . . . , m}. (2.3)

In Equation (2.4) the service time of a batch bj is determined by the sum of the routing
time, the extraction time, and the setup time.

Tservice(bj) = Trouting(bj) + Textraction(bj) + tsetup, ∀j ∈ {1, . . . , m}. (2.4)

Finally, in Equation (2.5) the turnover time of an order oi is the time in which the order is
in the system, starting from the arrival of the order to the system until the order is collected
and delivered to the depot.

Tturnover(oi) =
m∑

j=1

(
(stj + Tservice(bj)) ∗ xji

)
− ari, ∀ i ∈ {1, . . . , n}. (2.5)

Once we know the times involved in these objective functions, we can define them.

» Minimize the sum of picking time of all pickers:

min
m∑

j=1
Tservice(bj). (2.6)

» Minimize the maximum completion time of the received orders:

min max
j∈{1,...,m}

(
stj + Tservice(bj)

)
. (2.7)

It is worth mentioning that this objective is determined by the moment in which the picker
delivers the last batch.

» Minimize maximum difference between sum of picking time of one order pickers
and the average picking time:

min
(

max
k∈{1,...,l}

m∑
j=1

yjk ∗ Tservice(bj)
)
−

m∑
j=1

Tservice(bj)
m

. (2.8)
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» Minimize the maximum turnover time of the received orders:

min max
i∈{1,...,n}

Tturnover(oi). (2.9)

Note that the value of this objective function is determined by the turnover time of the
order that remains longer in the system.

Once we know the objective functions addressed in the model, we need to define the
constraints of the problem that we present next. The set of feasible solutions is given, in all
cases, by the following constraints:

• The constraint in (2.10) guarantees that each order is assigned to a single batch:
m∑

j=1
xji = 1, ∀ i ∈ {1, . . . , n}. (2.10)

• The constraint in (2.11) guarantees that each batch is assigned to a single picker:
l∑

k=1
yjk = 1, ∀ j ∈ {1, . . . , m}. (2.11)

• The constraint in (2.12) guarantees that the maximum capacity of each batch is not
exceeded:

n∑
i=1

wi ∗ xji ≤ W, ∀ j ∈ {1, . . . , m}. (2.12)

• The constraint in (2.13) guarantees that batch bj begins to collect once any picker is
available:

stj ≥ min
k∈{1,...,l}

max
s∈{1,...,j−1}

ysk ∗
(
sts + Tservice(bs)

)
, ∀ j ∈ {2, . . . , m}. (2.13)

• The constraint in (2.14) guarantees that the batch bj starts to collect, once the batch bj−1
has started to collect:

stj ≥ stj−1, ∀ j ∈ {2, . . . , m}. (2.14)

• The constraint in (2.15) guarantees that the route to collect a batch bj cannot start before
the timestamps (moments in time) when the orders oi assigned to that batch have arrived
at the system:

stj ≥ ari ∗ xji, ∀ i ∈ {1, . . . , n}, and ∀ j ∈ {1, . . . , m}. (2.15)

• The constraint in (2.16) guarantees the state of non-negativeness of stj:

stj ≥ 0, ∀j ∈ {1, . . . , m}. (2.16)

• The constraint in (2.17) guarantees that the variables xji are binary:

xji ∈ {0, 1}, ∀ j ∈ {1, . . . , m} and ∀ i ∈ {1, . . . , n}. (2.17)

• Finally, the constraint in (2.18) guarantees that the variables yjk are binary:

yjk ∈ {0, 1}, ∀ j ∈ {1, . . . , m} and ∀ k ∈ {1, . . . , l}. (2.18)
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2.4.1 Time-window constraints
As we have seen in the previous section, the time window algorithm defines the moment when a
batch bj begins to be collected by a picker. This moment is the start time of the batch bj . If we
want to optimize the start time of each batch, we do not need to define any more constraints.
But if we want to delay the starting time to collect a batch, a time-window algorithm appears.
Then, we need to define a specific constraint for this time-window algorithm that replaces the
constraint (2.13). Next, we present the constrains for the main time-window algorithm used in
this Doctoral Thesis.

First, we need to define TPA bj in (2.19), as the fist timestamp of any available picker that
can pick up the batch bj.

TPA bj = min
k∈{1,...,l}

max
s∈{1,...,j−1}

ysk ∗
(
sts + Tservice(bs)

)
, ∀ j ∈ {2, . . . , m}. (2.19)

Once we have defined TPA bj it will be used in the following constraints to define the
different time-window algorithms.

» Constraint for No-Waiting algorithm: We define the start time stj of batch bj as
follows.

stj = min{max{ari ∗ xji}, TPA bj}, ∀ i ∈ {1, . . . , n}, and ∀ j ∈ {2, . . . , m}. (2.20)

» Constraint for Fixed Time Window algorithm: In this algorithm, we need to define
the parameter tF T W . This parameter is the time that we need to wait before starting the
picking. We also need to define the variable tF P A

j in Equation (2.21). This variable is the
timestamp that indicates that there is a picker available to collect the batch bj. Then, we
define the starting time stj of the batch bj in Equation (2.22).

tF P A
j = min

k∈{1,...,l}
max

s∈{1,...,j−1}
ysk ∗

(
sts + Tservice(bs)

)
, ∀ j ∈ {2, . . . , m}. (2.21)

stj = min{min{ari ∗ xji}+ tF T W , TPA bj}, ∀ (ari ∗ xji) ≥ tF P A
j ,

and ∀ j ∈ {1, . . . , m}, and ∀ i ∈ {1, . . . , n}.
(2.22)

» Constraint for Variable Time Window algorithm depending on the number
of batches: In this algorithm, we need to define the parameter MinNumBatches. This
parameter is the minimum number of batches in the queue to start the batch collection in
the system.

stj = min{max{ari ∗ xji}, TPA bj},⇒
m∑

q=j

max xq ≥MinNumBatches,

∀ j ∈ {1, . . . , m}, and ∀ i ∈ {1, . . . , n}.
(2.23)

» Constraint for Variable Time Window algorithm depending on the number
of orders: In this algorithm we need to define the parameter MinNumOrders. This
parameter is the minimum number of orders in the queue to start the batch collection in
the system.
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stj = min{max{ari ∗ xji}, TPA bj},⇒
m∑

q=j

n∑
w=1

xqw ≥MinNumOrders,

∀ j ∈ {1, . . . , m}, and ∀ i ∈ {1, . . . , n}.
(2.24)

» Constraint for Variable Time Window algorithm based in the capacity W of
the current batch: In this algorithm we need to define the parameter threshold. This
parameter is the threshold that limits the estimated probability that the next order will
fit in the available capacity. This time-window algorithm (VTF M1) is published in [95],
where we can find more details about the implementation.

stj = min{max{ari ∗ xji}, TPA bj},⇒ P (W − (
n∑

z=1
(wz ∗ xjz)) ≤ wi+1) ≥ threshold,

∀ j ∈ {1, . . . , m}, and ∀ i ∈ {1, . . . , n}.
(2.25)

There are more time-window algorithms in the literature [95], but we review here only the
most representative sample of the time window algorithms used in the context of OBP.

2.4.2 S-Shape routing constraints
In this section, we model the S-Shape routing algorithm. This model represents the function
dis(bj) and returns the distance of the picking tour for batch bj. We choose modeling the
S-Shape routing algorithm as an example model, but we can use another routing algorithm
to define the function dis(bj). We use the S-Shape routing algorithm because it is the most
common routing algorithm in the literature and is widely used in this Doctoral Thesis. First, in
Table 2.2, we present the parameters and variables to define the model of the S-Shape routing
algorithm. Then, we define the equation that model the algorithm.

zjq = piq · xji, ∀ j ∈ {1, . . . , m}, ∀ i ∈ {1, . . . , n}, ∀ q ∈ {1, . . . , Q}. (2.26)

Aj =
Q∑

q=1
zjq, ∀ j ∈ {1, . . . , m}. (2.27)

oddj = Aj mod 2, ∀ j ∈ {1, . . . , m}. (2.28)

AL
j = min

q∈{1,...,Q}
q · zjq : (q · zjq > 0), ∀ j ∈ {1, . . . , m}. (2.29)

AR
j = max

q∈{1,...,Q}
q · zjq, ∀ j ∈ {1, . . . , m}. (2.30)

DF
j = max

i∈{1,...,n}
paxi,AR

j
· xji, ∀ j ∈ {1, . . . , m}. (2.31)

Dh = ABS
(
AL

j − AD
j

)
W +

(
AL

j − AR
j

)
W + ABS

(
AR

j − AD
j

)
W. (2.32)

disj

Dh + AjL, oddj = 0
Dh +

(
Aj − 1

)
L + 2DF

j , oddj = 1
(2.33)

41



Tesis Doctoral Online Order Batching Problem

Variables
disj → Distance function of the picking tour for batch bj.
Aj → Number of aisles that contains at least one pick location in batch

bj.
AL

j → Leftmost aisle number from the depot that contains at least one
pick location in batch bj.

AR
j → Rightmost aisle number from the depot that contains at least

one pick location in batch bj.
DF

j → Distance from farthest item which needs to pick to the front aisle
in batch bj.

oddj →

1, if Aj is odd,
0, otherwise.

zjq →

1, if batch bj has a item in the aisle q,
0, otherwise.

Parameters
AD → Aisle number in front of the depot.
W → Center-to-center distance between two aisles.
L → Length of aisle.
Q → Number of aisles in the warehouse.
paxiq→ Length to the last article for aisle aq in the order oi.

piq →

1, if order oi has a item in the aisle q,
0, otherwise.

Table 2.2: Parameters and variables for the S-Shape routing algorithm.

42



Tesis Doctoral Online Order Batching Problem

2.5 Instances
In this section, we describe and conceptualize the instances of order batching problems by
identifying the main characteristics that appear in most articles related to OBP and then we
enumerate some additional information that might be available when handling some specific
variants of OBP. We also present the data sets used in this Doctoral Thesis and in the associated
literature. We present a table with the main characteristics of the papers involved in the OBP.
In addition, we review the common layouts of the warehouses studied in the context of order
bathing problems.

Generally speaking, an instance for any of the OBP could be split into two different kinds
of data that can be provided together into the same file or separately: (i) data related to the
warehouse; and (ii) data related to the orders that need to be processed. The information
classified under (i) contains a description of the warehouse with details such as: Dimensions,
number of aisles, width and length of the aisles, number of heights, number of picking positions
per aisle, depot location, picking cart capacity, speed of the picking carts/pickers, position of
the orders, etc. On the other hand, in (ii) there is information related to the orders of the
customers, such as: number of orders, specific items per order, due date of the order, etc. Note
that depending on the variant of the OBP being tackled, the information needed may be slightly
different.

More formally, an instance of OBP can be conceptually modeled using the Unified Modeling
Language (UML) standard [244]. In particular, in Figure 2.12 we represent the model of an
instance of Order Batching in a UML class diagram. The legend of Figure 2.12 is depicted
in a light yellow UML note. The diagram includes classes (abstractions of a family of real
objects), attributes (characteristics belonging to each class), relationships among classes (either
composition, aggregation, or dependency/use), and the cardinal of the relationships (indicating
the minimum and maximum number of objects of each class that participate in each relationship;
notice that a value 1 indicates that the minimum and maximum equal 1).

The OBP instance is represented as the class OrderBatchingInstance, which is modeled as
the aggregation of the classes Warehouse, Picker, and Order. Note that each particular instance
has one warehouse, one or more pickers, and one or more orders. Similarly, the Warehouse class
is made up of class Floor (one or more) which, at the same time, is obtained as the composition
of the classes Depot (zero or more depots per floor) and Aisle (one or more aisles per floor).
Each Aisle is composed of class PickingPosition (zero or more, usually depending on the
type of aisle). Finally, products are represented by the class Product. Each order is obtained as
the aggregation of one or more products, and each picking position might contain zero or more
products. Similarly, a product might be present in more than one order and in more than one
picking position.

Once we have a grasp of the structure of the instances of OBP, we review the different data
sets used in the related literature. However, we first present the data sets used in this Doctoral
Thesis. Specifically, we selected two widely used data sets of instances previously reported in
the literature of different variants of the Order Batching family of problems. The first data set
was introduced in [4]. This data set consists of four different warehouses previously published in
the literature. Three warehouses (W1, W2, and W3) are first published in [53] and the fourth
warehouse (W4) is first published in [132]. The second data set was presented in [125]. This data
set consists of one warehouse (W5) based on the data sets presented in [53, 85, 130]. Subsequently,
both data sets are widely used in the related literature [5, 160, 188, 189, 252, 250, 304].

To complement this information, in 2.5.2 we perform an extensive analysis of the sets of
instances used in the state of the art to evaluate the algorithms proposed for OBP. In Table 2.4 we
present a compilation of the main characteristics of different warehouse and order configurations
used in the literature for OBP. In particular, we have compiled: The design of the warehouse,
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Figure 2.12: UML Class Diagram of an Order Batching instance.

including the shape, the number of floors and blocks; the number of parallel and cross aisles of
the warehouse; the number of storage locations and the availability of one or more products
in that location; the storage of each product in a single or multiple locations; the number of
depots and its position in the warehouse; the capacity of the picking device to collect the items;
the number of products in the warehouse; the orders per instance and the number of items per
order. We also report some additional characteristics which are related to particular variants
of the OBP such as the existence of narrow aisles or AS/RS machines; the number of pickers
available; or the time horizon observed in the online problems. For each configuration, we report
the reference of the source paper where the instance type is considered.

2.5.1 Warehouse layout
The layout of the picking zone in logistic warehouses is diverse. The main characteristics in the
picking zone are the layout of the floor, the number of aisles and its type (cross, parallel, or
diagonal), the width of the aisles, and the position of the depots, among others. We understand
as a depot the place where pickers begin and finalize the collection route and where items
collected on a picking route are delivered [297]. In the literature, the most common floor plan is
rectangular, but it is also possible to find irregular floors [232, 311]. In addition, we can find
three types of aisles (parallel aisles, cross aisles, and diagonal aisles). Warehouses with diagonal
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aisles are known as warehouses with flying-V, fish-bone o chevron, according to the layout of
the diagonal aisles [15, 66, 182, 208, 227]. Warehouses with rectangular floor plans and parallel
and cross aisles are typically divided into blocks according to the number of cross aisles. Each
block is a group of parallel aisles delimited by two cross aisles. The width of the aisles is also
important because in warehouses with narrow aisles, the pickers cannot turn around or cross
with other pickers within the corridors [33, 141]. In Figure 2.13 we can find several examples
of different layout configurations of the picking zone in a warehouse. This figure was inspired
by several publications in the literature [183, 209, 310] and collects some of the most common
layouts.

In this Doctoral Thesis, we focus on warehouses manually operated, however, the layout
of the warehouse might also be linked to another important characteristic of a warehouse
management, which is the degree of automation in the warehouse. We can highlight some
automatic systems with different levels of automatization, such as the Automated Storage and
Retrieval System (AS/RS) [69, 70, 71, 72, 212], vertical lift modules [174], carousels [135, 175],
autonomous mobile robots (AMRs) [309], or dense mobile racks [299].

Figure 2.13: Example of different layouts of the picking zone in a warehouses.

In Figure 2.14 we show an example of the warehouse layout studied in this Doctoral Thesis.
As we can observe, it is a warehouse with a rectangular shape and only one block (i.e., with two

45



Tesis Doctoral Online Order Batching Problem

cross aisles placed at the front and back of the block). In this case, there are five parallel aisles,
and the aisles are considered wide enough so that pickers cross with other pickers and turn
around. The warehouse is not automated, and the pickers collect the items manually. There is
only one depot. In this case, the depot is located in the leftmost part of the front cross aisle.
However, the number of parallel aisles or the placement of the depot depends on the particular
instance. In Table 2.3, we can find a summary of the main characteristics of the warehouses
studied in this Doctoral Thesis and the associated working parameters considered. These data
sets were introduced in [4] and [125].

Front cross aisle

Back cross aisleParallel aisles

Parallel aisles

Items

Depot

Figure 2.14: Example of the layout of the logistic warehouse used in this Doctoral Thesis.

W1 [125] W2 [125] W3 [125] W4 [125] W5 [4]
Storage policy Random / ABC Random / ABC
Depot position Center / Left corner Center
Order size U(1,7) U(2,10) U(5,25) U(1,36) U(5,25)
Item weight 1 1 1 U(1,3) 1
Batch capacity (weight) 12 24 150 80 30 / 45 / 60 / 75
Number of parallel aisles 4 10 25 12 10
Number of items per aisle 2x30 2x20 2x25 2x16 2x45
Number of items 240 400 1250 384 900
Parallel aisle length 50m 10m 50m 80m 45m
Parallel aisle width 4.3m 2.4m 5m 15m 5m
Number of instances 20 20 20 20 64

Travel speed (m/min.) 48 48 48 48 48
Extraction speed (items/min) 6 6 6 6 6
Batch setup time 3 min 3 min 3 min 3 min 3 min

Table 2.3: Warehouse characteristics and the work parameters used in this Doctoral Thesis.
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2.5.2 Characteristics of the instance sets in the literature
In this section, we have compiled the main characteristics of the instances used in articles
belonging to the OBP literature. In particular, we have selected the characteristics compiled
in Table 2.4. Then, in Table 2.5 we have sorted the articles chronologically and compiled the
aforementioned characteristics. Notice that when the information was not available in the paper,
we denoted it with a ‘–’ in the table. For each set of instances, we also identify if the instances
were obtained or inspired from a previous paper (column ‘Source’).

Columns Values
(#OR) Number of orders Max. . . Min

(L/F) Layout/Floors R:rectangular ; I:irregular / S:single ; VL: Vertical Lift ; DMR:
Dense Mobile Rack

(DP) Depot position Co: Corner ; Ce: Center ; CV: Conveyor ; Li: Line depot
(#BL) Number of blocks MB: Multi-blocks ; Max. . . Min

(#PA) Number of parallel aisles Max. . . Min
(#PR) Number of products Max. . . Min

(ASS) Assignment R: R ; ABC: A ; SIM: S
(PCC) Picking cart capacity Max. . . Min

(#PI) Number of pickers V: Varied ; AGV: Automated guided vehicles; Max. . . Min
(TI) Type of instance Syn: Synthetic ; Rea: Real ; Reu: Reused

Table 2.4: Characteristics reviewed in the instances related to OBP.

#IDPapers #OR L/F DP #BL #PA #PR ASS PCC #PI TI Source

#1 [9] 30 R/S CV 1 12 2000 – 6 12 Rea –
#2 [69] 10 AS/RS – – – 22 R 30. . . 39 1 Syn –
#3 [71] 23. . . 52 AS/RS – – – 80 R 350 1 Syn –
#4 [88] 100. . . 1200 R/S Co 1 10 800 A 10 1 Syn –
#5 [72] 20 AS/RS – – – 80 R 400. . . 1200 1 Syn –
#6 [212] 20. . . 50 AS/RS – – – 40 R/A 70. . . 200 1 Syn –
#7 [240] 100. . . 1000 R/S Co 1 15 750 A 50 1 Syn –
#8 [70] N(50,15) AS/RS – – – 120 R 400. . . 1200 1 Syn –
#9 [266] – R/S – – 40 – A 4. . . 20 1 Syn –
#10 [53] 30 R/S Co 1 4. . . 25 240. . . 1250 R 12. . . 150 1 Syn –
#11 [52] – R/2 Co 18 11 300000 A 12. . . 16 – Rea –
#12 [241] 4000 R/S No 1 9 – R/A 15. . . 60 5. . . 90 Syn –
#13 [40] – R/S Co 1 40 – A 7. . . 20 1 Syn –
#14 [222] 3000. . . 12000 R/S Co 1 10 1000 A 30 8. . . 32 Syn –
#15 [85] 15. . . 32 R/S Ce 1 4. . . 20 250. . . 400 R/A 3. . . 8 3. . . 8 Syn/Reu #10
#16 [146] 40. . . 300 R/S Co 1 5 80. . . 400 – 100. . . 500 1 Syn –
#17 [84] 15. . . 32 R/S Ce 1 4. . . 20 250. . . 400 R/A 3. . . 8 1 Reu #15
#18 [148] 10. . . 30 R/S Co 1 10 400 R 24 1 Syn –
#19 [296] 10..100 o/h AS/RS – – – 2000 R 5. . . 30 1 Syn –
#20 [132] 250 R/S Co 1 12 384 R/A 80 1 Syn –
#21 [65] 5. . . 40 R/S Co 1 6. . . 8 – R/A 2. . . 6 1 Syn –
#22 [172] 24 h/o R/S Ce 2 6. . . 16 – R 3. . . 40 1 Syn –
#23 [271] 25. . . 250 R/S (3D) Co 1 – – – 7000. . . 50000 1 syn –
#24 [19] 20..25 R/S Ce 1 11. . . 22 – R 25 1 Syn –
#25 [133] 250 R/S Co 1 12 384 R/A 80 1 Reu #20
#26 [4] 50. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 1 Reu #10 #20
#27 [281] – R/S Ce 2 10. . . 20 – R 2. . . 20 4. . . 8 Syn –

Continued on the next page
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#IDPapers #OR L/F DP #BL #PA #PR ASS PCC #PI TI Source
#28 [302] 105. . . 142 o/h R/S CV 1 36 240 R 1. . . 7 27 Rea/Syn –
#29 [130] 20. . . 60 R/S Co 1 10 900 A 30. . . 75 1 Reu #10 #11
#30 [243] 234. . . 1136 I/S – – – 1000 – 60 8 Rea –
#31 [145] 300 R/S Ce 2 10 400 A 50 1 Syn –
#32 [248] – R/S Co 1 10. . . 30 400. . . 1000 R 8. . . 25 1 Syn –
#32 [125] 30. . . 120 R/S Co 1 10 900 A 45. . . 75 1 Reu #17 #29
#33 [129] 40. . . 100 R/S Co 1 10 900 R/A 30. . . 75 1 Reu/Syn #10 #29
#34 [141] 16. . . 1440 R/S Co 1 4. . . 30 – R/A 10 4. . . 24 Reu #13
#35 [165] 50. . . 250 R/S Co/Ce 1. . . 2 5 100 R 100 1 Syn –
#36 [140] 360. . . 2160 R/S Co 1 10. . . 40 400. . . 1600 R/A 10 1 Reu/Syn #14
#37 [23] – – – – – – – – 1 Syn –
#38 [73] 15. . . 45 R/S Ce 2 5 2280 A – 1 Rea –
#39 [12] 40. . . 150 R/S Co 1 – 3000 – 200. . . 550 1 Syn –
#40 [128] 20. . . 80 R/S Co 1 10 900 A 45. . . 75 1 Reu #10 #29
#41 [298] 257. . . 360 o/h R/S Co 1 10. . . 30 – R 20 1 Reu #22 #27
#42 [184] 1536 R/S Ce 3 57 2912 – 3. . . 4 1 Rea –
#43 [219] 30. . . 60 R/S Co 1 10 900 A 45/75 1 Reu #29
#44 [312] 60 R/S Co 1 5 60 – 100 1 Syn –
#45 [187] 50. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 1 Reu #26
#46 [127] 100. . . 200 R/S Co 1 10 900 A 30. . . 75 2. . . 8 Reu #29
#47 [218] 30. . . 90 R/S Co 1 10 900 – 45. . . 100 1 Reu #29
#48 [214] 100. . . 500 R/S CV 1 1. . . 3 – – 15. . . 50 5. . . 10 Syn –
#49 [204] 10. . . 100 R/S Co/Ce 1 10. . . 22 200. . . 900 R/A 24. . . 75 1 Reu #18 #24 #33
#50 [38] 6. . . 8 R/S Co 1 3 12 – 4. . . 5 1 Rea –
#51 [202] 20. . . 100 R/S Co 1 10 200 R 24. . . 48 1 Reu #18
#52 [39] 5. . . 200 R/S Co 1 3 12. . . 24 – 4. . . 9 1 Rea –
#53 [303] 600 R/S Co 1 10 900 R 30. . . 60 8. . . 18 Reu #17 #29
#54 [160] 20. . . 60 R/S Co 1 10 900 A 30. . . 75 1 Reu #10 #29
#56 [179] 47. . . 100 R/S Co 1 3. . . 4 16. . . 48 – 4 1 Rea –
#57 [274] 5. . . 30 R/S Co 2 3. . . 8 108. . . 1584 A 40 1. . . 6 Rea –
#58 [178] 200. . . 10000 R/S – 2 11 2000 – 50. . . 100 1 Rea/Syn –
#59 [277] – R/S Co 2 16 1280 R/A 26 1. . . 4 Rea –
#60 [139] 200. . . 500 R/S Co 1 6 – A 2. . . 10 1 Syn –
#61 [304] 120. . . 480 R/S Co 1 10 900 R 30. . . 75 1. . . 8 Reu #28 #32
#62 [275] 5. . . 5000 R/S Co 2. . . 4 3. . . 12 108. . . 1584 A 40 1. . . 6 Rea/Reu #57
#63 [190] 40. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 – Reu #26 #33
#64 [189] 40. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 1 Reu #26 #33
#65 [188] 20. . . 80 R/S Co 1 10 900 R/A 45. . . 75 1 Reu #40
#66 [252] 100. . . 200 R/S Co 1. . . 3 10. . . 30 500. . . 1500 A 45. . . 75 2. . . 5 Reu #46
#67 [250] 20. . . 80 R/S Co 2 10. . . 301000. . . 3000 A 30. . . 75 1 Reu #29 #33
#68 [175] 31. . . 72 VC(AS/RS) – – – – – 6. . . 8 1 Rea –
#69 [185] 2048. . . 2056 R/S Ce 2 57 – – 3 3. . . 86 Rea –
#70 [87] 288. . . 1440 R/S Ce 1 10 300 R 20 1 Rea –
#71 [28] 20. . . 100 R/S Co 1 10 900 – 25. . . 100 1 Reu #43 #54
#72 [36] 100. . . 200 R/S Co 2 15 900 R 20. . . 400 1. . . 5 Reu #50 #53
#73 [6] 5. . . 1093 R/S Co 1 23 1150 – 2. . . 12 2. . . 8 Syn –
#74 [22] 45. . . 18209 R/S CV 4 7 – – – – Rea –
#75 [151] – R/S Co 1 – – – – 1 Syn –
#77 [308] 200. . . 600 R/S Co 1 10 900 A 6. . . 15 1 Reu/Syn #33
XXX [176] 17. . . 192 VLM(AS/RS) – – 1. . . 4 70. . . 520 – 6. . . 8 1 Rea #68
#78 [305] 2400. . . 9600 R/S Co 1 1. . . 100 100. . . 1000 R 20 5 Reu #17 #32
#79 [147] 500. . . 2000 R/S – 5 – 10000 – 10 25. . . 75 Rea –
#80 [89] 40. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 1 Reu #26 #29
#82 [191] 25. . . 200 R/S (3D) Co 1 3 30. . . 300 – 7000. . . 20000 1 Reu #23
#83 [7] 5. . . 200 Any – – – – – 3. . . 8 1 Syn –
#84 [279] 100. . . 300 R/S Co 2 6. . . 18 360. . . 3240 R/A 4. . . 12 2. . . 8 Reu #59

Continued on the next page
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#IDPapers #OR L/F DP #BL #PA #PR ASS PCC #PI TI Source
#85 [21] 5. . . 5000 R/S Co/Ce 2 4 1584 – 40 1 Rea #62 #74
#86 [225] 10. . . 50 R/S Co 19 – 20. . . 300 A 50. . . 200 1 Syn –
#87 [254] 195. . . 2673 R/S – 1 35. . . 50 2491 R 30. . . 90 2. . . 8 Reu #15
#88 [90] 40. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 2 Reu #26 #29
#89 [26] 40 R/S Co 2 10 900 – 50 1 Reu #46 #64 #65
#90 [63] 30. . . 520 R/S Li 1 – – – – 5. . . 40 Rea –
#91 [137] 120. . . 480 R/S Co 2. . . 6 10 900 R 30. . . 75 2. . . 6 Syn –
#92 [29] – R/S Co 2 3 50. . . 3800 – – – Syn –
#93 [177] 2000 R/S – – – 800 – – 1. . . 18 Rea –
#94 [163] 50. . . 200 R/S Co 3 10 6000 A 100 1 Syn –
#95 [301] 4. . . 300 R/S 2 2. . . 10 16. . . 400 R 2. . . 75 1 Reu #77
#96 [5] 60. . . 240 R/S Co 1 10 900 A 45. . . 75 2 Reu #32
#97 [273] 5. . . 75 R/S Co 1. . . 2 8. . . 16 1560 A – 1. . . 12 Reu #56
#98 [8] 10. . . 100 R/S Co 1 23 1150 – 50. . . 100 2. . . 5 Rea –
#99 [91] 40. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 1 Reu #26 #29
#100 [32] 10. . . 100 R/2 Ce 1 5. . . 19 100. . . 7600 A 20 6. . . 25 Rea –
#101 [92] 40. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 1 Reu #26 #29
#102 [164] 5. . . 200 R/S Co 2 5 200 A 5. . . 60 1. . . 6 Reu/Rea #81
#103 [11] 2. . . 40 R/S Co – – 2. . . 600 – 4. . . 6 2. . . 10 Syn –
#104 [25] 330. . . 500 o/h Mix AS/RS CV 2 – – – 50 3. . . 5 Syn –
#105 [259] 2000. . . 8500 R/S Co 1 40 – – 6 2. . . 8 Syn –
#106 [297] 10. . . 300 R/S Ce(2) 2 6 24. . . 3240 A 18 2+AGV(2) Reu #84
#107 [10] – R/S Ce 2 4 54 – 45 2. . . 4AGV Syn –
#108 [306] – R/S Co 1 100 1000 R 5. . . 10 2 Rea #78
#109 [75] 60. . . 800 R/S CV 1 – – – 15 30 Syn –
#110 [299] 20. . . 50 DMR Ce 1 30. . . 70 – – – 1 Syn –
#111 [30] 10. . . 50 R/S Co 1 – 400. . . 2000 R 30. . . 50 3 Syn –
#112 [93] 40. . . 250 R/S Co/Ce 1 4. . . 25 240. . . 1250 R/A 12. . . 150 1. . . 5 Reu #26 #29
XXX [309] 5. . . 100 R/S Co 1 10. . . 20 200. . . 800 R 6. . . 60 4. . . 12AGV Syn –
#113 [207] 5. . . 5000 (R-I)/S Co/Ce 2. . . 4 8. . . 12 254. . . 42 R 8x40 1 Rea/Reu #62
#114 [136] – R/S CV – 2. . . 4 2212 – – 2. . . 4 Rea –
#115 [152] 50. . . 1200 R/S Co 1 10 900 A 50 1 Syn/Reu #65
#116 [192] 25. . . 250 R/S (3D) Co 1 – – – 7000. . . 50000 1 Reu #23
#117 [247] – R/S Ce/1. . . 63. . . 11 5. . . 60 5600 – – 1 Syn/Rea –
#118 [233] 10. . . 250 R/S Co 1 4. . . 40 64. . . 640 R/A 3. . . 10 3 Syn –
#119 [287] 40. . . 600 R/S Co 1 20 1000 R/A 6. . . 24 1. . . 5 Reu #33 #77
#120 [300] 1000 R/S Ce MB – – S – AGV – –

Table 2.5: Characteristics of instances used in articles related to OBP.
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Chapter 3

State of the art

In this chapter we review the state of the art related to Order Batching problems. To that aim,
we enumerate and sort in chronological order all the articles found in the literature published
in a journal indexed in either the Journal of Citation Reports (JCR) or the Scimago Journal
Rank (SJR). We also compile the authors which have published at least two papers in the
field. Finally, we present the state-of-the-art of the OBP through our own article titled “Order
Batching Problems: taxonomy and literature review”. To that aim we contextualize the paper
and summarize its content.

To prepare this state-of-the-art study, we analyzed the different survey publications that
tackle the literature of OBP. During our study, we identified six previous surveys [18, 31, 54, 114,
115, 226] published in a journal indexed in the JCR and other eleven surveys [3, 27, 50, 74, 131,
149, 155, 161, 181, 186, 201] published in other journals or books, that are somehow related to
the topic under consideration. In those surveys we detected different approaches when dealing
with the study of the state of the art and, among them, we highlight four papers. The latest
publication on the topic, made in [226], performed a detailed bibliographic analysis of the OBP
and also analyzed the different strategies/methodologies previously used to solve the problem.
Furthermore, they studied the different subtasks involved in the OBP. We can also highlight
another recent publication [31] which deals with the different operations that are addressed
when solving the order batching problem. The authros present an overview classification of the
problem and also discusses different solution techniques and future research topics. Another
work to consider is the one published in [27] which focuses on the trends in order batching,
sequencing, and routing problems. This article also tackles several subtasks of the OBP. Finally,
we would like to highlight the work published in [131]. Despite of the fact that it is a little bit
older than the previous ones, this was the first work which focused exclusively on the Order
Batching Problem. It is important to notice that among the aforementioned surveys not all
of them deal exclusively with order batching, but they present the set of related activities as
a part of logistic warehouses [18, 54, 114, 115]. In these cases, the batching process is briefly
discussed in a particular section of the article.

Due to this previous analysis, we were able to identify the need to conduct a new survey,
titled “Order Batching Problems: taxonomy and literature review” [94], that would improve the
state of the art of the field under study. In this publication, we reviewed the state-of-the-art of
order batching. Particularly, we identified 193 publications related to OBP. Among them, we
found journal papers, but also other works, such as conference papers, books, book chapters,
and Doctoral Theses. However, we focused our study in the 122 papers published in a journal
indexed in the JCR or SJR. As we state in the paper, the order batching is a family of problems
in constant growth. In this paper, we compile and review the publications indexed in JCR
or SJR classified by year and grouped by category. We can observe that the first publication
related to OBP was performed in 1979. Since then, four decades later, the number of papers
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related to OBP published in top level journals are more than a hundred. In the first and second
decades (80’s-90’s), we observed that very few papers related to OBP could be found in the
literature. The interest on the problem started growing the late 1990s and early 2000s, when
more studies on the OBP appeared. But the real hatching began in 2011 where a large number
of annual publications related to OBP started to be produced. Nowadays, we can find more
than 10 annual publications in the literature about OBP.

In the review presented in [94] we collected the most well-known variants of the optimization
problems named as order batching, for rectangular-shaped warehouses, classified as picker-to-
part (i.e., when the pickers move through the warehouse to collect the orders). In this work,
we identify the different factors and tasks that influence the picking process and we classify
them into decision levels (strategic, tactical, and operational). In addition, we characterize and
identify the optimization problems that belong to the OBP family. We also propose a new
taxonomy to classify the identified problems. The proposed taxonomy can host future problems
within this family. In this work, we study each variant of order batching and highlight the
common characteristics of the different variants of the problem. We identify the strategies and
algorithms proposed for the set of articles analyzed. Finally, we detail and summarize in several
tables the works on OBP that is indexed in the JCR and SJR rankings.

To complement the content of the state of the art presented in [94], we include in this chapter
a new bar chart to provide a general vision of the literature reviewed. The bar chart, shown in
Figure 3.1, presents a chronological classification of the papers published in either a JCR or
SJR journal. Those publications are classified depending on the variant of the OBP studied.
Particularly, we can observe that there are 18 variants of the problem that have been previously
studied out of 36 variants identified in the taxonomy introduced in [94].

Among the variants studied, we observe that 48.36 % of the articles deal with offline single
picker variants, 26.23% of the articles deal with offline multiple picker variants, 13.11% of the
articles deal with online single picker variants, and 12.30% of the articles deal with online
multiple picker variants. Also, we observe that the offline and the single-picker variants of the
problem have been studied further than the online and the multiple-picker variants. The most
studied variant is the classic OBP with 31 articles. The next ones are the variants that optimize
only the batching task, such as OBRP with 16 articles, OOBPMP with 11 articles, OOBP with
10 articles, and OBPMP with 9 articles. It is worth mentioning that further than the batching,
the routing task must be always addressed in any OBP paper. However, other tasks are not
always considered. In this sense, we observe that only 29 papers study the sequencing task, 15
papers study the assignment task, and 3 papers study the waiting task.

To extend the previous information, in Table 3.1 we show a classification of authors with
more than two publications related to OBP in a journal indexed in JCR or SJR. Authors are
sorted depending on the number of publications. We also present the reference to the articles
published by each author. In this table, we can also observe that the author of this Doctoral
Thesis is currently the sixth author with more publications related to OBP.
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OBP
(31)

OBRP
(16)

OBSP
(5)

OBSRP
(7)

OBPMP
(9)

OBRPMP
(3)

OBSPMP
(6)

OBAPMP
(3)

OBSRPMP
(2)

OBSAPMP
(3)

OBARPMP
(6)

OOBP
(10)

OOBWP
(03)

OOBRP
(2)

OOBSRP
(1)

OOBPMP
(11)

OOBRPMP
(1)

OOBSARPMP
(3)

1979
Armstrong et al.

[9]

1981
Elsayed

[69]

1989
Elsayed & Unal

[71]

1992
Gibson & Sharp

[88]

1993
Elsayed et al.

[72]

1995 Pan & Liu
[212]

1996 Rosenwein
[240]

Elsayed & Lee
[70]

1997
Tang & Chew

[266]

1999 De Koster et al.
[53]

De Koster et al.
[52]

Ruben & Jacobs
[241]

Chew & Tang
[40]

2000 Petersen
[222]

2001 Gademann et al.
[85]

2005 Hsu et al.
[146]

Hwang & Kim
[148]

Chen & Wu
[37]

Gademann & Velde
[84]

Won & Olafsson
[296]

2006
Ho & Tseng

[132]

2007 Dukic & Oluic
[65]

Le-Duc & De Koster
[172]

2008 Bozer & Kile
[19]

Ho et al.
[133]

Tsai et al.
[271]

2009 Albareda-Sambola et al.
[4]

Yu & De Koster
[302]

Van N. & De Koster
[281]

2010 Henn et al.
[130]

2011
Hsieh & Huang

[145]
Rubrico et al.

[243]

2012 Henn & Wascher
[129]

Kulak et al.
[165]

Hong et al.
[140]

Hong et al.
[141]

Schleyer & Gue
[248]

Henn
[125]

Bukchin et al.
[23]

Ene & Ozturk
[73]

2013 Henn & Schmid
[128]

Azadnia et al.
[12]

2014 Matusiak et al.
[184]

Xu et al.
[298]

2015 Menendez et al.
[187]

Muter & Oncan
[202]

Oncan
[204]

Perez-Rodriguez et al.
[218]

Zuniga et al.
[312]

Cheng et al.
[39]

Chen et al.
[38]

Pan et al.
[214]

Henn
[127]

Perez-Rodriguez et al.
[219]

2016 Koch & Wascher
[160]

Lin et al.
[179]

Van Gils et al.
[277]

Valle et al.
[274]

Li et al.
[178]

Zhang et al.
[303]

2017 Menendez et al.
[189]

Lenoble et al.
[175]

Scholz & Wascher
[250]

Menendez et al.
[188]

Hong & Kim
[139]

Menendez et al.
[190]

Matusiak et al.
[185]

Scholz et al.
[252]

Valle et al.
[275]

Giannikas et al.
[87]

Zhang et al.
[304]

2018 Cano et al.
[28]

Lenoble et al.
[176]

Zulj et al.
[308]

Van Gils et al.
[278]

Nicolas et al.
[203]

Pferschy & Schauer
[224]

Jiang et al.
[151]

Huang et al.
[147]

Ardjmand et al.
[6]

Zhang et al.
[305]

Gil-Borras et al.
[89]

Chen et al.
[36]

Van Der Gaast et al.
[276]

2019 Cano
[26]

Ardjmand et al.
[7]

Pinto & Nagano
[225]

Miguel et al.
[191]

Van Gils et al.
[279]

Hojaghania et al.
[137]

Gil-Borras et al.
[90]

Duda & Stawowy
[63]

Schrotenboer et al.
[254]

2020
Yang et al.

[301]
Kubler et al.

[163]
Briant et al.

[21]
Cergibozan & Tasan

[32]
Cano et al.

[29]
Valle & Beasley

[273]
Ardjmand et al.

[8]
Gil-Borras et al.

[92]

Gil-Borras et al.
[91]

Alipour et al.
[5]

Leung et al.
[177]

2021
Yang et al.

[299]
Oxenstierna et al.

[207]
Cals et al.

[25]
Cano et al.

[30]
Zulj et al.

[309]
Feng & Hu

[75]
Hofmann & Visagie

[136]
Yousefi Nejad A. et al.

[11]

Atchade-A. et al.
[10]

Kuhn et al.
[164]

Xie et al.
[297]

Zhang et al.
[306]

Shavaki & Jolai
[259]

Gil-Borras et al.
[93]

2022
Miguel et al.

[192]
Schiffer et al.

[247]
Jiang et al.

[152]
Yang
[300]

Wagner & Monch
[287]

Rasmi et al.
[233]

Figure 3.1: Publications index in JCR and SJR classified by year and grouped by variant of the
problem.
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Duarte, A. 9 [188] [189] [190] [89] [91] [90] [93] [187] [92]
Pardo, E. G. 9 [188] [189] [190] [89] [91] [90] [93] [187] [92]

Alonso-Ayuso, A. 8 [4] [189] [89] [91] [90] [93] [187] [92]
De Koster, R. B. M. 7 [53] [281] [184] [302] [52] [172] [185]

Wäscher, G. 6 [160] [129] [255] [130] [252] [250]
Gil-Borrás, S. 5 [89] [91] [90] [93] [92]

Zhang, J. 4 [304] [305] [303] [306]
Elsayed, E. A. 4 [71] [72] [69] [70]

Cano, J. A. 4 [28] [26] [30] [29]
Menéndez, B. 4 [188] [189] [190] [187]

Valle, C. A. 4 [273] [275] [274] [272]
Beasley, J. E. 4 [273] [275] [274] [272]

Roodbergen, K. J. 3 [276] [52] [254]
Scholz, A. 3 [255] [252] [250]

Henn, S. 3 [129] [128] [130]
Ardjmand, E. 3 [7] [6] [8]

Lenoble, N. 3 [175] [174] [176]
Frein, Y. 3 [175] [174] [176]

Hammami, R. 3 [175] [174] [176]
Hong, S. 3 [141] [140] [139]

Wang, X. 3 [304] [305] [303]
Hu, X. 3 [152] [151] [75]

Schubert, D. 3 [164] [255] [252]
Molina, E. 3 [4] [189] [187]

Correa-Espinal, A. A. 3 [28] [30] [29]
Cheng, C.-Y. 3 [38] [39] [179]

Chew, E. P. 2 [40] [266]
Tang, L. C. 2 [40] [266]

Pérez-Rodŕıguez, R. 2 [219] [218]
Hernández-Aguirre, A. 2 [219] [218]

Öncan, T. 2 [202] [204]
Bajgiran, O. S. 2 [7] [6]

Ho, Y. C. 2 [133] [132]
Van Gils, T. 2 [279] [277]

Caris, A. 2 [279] [277]
Ramaekers, K. 2 [279] [277]

Braekers, K. 2 [279] [277]
Koch, S. 2 [160] [130]

Huang, K. 2 [305] [303]
Miguel, F. M. 2 [192] [191]

Frutos, M. 2 [192] [191]
Tohmé, F. 2 [192] [191]

Jiang, X. 2 [152] [151]
Sun, L. 2 [152] [151]

Zhang, Y. 2 [152] [151]
Johnson, A. L. 2 [141] [140]

Peters, B. A. 2 [141] [140]
Matusiak, M. 2 [184] [185]

Saarinen, J. 2 [184] [185]
Gademann, N. 2 [84] [85]

Gómez-Montoya, R. A. 2 [28] [29]
Lee, M. K. 2 [72] [70]

Žulj, I. 2 [309] [308]
Schneider, M. 2 [309] [308]

Chen, T.-L. 2 [38] [39]
Chen, Y.-Y. 2 [38] [39]

Da Cunha, A. S. 2 [275] [274]
Pan, J. C.-H. 2 [212] [214]

Table 3.1: Classification of authors by number of publication with more than 2 articles of OBP
in JCR and SJR index.
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To end this review of the state of the art, we collect some notes related to the resolution
methods used for the tasks addressed in the OBP. First, focusing on the routing task, we
observe that according to [94], most of the papers studied use more than one routing strategy.
In particular, any kind of heuristic/metaheuristic strategy is used in all the articles studied.
Among these strategies, the S-shape method is used in 50.81% of the articles. On the other
hand, 34.42% of the articles also propose the use of an exact approach, based mainly on a
mathematical model or dynamic programming.

To tackle the batching task, metaheuristics are the most common strategies, since 60.65% of
the articles studied included at least one metaheuristic method. Simpler heuristics are studied
in 36.06% of the articles; among them, we can highlight the Seed, Savings, and FCFS methods
as the most used ones. Furthermore, we identify that an exact method (usually a mathematical
model solved with a commercial solver) has been proposed in 27.04% of the articles studied.

Other tasks, such as sequencing or assigning, are usually handled together with the batching
task. Finally, we can say that the waiting task has been little explored in the literature, despite
of the fact that it has been shown to have a profound impact on the overall performance of the
picking algorithms.
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Abstract

Order Batching is a family of optimization problems related to the process of picking items
in a warehouse as part of supply chain management. In particular, problems classified
under this category are those whose picking policy consists of grouping the orders received
in a warehouse into batches, prior to starting the picking process. Once the batches have
been formed, all items within the orders of the same batch are picked together on the
same picking route. In this survey, we focus our attention on manual picking systems
and rectangular-shaped warehouses with only parallel and cross aisles, which is the most
common warehouse configuration in the literature. The objective function of each problem
that belongs to this family differs slightly. This survey reviews the optimization problems
known in this category. First, we identify the strategic, tactical, and operational decision
levels that influence the picking task. Then, we characterize the optimization problems
belonging to this family. The identified problems are classified into a taxonomy proposed
in this paper that is able to host future problems within this family. Later, we review the
most outstanding papers by category and review the strategies and algorithms proposed for
the most relevant activities: batching, routing, sequencing, waiting, sorting, and assigning.
To conclude this paper, we outline the open issues and future paths of the topic under
study.

Keywords: Supply Chain Management, Order Batching, Order Picking, Warehousing

1. Introduction

The supply chain is the sequence of events that cover the entire life cycle of a product
or service, from conception to consumption (Blanchard, 2010). Among others, it involves
entities (manufacturers, suppliers, wholesalers, retailers, etc.), resources (information, ma-
terials, human, financial, etc.), and activities (acquisition, transformation, storage, distri-
bution, etc.). Management of the supply chain includes a variety of decisions and trans-
actions between the different entities involved in the process, which are typically classified
into strategic, tactical, and operational (Misni & Lee, 2017).

A key part of the supply chain usually occurs within a warehouse, where different
materials or products are received, processed, and stored for later use (i.e., they are usually
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picked up and shipped). Within a warehouse, strategic decisions are usually long-term
decisions related to aspects such as: determining the place to set the warehouse, choosing
the right network of suppliers and transporters, selecting and customizing the software
systems, determining the layout or mechanization of the warehouse, etc. The tactical point
of view usually includes mid-term decisions such as: defining guidelines to meet quality
and safety, determining the location where the products are going to be stored, setting the
number and position of the depots (also known as Input/Output points), or performing
inventory logistics, among others. Finally, the operational decisions are commonly short-
term decisions such as: forecasting the daily and weekly demand, scheduling of production
operations, managing incoming and outgoing products/materials, managing the orders
received in the warehouse, etc. See further details in: Il-Choe & Sharp (1991); De Koster
et al. (2007); Misni & Lee (2017).

The profit obtained in the warehouse is strongly dependent on how the management
systems determine the operational actions. In this literature review, we focus our attention
on the operational activities related to the picking of orders in a warehouse. However,
these activities are also influenced by some tactical and strategic decisions. In Figure 1,
we have compiled and classified the most relevant decisions, highlighted in the literature,
that occur in warehouse management in relation to picking activities. Particularly, the
decisions are classified into strategic, tactical, and operational. Additionally, we have split
those categories into several subcategories, and then we have compiled the related decisions.
These subcategories have been partially inspired by those introduced in previous research
(De Koster et al., 2007; Gu et al., 2007; Misni & Lee, 2017). Notice that there are many
other decisions related to the supply chain within a warehouse, but we have focused only on
those that have a deep influence on the picking process and have been previously reported
in the literature.

On a daily basis, warehouses receive orders from customers, consisting of a list of
products that need to be retrieved from its current location, moved to a common area,
packaged together, and shipped to the customer. The operational management of the
warehouse must determine the sequence in which those orders/products are picked, the
picker assigned to collect them, the route that the picker must follow, or the moment in
time when starting the picking, among others. The picking process in a warehouse was one
of the first optimization targets to be considered (Gudehus, 1973). The picking is highly
influenced by the storage policy (Ruben & Jacobs, 1999), the layout of the warehouse, and
the routing strategy, among others (Petersen, 1997). Some authors stated that this process
can consume up to 60% of the total time of all labor activities in a warehouse (Drury,
1988; Coyle et al., 1996), which can suppose more than half of the total operational costs
(Tompkins et al., 2010). In this context, an important operational decision consists of
determining whether orders are collected in isolation (strict order picking) or grouped
prior to be picked (order batching). The strict order picking is usually considered a naive
strategy, consisting of assigning each order to a picker, who collects all the items within
that order. Once all the items have been retrieved, they are placed in a depot, and then
the system assigns a new order to the picker, and so on. On the contrary, order batching is
considered a more advanced strategy. It consists of grouping several orders into a batch that
does not exceed a predefined capacity. Then, once the batch is conformed, it is assigned to
a picker who retrieves all items in the orders of the batch on a single route (Elsayed, 1981).
The order batching policy has been shown to be very effective compared to the strict order
picking policy. Additionally, it is possible to reduce travel time by up to 35% if the routes
are designed considering batching at the same time (De Koster et al., 1999a). However, it is
important to remark that order batching policy is specially handful in Business-to-Customer
contexts, where several small items/packages can be picked together instead of picking a
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Figure 1: Warehouse management decisions related with the picking of orders.
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whole pallet, which is typical from Business-to-Business (B2B) contexts. Therefore, in
B2B scenarios, sometimes strict order picking is necessary. Other picking strategies also
include zone picking and wave picking. In zone picking, a picker is assigned to a particular
area in the warehouse, where the picker is responsible of picking only the items within
that zone, while in wave picking, multiple picking routes are synchronized. Petersen (2000)
performed a comparison of the main picking strategies: strict order picking, order batching,
zone picking, and picking with waves.

In this survey, we focus our attention on a family of optimization problems that ap-
pears in a warehouse when the order-picking strategy is determined by the order batching
policy. In particular, according to Figure 1, we review all operational decisions that oc-
cur in manual order picking systems (strategic/mechanization), in single-floor warehouses
(strategic/floors), rectangular-shaped design (strategic/layout) that present only parallel
and crossing aisles (tactical/aisles), which is probably the most common warehouse con-
figuration in the literature. This family of problems has received growing interest from
practitioners in operational research over the last few decades.

The rest of the paper is organized as follows: in Section 2 we define the family of prob-
lems denoted as “order batching problems”, its main characteristics and common activities
related to the problems within this family. In Section 3 we introduce a new taxonomy for
the problems belonging to this family, based on four criteria: online/offline, single/multiple
pickers, the optimized objective function, and the tasks handled. Then, in Section 4, we
review in detail the literature of all journal articles found related to order batching. Closely
related to this section, in Appendix A, we classify the papers related to order batching
reviewed in this survey, following the proposed taxonomy. Finally, in Section 5, we present
our conclusions and future perspectives on the field reviewed.

2. Order batching problems

The order batching family of problems groups all optimization problems whose main
goal is to determine the best way to perform an efficient picking operation through the use
of the batching strategy. The order batching strategy belongs to the operational decisions
in a warehouse and consists of grouping several orders into the same batch before starting
the picking. This indicates that items belonging to orders in the same batch must be
retrieved together (i.e., on the same picking route). Each batch is restricted to contain
a maximum capacity that might be measured in: weight, volume, number of items, or
number of orders.

The batching strategy has led practitioners in the field of operations research to a wide
range of related optimization problems. However, this strategy itself is not enough to define
an applied optimization problem. Therefore, every problem that belongs to this family, in
addition to following the pick-by-batch strategy, must face additional and separate opti-
mization problems within it, which are closely related to any of the operational decisions
presented in Figure 1. Nevertheless, the batching strategy deeply influences the rest of op-
erational decisions: new constraints must be taken into consideration; each picking route
is more lengthy and complicated, since it needs to consider more products; orders collected
together have to be sorted while picking or in a later process, since more than one order is
collected together; waiting strategies for the arrival of new orders might be considered; the
assignment of batches to pickers directly influences how workload is balanced; determining
the batch to select next also has additional challenges, since orders within the same batch
might have different due dates or priorities; among others.

Additionally, it is important to note that many tactical and strategic decisions related
to order batching problems are usually stated in the instances within the data sets, either
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Figure 2: Example of the layout of the logistic warehouse studied in this paper.

in the information about the characteristics of the warehouse or in the information about
the orders.

It is important to notice that in this paper we are focusing on picker-to-part prob-
lems that occur in rectangular-shaped warehouses, where the picking is usually performed
manually. These warehouses are usually formed by a set of parallel aisles which contain
several picking positions at each side of the aisle, and one or more (typically two) cross
aisles, which allow the pickers to change from one parallel aisle to another. In Figure 2,
we depict an example of a typical layout of the warehouse studied. Particularly, the ware-
house represented in the figure has two cross aisles (one at the front and another one at
the back) and five parallel aisles with twelve picking positions each (six at each side of the
aisle). Picking routes start and end at a particular point of the warehouse denoted as the
depot. In this example there is only one depot, placed in the leftmost corner of the front
cross aisle. However, the depot can also be placed in the center or in the right corner of a
cross aisle. Furthermore, sometimes more than one depot might exist. In the example of
the figure, we have also highlighted in gray some picking positions, as an example of the
positions that a picker must visit on a single picking route.

2.1. Operational decisions involved in the picking

In this section, we describe each of the operational decisions that might be addressed
when handling any of the optimization problems belonging to the order batching family.
Notice that some papers avoid studying some of the following tasks by handling a simplified
variant of the problem or fixing a particular strategy for any of them. Specifically, the most
common processes / tasks involved in the picking, together with the order batching task,
are: waiting, selecting, sequencing, assigning, routing, and sorting.

The waiting task consists of determining the time that an available picker must wait
to start a new route. This time is generally known in the literature as the “time window”.
The rationale behind this idea is that the longer the picker waits, the more orders are
available in the system, which helps to construct more compact batches.

The selecting / sequencing task consists of determining the order in which the available
batches are collected. When only one batch is selected as the next one to be collected, the
task is generally known as “selecting”. Otherwise, if all available batches are prioritized /
sorted, the task is usually known as “sequencing”.
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The assigning task consists of determining which picker, among the available ones, is
assigned to the next batch to be collected. This task only makes sense in scenarios with
multiple pickers and is closely related to the balance of workload of the pickers.

The routing task consists of determining the route (i.e., the sequence of steps) that a
picker must follow through the warehouse to collect all items in the orders contained in the
assigned batch. The starting and finishing point for the routes is named the depot and is the
place where items are dropped once the picker has collected them. As mentioned above, the
routing strategy has a profound impact on the results obtained for order batching problems.
Determining the route is necessary to calculate the distance traveled by the pickers or the
time required to collect the items.

The sorting task consists of defining the strategy followed to sort the items picked in
orders. Notice that when following a batching strategy, items from different orders are
collected at the same picking route by the same picker, and they have to be classified later
into orders (pick and sort), unless the picking cart has separate bins for each order (sort
while pick).

It is worth mentioning that in the vast literature related to order batching problems, it
is also possible to find variants of the problem that consider other activities, not explored
in detail in this review, that can be the subject of optimization.

2.2. Objectives pursued

The target of any of the optimization problems belonging to the order batching family
can be formalized through the use of different objective functions, not necessarily in conflict.
Depending on the number of objectives pursued, optimization problems are traditionally
classified in: single-objective optimization (only one objective function is optimized) or
multi-objective optimization (two or more, in conflict, objective functions are optimized).
However, in the context of order batching problems, further than the number of objectives
that are optimized, we can classify the problems depending on the number of tasks that
they are needed to solve in order to find a solution to the problem. If only the batching
task is addressed, we denote the problem as “simple”. In contrast, when more than one
task is optimized, we denote the problem as “joint” (Chen et al., 2015; Shavaki & Jolai,
2021; Feng & Hu, 2021). This means that the variables that represent a solution contain
the information necessary to complete the tasks being pursued. In these contexts, the
algorithms proposed assign values to all variables that represent the solution simultaneously.
The most common task optimized together with batching is the routing task (Hong &
Kim, 2017; Valle et al., 2017). However, we can also find simultaneous optimizations of
batching with selecting / sequencing (Menéndez et al., 2017a; Jiang et al., 2018) or assigning
(Matusiak et al., 2017; Ardjmand et al., 2020), among others.

Objective functions are usually related to the maximization or minimization of a par-
ticular dimension. The most common ones are: time, distance, workload balance, or cost.
However, some other minority objectives can also be found in the literature.

The time dimension is probably the most studied one and it includes aspects such as: the
time required to collect an order, a batch or a group of orders (Rubrico et al., 2011; Henn,
2012; Zhang et al., 2017; Chen et al., 2018; Gil-Borrás et al., 2020b); the time that orders
or pickers wait before starting their picking (Zhang et al., 2017; Henn, 2012; Gil-Borrás
et al., 2020a); the total time that an order remains in the system (Gil-Borrás et al., 2020b;
Tang & Chew, 1997; Chew & Tang, 1999), also known in the literature as throughput time
(Le-Duc & De Koster, 2007; Van Nieuwenhuyse et al., 2007; Yu & De Koster, 2009); the
delay with respect to a due date, known in the literature as tardiness (Chen et al., 2015;
Henn & Schmid, 2013; Zhao et al., 2019; Henn, 2015; Menéndez et al., 2017a; Scholz et al.,
2017); the handing time before the expected due date, known in the literature as earliness
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Elsayed et al. (1993); or the blocking time of pickers (Chen et al., 2013, 2016; Hahn &
Scholz, 2017). Closely related, the distance dimension measures the distance traversed by
pickers when collecting orders (Öncan, 2015; Pérez-Rodŕıguez & Hernández-Aguirre, 2015).
However, this dimension can be easily transformed into time (Jarvis & Mc. Dowell, 1991;
Henn & Wäscher, 2012). In the case where multiple pickers are considered, a common
dimension is related to the workload of the pickers measured in either: number of orders
processed, distance traversed, number of items retrieved, total time retrieving items, etc.
(Chen et al., 2016; Zhang et al., 2017; Huang et al., 2018; Mohring et al., 2020; Gil-Borrás
et al., 2021). Other minority dimensions identified in the literature include the amount of
work in progress (Hong, 2019), or the orders picked per unit of time (Hong, 2019). Finally,
some authors have studied the economic aspects associated with picking operations, and
in this case, the dimension to minimize is the cost (Miguel et al., 2019; Pinto & Nagano,
2019; Tian et al., 2019; Zhang et al., 2018; Bukchin et al., 2012).

3. Taxonomy and classification of order batching problems

Once the order batching family of problems has been described, many different specific
problems can be found in the literature, depending on the objective pursued, the tasks
optimized, the warehouse characteristics, the types of products handled, the availability of
information, the number of pickers, etc. In this paper, we propose a taxonomy to classify
all variants of order batching problems present in the literature based on the constraints
considered, the objective function tackled, and the tasks (decision variables) optimized. For
each criterion, several subcategories have been outlined. Each subcategory is represented
by the text in parentheses, and the particular classification in the taxonomy of a specific
problem is composed as the assignment of several subcategories simultaneously.

1. Constraints: among the different constraints that can be identified in the order
batching literature, we have selected the two most significant. However, many others
can be found, depending on the variant studied.

• Availability of information: it indicates when the information related to
the orders is available for the optimization process.

– Offline (OFF): a problem is considered offline when all information about
the orders to process is already available when the batching process starts.

– Online (ON): a problem is considered online when the information about
all orders to process is not fully available when the batching process starts
(i.e., orders arrive to the system dynamically).

• Number of pickers: it indicates the number of people who are simultaneously
working on the picking task.

– Single picker (SP): a problem is considered “single picker” when the
picking task in the warehouse is performed by only one operator.

– Multiple pickers (MP): a problem is considered “multi-picker” when the
picking task in the warehouse is carried out by two or more operators.

2. Objective functions: the objective function represents the subject of optimization.
Particularly, we have collected the dimensions measured by all the objective functions
identified in the literature of order batching. It is important to note that some
objectives are closely related one to each other, and sometimes, minimizing one of
them might also minimize another. Specifically, there exists an equivalence between
the two most studied objective functions in the literature (distance and time) when
the travel velocity is constant. This fact has been pointed out by several authors
(Jarvis & Mc. Dowell, 1991; Henn & Wäscher, 2012).
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• Distance (DI): units of length that operators need to traverse to collect all
items in the processed orders.

• Picking time (PT): units of time needed to perform the picking task, when
collecting items in the orders processed in the warehouse.

• Cost (CO): unit of value that measures an economic indicator related to the
picking operation in the warehouse.

• Tardiness (TA): units of time corresponding to the delay in handling an order
with respect to a predefined due date. In this category, we also include the
earliness, which indicates the anticipation of serving an order with respect to
its due date, measured in units of time.

• Completion time (CT): units of time needed to collect all orders that arrived
at the warehouse, including picking time and time waiting for the arrival of new
orders (waiting time).

• Turnover time (TT): units of time that an order remains in the system (i.e.,
difference between the instant in the time when the order is served and the
instant in the time when the order arrives, which needs to be known).

• Workload balance (WB): units of effort that indicate the differences among
the amounts of work performed by different operators. It is usually measured
in time; however, other dimensions could be used, such as: distance traversed,
number of orders or batches retrieved, etc.

• Blocking time (BT): units of time that a picker waits for before achieving
a particular task, blocked by the operation of another picker or machine (i.e.,
extracting items from a particular picking position; using the depot; etc.). This
objective is also known in the literature as congestion.

3. Decision variables: the solution to an optimization problem is expressed through
the values assigned to a set of variables. In the context of order batching problems,
depending on the number of processes/tasks studied, it is possible to solve a single
optimization problem (i.e., batching) or more than one at the same time (i.e., batch-
ing together with Sequencing/Assigning/Routing/Waiting). Therefore, the variables
that represent a solution to an order batching problem might be different depending
on the number of tasks studied. We have defined a category for each of the possible
processes/tasks studied:

• Batching (B): set of variables that represent the group of orders in batches.

• Sequencing (S): set of variables that represent the sequence in which batches
are collected.

• Assigning (A): set of variables that represent the assignment of each batch to
a picker.

• Routing (R): set of variables that represent the route to follow by the picker
to collect a batch.

• Waiting (W): set of variables that represent the waiting time of each picker
before starting a new route.

Notice that we have avoided the inclusion of several tasks such as: sorting, packaging,
or scheduling, to ease the taxonomy. However, the taxonomy can be easily extended in the
future by including such or other tasks.

In Figure 3, we graphically represent the proposed taxonomy, where the considered
constraints, objective functions, and variables are represented. As far as constraints are
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concerned, we can observe that the offline version is a special case of the online one.
Furthermore, for any particular instant in time, we can transform an online variant into
an offline one, supposing that no further orders will arrive to the system. Similarly, in the
case of the number of pickers, the single-picker variant is a particular case of the multiple-
pickers one. Since the single-picker variant considers that there is only one picker in the
warehouse, batches must be sequenced and collected one by one. In this sense, approaches
for multiple pickers can be used to solve single picker problems. Therefore, in single-picker
variants there are not blocking situations in the aisles, in the picking positions or in the
depot. On the other hand, multiple picker variants consider two or more pickers to work
simultaneously in the picking-order process. This context reveals not only possible blocking
situations, but also other necessities, such as deciding the assignment of batches to pickers
or balancing the workload among the pickers.

Among the objective functions compiled, note that we have indicated only the dimension
used to measure the objective function, not indicating whether the optimization target is an
average value, a total value, or a maximum / minimum value. The objectives are divided
into three different groups, the first group (i.e., tardiness, picking time, distance, and
cost) contains those objectives present in any online / offline and single-picker / multiple-
pickers variant. The second group (i.e., completion time and turnover time) contains those
objectives that only make sense when considering an online variant. Finally, the third group
(i.e., blocking time and workload balance) contains those objectives which only make sense
when considering a multiple-pickers variant.

The taxonomy presented in Figure 3, represents a general framework that can be used
to classify all optimization problems currently present in the state of the art of order
batching problems. Additionally, it can be extended further in the future by including new
constraints, objectives, or tasks with its associated variables to represent them. It is also
important to note that, depending on the objective pursued, this taxonomy could also be
used to classify single-objective or multi-objective optimization problems.

The taxonomy can be used, through the notation in parentheses introduced for each
subcategory, to label order batching problems. Therefore, we propose to identify each
optimization problem with a tag composed of four subtags (one per subcategory) separating
them with hyphens. For instance, OFF-SP-TA-B would stand for an offline variant of the
problem, which considers a single picker and looks to optimize the tardiness through the
optimization of the variables related to the batching task.

Finally, given the taxonomy, we have related the categories in the taxonomy with the
acronym of the problem and the number of papers which handle each particular variant.
Note that some of the variants identified in Figure 3 have never been studied in the litera-
ture. Additionally, we have separated those problems that only look for the optimization
of the batching task (denoted as “Simple”) from those that look for the optimization of
two or more tasks (denoted as “Joint”).

4. State of the art

In this section, we review the most relevant approaches proposed in the literature of
order batching. Particularly, we have organized this review, dividing the analysis of contri-
butions into the categories introduced in the taxonomy presented in Section 3, obtaining
four groups: Offline Single Picker (Section 4.1), Offline Multiple Pickers (Section 4.2), On-
line Single Picker (Section 4.3), and Online Multiple Pickers (Section 4.4). Within each
category, we identify different problems, depending on the tasks studied: batching, routing,
sequencing, assigning, or waiting. When several tasks are optimized simultaneously, the
problem could be considered as a special case of the joint order batching problem.
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     (  3) OBRPMP

         (  3) OBSAPMP
       (  2) OBSRPMP

        (  6) OBARPMP
          (  0) OBSARPMP

      Simple (10) OOBP
        (  2) OOBSP

       (  0) OOBRP
       (  3) OOBWP

         (  1) OOBSRP
         (  0) OOBSWP

        (  0) OOBRWP
          (  0) OOBSRWP

      Simple (11) OOBPMP
        (  0) OOBSPMP

         (  1) OOBRPMP
       (  0) OOBAPMP
       (  0) OOBWPMP

           (  0) OOBSAPMP
         (  0) OOBSRPMP
         (  0) OOBSWPMP

          (  0) OOBARPMP
        (  0) OOBRWPMP
          (  0) OOBAWPMP

            (  3) OOBSARPMP
            (  0) OOBSAWPMP
          (  0) OOBSRWPMP

           (  0) OOBARWPMP
             (  0) OOBSARWPMP
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Figure 3: Taxonomy for classifying the order batching optimization problems in the literature.
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For each problem identified, we compile in a different table all the contributions found
in a journal indexed in the Journal Citation Reports (JCR) or in the Scimago Journal &
Country Rank (SJR), sorted in chronological order. In each row of the tables, we report
the reference to the paper, the objective function studied, and the routing and batching
strategies proposed. Furthermore, for each of the proposals, we denote if the proposed
strategies in the paper include heuristic algorithms, exact algorithms, or a combination of
both. Notice that sometimes more than one algorithm is used for the same task (routing
/ batching), and more than one objective function is studied. Finally, to complement this
information, we describe any notable aspect of the warehouse considered.

To end this section, we perform a synthesis of the review performed (see Section 4.5).

4.1. Offline / Single picker

In this section, we review the state of the art of offline order batching variants with a
single picker. In these variants, all orders to collect are known before the process starts
and there is only one picker in the warehouse.

4.1.1. Order Batching Problem (OBP)

We have classified under this category those papers that only consider the optimization
of the batching task. In Table 1, we report each identified contribution, the objective
function studied, and the algorithms proposed for the routing and batching tasks, together
with the type of algorithm (Heuristic/Exact). As we can observe, most of the contributions
study the minimization of the distance or the minimization of the picking time as objective
function.

The first approach for the OBP was proposed in Elsayed (1981). In this case and other
similar ones (Elsayed & Unal, 1989; Pan & Liu, 1995) the routing task was handled by an
Automated Storage / Retrieval System (AS/RS), while the batching task was performed
with basic heuristics. Several authors studied the influence of the routing strategy on the
problem, comparing different routing algorithms (Hwang & Kim, 2005; Dukic & Oluic, 2007;
Albareda-Sambola et al., 2009) in combination with the same batching proposal. Most of
the algorithms for the routing task are traditional heuristics such as S-shape, Largest Gap,
or Combined. It is worth mentioning that Menéndez et al. (2017b) proposed an extension
of the Combined method. Similarly, most of the approaches for the batching task are also
heuristic algorithms and, there are only a few exceptions of exact algorithms applied for
solving the batching task (Muter & Öncan, 2015; Öncan, 2015; Lenoble et al., 2018). The
first metaheuristic approach for the batching was a Genetic Algorithm introduced in Hsu
et al. (2005).

Finally, with respect to the structure of the warehouse, most of the papers deal with
a single-block warehouse, however some of them also considered a two or more blocks
warehouse (Scholz & Wäscher, 2017; Yang et al., 2020).
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Publications
related to OBP in
a JCR/SJR
indexed journal

Objective Function Routing Batching
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Elsayed (1981) Ë - AS/RS H SEED

Elsayed & Unal (1989) Ë - AS/RS H
H

EQ
SL

Gibson & Sharp (1992) Ë H SS-OW H
H
H

FCFS
4D-SFC
SMD

Pan & Liu (1995) Ë - AS/RS H SEED

Rosenwein (1996) Ë H SS H SEED

De Koster et al. (1999b) Ë H
H

SS
LG

H
H
H
H

FCFS
C&W
EQ
SL+C&W+EQ

Hsu et al. (2005) Ë H SS H GA

Hwang & Kim (2005) Ë H
H
H

SS
RE
MP

H SLCA

Chen & Wu (2005) Ë H SS M ARM+MM

Dukic & Oluic (2007) Ë H
H
H
H
H
E

SS
RE
MP
LG
CP
DP

H
H

FCFS
C&W

Bozer & Kile (2008) Ë H SS H
H

FFEBBA
NTS

Albareda-Sambola et al. (2009) Ë H
H
H

SS
LG
CO

H VND

Henn et al. (2010) Ë H
H

SS
LG

H
H

ILS
RBAS

Hsieh & Huang (2011) Ë H
H
E

SS
MLI
DP

H
H
H
H
H

KMS
SOMBA
ARA
PSO
SOP

Henn & Wäscher (2012) Ë H
H

SS
LG

H
H

TS
ABHC

Menéndez et al. (2015) Ë H CO H GVNS

Muter & Öncan (2015) Ë H
H
E

SS
RE
MP

E TCGA

Acronym key · Type of algorithm: Heuristic (H); Exact (E); Mixed (M); Not Defined (-). Routing: Au-
tomatic Storage and Retrieval System (AS/RS); S-Shape One Way (SS-OW); S-Shape (SS); Largest Gap
(LG); Return (RE); Mid-Point (MP); Composite (CP); Dynamic Programming (DP); Combined (CO);
Maximum Loop Insertion (MLI). Batching: Seed (SEED); EQUAL (EQ); Small and Large (SL); First
Come First Served (FCFS); 4-dimensional Space Filling Curve (4D-SFC); Sequential Minimum Distance
(SMD); Clarke & Wright (C&W); Genetic Algorithm (GA); Single-Link Clustering Algorithm (SLCA); As-
sociation Rule Mining (ARM); Mathematical Model (MM); First Fit-Envelope Based Batching Algorithm
(FFEBBA); Normalized Time Saving (NTS); Variable Neighborhood Descent (VND); Iterated Local Search
(ILS); Rank-Based Ant System (RBAS); K-Means Strategy (KMS); Self-Organization Map Batching Algo-
rithm (SOMBA); Association Rule Algorithm (ARA); Particle Swarm Optimization (PSO); Strict-Order
Picking (SOP); Tabu Search (TS); Attribute-Based Hill Climber (ABHC); General Variable Neighborhood
Search (GVNS); Tailored Column Generation Algorithm (TCGA).

Continued on the next page.

12



Publications
related to OBP in
a JCR/SJR
indexed journal

Objective Function Routing Batching
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Öncan (2015) Ë H
H
E

SS
RE
MP

E
H

MM
ILS+TT

Pérez-Rodŕıguez & Hernández-
Aguirre (2015)

Ë H SS H
H
H

EDA
GA
MA

Koch & Wäscher (2016) Ë H SS H GGA

Menéndez et al. (2017b) Ë H
H
H

SS
LG
CO

H MS+VNS

Lenoble et al. (2017) Ë - VC E MM

Scholz & Wäscher (2017) Ë H
H
H
H
E

SS
LG
CO
AA
DP

H ILS

Cano et al. (2018) Ë H SS H GA

Lenoble et al. (2018) Ë - VLM H SA

Žulj et al. (2018) Ë H
H

SS
LG

H ALNS+TS

Van Gils et al. (2018) Ë H
H
H
E

SS
LG
RE
DP

H
H
H

FCFS
SEED
SV

Nicolas et al. (2018) Ë - VLM E
H
H
H
H

MM
SV
SA
TS
GA

Cano (2019) Ë H SS H GA

Yang et al. (2020) Ë H
H

SS
CO

H
E

TS
MM

Yang et al. (2021) Ë - MRS H HGA

Acronym key · Type of algorithm: Heuristic (H); Exact (E); Not Defined (-). Routing: S-Shape
(SS); Return (RE); Mid-Point (MP); Largest Gap (LG); Combined (CO); Vertical Carousel (VC); Aisle
by Aisle (AA); Dynamic Programming (DP); Vertical Lift Module (VLM); Mobile Rack System (MRS).
Batching: Mathematical Model (MM); Iterated Local Search (ILS); Tabu Thresholding (TT); Estimation
of Distribution Algorithm (EDA); Genetic Algorithm (GA); Memetic Algorithm (MA); Grouping Genetic
Algorithm (GGA); Multi-Start (MS); Variable Neighborhood Search (VNS); Simulated Annealing (SA);
Adaptive Large Neighborhood Search (ALNS); Tabu Search (TS); First Come First Served (FCFS); Seed
(SEED); Saving (SV); Hybrid Genetic Algorithm (HGA).

Table 1: Publications related to OBP.

4.1.2. Order Batching and Sequencing Problem (OBSP)

We have classified under this category those papers which consider the optimization of
the batching and sequencing tasks. In Table 2, we report each paper identified, the objective
function studied, and the algorithms proposed for the routing and batching/sequencing
tasks, together with the type of algorithm (Heuristic/Exact). As we can observe, for this
problem, minimizing the tardiness (a penalty associated with the orders handled after an
expected date/time) is one of the most studied objective functions. Elsayed et al. (1993)
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also considered the minimization of earliness together with tardiness.
Most proposals under this category achieve the batching and the sequencing tasks si-

multaneously with the same algorithm. The well-known Earliest Due Date (EDD) strategy
has been used by several authors (Henn & Schmid, 2013; Bustillo et al., 2015; Menéndez
et al., 2017a) as a naive but effective technique for constructing an initial solution to the
problem, usually improved later with a metaheuristic. Elsayed et al. (1993) introduced
an Optimal Release Times strategy (Fry et al., 1987) to introduce time windows (i.e., de-
lays between batches) with the aim of balancing the earliness / tardiness for each batch.
Jiang et al. (2018) studied the minimization of the makespan of the last batch (which is
equivalent to the completion time). In this case, the authors did not consider due dates,
but sequencing was necessary due to the existence of a limited buffer space in the sorting-
packing area. Miguel et al. (2022) studied the minimization of the total operational cost
as an evolution of a previous work devoted to OBP (Miguel et al., 2019). They considered
that the products could be stored at different heights, and the earliness and tardiness are
considered factors that influence the cost.

Publications
related to OBSP in
a JCR/SJR
indexed journal
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Elsayed et al. (1993) Ë - AS/RS H PL

Henn & Schmid (2013) Ë H
H
E

SS
LG
MM

H
H
E

EDD+ILS
EDD+ABHC
MM

Menéndez et al. (2017a) Ë H
H
H

SS
LG
CO

H EDD+GVNS

Jiang et al. (2018) Ë H SS H CSA

Miguel et al. (2022) Ë H SS H HEA

Acronym key · Type of algorithm: Heuristic (H); Exact (E); Not Defined (-). Routing:
Automatic Storage and Retrival System (AS/RS); S-Shape (SS); Largest Gap (LG); Combined
(CO). Batching: Priority List (PL); Earliest Due Date (EDD); Iterated Local Search (ILS);
Attribute-Based Hill Climber (ABHC); Cumulative-Seed Algorithm (CSA); Hybrid Evolutionary
Algorithm (HEA); General Variable Neighborhood Search (GVNS).

Table 2: Publications related to OBSP.

4.1.3. Order Batching and Routing Problem (OBRP)

We have classified under this category those papers that consider the optimization of
batching and routing tasks. In Table 3, we report each paper identified, the objective
function studied, and the algorithms proposed for routing and batching tasks, together
with the type of algorithm (Heuristic/Exact). As we can observe, the minimization of the
distance is the most studied objective function. Gademann & Velde (2005) studied for the
first time the minimization of the total travel time for this problem.

Several exact approaches have been introduced for the routing task (Gademann & Velde,
2005; Hong et al., 2012b; Matusiak et al., 2014; Zuniga et al., 2015; Hong & Kim, 2017;
Ardjmand et al., 2019; Oxenstierna et al., 2021). Among them, the approach introduced
by Matusiak et al. (2014) optimally solved the routing task with an A⋆ algorithm (Hart
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et al., 1968). In addition, Ho & Tseng (2006) used a metaheuristic algorithm, for the first
time, for the routing task. Zuniga et al. (2015) handled the routing task by modeling the
problem as a traveling salesman problem, using a previous formulation (Gutin & Punnen,
2006).

On the other hand, many seed methods have been studied for the batching task. Par-
ticularly, Ho & Tseng (2006) and Ho et al. (2008), conducted a deep analysis of 90 and 154
seed variants, respectively, for the batching task. Zuniga et al. (2015) studied the mini-
mization of the total travel time by combining an optimization algorithm and a simulation
model. They used the EDD rule to conform and sequence the batches. However, in this
case, the objective function studied is not affected by the sequencing task. Therefore, this
paper can also be classified as a single-picker offline OBP.

Despite the fact that most papers study a standard warehouse with a single block and
a single depot, Matusiak et al. (2014) and Lin et al. (2016) considered the existence of
two blocks. Matusiak et al. (2014) also studied the presence of narrow aisles. Kübler
et al. (2020) considered too the existence of multiple blocks in the warehouse, and solved
an additional problem that consists of the relocation of products in the warehouse. Bri-
ant et al. (2020) and Schiffer et al. (2022) studied several real warehouse instances with
multiple blocks. Furthermore, Oxenstierna et al. (2021) studied the minimization of the
traveled distance in six different irregular warehouse layouts. Finally, Schiffer et al. (2022)
considered the existence of multiple depots and a variable multiblock layout.

4.1.4. Order Batching, Sequencing, and Routing Problem (OBSRP)

We have classified under this category those papers that consider the optimization of
the batching, sequencing, and routing tasks. In Table 4, we report each paper identified,
the objective function studied, and the algorithms proposed for the routing and batch-
ing/sequencing tasks, together with the type of algorithm (Heuristic/Exact). As we can
observe in Table 4, the minimization of tardiness (Elsayed & Lee, 1996; Azadnia et al.,
2013; Chen et al., 2015) and cost (Tsai et al., 2008; Miguel et al., 2019; Pinto & Nagano,
2019) are the most studied objective functions for this problem. Tsai et al. (2008) studied
the minimization of the retrieval operation cost, calculated as the sum of the travel cost
and the penalties associated to the earliness and tardiness. The most recent approach was
introduced in Jiang et al. (2022) by studying, for the first time, the total completion time
for this problem.

There are exact approaches for both, the routing and the batching tasks. Notice that
the batching is usually performed together with the sequencing. The first approach for the
problem was proposed in Elsayed & Lee (1996), where the authors introduced a Mixed-
Integer Linear Programming model to formulate the problem as a whole. Additionally, they
also achieved an additional task, the storage of products on the shelves in the same picking
tour. Tsai et al. (2008) proposed a Genetic Algorithm (GA) to simultaneously handle
batching and sequencing tasks and a second GA to optimize the routing. Jiang et al.
(2022) proposed a mathematical model, based on a previous one introduced in Manjeshwar
et al. (2009), to jointly solve the batching, routing, and sequencing tasks. In this paper,
the authors also considered the sorting task after the picking.

All the approaches considered the existence of one block, except Chen et al. (2015) that
studied the problem for two blocks in the warehouse.

4.2. Offline / Multiple pickers

In this section, we review the state of the art of offline order batching variants with
multiple pickers. In these variants, all orders to collect are known before the process starts,
and there are two or more pickers in the warehouse.
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related to OBRP
in a JCR/SJR
indexed journal
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Gademann & Velde (2005) Ë E B&P E B&P

Ho & Tseng (2006) Ë H
H

LG
LG+SA

H SEED

Ho et al. (2008) Ë H
H

LG
LG+SA

H SEED

Kulak et al. (2012) Ë H
H

SV+2-opt
NN+Or-opt

H TS+CA

Hong et al. (2012b) Ë H
E

SS
MM

H
H
H
H
H
E

FCFS
SEED
C&W
RSBBA
LPR
MM

Matusiak et al. (2014) Ë E A⋆ H SA

Zuniga et al. (2015) Ë E MM H EDD

Cheng et al. (2015) Ë H PSO+ACO H PSO+ACO

Lin et al. (2016) Ë H PSO H PSO

Hong & Kim (2017) Ë H
E

SS
MM

H
H
H
H
H
E

FCFS
Seed
C&W
RSBBA
LPR
MM

Pferschy & Schauer (2018) Ë H
H
H
E

FIH+3-Opt
CIH+3-Opt
RIH+3-Opt
MM

H
E

SEED
MM

Ardjmand et al. (2019) Ë E
H
H
H

MM
GA
SA
GA+SA

E
H
H
H

MM
GA
SA
GA+SA

Kübler et al. (2020) Ë H NN+2-opt H DE-PSO

Briant et al. (2020) Ë E CG E CG

Oxenstierna et al. (2021) Ë E MM H SEED

Schiffer et al. (2022) Ë E B&PR E B&PR

Acronym key · Type of algorithm: Heuristic (H); Exact (E). Routing: S-Shape (SS);
Largest Gap (LG). Batching: Branch and Price (B&P); Branch and Prune (B&PR); Sim-
ulated Annealing (SA); Seed (SEED); Saving (SV); Nearest Neighbor (NN); Tabu Search
(TS); Clustering Algorithm (CA); First Come First Served (FCFS); Clarke & Wright
(C&W); Mathematical Model (MM); Linear Programming Relaxation (LPR); Route Se-
lection–Based Batching Algorithm (RSBBA); Earliest Due Date (EDD); Particle Swarm
Optimization (PSO); Ant Colony Optimization (ACO); Genetic Algorithm (GA); Dis-
crete Evolutionary Particle Swarm Optimization (DE-PSO); Column Generation (CG);
Farthest Insertion Heuristic (FIH); Cheapest Insertion Heuristic (CIH); Random Inser-
tion Heuristic (RIH).

Table 3: Publication Related to OBRP.
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Publications
related to OBSRP
in a JCR/SJR
indexed journal

Objective
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Elsayed & Lee (1996) Ë E AS/RS+B&B H
H
H

EDD+NSR
EDD+SPTR
EDD+MCR

Tsai et al. (2008) Ë H GA H GA

Azadnia et al. (2013) Ë H GA H GA+MINWAL

Chen et al. (2015) Ë H ACO H GA

Miguel et al. (2019) Ë E
H

MM
MA

E
H

MM
MA

Pinto & Nagano (2019) Ë H GA H EDD+GA

Jiang et al. (2022) Ë H
E

SS
MM

H
E

SEED
MM

Acronym key · Type of algorithm: Heuristic (H); Exact (E). Routing: S-Shape (SS).
Batching: Branch and Bound (B&B); Ant Colony Optimization (ACO); Genetic Algorithm
(GA); Earliest Due Date (EDD); Seed (SEED); Memetic Algorithm (MA); Mining Association
Rules with Weighted Items (MINWAL); Mathematical Model (MM); Nearest Schedule Rule
(NSR); Shortest Processing Time Rule (SPTR); Most Common Location Rule (MCR)

Table 4: Publications related to OBSRP.

4.2.1. Order Batching Problem with Multiple Pickers (OBPMP)

This category compiles all works where only the batching is optimized but there exist
multiple pickers in the warehouse. In Table 5, we report each paper identified, the objective
function studied, and the algorithms proposed for the routing and batching tasks, together
with the type of algorithm (Heuristic/Exact). In this case, the minimization of the picking
time is the most studied objective function.

Most of the algorithmic proposals are based on heuristic algorithms, however, it is pos-
sible to find some exact algorithms for the routing (De Koster et al., 1999a; Gademann
et al., 2001; Menéndez et al., 2017c) but also for the batching (Gademann et al., 2001;
Yang, 2022). Ruben & Jacobs (1999) studied the influence of the several storage strate-
gies in combination with the batching ones. While Petersen (2000) and Gademann et al.
(2001) considered a picking strategy with waves, where a couple of batches are picked si-
multaneously (i.e., in the same wave) by a group of pickers. Petersen (2000) also explored
other picking policies such as: strict order picking, sequential zoning, or batch zoning.
Additionally, the impact of storage assignment policies was also reviewed in Yang (2022).

De Koster et al. (1999a) considered a real warehouse with two blocks and narrow aisles.
Similarly, other approaches, such as Van Gils et al. (2016), or Cergibozan & Tasan (2020)
also considered the existence of two blocks.
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related to OBPMP
in a JCR/SJR
indexed journal
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De Koster et al. (1999a) Ë H
H
H
E

SS
LG
CO
DP

H
H
H

FCFS
SEED
C&W

Ruben & Jacobs (1999) Ë H SS-
OW

H
H
H
H
H

RB
FFDA
SMD
FFEBBA
FFCBBA

Petersen (2000) Ë H CP H FCFS

Gademann et al. (2001) Ë E DP M B&B+2-Opt

Pan et al. (2015) Ë - RCS H GGA

Van Gils et al. (2016) Ë H
H
H
H
H

SS
LG
RN
AA
LKH

H
H

FCFS
SEED

Menéndez et al. (2017c) Ë H
E

CO
DP

H PVNS

Cergibozan & Tasan
(2020)

Ë H
H
H

SS
MP
RE

H
H

GA
GA+PSO

Yang (2022) Ë - RMFS E MM

Acronym key · Type of algorithm: Heuristic (H); Exact (E); Mixed (M); Not Defined
(-). Routing: S-Shape (SS); Largest Gap (LG); Combined (CO); Dynamic programming
(DP); S-Shape one Way (SS-OW); Composite (CP); Roller Conveyor System(RCS); Aisle
by Aisle (AA); Return (RE); Lin-Kernighan-Helsgaun (LKH); Mid-Point (MP); Robotic
Mobile Fulfillment System (RMFS). Batching: First Come First Served (FCFS); Seed
(SEED); Clarke & Wright (C&W); Random Batching (RB); First-Fit-Decreasing Algo-
rithm (FFDA); Sequential Minimum Distance (SMD); First Fit-Envelope Based Batching
Algorithm (FFEBBA); First Fit-Class Based Batching Algorithm (FFCBBA); Branch and
Bound (B&B); Group Genetic Algorithm (GGA); Parallel Variable Neighborhood Search
(PVNS); Genetic Algorithm (GA); Particle Swarm Optimization (PSO); Mathematical
Model (MM).

Table 5: Publications related to OBPMP.

4.2.2. Order Batching and Sequencing Problem with Multiple Pickers (OBSPMP)

This category compiles all works where the batching and sequencing tasks are opti-
mized in a warehouse with multiple pickers. In Table 6, we report each paper identified,
the objective function studied, and the algorithms proposed for the routing and batch-
ing/sequencing tasks, together with the type of algorithm (Heuristic/Exact). In this case,
the minimization of the completion time was the most studied objective function. Also, it
is possible to find a multiobjective approach (Huang et al., 2018), which studies the com-
pletion time and the workload of pickers (by trying to balance the total number of items
per batch and the total picking time per zone).

Among the proposals, it is possible to find heuristic (Hong et al., 2012a; Cano et al.,
2021) and exact (Hong et al., 2012a; Žulj et al., 2021) algorithms for the routing and
for the batching/sequencing tasks. Also, in Huang et al. (2018), the authors proposed a
mixed model that combines a Genetic Algorithm with a Mathematical Model. There are
two previous papers (Feng & Hu, 2021; Hofmann & Visagie, 2021) where the routing was
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calculated using a Roller Conveyor System (RCS).
For this problem, several special cases of warehouses were considered. Hong et al.

(2012a) studied the existence of narrow aisles. Žulj et al. (2021) considered the use of
different picking zones with a robot assigned to each zone, and Hofmann & Visagie (2021)
studied the existence of a single aisle which contains a conveyor belt. Also, Feng & Hu
(2021) studied a fresh food processing warehouse, which handled the activity of cleaning
and packing the food before storing it on shelves.

Publications
related to
OBSPMP in a
JCR/SJR indexed
journal
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Hong et al. (2012a) Ë E
H

MM
SS-OW

E
H

MM
SA

Huang et al. (2018) Ë Ë - - M GA+MM

Cano et al. (2021) Ë H SS H GGA

Žulj et al. (2021) Ë E
H

MM
OH

E
H

MM
ALNS+NEH

Feng & Hu (2021) Ë - RCS H
H

SEED+GA
SEED+SA

Hofmann & Visagie (2021) Ë - RCS H GH

Acronym key · Type of algorithm: Heuristic (H); Exact (E); Mixed (M); Not Defined
(-). Routing: S-Shape (SS); S-Shape one Way (SS-OW); Optimal Heuristic (OH); Roller
Conveyor System (RCS). Batching: Mathematical Model (MM); Simulated Annealing (SA);
Group Genetic Algorithm (GGA); Adaptive Large Neighborhood Search (ALNS); Nawaz, En-
score, and Ham Algorithm (NEH); Genetic Algorithm (GA); Seed (SEED); Greedy Heuristics
(GH).

Table 6: Publications related to OBSPMP.

4.2.3. Order Batching and Assigning Problem with Multiple Pickers (OBAPMP)

We have classified under this category those works where the batching and assigning
tasks are optimized in a scenario with multiple pickers. In Table 7, we compile the previous
works found for this problem, the objective function studied, and the algorithms proposed
for the routing and batching/assigning tasks, together with the type of algorithm (Heuris-
tic/Exact). In this case, three different objective functions have been studied: minimization
of the distance, minimization of the picking time, and the minimization of the completion
time.

In the three approaches identified for this variant, the batching and assigning tasks were
simultaneously handled. Matusiak et al. (2017) proposed an Adaptive Large Neighborhood
Search algorithm for jointly solving both tasks in a multiple-block scenario. While, Ardj-
mand et al. (2018) proposed three different methods depending on the size of the instance,
including an exact model solved with a solver. Similarly, Wagner & Mönch (2022) proposed
an Integer Linear Programming model for the batching and assigning tasks as an extension
of the previous model introduced in Gademann & Velde (2005).

4.2.4. Order Batching and Routing Problem with Multiple Pickers (OBRPMP)

We have classified under this category those works where the batching and routing tasks
are optimized in a scenario with multiple pickers. In Table 8, we compile the previous
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Publications
related to
OBAPMP in a
JCR/SJR indexed
journal
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Matusiak et al. (2017) Ë H AA H ALNS

Ardjmand et al. (2018) Ë E
E

MM
DP

E
H
H

MM
LD+PSO
PSA+ACO

Wagner & Mönch (2022) Ë H
H
E

SS
LG
MM

E
H

MM
VNS+FFD

Acronym key · Type of algorithm: Heuristic (H); Exact (E). Routing: Aisle-by-
Aisle (AA); Dynamic Programming (DP); S-Shape (SS); Largest Gap (LG). Batch-
ing: Adaptive Large Neighborhood Search (ALNS); Mathematical Model (MM); La-
grangian Decomposition (LD); Particle Swarm Optimization (PSO); Parallel Sim-
ulated Annealing (PSA); Ant Colony Optimization (ACO); Variable Neighborhood
Search (VNS); First Fit Decreasing (FFD).

Table 7: Publications related to OBAPMP.

works found for this problem, the objective function studied, and the algorithms proposed
for routing and batching tasks, together with the type of algorithm (Heuristic/Exact). In
this case, the minimization of the distance, the cost and the completion time have been
studied.

Armstrong et al. (1979) studied the minimization of the completion time in a semi-
automated warehouse with a conveyorized order-picking system, with one picker per aisle
who is in charge of placing the collected products on a conveyor. Additionally, they al-
lowed the possibility of splitting orders in different batches and the existence of the same
product in multiple aisles. Yousefi Nejad et al. (2021) studied the minimization of the
total cost associated with the picking of orders. They proposed an improvement of the
mathematical model introduced in Cortés Achedad et al. (2017) to jointly solve batching
and routing tasks. They also proposed three heuristic approaches for larger instances, and
a scenario with multiple pickers (2 to 10) and variable capacity of the picking devices.
Finally, Atchade-Adelomou et al. (2021) studied the minimization of the total distance
traveled by 2 to 4 robots, by simultaneously considering the batching and routing tasks.
To that aim, they used a completely novel approach based on a classical hybrid quantum
algorithm (Variational Quantum Eigensolver) which was compared in different quantum
simulators.

4.2.5. Order Batching, Sequencing and Assigning Problem with Multiple Pickers (OB-
SAPMP)

We have classified under this category those works where the batching, sequencing, and
routing tasks are optimized in a scenario with multiple pickers. In Table 9, we compile the
previous works found for this problem, the objective function studied, and the algorithms
proposed for the routing and batching/sequencing/assigning tasks, together with the type
of algorithm (Heuristic/Exact). In this case, only the minimization of tardiness has been
studied as an objective function.

Henn (2015) introduced a mathematical model for the problem, but the execution of the
model on a solver resulted impossible. Therefore, two variants of the Variable Neighborhood
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related to
OBRPMP in a
JCR/SJR indexed
journal
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Armstrong et al. (1979) Ë E BD+MM

Yousefi Nejad et al. (2021) Ë E
H
H
H

MM
GA
PSO
ABC

Atchade-Adelomou et al. (2021) Ë H VQE

Acronym key · Type of algorithm: Heuristic (H); Exact (E). Rout-
ing & Batching: Bender’s Decomposition (BD); Mathematical Model
(MM); Genetic Algorithm (GA); Particle Swarm Optimization (PSO);
Artificial Bee Colony (ABC); Variational Quantum Eigensolver (VQE).

Table 8: Publications related to OBRPMP.

Search methodology were proposed for the batching task. Sequencing and assigning tasks
are considered within the neighborhoods of the VNS, either in the local search procedures or
in the shake. Scholz et al. (2017) adapted a previous mathematical model (Henn, 2015) for
the problem. Also, they proposed a Variable Neighborhood Descent algorithm for jointly
solving the batching, sequencing, and assigning tasks. Kuhn et al. (2021) studied the
minimization of the total tardiness of all orders in a warehouse with multiple blocks. This
time, the authors considered not only batching and sequencing activities, but also delivery
operations from the warehouse to the shops. In fact, the tardiness is calculated after the
delivery of the orders to the shops, not when the orders are handled to the depot of the
warehouse. They proposed several heuristics and a mathematical model for the integrated
Order Batching and Vehicle Routing Problem.

Publications
related to
OBSAPMP in a
JCR/SJR indexed
journal
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Henn (2015) Ë H
H

SS
LG

H VNS

Scholz et al. (2017) Ë H LKH H
H

ESD+VND
SEED+VND

Kuhn et al. (2021) Ë H
E

SS
MM

H
E

C&W+ALNS+LPTR
MM

Acronym key · Type of algorithm: Heuristic (H); Exact (E). Routing: S-Shape (SS);
Largest Gap (LG); Lin–Kernighan–Helsgaun (LKH). Batching: Variable Neighborhood
Search (VNS); Earliest Start Date (ESD); Seed (SEED); Variable Neighborhood Descent
(VND); Clarke & Wright (C&W); Adaptive Large Neighborhood Search (ALNS); Largest
Processing Time Rule (LPTR); Mathematical Model (MM).

Table 9: Publications related to OBSAPMP.
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4.2.6. Order Batching, Sequencing, and Routing Problem with Multiple Pickers (OBSRPMP)

We have classified under this category those works where the batching, sequencing, and
routing tasks are optimized in a scenario with multiple pickers. In Table 10, we compile the
previous works found for this problem, the objective function studied, and the algorithms
proposed for the routing/batching/sequencing tasks, together with the type of algorithm
(Heuristic/Exact). In this case, the minimization of tardiness and the minimization of
distance have been studied.

Particularly, Cano et al. (2020) studied the minimization of several objectives such as:
the travel distance, the total tardiness / earliness, and a combination of travel time and
tardiness / earliness in an aggregated function. To that aim the authors proposed four
different mathematical models inspired in previous works (Scholz et al., 2016; Scholz &
Wäscher, 2017; Scholz et al., 2017; Valle et al., 2017). The authors studied a warehouse
with multiple blocks and more than one height levels. On the other hand, Cals et al. (2021)
studied the minimization of the number of orders with tardiness, proposing a method based
on Deep Reinforcement Learning (i.e., Reinforcement Learning and Deep Neural Networks)
inspired by the ideas proposed in Zhang et al. (2012) to optimize the batching, routing,
and sequencing tasks.

Publications
related to
OBSRPMP in a
JCR/SJR indexed
journal
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Cano et al. (2020) Ë Ë E MM

Cals et al. (2021) Ë H DRL

Acronym key · Type of algorithm: Heuristic (H); Exact (E). Rout-
ing & Batching & Sequencing: Mathematical Model (MM); Deep
Reinforcement Learning (DRL).

Table 10: Publications related to OBSRPMP.

4.2.7. Order Batching, Assigning, and Routing Problem with Multiple Pickers (OBARPMP)

We have classified under this category those works in which batching, assigning, and
routing tasks are optimized in a scenario with multiple pickers. In Table 11, we compile the
previous works found for this problem, the objective function studied, and the algorithms
proposed for routing and batching / assignment tasks, together with the type of algorithm
proposed (Heuristic/Exact). In this case, the minimization of the distance and the picking
time are the most studied objective functions. Additionally, a biobjective function to
minimize the makespan together with the number of pickers is introduced.

Valle et al. (2016) formulated three mathematical models to jointly solve batching and
routing problems. The models considered the existence of multiple blocks. Later, Valle
et al. (2017) proposed an evolution based on two Branch-and-Cut approaches to jointly
solve the batching and routing tasks. Van Gils et al. (2019) also introduced a mathemati-
cal model for the problem, adapted from Valle et al. (2017), to solve the batching, routing,
and assigning tasks. They considered the existence of two blocks in the warehouse. An-
other mathematical model run with a solver was proposed in Valle & Beasley (2020) to
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find optimal solutions to the joint order batching and routing problem, which also con-
sidered the assignation of batches to pickers. Their approach considered two variants of
the routing, depending on the reversal constraint (i.e., pickers can perform a U-turn in the
parallel aisles or not). They also considered single and multiple blocks warehouse scenar-
ios. Ardjmand et al. (2020) jointly solved the batching, assigning, and routing tasks using
a hybrid method which combines Column Generation, Genetic Algorithm, and Artificial
Neural Networks. Their approach was compared with the previous proposal introduced
in Ardjmand et al. (2018). Finally, Rasmi et al. (2022) studied the minimization of the
makespan together with the minimization of the number of active pickers in a biobjective
approach. They proposed an Integer Linear Programming model to simultaneously solve
the batching, assigning, and routing tasks. Also, they introduced a heuristic approach in
which the batching task was solved with a k-means clustering algorithm (Lloyd, 1982), the
routing task was tackled with the approach proposed in Ratliff & Rosenthal (1983), and
the assigning task was solved with a mathematical model run in a commercial solver. The
authors also compared several storage location assignment policies.

Publications
related to
OBARPMP in a
JCR/SJR indexed
journal
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Assigning
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Valle et al. (2016) Ë E MM E MM

Valle et al. (2017) Ë E B&C E B&C

Van Gils et al. (2019) Ë E
E
H

MM
DP
LKH

E
H

MM
ILS

Valle & Beasley (2020) Ë E MM E MM

Ardjmand et al. (2020) Ë M CG+GA+ANN M CG+GA+ANN

Rasmi et al. (2022) Ë Ë E
E

MM
DP

E
M

MM
KMS+MM

Acronym key · Type of algorithm: Heuristic (H); Exact (E); Mixed (M). Routing: Dynamic
Programming (DP); Lin–Kernighan–Helsgaun (LKH). Batching: Mathematical Model (MM);
Branch and Cut (B&C); Iterated Local Search (ILS); Column Generation (CG); Genetic Algorithm
(GA); Artificial Neural Networks (ANN); K-Means Strategy (KMS).

Table 11: Publications related to OBARPMP.

4.3. Online / Single picker

In this section, we review the state of the art of online order batching variants with
a single picker. In these variants, orders arrive to the system dynamically, i.e., once the
picking process has already started. For each contribution, we review the distribution in
the arrival of orders (when available). Additionally, it is considered that there is only one
picker in the warehouse.

4.3.1. Online Order Batching Problem (OOBP)

We have classified under this category those works where the batching task is opti-
mized in a scenario with dynamic arrival of orders. In Table 12, we compile the previous
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works found for this problem, the objective function studied, and the algorithms proposed
for the routing and batching tasks, together with the type of algorithm proposed (Heuris-
tic/Exact). In this case, the turnover time and the picking time were the most studied
objective functions. However, we can also find approaches studying the minimization of
the completion time or cost.

Almost all the reviewed papers tackled the routing and the batching tasks with heuristic
algorithms. Tang & Chew (1997) studied the minimization of the average turnover time
through the reduction of the waiting time of orders once they are in the system. The arrival
of orders follows a Poisson process, so the problem was modeled as an En/G/c queueing
system, where n denotes the batch size. Chew & Tang (1999) studied the minimization of
the average turnover time through the reduction of service time and travel time. Again,
the arrival of orders follows a Poisson process, and the problem was modeled as an En/G/c
queueing system, where n denotes the batch size. Le-Duc & De Koster (2007) studied
the minimization of the average throughput time (i.e., the time that the order remains in
the system before being served) in a two-block warehouse. The arrival of orders follows
a Poisson process and the problem was modeled as a M/Gk/1 queueing system, where k
denotes the batch size. Schleyer & Gue (2012) studied the minimization of the average
throughput time and the optimal batch size for efficient picking. In this work, the authors
considered that the arrival of orders is not restricted to be a Poisson process, but any
stationary arrival stream of orders. The problem was modeled as a G/G/1 queueing system.
Other approaches considering the arrival of orders following a Poisson process were Henn
(2012); Xu et al. (2014) and Pérez-Rodŕıguez et al. (2015). Finally, Gil-Borrás et al. (2020b)
studied the minimization of the total completion time of all orders, but also reported the
maximum turnover time obtained. In fact, it can be considered as an extension of Gil-
Borrás et al. (2018).

Publications
related to OOBP
in a JCR/SJR
indexed journal

Objective Function Routing Batching
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Tang & Chew (1997) Ë H SS-OW H FCFS

Chew & Tang (1999) Ë H SS H FCFS

Le-Duc & De Koster (2007) Ë H SS H FCFS

Schleyer & Gue (2012) Ë Ë H SS E DTM

Henn (2012) Ë H
H

SS
LG

H ILS

Xu et al. (2014) Ë H SS H FCFS+VTWB

Pérez-Rodŕıguez et al. (2015) Ë H SS H CEDA

Zhang et al. (2018) Ë H SS H
H

C&W
ILS

Gil-Borrás et al. (2018) Ë H SS H BVNS

Gil-Borrás et al. (2020b) Ë Ë H SS H GRASP+VND

Acronym key · Type of algorithm: Heuristic (H); Exact (E). Routing: S-Shape One Way (SS-OW);
S-Shape (SS); Largest Gap (LG). Batching: First Come First Served (FCFS); Discrete-Time Models
(DTM); Iterated Local Search (ILS); Variable Time Window Batching (VTWB); Continuous Estimation of
Distribution Algorithm (CEDA); Clarke & Wright (C&W); Basic Variable Neighborhood Search (BVNS);
Greedy Randomized Adaptive Search Procedure (GRASP); Variable Neighborhood Descent (VND).

Table 12: Publications related to OOBP.
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4.3.2. Online Order Batching and Waiting Problem (OOBWP)

We have classified under this category those works where the batching and waiting tasks
are optimized in a scenario with dynamic arrival of orders. In Table 13, we compile the
previous works found for this problem, the objective function studied, and the algorithms
proposed for the routing, batching, and waiting tasks, together with the type of algorithm
proposed (Heuristic/Exact). In this case, the minimization of the picking time, completion
time, and cost have been studied.

Bukchin et al. (2012) studied the minimization of the average costs associated with the
tardiness and overtime of the pickers. For the first time, they introduced a new waiting
method that accurately calculates the departure time of each picker based on previous
information. Then, they developed an approximate model to determine the waiting strategy
for future arrivals of orders. Giannikas et al. (2017) studied the minimization of the average
completion time. However, they considered a variant of the problem which allows the
addition of new orders to a batch being collected. They consider a Variable Time-Window
strategy based on the number of orders (1, 5, 10, 15, and 20) arriving to the system.
Finally, Gil-Borrás et al. (2020a) studied the minimization of the picking time, but they
also reported the completion time of collecting all orders. The authors evaluated and
compared several time-window strategies: a No-Waiting strategy, a Fixed Time Window
strategy based on time (3, 6, and 12 minutes), and a Variable Time Window strategy based
on the number of orders arrived to the system (4, 8, 16 orders).

Publications
related to OOBWP
in a JCR/SJR
indexed journal

Objective
Function

Routing Batching Waiting
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Bukchin et al. (2012) Ë - - M FCFS+MDP M FCFS+MDP

Giannikas et al. (2017) Ë E DP H GA H VTW

Gil-Borrás et al. (2020a) Ë Ë H SS H FCFS
GH

H
H
H

NW
FTW
VTW

Acronym key · Type of algorithm: Heuristic (H); Exact (E); Mixed (M); Not Defined (-). Routing:
S-Shape (SS); Dynamic Programming (DP). Batching: First Come First Served (FCFS); Markov
decision process (MDP); Genetic Algorithm (GA); Greedy Heuristic (GH). Waiting: No Waiting (NW);
Variable Time Window (VTW); Fixed Time Window (VTW).

Table 13: Publications related to OOBWP.

4.3.3. Online Order Batching, and Routing Problem (OOBRP)

We have classified under this category those works where the batching and routing tasks
are optimized in a scenario with dynamic arrival of orders. In Table 14, we compile the
previous works found for this problem, the objective function studied, and the algorithms
proposed for the routing and batching tasks, together with the type of algorithm proposed
(Heuristic/Exact). In this case, the minimization of the distance and the cost, have been
tackled.

Ene & Öztürk (2012) studied the minimization of the travel cost expressed as a function
of the travel time. They proposed two approaches to jointly solve batching and routing
tasks. Additionally, in this paper, the authors also studied the storage problem by minimiz-
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ing the warehouse transmissions with another Integer Programming model using GAMS
(Boisvert et al., 1985). They considered a two-block warehouse. On the other hand, Li
et al. (2016) studied the minimization of the total travel distance. They proposed an algo-
rithm based on Ant Colony Optimization for jointly solving the batching and routing task.
They considered warehouses with multiple blocks and a very large amount of orders (up to
10,000).

Publications
related to OOBRP
in a JCR/SJR
indexed journal

Objective
Function

Routing &
Batching

D
is
t
a
n
c
e

C
o
s
t

T
y
p
e

o
f
a
lg

o
r
it
h
m

A
lg

o
r
it
h
m

Ene & Öztürk (2012) Ë E
H

MM
GA

Li et al. (2016) Ë H ACO

Acronym key · Type of algorithm: Heuristic (H); Exact
(E). Routing & Batching: Mathematical Model (MM); Ge-
netic Algorithm (GA); Ant Colony Optimization (ACO).

Table 14: Publications related to OOBRP.

4.3.4. Online Order Batching, Sequencing, and Routing Problem (OOBSRP)

We have classified under this category those works in which batching, sequencing, and
routing tasks are optimized in a scenario with dynamic arrival of orders. In Table 15,
we compile the only work found for this problem, the objective function studied, and
the algorithms proposed for the routing and batching/sequencing tasks. In this case, the
minimization of the picking time and the turnover time were tackled.

Specifically, Won & Olafsson (2005) studied the minimization of a combined objective
function that considers the minimization of the picking time together with the minimization
of the time that orders remain in the warehouse. They proposed a formulation for the joint
order batching, sequencing and routing problem. Notice that the warehouse studied in this
paper includes a depot at the end of each aisle and the travel distance is assumed to be
calculated using the Tchebychev metric (Bozer et al., 1990) instead of the usual rectilinear
metric.

4.4. Online / Multiple pickers

In this section, we review the state of the art of online order batching variants with
multiple pickers. In these variants, orders arrive to the system dynamically (once the
picking process has already started) to a warehouse with two or more pickers.

4.4.1. Online Order Batching Problem with Multiple Pickers (OOBPMP)

We have classified under this category those works where the batching task is optimized
in a scenario with dynamic arrival of orders and multiple pickers. In Table 16, we compile
the previous works found for this problem, the objective function studied, and the algo-
rithms proposed for the routing and batching tasks. In this case, the completion time was
the most studied objective function. However, other objectives were also considered in the
literature such as picking time, cost, workload balance, or turnover time.
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Won & Olafsson (2005) Ë Ë E MM

Acronym key · Type of algorithm: Exact (E). Routing &
Batching & Sequencing: Mathematical Model (MM).

Table 15: Publications related to OOBSRP.

Yu & De Koster (2009) considered picking zones within the warehouse (each of them
assigned to a different picker) and the arrival of orders was determined by a Poisson dis-
tribution. The warehouse had a random storage policy. The authors tackled the batching
task with an approximation model based on the queueing network theory, and they used
the S-Shape routing strategy. Van Nieuwenhuyse & De Koster (2009) studied a two-block
warehouse where the arrival of orders followed a Poisson process and the problem was
modeled as a G/G/1 and a G/G/m queueing system. They proposed the use of different
batching strategies based on waiting for the arrival of orders. Particularly, they proposed
a Fixed Time Window Batching, consisting of waiting for a fixed amount of time, and a
Variable Time Window Batching, consisting of waiting while there is available space in the
batch. Also, they compared the pick-and-sort and sort-while-pick picking policies. Rubrico
et al. (2011) studied a variant of the problem, named Online Rescheduling Problem with
multiple pickers, by considering the existence of static and dynamic arrival of orders. Ad-
ditionally, they introduced the constraint that newly arrived orders were composed of only
one type of product. Zhang et al. (2017) studied the minimization the maximum comple-
tion time, also known as the turnover time of all orders, but also reported the average idle
time per picker and the average workload. Chen et al. (2018) studied the minimization of
the service time of a single order. In this case, they considered a multiple-block warehouse
with narrow aisles. Also, they studied the possibility that orders could be split in several
batches and that batches could be modified during picking. Similarly, Hojaghania et al.
(2019) studied the minimization of the maximum turnover time and the idle time of pickers
in a warehouse with different zones within the warehouse, each of them assigned to a picker.
Zhang et al. (2021) studied a pondered objective function which includes the minimization
of completion time needed to pick and delivery the orders, together with the minimization
of the total delivery cost. The assignment of batches to pickers follows a first available
picker rule. Shavaki & Jolai (2021) studied the minimization of the transportation cost of
orders and jointly solved the delivery planning, by proposing two mathematical models,
solved with a solver, which included: the assignment of trucks to docks, the departure
time, and the route of the truck. Finally, Gil-Borrás et al. (2021) studied the minimization
of picking time, the minimization of the completion time, and the minimization of the
differences in the workload balance among pickers in a single-block warehouse.
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Yu & De Koster (2009) Ë H SS H QNT

Van Nieuwenhuyse & De Koster
(2009)

Ë H SS H
H

FTWB
VTWB

Rubrico et al. (2011) Ë H SS H SDI+MRS

Zhang et al. (2017) Ë H SS H SEED+HRBA

Chen et al. (2018) Ë H
H

SS
LG

H
H
H

GAS
FTWB
VTWB

Hojaghania et al. (2019) Ë H SS H
H

ACO
ABC

Gil-Borrás et al. (2019) Ë H
H
H

SS
LG
CO

H BVNS

Alipour et al. (2020) Ë H
H

SS
LG

H ILS

Zhang et al. (2021) Ë Ë H SS H C&W

Shavaki & Jolai (2021) Ë H SS H
H
H

HBS
SV
GA

Gil-Borrás et al. (2021) Ë Ë Ë H SS H MS+VND

Acronym key · Type of algorithm: Heuristic (H). Routing: S-Shape (SS); Largest Gap (LG); Combined
(CO). Batching: Queueing Network Theory (QNT); Fixed Time Window Batching (FTWB); Variable
Time Window Batching (VTWB); Steepest Descent Insertion (SDI); Multistage Rescheduling strategy
(MRS); Seed (SEED); Hybrid Rule-Based Algorithm (HRBA); Green Area Strategy (GAS); Ant Colony
Optimization (ACO); Artificial Bee Colony (ABC); Basic Variable Neighborhood Search (BVNS); Iterated
Local Search (ILS); Clarke & Wright (C&W); Heuristic Based on Similarity (HBS); Saving (SV); Genetic
Algorithm (GA); Multi-Start (MS): Variable Neighborhood Descent (VND).

Table 16: Publications related to OOBPMP.

4.4.2. Online Order Batching and Routing Problem with Multiple Pickers (OOBRPMP)

We have classified under this category those works where the batching and routing
tasks are optimized in a scenario with dynamic arrival of orders and multiple pickers. In
Table 17, we compile the only previous work found for this problem, the objective function,
and the routing and batching strategies used. In this case, Leung et al. (2020) studied the
minimization of the total travel time in a real scenario. They proposed a Genetic Algorithm
which integrates the solution to the batching and routing tasks. They also considered the
existence of multiple pickers (up to 18). Their proposal was integrated into a software
system to manage the warehouse.

4.4.3. Online Order Batching, Sequencing, Assigning, and Routing Problem with Multiple
Pickers (OOBSARPMP)

We have classified under this category those works where the batching, assigning, and
routing tasks are optimized in a scenario with dynamic arrival of orders and multiple
pickers.

In Table 18, we compile the previous works found for this problem, the objective function
studied, and the algorithms proposed for the routing and batching tasks.
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Particularly, Zhang et al. (2016) studied the minimization of the total service time,
while maximizing the number of orders delivered without exceeding a predefined due date.
In this paper, the sequencing and assigning tasks were inspired by a previous strategy
for other problem introduced in Pratap et al. (2015). Particularly, they proposed several
heuristic rules that combine the urgency of a batch and the workload balance of idle pickers.
The arrival of orders is studied on a 2-hour time horizon. Later, Duda & Stawowy (2019)
studied the minimization of the number of pickers together with the minimization of the
distance traveled in an online scenario. To that aim, the authors introduced a weighted
function which combines the two previous objectives. They proposed a Mixed-Integer
Programming model to jointly solve the batching, sequencing, assigning, and picker routing
tasks. The authors also proposed a heuristic approach based on Variable Neighborhood
Search for solving the problem when the size of the instance is large. They considered
an 8-hour time horizon. Finally, Schrotenboer et al. (2019) simultaneously studied the
minimization of the total travel time and the picking cost though the use of a combined
objective function. They proposed different Mixed-Integer Programming models to jointly
solve the batching, sequencing, assigning, and routing tasks. The authors also proposed a
constructive procedure together with an Adaptive Large Neighborhood Search heuristic for
the problem. Additionally, in this paper, the authors integrated the restocking of returned
products into regular order picking routes.

4.5. Synthesis of the review

In Section 4, we have reviewed and classified 122 papers (107 JCR / 15 SJR) related to
Order Batching. In Figure 4, we present a bar chart in which all publications are classified
per year and group of problem. Additionally, in Figure 5, we show another bar chart in
which we can compare the number of papers per order batching variant.

As a first conclusion of the analysis performed, we observe that among the 36 variants
of order batching problems identified in the taxonomy introduced in Figure 3, 18 of them
have never been tackled in the literature. Among the studied variants, we observe that
48.36% of the papers deal with offline single-picker variants, 26.23% of the papers deal
with offline multiple-pickers variants, 13.11% of the papers deal with online single-picker
variants, and 12.30% of the papers deal with online multiple-pickers variants.

Furthermore, the offline variants of the problem have been studied further than the
online ones (91 papers vs 31 papers). Similarly, single-picker variants have been studied
further than multiple-pickers ones (75 papers versus 47 papers). The most studied variant
is the offline version of the Order Batching Problem with a single picker, where the problem
consists of the batching task only (31 papers).

Publications
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OOBRPMP in a
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Leung et al. (2020) Ë H GA

Acronym key · Type of algorithm: Heuristic (H).
Routing & Batching: Genetic Algorithm (GA).

Table 17: Publications related to OOBRPMP.
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Zhang et al. (2016) Ë Ë H SS H
H

SEED
C&W

Duda & Stawowy (2019) Ë Ë E
H

MM
VNS

E
H

MM
VNS

Schrotenboer et al. (2019) Ë Ë E
H

MM
ALNS

E
H

MM
ALNS

Acronym key · Type of algorithm: Heuristic (H); Exact (E). Routing: S-Shape (SS).
Batching: Seed (SEED); Clarke & Wright (C&W); Mathematical Model (MM); Variable
Neighborhood Search (VNS); Adaptive Large Neighborhood Search (ALNS).

Table 18: Publications related to OOBSARPMP.
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Figure 4: Publications reviewed classified by year and grouped by category.

As far as the warehouse studied is concerned, the most studied warehouse is a rectangular-
shaped warehouse with a single depot and a single block (composed of parallel aisles) to
perform the picking operation. Particularly, we have found 92 out of the 122 papers using
this warehouse model. However, other authors studied different warehouse configurations,
such as multiple blocks, irregular shapes, or storage in different heights, among others.
Furthermore, 14 papers studied semi-automated warehouses.

All the papers compiled achieve the routing and batching tasks. However, only 29
papers study the sequencing task, 15 papers study the assigning task, and 3 papers study
the waiting task.
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Figure 5: Publications reviewed classified by order batching variant and grouped by category.

A large number of papers explore the use of more than one routing strategy. In partic-
ular, all the papers reviewed include any kind of heuristic/metaheuristic strategy for the
task. Among them, the S-Shape method is the most popular one (i.e., used in 62 out of
122 papers). On the other hand, 34.42% of the papers additionally propose the use of an
exact approach, mainly based on a mathematical model or dynamic programming. As far
as the batching task is concerned, metaheuristics are the most common strategies to tackle
the task (60.65% of the studied papers included at least a metaheuristic method). How-
ever, simpler heuristics such as: seed, savings, and FCFS methods, are also very popular
(36.06% of the studied papers included at least a heuristic method). Finally, the 27.04% of
the studied papers proposed the use of any kind of exact method (usually a mathematical
model). The sequencing and assigning tasks are usually handled together with the batching
strategy. The waiting task has been little explored in the literature despite the fact that
it has been shown to have a profound impact on the overall performance of the picking
algorithms.

5. Conclusions and open issues

In this survey, we review the order batching family of optimization problems. This
family compiles a group of well-known optimization problems related to the picking of
orders in a warehouse, having in common that they consider the batching policy during
the picking process. That is, orders received in a warehouse are grouped into batches before
starting the picking process. We have properly defined the family of problems denoted as
order batching problems, and we have identified the main tasks that have to be addressed
to solve each particular variant of the problem within the order batching family. Then,
we have proposed a taxonomy to classify all order batching problems. To the best of
our knowledge, this is the first time a taxonomy to classify the order batching variants has
been proposed. Following the proposed taxonomy, we have reviewed the previous literature
related to order batching and classified all JCR and SJR papers found in the literature
using the aforementioned taxonomy, on the basis of the particular problem tackled in each
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paper. Finally, for each reference identified in the literature, we have briefly highlighted
the strategies proposed for each of the main tasks associated to solve the problem variant
handled in the paper. Next, we state our conclusions, open issues, and future research
opportunities.

5.1. Conclusions

Order batching problems have been extensively studied by the scientific community in
the last forty years, since the batching policy within a warehouse has been demonstrated to
be a very effective strategy to perform the task of picking orders. As it happens with many
scientific disciplines, practitioners in the field often handle simplified variants of interesting
real problems to illustrate the performance of their algorithms instead of more realistic
scenarios. Furthermore, it is common to find literature with simple variants of problems
but very large data sets (or with very large instances within them) that are often unrealistic
for the problem handled. In this sense, we believe that some of the variants related to order
batching studied in the state of the art, such as the simple OBP (an offline variant with
a single picker) which is the most studied variant in the literature, represents mainly a
theoretical problem that helps practitioners to propose and validate new algorithms and
ideas further than a real problem on its own. In contrast, online variants with multiple
pickers are probably the most general versions of order batching and the closest ones to real-
world scenarios related to order batching. It is important to remark that the offline version
of order batching problem is a specific case of the online one, which can be considered as the
general problem. Similarly, let us remember that the single-picker version of the problem
is a specific case of the multiple-pickers one. Therefore, solving more general variants of
the problem also provides solutions to the specific ones.

Despite the fact that it is possible to find more than a hundred publications related to
order batching in top-level journals, as far as we know, practitioners have never introduced
a proper taxonomy to clearly identify the gaps or the particular problem variant they are
handling. This fact has obstructed researchers to identify previous works in the literature
directly connected to their research, and therefore many articles lack a proper comparison
of their findings with other previous proposals.

Proposing a taxonomy which classifies all order batching variants tackled in the previous
literature is not an easy task. Any taxonomy might result incomplete when considering
an exceptional / specific piece of work, and the criteria included in it are always full of
controversy. However, there are some relevant aspects that are clearly identifiable in the
literature of order batching problems such as: offline / online, single / multiple pickers, or
the objective function being optimized. In this sense, we have tried to propose a taxonomy
that gathers the characteristics of an optimization problem: constraints, variables, and
objective functions. Furthermore, the proposed taxonomy is easily extensible, mainly by
adding new constraints, variables, or objective functions.

From our point of view, there are two main groups to classify any order batching
problem: Simple or Joint. We denote as “Simple” any variant of the problem which only
handles the batching task (i.e., the optimization is restricted to the values of the variables
that determine the batching). Similarly, we denote as “Joint” any variant of order batching
that handles the batching task together with one or more additional tasks (i.e., optimization
is not restricted to the variables that determine the batching, but also the variables which
determine sequencing, routing, assigning, or waiting).

The most outstanding variants of the order batching problems, attending to the rele-
vance, novelty, and number of references related to them, are the simple variants of order
batching problems: simple Order Batching Problem, simple Order Batching Problem with
Multiple Pickers, simple Online Order Batching Problem, simple Online Order Batching
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Problem with Multiple Pickers. Additionally, there are some relevant joint versions such
as: joint Order Batching, Sequencing, and Routing Problem, or joint Order Batching and
Routing Problem. On the other hand, 18 out of the 36 identified variants of the problem
have never been tackled. This is especially relevant in the case of the online variants of the
problem.

As a final conclusion, we would like to highlight that order batching problems are a
growing family of optimization problems of high economic interest for the industry. Given
the large recent interest in related problems, the main objective of this paper is to set
the foundations of order batching and organize the current state of the art of this fam-
ily of problems, so the related literature can grow up properly, avoiding repetitions and
establishing a clear comparison framework for future research proposals.

5.2. Open issues and future research opportunities

In this section, we highlight the main open issues related to order batching problems,
including the gaps identified in the literature, the most realistic variants of the problem,
the most influential tasks to address, and the more promising algorithmic strategies.

In the near future, practitioners interested in any problem related to order batching
should start by identifying the particular gap in the taxonomy proposed in this review,
which they are trying to cover. Moreover, any previous work on the variant discussed should
be included in the literature review, and the new approach should be adequately compared
with the previous ones. Since the taxonomy is designed to grow, in case of necessity, we
also invite practitioners to extend it with new constraints, objective functions, or variables
(tasks), making clear the new contribution to the literature. As we can observe from
the taxonomy proposed and the classification of previous works, many variants of order
batching remain unstudied, which opens a very large research opportunity. Particularly,
most of the joint versions of order batching problems have not yet been studied.

We suggest that the research direction should be moving from the classical and more
theoretical variants of order batching to more realistic variants. Particularly, the classi-
cal and most studied approach when dealing with order batching is related to the offline
version of the problem with a single picker. However, this is only a special case of the
general problem, that might consider multiple pickers and an online arrival of orders to the
warehouse. We suggest that practitioners in the field focus on these more realistic variants
of the problem.

The batching in isolation is an interesting task from a theoretical point of view. How-
ever, when dealing with any variant of order batching problems, it is necessary to study it
in combination with other tasks, such as routing, sequencing, assigning, and waiting. All
the previous work in the literature considers the routing; however, since we should focus on
dealing with more realistic variants, further study should be performed in relation to the
sequencing and assigning (when multiple pickers are available) and waiting (when there is
a dynamic arrival of orders to the warehouse). Furthermore, we have discovered that the
latter has a deep influence on the performance of the overall method and is by far the least
studied activity. In the future, the inclusion of other tasks such as sorting the products
after picking or refilling the shelves could also be considered.

Currently, there is a large collection of algorithms, either heuristics/metaheuristics or
exacts to deal with almost any of the tasks related to order batching. However, the effec-
tiveness of the proposed strategy depends on the particular task. Furthermore, some tasks
might be as hard as others computationally speaking but, in practice, they might be much
smaller than others (e.g., the size of the batching problem is usually larger than the size
of the sequencing problem, since the number of orders is much larger than the number of
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batches). Moreover, the size of the instance makes some of the tasks smaller enough to be
handled with exact methods. Therefore, an effort should be made to develop matheuristic
algorithms which include optimal results for particular tasks in combination with other
heuristic techniques for the rest of the tasks. Similarly, the routing task, given a classical
warehouse design, is optimally solved in a reasonable amount of time.

Finally, there are few studies about multi-objective optimization variants of order batch-
ing problems, either considering two or more of the objective functions identified in this
paper or coupling the batching task together with other optimization problems.

Appendix A. Classification of the previous papers in the literature

Researchers have been proposing a wide range of optimization problems belonging to the
order batching family of problems in rectangular-shaped warehouses with parallel aisles, by
adding constraints, modifying the characteristics of the warehouse, or optimizing several
objectives at the same time. To contribute to the literature of order batching, we have
grouped all references found in the literature and reviewed in this paper under the best-
known names and acronyms. Additionally, we have classified the optimization problems
identified on the basis of the taxonomy introduced in Section 3. Notice that we only
consider papers published in journals indexed in the Journal Citation Reports (JCR) or
the Scimago Journal & Country Rank (SJR).

Taxonomy of order batching problems

Category Reference Category Reference

[Simple] / Order Batching Problem (OBP)

OFF-SP-DI-B Elsayed (1981) OFF-SP-PT-B Elsayed & Unal (1989)
OFF-SP-DI-B Gibson & Sharp (1992) OFF-SP-PT-B Pan & Liu (1995)

OFF-SP-PT/DI-B Rosenwein (1996) OFF-SP-PT-B De Koster et al. (1999b)
OFF-SP-DI-B Hsu et al. (2005) OFF-SP-PT-B Hwang & Kim (2005)
OFF-SP-DI-B Chen & Wu (2005) OFF-SP-DI-B Dukic & Oluic (2007)
OFF-SP-DI-B Bozer & Kile (2008) OFF-SP-PT-B Albareda-Sambola et al. (2009)
OFF-SP-DI-B Henn et al. (2010) OFF-SP-DI-B Hsieh & Huang (2011)
OFF-SP-PT-B Henn & Wäscher (2012) OFF-SP-PT-B Menéndez et al. (2015)

OFF-SP-CO-B Muter & Öncan (2015) OFF-SP-PT-B Pérez-Rodŕıguez & Hernández-
Aguirre (2015)

OFF-SP-DI-B Öncan (2015) OFF-SP-DI-B Koch & Wäscher (2016)
OFF-SP-PT-B Menéndez et al. (2017b) OFF-SP-CT-B Lenoble et al. (2017)
OFF-SP-DI-B Scholz & Wäscher (2017) OFF-SP-DI-B Cano et al. (2018)
OFF-SP-PT-B Lenoble et al. (2018) OFF-SP-DI-B Žulj et al. (2018)
OFF-SP-DI-B Van Gils et al. (2018) OFF-SP-CT-B Nicolas et al. (2018)
OFF-SP-DI-B Cano (2019) OFF-SP-DI-B Yang et al. (2020)
OFF-SP-PT-B Yang et al. (2021)

[Joint] / Order Batching and Sequencing Problem (OBSP)

OFF-SP-TA-BS Elsayed et al. (1993) OFF-SP-TA-BS Henn & Schmid (2013)
OFF-SP-TA-BS Menéndez et al. (2017a) OFF-SP-CT-BS Jiang et al. (2018)
OFF-SP-CO-BS Miguel et al. (2022)

[Joint] / Order Batching and Routing Problem (OBRP)

OFF-SP-PT-BR Gademann & Velde (2005) OFF-SP-DI-BR Ho & Tseng (2006)
OFF-SP-DI-BR Ho et al. (2008) OFF-SP-DI-BR Kulak et al. (2012)
OFF-SP-DI-BR Hong et al. (2012b) OFF-SP-DI-BR Matusiak et al. (2014)
OFF-SP-PT-BR Zuniga et al. (2015) OFF-SP-DI-BR Cheng et al. (2015)
OFF-SP-DI-BR Lin et al. (2016) OFF-SP-DI-BR Hong & Kim (2017)
OFF-SP-DI-BR Pferschy & Schauer (2018) OFF-SP-DI-BR Ardjmand et al. (2019)
OFF-SP-DI-BR Kübler et al. (2020) OFF-SP-DI-BR Briant et al. (2020)
OFF-SP-DI-BR Oxenstierna et al. (2021) OFF-SP-DI-BR Schiffer et al. (2022)

[Joint] / Order Batching, Sequencing, and Routing Problem (OBSRP)

OFF-SP-TA-BSR Elsayed & Lee (1996) OFF-SP-CO-BSR Tsai et al. (2008)
OFF-SP-TA-BSR Azadnia et al. (2013) OFF-SP-TA-BSR Chen et al. (2015)

OFF-SP-DI/CO-BSR Pinto & Nagano (2019) OFF-SP-CO-BSR Miguel et al. (2019)
OFF-SP-CT-BSR Jiang et al. (2022)

[Simple] / Order Batching Problem with Multiple Pickers (OBPMP)

OFF-MP-PT-B De Koster et al. (1999a) OFF-MP-DI-B Ruben & Jacobs (1999)
OFF-MP-PT-B Petersen (2000) OFF-MP-PT-B Gademann et al. (2001)
OFF-MP-PT-B Pan et al. (2015) OFF-MP-DI-B Van Gils et al. (2016)
OFF-MP-PT-B Menéndez et al. (2017c) OFF-MP-DI-B Cergibozan & Tasan (2020)
OFF-MP-CO-B Yang (2022)

[Joint] / Order Batching and Sequencing Problem with Multiple Pickers (OBSPMP)

Continued on the next page
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Category Reference Category Reference

OFF-MP-PT-BS Hong et al. (2012a) OFF-MP-CT-BS Huang et al. (2018)
OFF-MP-CT-BS Cano et al. (2021) OFF-MP-TA-BS Žulj et al. (2021)
OFF-MP-CT-BS Feng & Hu (2021) OFF-MP-CT-BS Hofmann & Visagie (2021)

[Joint] / Order Batching and Assigning Problem with Multiple Pickers (OBAPMP)

OFF-MP-CT-BA Matusiak et al. (2017) OFF-MP-CT-BA Ardjmand et al. (2018)
OFF-MP-DI-BA Wagner & Mönch (2022)

[Joint] / Order Batching and Routing Problem with Multiple Pickers (OBRPMP)

OFF-MP-CT-BR Armstrong et al. (1979) OFF-MP-DI-BR Atchade-Adelomou et al. (2021)
OFF-MP-CO-BR Yousefi Nejad et al. (2021)

[Joint] / Order Batching, Sequencing and Assigning Problem with Multiple Pickers (OBSAPMP)

OFF-MP-TA-BSA Henn (2015) OFF-MP-TA-BSA Scholz et al. (2017)
OFF-MP-TA-BSA Kuhn et al. (2021)

[Joint] / Order Batching, Sequencing and Routing Problem with Multiple Pickers (OBSRPMP)

OFF-MP-DI/TA-BSR Cano et al. (2020) OFF-MP-TA-BSR Cals et al. (2021)

[Joint] / Order Batching, Assigning and Routing Problem with Multiple Pickers (OBARPMP)

OFF-MP-DI-BAR Valle et al. (2016) OFF-MP-DI-BAR Valle et al. (2017)
OFF-MP-PT-BAR Van Gils et al. (2019) OFF-MP-DI-BAR Valle & Beasley (2020)
OFF-MP-CT-BAR Ardjmand et al. (2020) OFF-MP-CT+NP-BAR Rasmi et al. (2022)

[Simple] / Online Order Batching Problem (OOBP)

ON-SP-TT-B Tang & Chew (1997) ON-SP-TT-B Chew & Tang (1999)
ON-SP-CT-B Le-Duc & De Koster (2007) ON-SP-CT-B Schleyer & Gue (2012)
ON-SP-CT-B Henn (2012) ON-SP-CT-B Xu et al. (2014)
ON-SP-TT-B Pérez-Rodŕıguez et al. (2015) ON-SP-TT-B Zhang et al. (2018)
ON-SP-TT-B Gil-Borrás et al. (2018) ON-SP-CT-B Gil-Borrás et al. (2020b)

[Simple] / Online Order Batching and Waiting Problem (OOBWP)

ON-SP-CO-BW Bukchin et al. (2012) ON-SP-CT-BW Giannikas et al. (2017)
ON-SP-PT-BW Gil-Borrás et al. (2020a)

[Simple] / Online Order Batching, and Routing Problem (OOBRP)

ON-SP-CO-BR Ene & Öztürk (2012) ON-SP-DI-BR Li et al. (2016)

[Simple] / Online Order Batching, Sequencing, and Routing Problem (OOBSRP)

ON-SP-PT+TT-BSR Won & Olafsson (2005)

[Simple] / Online Order Batching Problem with Multiple Pickers (OOBPMP)

ON-MP-TT-B Yu & De Koster (2009) ON-MP-TT-B Van Nieuwenhuyse & De Koster
(2009)

ON-MP-CT-B Rubrico et al. (2011) ON-MP-CT-B Zhang et al. (2017)
ON-MP-PT-B Chen et al. (2018) ON-MP-TT-B Hojaghania et al. (2019)
ON-MP-CT-B Gil-Borrás et al. (2019) ON-MP-CT-B Alipour et al. (2020)
ON-MP-PT-B Zhang et al. (2021) ON-MP-PT-B Shavaki & Jolai (2021)
ON-MP-PT-B Gil-Borrás et al. (2021)

[Joint] / Online Order Batching and Routing Problem with Multiple Pickers (OOBRPMP)

ON-MP-PT-BR Leung et al. (2020)

[Joint] / Online Order Batching, Sequencing, Assigning, and Routing Problem with Multiple
Pickers (OOBSARPMP)

ON-MP-PT+NO-BSAR Zhang et al. (2016) ON-MP-DI+NP-BSAR Duda & Stawowy (2019)
ON-MP-PT+CO-BSAR Schrotenboer et al. (2019)
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Chapter 4

Online Order Batching Problem with a
Single Picker

The Online Order Batching Problem with a Single Picker is a variant of the Order Batching
Problem, where the arrival of products to the warehouse is dynamic and there is only one
picker in the warehouse. As the result of the research performed in this Doctoral Thesis, two
articles have been published for this variant of the problem, which are presented next. Then,
for each publication, we compile the bibliographic details of the publication (complete reference,
journal, ranking index, category, and ranking score) and, finally, a copy of the published article
is attached.

The article titled “New VNS Variants for the Online Order Batching Problem” [89] compiles
the first research carried out in this Doctoral Thesis and presents the preliminary work carried
out to solve the Online Order Batching Problem with a Single Picker. The objective function
studied in this paper was the minimization of the maximum time that an order remains in
the system. In this case, the arrival of orders occurs in a period of 4 hours. The problem was
solved for a single picker in a rectangular warehouse of a single block, with five parallel aisles
and a total of 90 stored products. The set of instances used for the problem was a reduced
set of 16 instances widely used in the literature [4]. As we have already seen in the previous
sections, to solve this problem, several associated subtasks have to be solved. In this work,
we introduced a new batching algorithm, based on the Basic Variable Neighborhood Search
(BVNS) methodology [197]. The proposal was compared to three well-known algorithms widely
used in the literature for the batching task: First-Come-First-Serve (FCFS), Seed [212, 239],
and Saving Clarke & Wright [42]. In all cases, the routing was addressed with the S-Shape
heuristic algorithm. The results obtained were very promising since, for the same execution
time, we obtained an improvement of more than 30% over the compared methods. This article
is attached in Section 4.1.

The article “GRASP with Variable Neighborhood Descent for the Online Order Batching
Problem” [92] was the second work carried out in this Doctoral Thesis and can be considered as
an evolution of the previous work, to solve the Online Order Batching Problem with a single
picker. In this work, we studied the minimization of the total completion time of all orders,
but also reported the maximum turnover time. The arrival of orders occurs in a period of 4
hours, and the problem was solved for a rectangular warehouse of a single block and a single
picker. We used two different sets of instances widely used in the literature [4, 125]. These sets
of instances include five different warehouse configurations with a variant number of parallel
aisles. In addition, we presented a mathematical model to define the problem addressed in its
offline version. Then, we evaluated the maximum execution time of the model for different
number of orders for some instances, in order to analyze the intractability of the problem. Then,
we tackled the batching task with a method that combined the Greedy Randomized Adaptive
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Search Procedure (GRASP) [76] to construct initial solutions, with a variable Neighborhood
Descent (VND) [197] approach to improve the solutions. The implementation of GRASP used a
greedy heuristic based on the complete capacity of the batch. The VND included the use of
three different neighborhoods. The routing task was handled with an S-shape algorithm. The
approach proposed was compared to the best previous approach in the state of the art, the
Iterated Local Search (ILS) introduced in [125]. The combination of GRASP+VND resulted in
an improvement of more than 2.5% for minimizing the completion time and an improvement
of more than 6.5% for minimizing the maximum turnover time, with respect to the previous
algorithm in the state of the art. This article is attached in Section 4.2.
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Abstract. The Order Batching Problem (OBP) can be considered a
family of optimization problems related to the retrieval of goods in a
warehouse. The original and most extended version of the problem con-
sists in minimizing the total time needed to collect a group of orders.
However, this version has been evolved with many other variants, where
the restrictions and/or the objective function might change. In this
paper, we deal with the Online Order Batching Problem (OOBP) version,
which introduces the novelty to the OBP of considering orders that have
arrived to the warehouse once the retrieval of previous orders has started.
This family of problems has been deeply studied by the heuristic com-
munity in the past. Notice, that solving any variant of the OBP include
two important activities: grouping the orders into batches (batching) and
determining the route to follow by a picker to retrieve the items within
the same batch (routing). We review the most outstanding proposals in
the literature for the OOBP variant and we propose a new version of
a competitive Variable Neighborhood Search (VNS) algorithm to tackle
the problem.

Keywords: Online Order Batching Problem · Batching ·
Variable Neighborhood Search

1 Introduction

The storage of goods in warehouses has associated many tasks such as receiving
the goods, storing them or retrieving the products from the shelves of the ware-
house, when a new order arrives. Many of those tasks can be enunciated as opti-
mization problems with the aim of saving time, space or work load, among others.
The Order Batching Problem (OBP) can be considered a family of optimization
problems, more than a single problem, related to the operation of retrieval of
goods in a warehouse, when the policy of retrieval is based on order batching.

This work has been partially founded by Ministerio de Economı́a y Competitividad
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c© Springer Nature Switzerland AG 2019
A. Sifaleras et al. (Eds.): ICVNS 2018, LNCS 11328, pp. 89–100, 2019.
https://doi.org/10.1007/978-3-030-15843-9_8



90 S. Gil-Borrás et al.

The order batching, then, consist in grouping a set of orders together (conform-
ing a batch) and assigning the batch to a person (the picker) who retrieves all
the orders within the same batch on a single tour through the warehouse. This
policy has been proved to be very effective in contrast with the traditional strict-
order picking policy, where each order that arrives to the warehouse is assigned
to a picker, who collects exclusively the items from that order on each tour.
Some authors point out that it is possible to reduce the travel time up to 35%
if the routes followed by the pickers are designed adequately [4]. Additionally, if
the batching and routing are considered simultaneously, the save of time can be
even larger.

The original and most extended version of the problem, usually known as
Order Batching Problem (OBP) consists in minimizing the total time needed
to collect a group of orders. However, this version has been evolved with many
other variants, where the restrictions and/or the objective function might change.
Notice, that solving any variant of the OBP might include two important activi-
ties: grouping the orders into batches (batching), and finding the route to follow
by the picker to collect the items within the same batch (routing). Addition-
ally, some variants of the OBP also consider a third activity: determining the
next batch to be processed (sequencing) once the batches have already been
conformed.

In this paper, we deal with the Online Order Batching Problem (OOBP),
which is a version of the OBP that introduces the novelty of considering orders
that have arrived to the warehouse once the process of retrieval of previous
orders has already started. The objective function of the problem is to minimize
the maximum time that an order remains in the system. This is usually known
in the related literature as the turnover time. To tackle this problem we propose
the use of the methodology Variable Neighborhood Search (VNS), particularly,
the Basic Variable Neighborhood Search (BVNS) variant and we compare our
approach with the classical approaches in the literature for other variants of the
OBP.

The rest of the paper is organized as follows: in Sect. 2 we review the most
outstanding proposals for the problem in the literature, and we describe in detail
the methods that will be used in our experiments as a comparative framework. In
Sect. 3 we propose a new version of a competitive Variable Neighborhood Search
algorithm to tackle the problem. In Sect. 4 we perform the experiments in order
to compare our proposal with the traditional methods for the OBP family of
problems. Finally, in Sect. 5 we present our conclusions future research lines.

2 State of the Art

The Order Batching family of problems has been deeply studied by the heuris-
tic community in the past. There are remarkable references based on different
metaheuristics for most of the best-known variants of problems within the OBP
literature: the classical OBP [1,11,15,16]; the Min-max OBP [7,13]; the OBSP
[2,14]; and also to the OOBP tackled in this paper [10,20,22].
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However, the first remarkable methods for most of the previous problems
are not the metaheuristic approaches but the simpler heuristic procedures based
on greedy functions [12]. Those methods were constructive procedures based on
simple ideas and have been used as a baseline in many comparisons.

As far as we know, those methods have not been either used or compared
in the context of the OOBP. Next, we present a brief description of the most
remarkable ones that will be used later in the Sect. 4. Particularly, we consider:
the First Come First Served algorithm (Sect. 2.1); the Seed algorithm (Sect. 2.2);
and, the Clarke & Wright Savings algorithm (Sect. 2.3).

2.1 First Come First Served Algorithm

The First Come First Served (FCFS) algorithm is probably the simplest heuristic
algorithm designed for the OBP. The algorithm receives a list of orders and
returns a list of batches. First, the received list of orders is sorted according
to the arrival time of each order, in such a way that the oldest order comes
first. Then the list of orders is traversed one by one, assigning the next order
to be processed to the next available batch. If the order fits in the current
batch it is inserted in that batch. Otherwise, a new batch is created with that
order, becoming this new batch the current one which will be target of the next
considered order. This process is repeated with all the orders until the end of
the list. Once all the orders have a batch assigned, the set of batches generated
in the algorithm is returned.

2.2 Seed Algorithm

The algorithms known as “seed algorithms” are a group of methods based on a
common strategy: a “seed” (in this case an order) is first chosen and assigned to
a batch. Then, other available orders might be added to the same batch, as far as
the capacity constraint is not violated. Therefore, for each “seed method” it will
be necessary to determine how to choose the seed order, and how to choose the
additional orders suitable to be assigned to a particular batch with an assigned
seed. In this case, the strategy used to select a “seed order” considers the idea
introduced in [18] consisting in selecting the available order with the largest
number of products. Then, once the seed has been chosen, the strategy used
to aggregate orders to the same batch is the one introduced in [21] consisting
in selecting the order with lowest absolute difference of its Center Of Gravity
(COG) to the seed. Where the COG of an order is defined as the average of
the aisle numbers where the items of that order are located. The considered
procedure applies a “cumulative mode” (i.e., the seed is renewed each time a
new batch is created). The method, then, consist in selecting one seed order,
assign it to a batch and trying to complete the batch following the criteria of the
difference of COG. Once the batch is full, the method selects a new seed and so
on until all the orders have been assigned to a batch.
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2.3 Clark & Wright Savings Algorithm

The “Clark & Wright savings” algorithm is inspired in the idea presented in [3]
in the context of vehicles routing. It is based on computing the save of time
derived from collecting two orders separately versus collecting them together
in the same route. The algorithm creates a square matrix with a size equals
to the number of orders. Then, each row/column corresponds with one order.
The crossing position of a column and a row will store the save/loss of time
of collecting the two orders related, separately or together. Additionally, the
diagonal of the matrix would store the time of collecting each order in isolation.
Notice that this is a symmetric matrix, therefore only one half of the matrix
(above or under the diagonal) is needed. For instance, the saving of collecting
orders 1 and 2 would be computed as follows: saving = t1 + t2 − t1,2 where
t1 and t2 represent the time needed to collect orders 1 and 2 separately, and
t1,2 the time needed to collect them together. Then all the pairs of orders are
stored in a list sorted depending on their savings, in a decreasing way. Next, the
list is scanned trying first to allocate together the pairs which produce a largest
saving. Notice that several situations might happen: if both orders have not been
previously allocated in a batch and they fit together, they are assigned to the
same batch; if one of the batches have already been allocated, then the other
one will be assigned to the same batch if it fits. Otherwise the procedure will
continue with the next pair; finally, if both orders involved have previously been
placed in other batches the procedure will jump again to the following pair. We
refer the reader to [4] for further details.

3 Algorithmic Proposal

In this section we present our algorithmic proposal to tackle the OOBP. In
particular, we propose the use of the methodology Variable Neighborhood Search
(VNS) [17]. VNS was originally proposed by Mladenović and Hansen in 1997 as
a revolutionary idea to escape from a local optimum, based on the concept of
change of the neighborhood structure. Then, the general idea behind the method
is to reach local optimum by using a local search procedure and then, change
the neighborhood structure (once the current solution found can not be further
improved) in order to give the local search the opportunity of looking for a new
local optimum in the new neighborhood.

There original idea has been notably evolved with many variants. Probably,
the most remarkable ones are: Reduced VNS (RVNS) which perform a stochas-
tic search within a neighborhood; Variable Neighborhood Descent (VND) which
perform a deterministic search within the considered neighborhoods; Basic VNS
(BVNS) which combines stochastic and deterministic exploration in one neigh-
borhood; and General VNS (GVNS) which combines stochastic and determin-
istic exploration within a set of neighborhoods. Other well-known approaches
are: Skewed VNS (SVNS); and Variable Neighborhood Decomposition Search
(VNDS). For a detailed description and tutorials of all those methods we refer
the reader to [8,9,17]. Other recent variants include: Variable Formulation Search
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(VFS) [19], Parallel Variable Neighborhood Search [6,13] and Multi-Objective
Variable Neighborhood Search [5].

In this paper we make use of the BVNS algorithm. In Algorithm1 we present
a pseudocode of this method. It receives three parameters to start the search:
(i) an initial solution S generated with an external method; (ii) a value kmax

which determines the maximum number of neighborhoods to explore; and (iii)
the maximum allowed running time (tmax). The method explores the neighbor-
hood of the current solution trying to obtain a better one. In order to do that,
BVNS has three stages that run consecutively. The first stage is the perturbation
of the current solution, performed in order to escape from the current local opti-
mum, reaching a solution in a new neighborhood. As a second stage the method
make use of a local search procedure, which is able to find a local optimum
within the current neighborhood. The third stage, represented by the procedure
Neighborhoodchange, determines if it is necessary to change the neighborhood
to be explored, depending on whether the solution provided to the local search
has been improved or not. This method updates the value of the variable k, which
indicates the number of perturbations to be performed to the current solution
in the Shake procedure. The value k = 1 indicates that an improvement has
been performed, otherwise the value of k is incremented in a predefined amount
(typically 1 unit).

Algorithm 1. BVNS(S, kmax, tmax)
1: repeat
2: k ← 1
3: while k ≤ kmax do
4: S′ ← Shake(S, k)
5: S′′ ← LocalSearch(S′)
6: k ← NeighborhoodChange(S, S′′, k)
7: end while
8: until t < tmax

9: return S

A more detailed description of the method used to generate the initial solu-
tion can be found in the Sect. 3.1. Similarly, the description of the Shake and
LocalSearch procedures are presented, respectively, in Sect. 3.2 and Sect. 3.3.
Notice that we do not provide a detailed description of the NeighborhoodChange
procedure since it follows an standard implementation.

The algorithm is executed repeatedly until the maximum allowed time is
reached. In each iteration, the number of perturbations performed to the solu-
tion, before the local search, is indicated by the value of the variable k. The
variable k starts at 1, indicating that the first neighborhood to be explored is
the closer one. This value is increased every time that the local search does not
improve the current solution, until it reaches the value of kmax. Then, the vari-
able k is reset to its initial value 1 and the procedure is repeated again until the
maximum allowed time is reached.
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3.1 Constructive Procedure

We have used a random algorithm as a constructive method in order to provide
an initial solution to the BVNS algorithm. The algorithm receives a list of orders
as an input parameter. The list of orders is randomly scanned. In each iteration,
an order is randomly selected and it is placed in the next available batch. When
the selected order no longer fits in the current batch, a new batch is created with
this order. Then, the next order will be placed in this new batch and the process
is repeated until the order list is fully scanned and all the orders have a batch
assigned. Once the process is finished, the procedure returns a list of batches as
a solution. In Algorithm 2 we present a pseudocode of this procedure.

Algorithm 2. Constructive(Lorders)
1: S ← NewBatchList()
2: B ← NewBatch()
3: repeat
4: o ← ChooseRandomOrder(Lorders)
5: Lorders ← Lorders \ o
6: if Fits(B, o) then
7: Add(B, o)
8: else
9: Add(S,B)

10: B ← NewBatch()
11: Add(B, o)
12: end if
13: until Lorders = ∅
14: return S

3.2 Shake Procedure

The perturbation procedure chosen for this problem consist in exchanging two
orders from different batches. The procedure receives as input parameters an ini-
tial solution S and the parameter k that indicates the number of times the pertur-
bation will occur. In each perturbation two random batches are selected. Then,
two orders also selected at random within the selected batches are exchanged.
Notice that the exchange must produce a feasible solution (i.e., it does not exceed
the maximum capacity of each batch), otherwise it should be repeated. This pro-
cess will be repeated as many times as the parameter k indicates. At the end
of this procedure, a solution in a different neighborhood will be returned. In
Algorithm 3 we present a pseudocode of this procedure.

3.3 Local Search Procedure

The local search procedure proposed to be used within the BVNS, as well as
the shake procedure, is based in the one-to-one exchange move. This proce-
dure receives an initial solution S, as an input parameter, and it returns the
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Algorithm 3. Shake(S, k)
1: repeat
2: repeat
3: Bi ← ChooseRandomBatch(S)
4: Bj ← ChooseRandomBatch(S)
5: until Bi �= Bj

6: oi ← ChooseRandomOrder(Bi)
7: oj ← ChooseRandomOrder(Bj)
8: if Fits(Bi \ oi, oj) and Fits(Bj \ oj , oi) then
9: Bi ← Bi \ oi

10: Add(Bi, oj)
11: Bj ← Bj \ oj
12: Add(Bj , oi)
13: k ← k − 1
14: end if
15: until k = 0
16: return S

local optimum within the neighborhood of the solution. The procedure explores
every order o in all the batches trying to find a feasible interchange with other
order that improves the current solution. If an improve move is performed, then
the procedure starts again from the new solution found, performing another
whole iteration, otherwise it carries on until all candidate interchanges have
been explored without improvement and returns the best solution found. In
Algorithm 4 we present the pseudocode of this procedure.

Algorithm 4. LocalSearch(S)
1: repeat
2: improved ← false
3: for all oi ∈ S do
4: for all oj ∈ S do
5: S′ ← Exchange(S, oi, oj)
6: if f(S′) < f(S) then
7: S ← S′

8: improved ← true
9: break

10: end if
11: end for
12: end for
13: until improved = false
14: return S
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4 Results

We compare our proposal with the classical greedy constructive procedures pre-
sented in Sect. 2. The experiments were run an Intel (R) Core (TM) 2 Quad
CPU Q6600 2.4 Ghz machine, with 4 GB DDR2 RAM memory. The operating
system used was Ubuntu 18.04.1 64 bit LTS, and all the codes were developed
in Java 8.

4.1 Instances

An instance to test any algorithm for the OOBP needs to consider the following
aspects: the warehouse layout; the orders; and the distribution followed by the
arrival of the orders.

We have selected and adapted a set of instances previously referred in the
literature for the OBP to test our proposal. In particular, we have selected
a subgroup of instances from those reported in [1] which have been reference
instances in the OBP literature in the last few years. This data set contains
instances related to four real warehouses of rectangular shape. Each warehouse
has two transversal aisles, one at the front and one at the back of the warehouse
and a variable number of parallel aisles. In each side of the parallel aisles there
are products stored. Every warehouse has only one depot located at the front-
cross aisle either at the left corner or at the center of the aisle. In the Fig. 1
we present an example of the layout of the considered warehouse. Particularly,
this example warehouse has 2 crossing aisles and 5 parallel aisles, with 9 picking
positions in each side of the parallel aisles, totalizing 90 picking positions. In this
case, the depot is placed in the center of the front cross aisle.

The number of orders per instance varies among the following values [50, 100,
150, 200, 250]. The distribution of the products in the warehouse follows either an
ABC distribution or a random one. We have selected 16 representative instances
from the Warehouse 1 for our comparison. In this subset, we have selected 4
different instances for each number of orders [100, 150, 200, 250]. Notice that we
have avoided the use of the smallest type of instances (i.e., the ones composed
by 50 orders) since a small number of orders do not create enough congestion in
the delivery of orders and, therefore, the instances become trivial for the OOBP.

Finally, we have adapted the instances by determining distribution of the
delivery instant of the orders to the warehouse. We have divided each set of
orders into two groups: offline/online. The first group is formed by 15 orders
which will be already available at the beginning of execution. The rest of the
orders will arrive to the warehouse following an uniform distribution along the
time horizon of 4 h.

4.2 Comparison with the State of the Art

The BVNS algorithm has been successfully compared with three different algo-
rithms in the state of the art. Particularly, we have selected three classical and
well-known greedy constructive procedures, widely used in the OBP literature:
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Fig. 1. Warehouse layout.

the First Come First Served (FCFS) algorithm, a variant of the Seed algorithm,
and finally the Savings C&W algorithm. These three algorithms were described
in the Sect. 2.

Before to perform the comparison of the BVNS with the algorithms in the
state of the art, we have carried on some preliminary experiments, to empirically
adjust the value of the parameter kmax of the BVNS. In this case, we have
selected kmax = 15 for the final configuration of the BVNS. Also, the value of
tmax was set to 10 s. Therefore, every 10 s, the algorithm starts again from a
new solution constructed with the procedure described in Sect. 3.1. Notice, that
every construction considers all the orders already arrived to the warehouse and
not collected yet.

In Table 1 we present the average value of the objective function (O.F.), which
in this case is, for each instance, the maximum time that an order remains
in the system before being served; the average deviation with respect to the
best solution found in the experiment (Dev.(%)); the number of best solutions
found in the experiment (#Best); and the running time of the CPU in seconds
(CPUt(s)). Notice, that for each instance, the minimum running time is four
hours. These four hours is the time that the order dispenser will use to deliver
all the orders in the instance to the system. The final execution time will depend
on the time that each algorithm takes to distribute those orders into batches and
on the quality of the solution.

As it is shown in Table 1 BVNS is the best algorithm of the comparison
since it was able to find the largest number of best solutions found (15 out of
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Table 1. Average results of the comparison with the state-of-the-art algorithms.

O.F. Dev.(%) #Best CPUt(s)

BVNS 3682 0.37% 15 17508

FCFS 5897 55.36% 0 19717

Savings C&W 10621 187.70% 0 24353

Seed 5081 38.45% 1 18232

16 instances) and the smallest deviation of the compared algorithms, in shorter
running times. In Table 2 we present the detailed results per instance.

Table 2. Results per instance of the compared algorithms.

BVNS FCFS Savings C&W Seed

O.F. Dev CPU O.F. Dev CPU O.F. Dev CPU O.F. Dev CPU

(s) (%) t(s) (s) (%) t(s) (s) (%) t(s) (s) (%) t(s)

100 000 1491 0.00% 16196 1856 24.50% 16149 2399 60.94% 16522 1974 32.44% 15989

100 030 1522 0.00% 15430 1924 26.46% 15416 2276 49.54% 15416 1847 21.39% 15416

100 060 1771 0.00% 16103 1927 8.78% 15857 2841 60.39% 16055 2218 25.23% 15996

100 090 1371 0.00% 15498 1492 8.84% 15478 1945 41.87% 15597 2008 46.41% 15484

150 000 2602 0.00% 15551 4461 71.41% 17565 10843 316.67% 24491 3802 46.11% 16163

150 030 1181 0.00% 14619 1492 26.36% 14512 2263 91.60% 14916 1311 11.01% 14584

150 060 3078 0.00% 16209 5413 75.89% 18829 11488 273.28% 24984 4074 32.38% 16524

150 090 1068 0.00% 14366 1522 42.47% 14323 1432 34.10% 14285 1150 7.67% 14416

200 000 7135 0.00% 21409 10871 52.36% 25490 20998 194.30% 35617 9679 35.65% 23344

200 030 1255 5.90% 15480 1497 26.33% 15981 4624 290.19% 19136 1185 0.00% 15334

200 060 5400 0.00% 19888 8926 65.29% 23584 19491 260.92% 34003 7975 47.68% 21259

200 090 1498 0.00% 15445 2709 80.85% 17148 6829 355.82% 21218 2350 56.85% 15305

250 000 12202 0.00% 25727 19750 61.86% 33437 28913 136.96% 42601 15657 28.32% 28479

250 030 2446 0.00% 15821 5629 130.14% 19315 11356 364.31% 25067 4710 92.57% 17018

250 060 12028 0.00% 25840 18201 51.33% 32017 30147 150.64% 43962 15551 29.29% 28299

250 090 2869 0.00% 16542 6683 132.97% 20375 12096 321.65% 25784 5801 102.22% 18107

5 Conclusions

In this paper we deal with the Online Order Batching Problem, as a variant of
the well-known family of problems related to the Order Batching. This variant
considers that there are orders which arrive to the warehouse once the retrieving
process has already started. Those orders are immediately processed and intro-
duced in a batch in order to be collected. The problem looks for minimizing the
maximum time that an order remains in the system before being served.

To tackle this problem we have proposed several heuristics within the Basic
Variable Neighborhood Search framework. Particularly, we propose to start the
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search with a random solution and then we define a neighborhood, based on
interchange moves, explored by a local search procedure which follows a first
improvement strategy. The proposed method has been compared successfully
with classical greedy methods in the state of the art, previously used for other
variants of the OBP.

In a future research we propose the extension of our algorithm by defining
new neighborhoods to be combined in a Variable Neighborhood Descent or in a
General Variable Neighborhood Search procedure. Additionally, we also propose
to extend the comparison performed, by considering not only the classical greedy
constructive methods in the literature, but also the latest metaheuristic-based
methods.
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9. Hansen, P., Mladenović, N., Moreno-Pérez, J.A.: Variable neighbourhood search:
methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)

10. Henn, S.: Algorithms for on-line order batching in an order picking warehouse.
Comput. Oper. Res. 39(11), 2549–2563 (2012)

11. Henn, S., Koch, S., Doerner, K.F., Strauss, C., Wäscher, G.: Metaheuristics for the
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Abstract
The Online Order Batching Problem (OOBP) is a variant of the well-known Order Batching
Problem (OBP). As in the OBP, the goal of this problem is to collect all the orders that
arrive at a warehouse, following an order batching picking policy, while minimizing a partic-
ular objective function. Therefore, orders are grouped in batches, of a maximum predefined
capacity, before being collected. Each batch is assigned to a single picker, who collects all the
orders within the batch in a single route. Unlike the OBP, this variant presents the peculiarity
that the orders considered in each instance are not fully available in the warehouse at the
beginning of the day, but they can arrive at the system once the picking process has already
begun. Then, batches have to be dynamically updated and, as a consequence, routes must
too. In this paper, the maximum turnover time (maximum time that an order remains in the
warehouse) and the maximum completion time (total collecting time of all orders received
in the warehouse) are minimized. To that aim, we propose an algorithm based in the com-
bination of a Greedy Randomized Adaptive Search Procedure and a Variable Neighborhood
Descent. The best variant of our method has been tested over a large set of instances and it
has been favorably compared with the best previous approach in the state of the art.

Keywords Warehouse management · Online order batching problem · Order batching ·
Turnover time · Heuristics

1 Introduction

The picking of items in a warehouse, as a part of the supply chain management, follows a
picking policy which determines how the picking of items is performed in the warehouse.
It is possible to find different picking policies in the literature such as: single-order picking,
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batching and sort-after-picking, single-order picking with zoning, batching with zoning,
among others. Order Batching can be considered as a family of picking policies which are
based on grouping the orders received in the warehouse into batches, prior to start the picking
process. Once the batches have been conformed, all the items within the orders of the same
batch are picked together in the same picking route. There are many optimization problems
related to the process of picking items in a warehouse when the picking policy is order
batching.

Within this family of problems, the most classical version is usually referred to as Order
Batching Problem (OBP) [44], which consists of minimizing the total time needed to collect
a group of orders received in a warehouse. This version has raised a relevant interest in
the scientific community. The OBP has been proved to be NP-hard for general instances
[12]. Nonetheless, it is solvable in polynomial time if each batch does not contain more
than two orders [12]. Unfortunately, real warehouse instances does not usually fall into this
category. Consequently, it has been heuristically approached in the last years by using both,
heuristics andmetaheuristics. The First-Come First-Served (FCFS) strategymight be the first
heuristic approach implemented in warehouses to assign orders to batches. This strategy has
been widely used due to its simplicity. Other important heuristic methods are seed methods
[13,22,32] and saving methods [40]. In [4] it is possible to find a survey of those methods
where the authors proposed a classification.

More recently, it is also possible to find metaheuristic-based approaches in the liter-
ature. The first metaheuristic algorithm applied to the problem was described in [23],
where a Genetic Algorithm is introduced. Later, in [1], an algorithm based on the Vari-
able Neighborhood Search methodology is proposed; specifically, the authors considered
several neighborhoods in a Variable Neighborhood Descent (VND) scheme. Henn et al. [19]
proposed an Iterated Local Search and a Rank-Based Ant System algorithms and in [21]
Henn improved previous results by introducing two additional algorithms: Tabu Search and
Attribute-Based Hill Climber. In [30], Oncan proposed an Iterated Local Search algorithm
with a Tabu Thresholding method as the local search procedure. As far as we know, the latest
proposal and the current state of the art for the problem, was made in [26] where the authors
proposed a multi-start algorithm based on the Variable Neighborhood Search (VNS)method-
ology. In each iteration of this algorithm it starts by generating a different initial solution,
which is improved using a Basic VNS. Then a post-optimization strategy based on General
VNS is applied.

The OBP has been extended with the inclusion of different constraints or alternative
objective functions. The two more outstanding ones are: the Order Batching and Sequencing
Problem (OBSP) which introduces a constraint related to the due date of each order (see for
instance [20,25]). Also, the Min–Max Order Batching Problem (Min–Max OBP) consists
of looking for a balance in the workload of a group of pickers, when considering multiple
pickers to collect the batches. We refer the reader to [11,28] to review the state of the art of
this problem.

All the previous approaches, within the Order Batching family, can be considered as static
variants. However, the development of online e-commerce and the reduction of delivery times
guaranteed by sellers make this static approach of the OBP very restrictive and unrealistic.
In real contexts, orders are entering continuously in the system and it is necessary to modify
the initial batch allocation, to be able to attend the new orders within the window of time
committed to the client. This dynamic version of the problem is known as the Online Order
Batching Problem (OOBP). Therefore, the list of orders arrived to the warehouse is updated
online and the algorithms have to create batches and routes without having the complete
information of all the orders that need to be collected in a working day, nor the arrival time
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of future orders not yet in the warehouse. Note that a fundamental difference of this problem
compared to its static version is that the method of creating batches and routes is working
the whole day. In the static version, the system provides an initial solution that is valid for
the entire working day. In case that the order list is updated, the system must resolve a new
problem from the beginning with the current set of orders. In the dynamic approach presented
in this paper, the system is working continuously and every time a new order enters in the
system, it is incorporated into the list of orders and considered immediately for obtaining
efficient solutions.

As it is the case of the OBP, in the online version it is also possible to find different
variants of the problem. As far as we know, the first contribution related to the OOBP can be
traced batch to 1997, when a variant of the of the OOBP with multiple pickers was tackled
in [44]. In this paper, the objective function consists of minimizing the turnover time. The
authors proposed a simple FCFS method as a batching strategy and a Traversal (S-Shape)
routing algorithm to determine the route for the pickers. Later, in 2007 [45] the OOBP was
studied for multiple-block warehouses. In this case, the objective function tackled minimizes
the average customer order throughput time, which considers the time dedicated to three
of the main activities involved in the process of the orders (batching, picking, and sorting).
Furthermore, the authors of this paper studied the influence of several factors of the problem
in the determination of the optimal solution, such as the batch size or the allocation of the
workers. Also, they compared different strategies for sorting the items within the same batch,
such as Sort-While-Pick and the Pick-And-Sort. In 2011, Rubrico et al. [41] tackled the
Online Rescheduling Problem with multiple pickers. They proposed two heuristic methods
based on the SteepestDescent Insertion strategy, and on theMultistageRescheduling strategy.
Both combined with the S-Shape routing algorithm. In this case, the authors minimized the
maximum total travel distance traversed by each picker. A combination of the study of the
influence of multiple blocks and multiple pickers is tackled in [2]. The authors, studied the
time window (Fixed Time Window vs Variable Time Window) which determine whether to
wait for new orders or to try to sort again the orders into batches. This time, S-Shape and
Largest Gap routing algorithms were compared, and the objective function is to minimize the
maximum total travel distance traversed by each picker. Other recent variants of the problem
tackles theOOBP integratedwith the scheduling of the delivery, trying tominimize the service
time of an order [47]. Later, in [46] the same problem was tackled, but considering multiple
pickers. This time, the workload of the pickers is also studied. In [48], new constraints are
introduced in the same problem. This time the authors considered multiple delivery zones
and a capacity limit in the vehicle used to make the delivery.

The variant of the OOBP studied in this paper was first tackled in [18]. In this case the
authors considered a single-block warehouse and only one picker. To tackle the problem,
they proposed a heuristic algorithm based on Iterated Local Search (ILS) to minimize the
maximum completion time of the customer orders, which arrive to the systemwithin a certain
time period. However, other objective functions, such as the maximum and the average time
that an order remains in the system, were also reported. The proposed method was compared
with a classical FCFS algorithm and with a Clarke and Wright method. This variant of the
problemwas also tackled later in [34], where the authors proposed a variant of thewell-known
Estimation of Distribution Algorithm (EDA) to tackle the problem. This time, the authors
reported the average distance traversed by the picker as objective function. However, they
did not compare their proposal with the latest algorithm in the state of the art for the problem
[18], but with a previous version from the same authors based on Tabu Search methodology
proposed in [21] and originally designed for the static version of the problem. Additionally,
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the proposed EDA was not able to improve the results by the Tabu Search. Again, these
authors used the S-Shape method as a routing strategy.

It is well documented that order picking operations are one of the most important and
costly processes in a warehouse [3,7]. Moreover, if the two decisions concerning the order
picking (i.e., batching and routing) are simultaneously considered, the associated benefits
can be substantially increased. According to [6], it is possible to reduce the travel time
up to 35%, simply by properly designing the routes of the order pickers. Therefore, a key
element that strongly affects the performance of these algorithms is the sequence used by
each picker to retrieve the items in each batch. This problem classifies as a Steiner Traveling
Salesman Problem (see [5]) embedded in a special kind metric space with properties that can
be exploited to develop powerful heuristics. Ratliff andRosenthal [37] proposed a polynomial
optimal procedure based on dynamic programming for routing in a rectangular warehouse.
The procedure is computationally efficient for warehouses with no cross aisles; however, the
efficiency decreases when the warehouse has cross aisles and, in some cases, the proposed
routes seems to be illogical to the pickers who, as a result, deviate their routes from the
specified ones [12]. Alternatively, different routing heuristics have been proposed in the
literature (see [15,35,39]). Petersen in [35] carried out a number of numerical experiments
to compare six routing methods, concluding that composite [35,36] and largest gap were the
best options among the studied methods. Recent approaches [26] empirically found that the
Combined method, originally proposed in [38] was the strategy which performed better in
single-block rectangular-shaped warehouses.

In this paper, we propose a novel algorithm to tackle the online order batching problem.
Particularly, our proposal is based on two well-known metaheuristics: Greedy Randomized
Adaptive Search Procedure (GRASP) [10] and Variable Neighborhood Descent [29]. The
former is used as a general framework to build efficient starting points for the VND, which
is in charge of improving the solution provided by GRASP. The VND used here is a classical
basic implementation of the VNS framework. The proposed method outperforms previous
attempts in the state of the art.

The rest of the paper is organized as follows: in Sect. 2 we present the variant of the
OOBP problem tackled in detail. In Sect. 3 we introduce the different algorithms proposed
for solving the problem. Section 4 presents the main computational results obtained, when
the algorithms are applied to different warehouse layouts. Finally, the main conclusions of
the work and the outline of future research plans are collected in Sect. 5.

2 Problem definition

In this paper we tackle the online order batching problem with a single picker in a one-block
warehouse. As it was described in Sect. 1, this problem consists of collecting all the orders
made by customers which arrive to a warehouse, minimizing a predefined objective function.

An order is a list of items demanded by a customer which are stored in the warehouse.
Orders are grouped in batches of a predefined maximum capacity, before being collected.
All the orders in the same batch are collected together, by the same picker, in a single route.
In this sense, an order can not be split into more than one batch.

An important issue, in the variant tackled in this paper, is that the orders that have to be
managed in a working day, are not fully available at the beginning of the day, but they arrive
to the warehouse while pickers are working. This is why the problem is considered online.
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Fig. 1 Warehouse layout

The OOBP studied here considers only warehouses with a rectangular layout. This is,
the warehouse is composed of two cross aisles (one at the front, and one at the back) and
a variable number of parallel aisles. An example of this warehouse layout is depicted in
Fig. 1. In this example, the warehouse has five parallel aisles formed by shelves at each side
of the aisle, to store items. Particularly, each parallel aisle consist of 18 picking positions
considering the shelves at both sides of the aisle.

Pickers start and finish their routes in a specific place of the warehouse, called depot. This
depot is the place where the collected items must be handed once they have been retrieved.
The depot is always placed in the front cross aisle, either in the middle of the aisle or in the
leftmost corner.

The OOBP consist of three different tasks: batching, selecting, and routing. The batching
task consists of grouping the orders already available in the system into batches. Then, once
the batches are conformed, another algorithm has to select which, among all the conformed
batches, is going to be collected next. Finally, a route to collect the orders within the selected
batch need to be built. A picker will then start the retrieving process of all items in the batch,
following the route previously built. When the picker finishes the collection of items and
delivers them into the depot, a new batch and route is assigned to the picker to carry on
his/her work.

In this paper we consider the minimization of two different objective functions related
to the OOBP: minimizing the maximum completion time of all batches and minimizing the
maximum turnover timeof any order. These objective functions have been previously reported
in the literature, however, they are considered separately (i.e., they can not be considered in
a multi-objective optimization problem, since they are not necessary in conflict).

For a better understanding of these two objective functions, in Fig. 2 we show the life
cycle of an order oi through the timeline. Notice that, since this problem is considered online,
the timeline is not bounded. This means that orders are arriving to the system continuously
(i.e., 24h a day/7 days a week) and we just observe what happens in the system in a particular
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Fig. 2 Life cycle of an order oi through the timeline

Fig. 3 Life cycle of a batch b j through the timeline

chunk of time, in order to be able to observe the behavior of an algorithm and to compare it
with other algorithms.

In this timeline we have highlighted three important timestamps (ts) in the life cycle of
any order oi : the arrival time (ts_o_ai ), the starting time (ts_o_si ), and the completion time
(ts_o_ci ). The arrival time represents the moment in the time when the order arrives to the
warehouse. The starting time represents the moment in the time when the picker starts the
route to collect the batch that contains the order. Finally, the completion time represents the
moment in the time when the batch, that contains the order, is fully processed and the items
in the orders collected are handed in the depot. With those three moments in the time at hand,
it is also possible to define three periods of time in the life cycle of the order: the waiting
time, Twait (oi ), the service time, also known as makespan, Tservice(oi ), and the turnover
time, Tturnover (oi ). The waiting time represents the time that an order remains in the system
before being collected. It can be calculated as follows: Twait (oi ) = ts_o_si − ts_o_ai . The
service time is the time needed to collect an order once the picker has started the route. It
can be calculated as follows: Tservice(oi ) = ts_o_ci − ts_o_si . Finally, the turnover time
is the time that an order remains in the system, either waiting, or being collected. It can be
calculated as follows: Tturnover (oi ) = ts_o_ci − ts_o_ai .

It is important to highlight that, in the context of the OOBP, orders are not collected
individually, but they are collected in batches (i.e., a group of orders that are collected
together in a single route). Therefore, in Fig. 3 we represent a general schema of the life
cycle of a batch through the timeline.

In this timeline we have highlighted three important timestamps in the life cycle of any
batch b j : the assignment of a batch to the picker (ts_b_a j ), the starting time when the picker
initiates the route to collect the items in the orders assigned to the batch (ts_b_s j ), and the
completion time of the batch (ts_b_c j ), when the picker hands the items collected in the
route, into the depot. With those three moments in the time at hand, it is also possible to

123



Journal of Global Optimization (2020) 78:295–325 301

Table 1 Parameters and variables for the OBP

Parameters

n → Number of customer orders available at the system in a
given timestamp

m → Upper bound of the number of batches (a
straightforward value is m = n)

vrouting → Routing velocity: number of length units that the picker
can traverse in the warehouse per unit of time

vpick → Number of items that the picker can search and pick per
time unit

wi → Number of items of order oi for 1 ≤ i ≤ n

W → Maximun number of articles that can be included in a
batch (device capacity)

Variables

x ji →
{
1, if order oi is assigned to batch b j ,
0, otherwise

define different periods of time in the life cycle of any batch: the service time, Tservice(b j ),
the setup time (Tsetup), the routing time Trouting(b j ), and the picking time, Tpick(b j ). The
setup time represents the time that the system and the picker need to prepare the picking
cart, to receive and analyze the list of assigned orders (the batch) and to perform any other
administrative task before the route starts. It is usually considered constant for any batch,
and it is defined in the problem instance. Once the picker is ready to departure, the routing
and pick times are the times needed by the pick to traverse the aisles, looking for the items in
the orders assigned, and to extract (search and pick) any item from the shelves, respectively.
The sum of the setup, routing and pick times, is known as the service time. Notice that the
service time is the time available for the algorithms to compose a new disposition of batches,
considering only the orders that have arrived to the warehouse in a previous moment in the
time that have not been collected yet. Therefore, the service time can be calculated as follows:

Tservice(b j ) = Trouting(b j ) + Tpick(b j ) + Tsetup, ∀ j ∈ {1, . . . ,m}.
Next, we formally define the OBP based in the formulation presented in [18]. Notice that

the OOBP is equal to the OBP if we consider a particular instant in the time (i.e., it only
takes in consideration the orders already in the system, presupposing that no more orders will
arrive later). First, in Table 1, we introduce the parameters and variables needed to define
the problem correctly. Then, the objective functions and constraints which define the OBP
variants tackled in this paper are presented.

The routing time is determinedby routing algorithm.For the sakeof simplicity,we consider
a function d(b j ) that receives the orders in the batch b j and returns the traveled distance to
collect those orders. This function depends on the routing strategy that will be presented in
Sect. 3.3. Therefore, considering a velocity vrouting , the routing time is defined as follows:

Trouting(b j ) = d(b j )

vrouting
, ∀ j ∈ {1, . . . ,m}.

Considering that wi is the number of items in the order oi assigned to b j , and vpick is the
number of items that the picker is able to search and pick per unit of time, the picking time
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for a batch b j can by defined as follows:

Tpick(b j ) =
n∑

i=1

wi x ji
vpick

, ∀ j ∈ {1, . . . ,m}.

Finally, Tsetup , the setup time, is considered a parameter and it is specified in the particular
instance.

The first objective is to minimize the maximum completion time of any order and it is
given by:

min max
j∈{1,...,m}

(
ts_b_s j + Tservice(b j )

)
. (1)

It is worth mentioning that this objective is determined by the moment in the time in which
the picker delivers the last batch.

The second objective function considered in this paper is to minimize the maximum
turnover time of the received orders. The turnover time of an order oi , Tturnover (oi ), can be
calculated as follows:

Tturnover (oi ) =
m∑
j=1

(
ts_b_s j + Tservice(b j )

)
x ji − ts_o_ai , ∀ i ∈ {1, . . . , n}.

And then, the second objective function can be expressed as:

min max
i∈{1,...,n} Tturnover (oi ). (2)

Note that the value of this objective function is determined by the turnover time of the order
that remains longer in the system.

The set of feasible solutions, in both cases, is given by the following constraints:

– Constraints in (3) guarantee that each order is assigned only to one batch:

m∑
j=1

x ji = 1, ∀ i ∈ {1, . . . , n}. (3)

– Constraints in (4) guarantee that the maximum capacity of each batch is not exceeded:

n∑
i=1

wi x ji ≤ W , ∀ j ∈ {1, . . . ,m}. (4)

– Constraints in (5) guarantee that the batch b j starts to be collected, once the batch b j−1

has been collected:

ts_b_s j ≥ ts_b_s j−1 + Tservice(b j−1), ∀ j ∈ {2, . . . ,m}. (5)

– Constraints in (6) guarantee that the route for collecting a batch b j can not start before
the timestamps (moments in the time) when the orders oi assigned to that batch have
arrived to the system:

ts_b_s j ≥ ts_o_ai x ji , ∀ i ∈ {1, . . . , n}, and ∀ j ∈ {1, . . . ,m}. (6)

– Constraints in (7) and (8) state the non negativity of ts_b_s j and ts_o_si , respectively:

ts_b_s j ≥ 0, ∀ j ∈ {1, . . . ,m}. (7)

ts_o_si ≥ 0, ∀i ∈ {1, . . . , n}. (8)
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Finally, constraints in (9) state that variables x ji are binary:

x ji ∈ {0, 1}, ∀ j ∈ {1, . . . ,m} and ∀ i ∈ {1, . . . , n}. (9)

Despite of the fact that this model, proposed in [18], represents the OBP instead of the
OOBP, it helps to understand the objective of the OOBP. Additionally, this formulation is
a non-linear mixed integer programming model that can not be used to solve real instances
using a solver. This partially supports the suitability of the use of heuristic algorithms in this
context, as we propose in this paper.

It is important to remark that, in the case of the turnover time, the comparison of the
value of the objective function of two solutions presents some additional difficulties. Let us
introduce the concept of slot of time as the time between two consecutive departures of the
picker. Notice that the construction of a solution in the context of the OOBP in a particular
moment in the time consist of: i) grouping the orders available in the warehouse into batches,
and ii) determining the sequence in which those batches should be collected. Then, this
partial solution is evaluated and compared with other comparable partial solutions (i.e., those
computed in the same slot of time). When the picker is ready for a new departure, the first
batch sorted in the sequence of the best solution found during the slot of time is assigned to
the picker. The process is then repeated.

Any order newly arrived to the warehouse must wait until the partial solution under
construction is completed. Then, it can be included in the construction process of the next
partial solution (no matters if the slot of time has not finished). Additionally, once all the
orders have been assigned to a batch, the batch containing the oldest non-collected order
(i.e., the first order arrived to the warehouse among the not collected ones) is selected to be
assigned to the picker once the next slot of time starts.

3 Algorithms

In this section we describe our algorithmic proposal to tackle the OOBP. First, in Sect. 3.1
we describe the method in charge of the simulation of the general processes that happen
in the warehouse. These methods include: considering the orders provided by a dispatcher;
performing the batching of the considered orders; choosing the next batch to be collected;
determining the route to collect the batch; anddetermining the departuremoment of the picker.
Once the general schema is at hand, in Sect. 3.2 we present the algorithms proposed to tackle
the batching task. This section is divided into Sect. 3.2.1 where we introduce the Greedy
Randomized Adaptive Search Procedure [10] as the constructive method, and Sect. 3.2.2
where we present the Variable Neighborhood Descent [29] used as a local search within the
GRASP. Finally, in Sect. 3.3, we detail the routing strategy used.

3.1 General schema

The objective functions of the OOBP studied in this paper consists of either minimizing
the total time elapsed in collecting all the orders arrived to a warehouse in a predefined
time horizon, or alternatively, minimizing the turnover time. Due to the online nature of this
problem, in order to compute these objective functions, it is necessary to have a general
algorithm able to manage all the processes involved. We call this algorithm, the orchestration
method and it is presented in Algorithm 1.
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The orchestration algorithm receives two input parameters: the time horizon for the recep-
tion of orders (maxT ime) and the list of pending orders at the beginning of the process
(listOrders). Notice that this list of orders, in an online system, might refer to as the orders
arrived at night time, or the orders pending to be collected from the previous working day.
However, we consider that all the work from the previous day is already done.

The method runs while there are orders pending to be collected or the maximum allowed
time has not been reached (step 4). Then, it checks if there are new orders arrived to the system
(step 5) and updates the list of pending orders. Once this list has been updated, the batching
algorithm is run (step 6) and the new solution is compared to the best found solution until the
moment. Then, if there is a picker available and the solution contains batches not collected
yet (step 8), the most suitable batch from the best solution (best Solution) is chosen and the
routing algorithm (step 10) will construct a route to collect the batch. Then, the picker will
collect all the orders within the selected batch (step 11). Finally, the list of pending orders is
updated, by removing the orders collected (step 12). Notice that the algorithm do not await
until the picker comes back from its route but it is continuously running in order to have the
best possible solution available as soon as the picker becomes available again.

Algorithm 1 Orchestration method
1: Procedure Orchestration(maxT ime, listOrders)
2: pendingOrders ← listOrders
3: best Solution ← ∅
4: while (getTime() < maxT ime) || (pendingOrders 	= ∅) do
5: pendingOrders ← pendingOrders ∪ getNewOrders()

6: solution ← batchingAlgorithm(pendingOrders)
7: update(best Solution, solution)

8: if isPickerAvailable() then
9: batch ← selectBatchAlgorithm(best Solution)

10: route ← routingAlgorithm(batch)

11: collect(batch, route)
12: remove(pendingOrders, batch)

13: end if
14: end while

There are three remarkable methods within the orchestration procedure presented in Algo-
rithm 1. The batching algorithm (batchingAlgorithm), which conforms the batches to
be collected, is described in Sect. 3.2. The routing algorithm (routingAlgorithm), which
determines the route that a picker must follow to collect a batch, is described in Sect. 3.3.
Finally, the selection algorithm (selectBatchAlgorithm), which determines the next
batch of the solution to be assigned to an available picker. In this case, we do not dedi-
cate a whole section to the algorithm, since it follows a very simple heuristic. Particularly,
this method selects the batch which contains the oldest order in the system. This method is
commonly named as FIRST in the related literature [18].

3.2 Batching algorithm

As it was previously mentioned, the batching is one of the key procedures in the context of
the OOBP. It consists of grouping all the orders received in a warehouse in a set of batches
of a maximum predefined size with the aim of minimizing a particular objective function
(typically the distance needed to collect all the orders).
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In this paper we propose a batching algorithm based on the combination of a GRASP
procedure (presented in Sect. 3.2.1 and used as a constructive method) and a VND (presented
in Sect. 3.2.2 and used as a local search within the GRASP).

3.2.1 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure was introduced in [10] as a multi-
start method to find high-quality solutions to hard optimization problems. Each iteration
is composed of two steps: (1) construction and (2) improvement. The general schema of
GRASP is presented in Algorithm 2. The construction phase combines the greediness of a
particular greedy function and the randomization of some decisions during the construction.
The constructive procedure within GRASP (step 4) proposed in this paper is explained next.
On the other hand, the improvement phase (step 5), usually based on a local search method,
is in this case based on a metaheuristic procedure. Particularly, we have replaced the local
search with a VNDmethod, explained in detail in Sect. 3.2.2. Therefore, in each iteration, the
GRASP method constructs an efficient solution, and this solution is further improved with a
VND procedure. This GRASP schema is repeated until the method runs out of time, or the
maximum number of iterations is reached.

Algorithm 2 Greedy Randomized Adaptive Search Procedure
1: Procedure GRASP(maxT ime)
2: best Solution ← ∅
3: repeat
4: solution′ ← Constructive()

5: solution′′ ← LocalSearch(solution′)
6: best Solution ← Update(best Solution, solution′′)
7: until getTime() > maxT ime
8: return best Solution

The GRASP constructive method proposed in this paper is presented in Algorithm 3 and it
is based on two basic principles: a greedy function that selects a group of candidate items to
be added to the solution in the next iteration, and a particular randomization of the decisions
made by that function. Themethod starts from an empty solution (step 2) and in each iteration
it adds a new order to the solution. All available orders are initially inserted in the so called
Candidate List (CL) (step 3). We propose the use of a greedy function (f) based on the
weight of the orders in the CL in such a way that heaviest order is considered first (ties are
broken at random). Therefore, the GRASP constructive sorts all the orders, already in the
system but not yet assigned to a batch, in a descending way with respect to its weight. Then,
a threshold th is calculated (step 6) based on the maximum (argmaxf(CL)) and minimum
(argmin f(CL)) weight of any order in the CL , and a random value α ∈ U [0, 1] (step 4).
This threshold is used to determine the percentage of the best candidates to be included in
a new list, called Restricted Candidate List (RCL) (step 7). Finally, an order is chosen at
random from this RCL (step 8), and it is included in the partial solution being constructed
in this iteration. The chosen order is inserted in the first batch with enough available space
(step 9) and it is removed from the CL (step 10).

Notice that once a new order is added to the solution, it is necessary to determine the
batch where it will be allocated. In the first iteration, a new empty batch is created. Then,
in the following iterations, the algorithm tries to insert the selected order in this batch and
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if it does not fit in the batch, then another empty batch is created to allocate this order, and
so on. Notice that the sequence of batches used to try the insertion of the order is the same
sequence in which the batches are created.

Classical stopping criteria for the GRASP are related to a particular number of iterations
or a predefined time horizon. However, in this paper, we have run the GRASP method as
long as there is not an idle picker. This means that each time that a new batch is assigned
to a picker, the GRASP procedure is run again, but this time it does not consider any order
which is being collected (i.e., it is in the assigned batch) or it has been collected before.

It is worth mentioning that due to the online context of this problem, the CL is being
updated every time that the GRASP procedure starts again, with the latest orders arrived to
the system.

Algorithm 3 Constructive procedure
1: Procedure Constructive(listOrders)
2: solution ← ∅
3: CL ← listOrders
4: α ← getRandomValue()

5: while CL 	= ∅ do
6: th ← argmax f(CL) − α(argmax f(CL) − argmin f(CL))

7: RCL ← buildRestrictedCandidateList(th,CL)

8: order ← randomOrderSelection(RLC)

9: insertOrder(solution, order)
10: CL ← CL \ {order}
11: end while
12: return solution

3.2.2 Variable Neighborhood Descent

Variable Neighborhood Search is a metaheuristic proposed by Mladenović and Hansen in
1997 as a general method to solve hard optimization problems. The authors introduced
the idea of changing the neighborhood structure within the search in order to reach differ-
ent local optima. There are many variants of VNS. Some of the best-known are: Reduced
VNS (RVNS), Variable Neighborhood Descent (VND), Basic VNS (BVNS), General VNS
(GVNS), SkewedVNS (SVNS), andVariable NeighborhoodDecomposition Search (VNDS)
[16,17,29]. However, more recent approaches have appeared in the last few years, such as:
Variable Formulation Search (VFS) [33], Parallel Variable Neighborhood Search (PVNS)
[9,28], or Multi-Objective Variable Neighborhood Search (MO-VNS) [8].

In this paper, we propose the use of a VND procedure as a local search within the GRASP
methodology. VND was proposed in the context of Variable Neighborhood Search in [29],
as a general strategy to systematically explore a group of neighborhoods. The obtained result
of a VND procedure is a local optimum with respect to all the neighborhood structures
considered. The final order of the studied neighborhoods determines the performance of
the method. Typically, neighborhood structures are sorted from the smallest and fastest to
explore, to the largest one and slowliest to explore. However, this rule must be empirically
tested when considering a particular problem and the associated neighborhood structures.

We use a standard and basic implementation of VND, which can be considered as the
classical VND method. In Algorithm 4 we present the pseudocode of the VND procedure
proposed in this paper. Particularly, this algorithm receives an initial solution as starting point
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and it considers three different neighborhood structures (named in the pseudocode as N1,
N2, and N3) explored by a local search procedure. This local search procedure follows a
first improvement strategy. The particular neighborhoods proposed are detailed ahead. The
method will initially explore the first neighborhood (N1) in step 7 and then it will determine
if an improvement has been made (step 13) or not. If a neighborhood is not able to improve
the current solution, then the method will jump to the next available neighborhood (step 17)
until the maximum number of neighborhoods is reached (step 19). When the exploration of
a neighborhood improves the current solution, the best solution found is updated and the
method starts again from the first neighborhood (step 15).

Algorithm 4 Variable Neighborhood Descent
1: Procedure VND(solution)
2: k ← 1
3: kmax ← 3
4: best Solution ← solution
5: repeat
6: if k == 1 then
7: solution′ ← LocalSearch(best Solution, N1)
8: else if k == 2 then
9: solution′ ← LocalSearch(best Solution, N2)
10: else if k == 3 then
11: solution′ ← LocalSearch(best Solution, N3)
12: end if
13: if evaluate(solution′) < evaluate(best Solution) then
14: best Solution ← solution′
15: k = 1
16: else
17: k = k + 1
18: end if
19: until k > kmax
20: return best Solution

We propose in this paper three different neighborhood structures to tackle the OOBP.
These neighborhood structures are named Insert, Swap1, and Swap2 respectively, and
they are graphically shown in Fig. 4.

The Insert neighborhood, represented by an example in Fig. 4a, considers all possible
solutions reached by the insertion of any order in the solution into all the available batches.
In the example depicted in Fig. 4a it is represented the insertion of a diamond (originally
allocated in Batch 1) into Batch 4. We depict the configuration of the batches before and after
the Insert operation.

The Swap1 neighborhood, represented by an example in Fig. 4b, considers all possible
solutions reached by the interchange of any pair of orders in a different batch in the solution,
into all the available batches. In the example depicted in Fig. 4b it is represented the exchange
of a clock (originally allocated in Batch 1) with a photo camera (originally allocated in Batch
4). We depict the configuration of the batches before and after the Swap1 operation.

Finally, the Swap2 neighborhood, represented by an example in Fig. 4c, considers all
possible solutions reached by the exchange of every pair of two orders within the same
batch, with any single order in any other batch. In the example depicted in Fig. 4c it is
represented the exchange of a photo camera and an umbrella (originally allocated in Batch
3) with a clock (originally allocated in Batch 1). We depict the configuration of the batches
before and after the Swap2 operation.
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a Insert 1x0.

b Swap1 1x1.

c Swap2 2x1.

Fig. 4 Neighborhood structures

Notice that it is mandatory that the resulting batches do not violate the maximum capacity
restriction on any batch. Otherwise the operation is considered unfeasible and, in this case
the obtained solution after a move is not considered as part of the studied neighborhood.
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a Warehouse layout with the depot placed
in the center of the front cross aisle.

b Warehouse layout with the depot placed
in the left corner of the front cross aisle.

Fig. 5 Route examples calculated with the S-Shape strategy

3.3 Routing algorithm

The routing algorithm determines the route that a picker must follow in order to collect all
the items within the orders of the same batch. This route always starts and ends in the same
point, the depot. The depot is placed in the front cross aisle, either in the center or in the left
corner of the aisle.

In the literature there are a variety of algorithms to solve the routing problem in a ware-
house. This problem can be considered a variant of the well-known Traveling Salesman
Problem. There are heuristic, metaheuristic, and exact algorithms for solving the problem.
In our case, we use the S-Shape heuristic method introduced in [5,14] that is widely used in
the literature of the OBP and OOBP due to its simple implementation and fast performance.
Additionally, the obtained routes are easily understandable by the pickers.

Given a batch, the S-Shape method identifies those parallel aisles where there are items to
collect (at least one item). Then, each of those aisles are completely traversed from one cross
aisle (either the front or the back cross aisle) to the opposite cross aisle. The first parallel aisle
to be traversed is the leftmost aisle that contains an item to be collected. Then, the picker
will enter only in the parallel aisles that contain at least one item that need to be collected.
This process is repeated until the last aisle with items is traversed. Then, the picker returns to
the depot using the front cross aisle. Notice that if the picker has to traverse an odd number
of parallel aisles, the picker will enter in the last aisle from the frontal cross aisle. In this
case, the picker will travel up to the most distant item and then he/she will perform an U-turn
returning to the front cross aisle.

In Fig. 5we show an example of two different routes designed using the S-Shape algorithm
through a rectangularwarehouse. Particularly, in Fig. 5a it is shownan example of awarehouse
layout with the depot placed in the center of the front cross aisle. In this case, the route
determined by the S-Shape algorithm traverses 4 different aisles before coming back to the
depot. In Fig. 5b it is shown a different example of a warehouse layout where the depot is
placed in the left corner of the front cross aisle. In this case, the picker must traverse an odd
number of parallel aisles. Then, the two first parallel aisles are fully traversed and, in the last
one, the picker performs an U-turn when it reaches the last item to collect.
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4 Computational results

In this section we present the computational results obtained with the algorithms proposed
in Sect. 3. First, in Sect. 4.1 we present the instances used in the experimentation. Then,
we describe in Sect. 4.2 the configuration of the dispatcher of orders which determines the
moment in the time of the arrival of each order to the system. In Sect. 4.3 we perform a set of
preliminary experiments to adjust the parameters of the proposed methods and, additionally,
to show the merit of the different parts of the final algorithm. Finally, in Sect. 4.4 we compare
our best variant with the current state of the art of the OOBP for the tackled version of the
problem.

The experiments were run an Intel (R) Core (TM) 2 Quad CPU Q6600 2.4 Ghz machine,
with 4 GBDDR2 RAMmemory. The operating system used was Ubuntu 18.04.1 64 bit LTS,
and all the codes were developed in Java 8.

4.1 Instances

In order to test the algorithms proposed in this paper, we have selected two sets of instances
derived from the previous literature in the state of the art of the OOBP. Notice, that an instance
for theOOBP is formed by a group of parameters derived from: thewarehouse characteristics,
the list of orders, and the arrival scheduler. The warehouse is also defined by a certain group
of parameters such as: the number of aisles, the length of each aisle, the sorting policy, etc.
The list of orders indicates the products that must be collected to satisfy the demand by the
customers. Finally, the arrival scheduler determines the moment in the time when a particular
order arrives to the warehouse.

All the instances within the selected data sets present common characteristics, as far as the
warehouse shape is concerned: rectangular shape, one block with two cross aisles (one at the
front, one at the back) and a variable number of parallel aisles. This warehouse distribution
is the same previously presented in Fig 1. However, despite of the fact that all instances have
the same warehouse structure we consider different warehouse types, which differ in other
parameters such as: the number of parallel aisles, the length of the aisles, the width of the
aisles, the number of picking positions per aisle, etc. For each warehouse type, additionally,
we study different lists of orders. These lists vary in the number of orders and each order
varies in the number and composition of items.

The first data set used in the experimentation was introduced in [1] and it was originally
defined for the static version of the OBP. The summary of the characteristics of this dataset is
reported in Table 2. This dataset includes four different warehouse configurations (denoted
as W1, W2, W3, and W4). For each warehouse configuration there are lists of orders whose
size ranges from 50 to 250 orders. From the total number of instances originally proposed by
the authors (2400), a selection of instances was made in [26] in order to establish a reduced
dataset. In this paper, the authors found that using thewhole dataset did not provide significant
differences when compared to using only a reduced selection of instances. In this paper, we
have used 64 instances from the reduced data set in order to perform our experiments.

The second data set used in our experiments was originally proposed in [18]. This data set
is composed of 1600 instances. Again, a selection of instances was made in [26] in order to
have a reduced data set which can be handled in a reasonable amount of time. In this case, we
have also selected 64 diverse instances for our experiments. In Table 3 we present the main
characteristics associated to this warehouse (W5). This time, the size of the lists of orders
ranges from 40 to 100 orders.
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Table 2 Warehouse characteristics [1]

W1 W2 W3 W4

Storage policy Random/ABC

Depot position Center/corner

Order size U(1, 7) U(2, 10) U(5, 25) U(1, 36)

Item weight 1 1 1 U(1, 3)

Order picker capacity (weight) 12 24 150 80

Number of parallel aisles 4 10 25 12

Number of items per aisle 2 × 30 2 × 20 2 × 25 2 × 16

Total number of items 240 400 1250 384

Parallel aisle length (m) 50 10 50 80

Centre distance between two aisles (m) 4.3 2.4 5 15

Table 3 Warehouse
characteristics [18]

W5

Storage policy Random/ABC

Depot position Center

Order size U(5, 25)

Item weight 1

Order picker capacity (weight) 30/45/60/75

Number of parallel aisles 10

Number of items per aisle 2 × 45

Total number of items 900

Parallel aisle length (m) 45

Centre distance between two aisles (m) 5

Notice that the two datasets selected have been widely used in the context of the OBP
[4,24–28,42,43] and the OOBP [34,47,49]. Also, it is important to notice that the experiments
in the context of the OOBP are performed in real time. This means that the time horizon of
the arrival of orders is the minimum time that the algorithm needs to be run. Therefore, in
the context of the OOBP it is not possible to consider a very large number of instances nor
very long time horizons for the arrival of orders. In Table 4 we describe all the important
parameters used in our experimentation. Among others, we include the parameters related
to the arrival of orders to the warehouse. This configuration is common for the 2 data sets
considered. In brief, the time horizon for the arrival of orders has been set to 4h and the
statistical distribution of the time instants of the arrivals is determined by an exponential
distribution.

When considering the turnover time (maximum time that an order remains in the system) as
objective function, it is necessary to set a moment in the time as a reference time. This allows
the algorithm to calculate the amount of awaiting time of a particular order in the systemwith
respect to that moment in the time. Otherwise, since the algorithm is continuously exploring
new solutions, it is not possible to compare a solution with other one obtained in a previous
moment, since the reference point in the time varies. This reference time is fixed and then
updated each time that a picker receives a new batch to collect.
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Table 4 Configuration of the parameters in the experiments

Arrival period 4h

Dispatcher distribution Exponential

Velocity of the picker (LU/min) 48

Time pick by item (items/min) 6

Setup time (min) 3

Time window fit (s) 400

Initial order in queue 0

Random seed 50

Routing strategy S-shape

Start picking strategy As soon as picker is available

Batch selection strategy Batch with the oldest order

Table 5 Lambda values #Orders 40 60 80 100 150 200 250

λ 0.167 0.250 0.333 0.417 0.625 0.833 1.042

4.2 Order dispatcher

The arrival of orders to the warehouse in the context of the OOBP is distributed through a
particular time horizon. In this sense it is necessary to configure a simulation environment,
which provides the orders to the system prior to calculate the batch configuration and later
the picking route. The time horizon of the arrival of orders to the warehouse is set to 4h.

In order to simulate the arrival time for each order, we follow a Poisson point process.
Since the time horizon is set to 4h (t = 4). The number of events in the interval of length
t is a Poisson random variable X(t) with mean E[X(t)] = λ ∗ t . The λ value is selected
depending on the number of orders considered in the experiment. In this case, the λ values
chosen for our experiments are compiled in Table 5.

4.3 Preliminary experiments

In order to determine the best configuration of our algorithm and, also to test the contribution
of each part of the algorithm, we have performed a set of preliminary experiments. To that
aim, we have selected a subgroup of instances from the total datasets. Particularly, we have
selected 16 out of 128 instances to perform the preliminary experiments. These instances
have been selected in order to include in the reduced dataset the most diverse instances.

4.3.1 Determination of the best GRASP parameters

The GRASP constructive algorithm introduced in Sect. 3 has two main parameters: (i) the
value of the α parameter, and (ii) the number of constructions. As far as the value of α is
concerned, it determines the voracity in the selection of orders to be included in the Restricted
Candidate List. In this paper, we use a greedy criterion based on the weight of the orders (the
heaviest order is considered first).
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Table 6 Performance of GRASP
with different α values

0.0 0.2 0.4 0.6 0.8 1.0 Random

Dev. (%) 0.84 0.64 0.59 0.53 0.62 1.03 0.42

#Best 3 3 1 3 1 1 4

0 0,2 0,4 0,6 0,8 1
Alfa values

Dev.(%) 0,84% 0,64% 0,59% 0,53% 0,62% 1,03%

0,45%

0,55%

0,65%

0,75%

0,85%

0,95%

1,05%

1,15%

De
v.

(%
)

Fig. 6 Representation of the average deviation obtained with different α values

In the first preliminary experiment we test different values of α in order to determine the
most suitable value. In Table 6 we report the average deviation with respect to the best value
found in the experiment, and the number of best solutions found for different values of the
parameter α. Notice, that when α = 1.0 the inclusion of orders in the Restricted Candidate
List is fully random.On the other hand,whenα = 0.0, the inclusion of orders in theRestricted
Candidate List is fully greedy. The deviation obtained with the different values of α is (Alfa)
represented in Fig. 6. As it is shown in the figure, the evolution of the average deviation to
the best value found decreases until α = 0.6 and increases from this point. However, the
differences among the different values of α studied are very small. Therefore, we have also
included in the Table 6 the results obtained when α takes a different and random value in
each GRASP iteration. As it is possible to see in the table, the best solutions found in the
experiment are obtained when α is set to a random value. Notice that this experiment has
been performed by running the GRASP constructive algorithm in isolation for a time limit
of 60 s.

Next, we test the influence of the second parameter related to GRASP (i.e., number of
constructions). In this case, we are not interested in fixing the number of constructions of
the algorithm, since it will depend on the available time between the routes of the picker.
However, it is interesting to review the influence of the constructive procedure in the quality
of the initial solution.

In Table 7 we report the evolution in the deviation of the GRASP constructive method
with respect to the best value of the experiment, when considering from 10 to 10,000,000 of
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Table 7 Evolution of deviation when increasing the number of GRASP constructions

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Dev. (%) 4.66 3.22 2.60 1.82 1.07 0.56 0.00

#Best 0 0 0 0 0 1 15

CPUt (s) 0.01 0.02 0.12 0.92 9.11 90.35 900.96

Table 8 Different neighborhood orders within the VND

{N3, N1, N2} {N3, N2, N1} {N3, N2, N1} {N2, N1, N3}

Dev. (%) 0.67 1.11 0.93 1.06

#Best 4 3 4 6

CPUt (s) 14.59 8.98 10.60 12.77

constructions. Particularly, we find big differences in the improvement of the deviation from
10 to 100 constructions, but this improvement is reduced when we increase the number of
constructions. However, the time increases considerably. In order to relate this values with
the real execution of the algorithm it is important to notice that an average picking route
might last from 250 to 1200s.

4.3.2 VND neighborhoods

The VND algorithm proposed in Sect. 3 includes three different neighborhoods (see
Sect. 3.2.2), named as N1, N2, and N3. One of the key decisions with respect to the neigh-
borhoods included in a VND is determining the order in which they are placed within the
algorithm. Many researchers set the neighborhood order depending on it size (smaller neigh-
borhoods come first since they are faster to traverse). However, we have considered to place
in first position not only the smaller neighborhood (N3) but also the second smallest (N2).
With this at hand, we have reported the performance of the possible different orders of the
neighborhoods within the VND (see Table 8).

As we can see in the Table 8 the best combination of neighborhoods is N3, N1, and N2,
with an average deviation of 0.67%. However the combination with the largest number of
Best values is N2, N1, and N3. In this case, we have decided to use the combination with the
smallest deviation (N3, N1, and N2) for our final configuration.

4.3.3 Contribution of each neighborhood

A key parameter when designing a VND is checking that all the neighborhoods included
in the algorithm contribute to the process of search. In case any neighborhood do not show
improvements it should be removed and the saved time used for other tasks. To test this fact,
we have reported the number of improvements made with each neighborhood when they are
combined in the VND method. Taking in consideration the preliminary data set, we have
provided a random solution as starting point for the VND. In Table 9 we report the number
of improvements performed by the local search which traverses each neighborhood. As it is
shown in the table, all the neighborhoods produce improvements in the search. Particularly,
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Table 9 Improvements produced
by each local search within the
VND

#improvements %improvements

N1 24 35.82

N2 26 38.81

N3 17 25.37

Table 10 Comparison of the
VND with respect to the local
search

VND LS-1 LS-2 LS-3

Dev. (%) 0.12 5.42 8.34 10.21

#Best 15 1 0 0

CPUt (s) 22.89 4.03 13.83 1.13

N1 and N2 are the neighborhoods which produce the largest number of improvements (24
and 26 respectively). However, the difference with respect to N3 is not very remarkable.

4.3.4 Comparison between VND and local search procedures

A local search procedure runs until no further improvements can be made in a neighborhood
for a particular objective function, i.e., the obtained solution is a local optimum. On the other
hand, the combination of different local search procedures within a VND must provide a
local optimum with respect to all the neighborhood structures considered. Additionally, it is
expected that the quality of the solution found by a VND procedure is better than the solution
found by each local search in isolation.

In Table 10 we report the average deviation, the number of best solutions found, and the
CPU time of four different algorithms. On one hand, we have run the VND procedure starting
from a random solution, which was provided as an input parameter. This random solution
was also provided to each of the local search procedures separately. In this case, it is possible
to notice that the VND procedure is able to find a much better solution than each local search
in isolation. However, as it was expected, the CPU time of the VND is larger than the CPU
time of each local search independently.

To complement the results presented in Table 10 we present the evolution in the objective
function value over the time of each local search procedure compared to the VNDmethod. In
this experiment we have selected two representative instances from the preliminary dataset:
one small (80 orders, represented in Fig. 7a) and one large (250 orders, represented in Fig. 7b).
As it is shown in the figures, the performance of the VND is the best among all the methods
compared, for the two instances considered. However the local search procedures converge
to a local optimum faster than the VND.

4.3.5 Performance of the static exact approach in the state of the art

Our last preliminary experiment is devoted to illustrate the suitability of using heuristic
approaches in the context of the OOBP, instead of using an exact approach. To that aim we
have tested the performance of the mathematical formulation introduced in Sect. 2 over the
preliminary data set. It is important to notice that the mathematical model proposed in the
state of the art was designed for the static version of the problem (i.e., all the orders are
available at the beginning of the process). Additionally, the model is incomplete, and it can
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a Instance W5 abc2 80 46 composed of 80 orders.

b Instance W2 250 090 composed of 250 orders.

Fig. 7 Evolution of the Local Search procedures and the VND method over two particular instances

not be directly executed in a solver, since the function “d” (which calculates the distance of
a given solution) is not defined in the original paper where the model was proposed. In order
to overtake this difficulty we have used the distance formulation proposed in [31].

We run the mathematical model for each instance on Gurobi 9.0.0rc2 (win64). Since the
sizes of the instances considered are quite large for the model, we reduced the size of each
instance by selecting a reduced number of orders (choosen at random) from each instance.
We started in 5 orders per instance and increased the number of orders per instance one
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Fig. 8 Average performance of the mathematical formulation introduced in [18]

by one. As expected, the mathematical model was able to solve small-size instances to the
optimal solution. However, when reaching the instance sizes considered in this paper (larger
than 40 orders per instance) the time needed exceeded the time horizon considered.

In Fig. 8we report the nonlinear regression obtainedwhen considering the results provided
by the solver, which shows the trend in the increase of time when the size of the instance also
increases.

4.4 Final experiments

Once we have tested the different components of our algorithms, we have configured our best
variant of the GRASP+VNDmethodwith the following parameters: the number of iterations
of GRASP+VND is not predefined. The procedure is run as many times as possible between
the departure of the picker to collect a batch, and the arrival of the picker to the depot after
collecting all the items, plus the setup time. Theα value in theGRASP constructive procedure
has been set to random and it is reset in each iteration of themethod. The three neighborhoods
proposed in Sect. 3.2.2 have been included in the VND following the order: N3, N1, and N2.

The best configuration of our algorithm GRASP + VND (GR+VND in the tables) is
comparedwith the bestmethod in the state of the art, the Iterated Local Search (ILS) proposed
in [18], and denoted in the final experiments as ILS. This final comparison has been performed
over the two datasets previously presented. We report the summary of the results in Tables 11
and 12.

In Table 11 we consider the minimization of the maximum completion time as objective
function. This objective function was proposed in [18] and it returns the moment in the time
when the last processed order is completed. In other words, this objective function equals
the total time needed to collect all the orders arrived to the warehouse. The results for the
other objective function considered in this paper are reported in Table 12. In this case, the
comparison with the state of the art considers the minimization of the maximum turnover
time of an order as objective function. This is the maximum time that an order stays in the
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Table 11 Comparison with the state of the art considering the minimization of the maximum completion time
as objective function

Albareda Henn Total

GR+VND ILS [18] GR+VND ILS [18] GR+VND ILS [18]

Dev. (%) 0.10 3.38 0.11 2.41 0.11 2.90

#Best 60 4 55 11 115 15

Table 12 Comparison with the state of the art considering the minimization of the maximum turnover time
of an order as objective function

Albareda Henn Total

GR+VND ILS [18] GR+VND ILS [18] GR+VND ILS [18]

Dev. (%) 0.29 8.14 0.63 5.80 0.46 6.97

#Best 61 3 52 12 113 15

system (i.e. the difference between the arrival time to the warehouse and the time when it is
completed).

Despite of the fact that we provide both objective functions, we consider that the most
interesting one, attending to real scenarios for this problem, is the turnover time (seeTable 12).
In fact, our algorithms were only configured to minimize this objective function (not the
maximum completion time). We only report the maximum completion time for the solutions
found when minimizing the maximum turnover time. The main reason of including the
maximum completion time is for the sake of clarity, since this objective function was the
main objective function proposed in [18].

Considering the minimization of the maximum completion time reported in Table 11, we
appreciate that the GRASP+VND is the best overall method, since it achieves a 0.11% of
deviation with respect to the best values found in the experiment, while ILS achieves a 2.90%
of deviation. Additionally, the number of best solutions found by GRASP+VND (115) is
much larger than the number of best solutions found by ILS (15).

As far as the minimization of the maximum turnover time is concerned, we report the
obtained values by each algorithm in Table 12. Again, GRASP+VND appears to be the best
method. In this case, the obtained deviation (0.46%) is considerably better than the one by
ILS (6.97%). The number of best found solutions by GRASP+VND (113) is also much
larger than the number of best solutions found by ILS (15).

To complete the comparison of the results, we have carried out a test of mean difference
of the results obtained by the two methods. Even when the hypothesis of normality is not
verified, the size of the sample used (128 in total, 64 fromAlbareda and 64 fromHenn) allows
us to use the t-test for the difference of means in paired samples (note that both methods have
been tested on the same instances). The result could not be more significant: with a p-value
less than 10−10, the null hypothesis H0 : μI LS ≤ μGV can be rejected, where μI L P and
μGV are themean of the objective function (turnover or distance) by ILS andGRASP+VND,
respectively. Therefore, it can be accepted that the results proposed by the GRASP+VND
are statistically better than those provided by the ILS. We have performed these tests for
the two sets of instances (Albareda and Henn) separately, and the results are similar, with
p-values practically null in all cases.
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Fig. 9 Relative difference
between objectives ILS and
GRASP+VND
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To conclude,we have analyzed the relative improvement of theGRASP+VNDversus ILS.
Figure 9 shows the distribution of the ratio zI L P−zGV

zGV
for the two objectives and the two sets of

instances, Albareda and Henn. The two boxplots on the right show the results for the turnover
and the two on the left for the distance. For each of the objectives, the relative improvement
is shown separately for Albareda and Henn instances. Note that negative values imply that
ILS provides better results than GRASP+VND. From these boxplots, we can conclude
again that in most cases GRASP+VND provides better solutions; in those few cases where
the ILS solution is better, it does not exceed 2% improvement compared to almost 7% that
GRASP+VNDcan improve the solution. It is interesting to note thatGRASP+VNDachieves
lower improvements in Henn instances, which are precisely where the ILS was tested.

In order to facilitate future comparisons, we report the best values found in our exper-
iments, for each of the considered instances. Particularly, in Table 13 in Appendix A, we
report the results for the dataset introduced in [1], and the results for the data set introduced
in [18] in Table 14 in Appendix B. All this information, together with the set of instances
used in our experiments are available at http://grafo.etsii.urjc.es/optsicom/oobp/.

5 Conclusions

In this paper, we have tackled the online order batching problem with a single picker and in
a single-block warehouse. This problem is a variant of the well-known family of problems
commonly referred to as Order Batching Problem. It is based on the order batching picking
strategy as an efficient way of retrieving the orders arrived in a warehouse, i.e., orders are
grouped into batches before they are collected. Additionally, every batch is collected in a
single route of a picker.

The OOBP presents the difficulty that all the orders that must be retrieved are not available
at the beginning of the process, but they arrive to the warehouse at any time. For the sake of
simplicity, we have considered a time horizon of 4h for the arrival of orders, however, the
picker might need longer times to collect all the orders arrived in that time horizon.

To achieve our goals we have proposed several heuristic algorithms which are combined
within a GRASP and VND metaheuristics. Particularly, we propose a GRASP algorithm as
a general framework to tackle the problem, and we use the VND metaheuristic as a local
search procedure. The constructive phase of the GRASP is based on the weight of the orders
as a greedy criterion (i.e., the heaviest, the first). The α parameter of GRASP has been
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set to a random value on each iteration. The VND method proposed includes three different
neighborhood structures that have been empirically sorted. Finally, we have used the S-Shape
algorithm as the routing strategy to calculate the best route for collecting the orders grouped
in each batch.

It is worth mentioning that in this paper we have considered two different objective func-
tions: (i) minimize the maximum completion time; and (ii) minimize the maximum turnover
time. The former, minimizes how long it takes to collect all the orders arrived to the system.
This objective function is widely used in many papers. The latter minimizes the maximum
time that an order remains in the system. As far as we understand the problem, this objective
function represents the most realistic scenario for this variant of the OBP. However, we have
reported and compared with previous proposals in the state of the art, the values obtained for
both objective functions. The proposed algorithms improve the previous results in the state
of the art in both cases, finding improvements of more than 3% and 6%, on average, for each
objective function, respectively. The statistical tests performed corroborated in both cases
that there are significant differences among the results found.

Our findings indicated that the running time for this problem is not one of the biggest
issues, since the time horizon on a real scenario is very large. There are also many small
factors that must be taken in consideration, such as the departure time of the picker, once the
batches are ready to be collected. In a first approach, the sooner the better, however, awaiting
might result in a final improvement, since there are more chances for the arrival of new
orders to the system, that might be included in the next batch. Also, we found that the use of
several neighborhoods is a key strategy, since it is not always easy to perform moves within
the available space in the batches. We have detected that sorting the orders in a descending
weight might help to obtain batches with less wasted space. Empirical results indicate that
the fewer number of batches, the better.

It is important to highlight that when considering the total time needed to collect all
the orders as objective function, the time of collecting a particular batch does not change,
no matters the moment in the time when the route to collect this batch starts. However,
when considering the turnover time as objective function, not only the batch configuration
is important, but also the moment in the time when the picking route starts for each batch.
This is an additional difficulty of this variant of the problem. In this sense, it is necessary to
set a moment in the time as the hypothetical starting point, taken as a reference, to compare
two different solutions.

As a final observation, the online version of the OBP makes possible many situations
where a short number of orders are handled at the same time. Therefore, it could be an
interesting opportunity for designing matheuristic algorithms in the future.
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Appendix A: Results per instance (instance set Albareda [1])

Table 13 Results per instance for the dataset introduced in [1] over the two considered objective functions

Instance Objective function Instance Objective function

T (s) Turnover (s) T (s) Turnover (s)

W1_100_000 22, 308 10, 864 W3_100_000 39, 902 30, 959

W1_100_030 18, 371 6394 W3_100_030 33, 212 25, 539

W1_100_060 21, 676 9911 W3_100_060 41, 067 33, 276

W1_100_090 18, 313 6157 W3_100_090 33, 974 24, 111

W1_150_000 28, 612 18, 449 W3_150_000 54, 189 45, 495

W1_150_030 24, 386 13, 556 W3_150_030 46, 013 38, 616

W1_150_060 30, 770 18, 812 W3_150_060 58, 797 50, 833

W1_150_090 24, 101 12, 129 W3_150_090 46, 210 38, 277

W1_200_000 42, 091 29, 194 W3_200_000 72, 452 63, 494

W1_200_030 30, 810 18, 461 W3_200_030 60, 713 54, 808

W1_200_060 38, 485 27, 209 W3_200_060 79, 633 72, 394

W1_200_090 31, 405 20, 774 W3_200_090 57, 516 52, 072

W1_250_000 53, 101 40, 683 W3_250_000 93, 604 84, 912

W1_250_030 38, 490 26, 414 W3_250_030 74, 203 68, 954

W1_250_060 51, 255 40, 891 W3_250_060 99, 265 91, 559

W1_250_090 40, 606 30, 471 W3_250_090 76, 361 71, 208

W2_100_000 17, 203 6153 W4_100_000 110, 218 96, 620

W2_100_030 15, 535 2702 W4_100_030 92, 936 79, 951

W2_100_060 17, 131 4849 W4_100_060 94, 370 82, 276

W2_100_090 15, 069 2849 W4_100_090 77, 919 64, 560

W2_150_000 24, 227 13, 214 W4_150_000 155, 919 14, 1927

W2_150_030 21, 052 9595 W4_150_030 118, 893 105, 478

W2_150_060 24, 375 13, 561 W4_150_060 155, 998 141, 955

W2_150_090 21, 183 10, 110 W4_150_090 119, 539 106, 666

W2_200_000 33, 170 22, 498 W4_200_000 198, 530 186, 439

W2_200_030 26, 341 15, 274 W4_200_030 150, 094 136, 789

W2_200_060 31, 020 21, 247 W4_200_060 202, 348 188, 713

W2_200_090 26, 429 15, 433 W4_200_090 169, 074 154, 963

W2_250_000 38, 100 28, 017 W4_250_000 249, 690 236, 033

W2_250_030 33, 341 21, 956 W4_250_030 181, 508 168, 829

W2_250_060 41, 148 30, 372 W4_250_060 249, 863 235, 831

W2_250_090 34, 352 23, 382 W4_250_090 199, 738 185, 948

123



322 Journal of Global Optimization (2020) 78:295–325

Appendix B: Results per instance (instance set Henn [18])

Table 14 Results per instance for the dataset introduced in [18] over the two considered objective functions

Instance Objective function Instance Objective function

T (s) Turnover (s) T (s) Turnover (s)

W5_abc1_40_29 21, 109 9848 W5_ran1_40_29 24, 689 12, 838

W5_abc1_40_30 17, 541 5133 W5_ran1_40_30 18, 023 8715

W5_abc1_40_31 17, 831 4788 W5_ran1_40_31 18, 815 6364

W5_abc1_40_32 16, 226 4488 W5_ran1_40_32 16, 393 5982

W5_abc1_60_37 31, 794 19, 729 W5_ran1_60_37 36, 681 25, 558

W5_abc1_60_38 23, 366 10, 978 W5_ran1_60_38 26, 418 14, 984

W5_abc1_60_39 21, 061 10, 985 W5_ran1_60_39 23, 674 12, 124

W5_abc1_60_40 18, 196 8538 W5_ran1_60_40 20, 759 9480

W5_abc1_80_61 40, 745 27, 372 W5_ran1_80_61 47, 254 34, 077

W5_abc1_80_62 32, 385 20, 458 W5_ran1_80_62 37, 688 24, 958

W5_abc1_80_63 26, 083 14, 713 W5_ran1_80_63 29, 133 17, 544

W5_abc1_80_64 24, 189 12, 530 W5_ran1_80_64 27, 565 15, 419

W5_abc1_100_69 45, 613 32, 404 W5_ran1_100_69 53, 976 41, 064

W5_abc1_100_70 33, 888 21, 849 W5_ran1_100_70 39, 367 27, 710

W5_abc1_100_71 30, 081 20, 595 W5_ran1_100_71 34, 027 23, 168

W5_abc1_100_72 28, 543 17, 174 W5_ran1_100_72 31, 446 19, 298

W5_abc2_40_9 21, 729 9279 W5_ran2_40_9 24, 660 14, 619

W5_abc2_40_10 18, 170 9377 W5_ran2_40_10 21, 073 8990

W5_abc2_40_11 15, 708 4829 W5_ran2_40_11 16, 051 5874

W5_abc2_40_12 15, 129 4177 W5_ran2_40_12 16, 623 5166

W5_abc2_60_17 29, 225 17, 812 W5_ran2_60_17 34, 631 22, 110

W5_abc2_60_18 25, 303 12, 760 W5_ran2_60_18 27, 725 17, 760

W5_abc2_60_19 20, 510 8120 W5_ran2_60_19 23, 565 13, 142

W5_abc2_60_20 18, 304 8467 W5_ran2_60_20 19, 750 8963

W5_abc2_80_45 38, 013 24, 949 W5_ran2_80_45 44, 605 31, 155

W5_abc2_80_46 28, 691 16, 423 W5_ran2_80_46 32, 758 21, 503

W5_abc2_80_47 25, 956 14, 817 W5_ran2_80_47 30, 911 18, 730

W5_abc2_80_48 23, 524 13, 018 W5_ran2_80_48 26, 983 16, 964

W5_abc2_100_53 49, 363 36, 092 W5_ran2_100_53 57, 097 43, 018

W5_abc2_100_54 35, 046 24, 269 W5_ran2_100_54 40, 093 27, 849

W5_abc2_100_55 34, 670 23, 567 W5_ran2_100_55 39, 278 28, 689

W5_abc2_100_56 28, 941 18, 828 W5_ran2_100_56 32, 025 20, 591
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Chapter 5

Online Order Batching Problem with
Multiple Pickers

The Online Order Batching Problem with Multiple Pickers is a variant of the Order Batching
Problem, where the arrival of products to the warehouse is dynamic and there is more than one
picker in the warehouse. As the result of the research performed in this Doctoral Thesis, two
articles have been published for this variant of the problem, which are presented next. Then,
for each publication, we compile the bibliographic details of the publication (complete reference,
journal, ranking index, category, and ranking score) and, finally, a copy of the published article
is attached.

The article titled “Basic VNS for a Variant of the Online Batching Problem” [90] compiles
the third paper within this Doctoral Thesis and includes the preliminary work performed to solve
the Online Order Batching Problem with Multiple Pickers. The objective function studied in
this paper was the minimization of the total time needed to collect all orders in an environment
with two pickers. In this case, the arrival of orders occurs in a period of 4 hours. The problem
was solved for a rectangular warehouse with a single block, 10 parallel aisles and a total of 900
stored products. The set of instances used for the problem was a set of 64 instances widely
used in the literature [125]. As we have already seen in the previous sections, to solve any
variant of the OBP, several associated subtasks have to be solved. Among them, when there
are more than one picker in the warehouse, we need to assign each newly created batch to a
picker to collect it. Additionally, in this case, we compared three algorithms for the routing task
(S-Shape, Largest-Gap, and Combined). For the batching task we introduced a new algorithm,
based on the Basic Variable Neighborhood Search (BVNS) methodology [197]. The proposal
was compared to the seed algorithm introduced in the literature in [304]. The results obtained
showed an improvement between 0.60% and 5% over the previous proposal in the literature,
depending on the routing algorithm used. This article is attached in Section 5.1.

The article “A heuristic approach for the online order batching problem with multiple pickers”
[93] was the fourth publication obtained as the result of the research carried out in this Doctoral
Thesis. It can be considered as an evolution of the previous work, to solve the Online Order
Batching Problem with multiple pickers. In this work, we studied three different objective
functions for the problem: minimizing the completion time, minimizing the picking time, and
minimizing differences in the workload among the pickers. The arrival of orders occurred in two
different time periods: 2 and 4 hours, and the problem was solved for a rectangular warehouse
of a single block and multiple pickers. We used two different sets of instances widely used in
the literature [4, 125]. These sets of instances include five different warehouse configurations
with a variant number of parallel aisles. In addition, we presented a mathematical model to
define the problem addressed in its offline version. To tackle the batching task we proposed two
versions of a multistart procedure hybridized with a Variable Neighborhood Descent (VND)
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metaheuristic [197]. One version was devoted to reduce the picking time, and the other one to
balance the workload of the pickers. The VND algorithm was designed using the same three
neighborhoods used in the online version of the problem with only one picker [92]. The routing
task was handled with an S-shape algorithm. Finally, the assignment task followed a simple rule,
consisting of assigning the next batch to collect the picker with a lower workload in that moment.
We compared the proposals to two previous approaches in the state of the art: an Iterated Local
Search [5] and a Hybrid Rule-Based Algorithm hybridized with a seed algorithm [304]. We
studied different scenarios varying the number of pickers, the congestion of the system, and the
objective function. The results obtained indicated that the method using the workload balance
as guiding function during the search is the best method to minimize either the completion time
and workload balance in most scenarios presented. This article is attached in Section 5.2.
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Abstract. The Online Order Batching Problem is a combinatorial opti-
mization problem related to the process of retrieving items within a ware-
house. It appears in the context of warehousing, when the warehouse
follows an order-batching picking policy, which means that orders are
packed together into batches before been collected. Additionally, since
this problem is online, orders are arriving to the warehouse continuously,
which is usually due to the fact that orders come from an e-commerce
platform. The variant of the problem tacked in this paper also considers
an additional characteristic: there are multiple pickers available to col-
lect the batches. In this paper we propose several strategies, based on the
Variable Neighborhood Search methodology, to tackle the problem and
we compare them with the algorithms in the state of the art, using pre-
viously referred data sets. Additionally, we test the influence of different
routing strategies not used before in the context of this variant.

Keywords: Online Order Batching Problem · Batching · Variable
Neighborhood Search · Multiple pickers

1 Introduction

The e-commerce has suffered an explosion in last few years, thousands of prod-
ucts are sold online everyday and this is just the beginning. The increase in
the online sales has made companies to development new processes related to
their supply chain management, and also to improve/modify the old ones. How-
ever, the evolution in the supply chain models is not new, since it has been
happening for many years, as it is possible to trace back in the associated
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literature from the early eighties up to today. Particularly, in the last ten years,
the number of papers related to the supply chain management has suffered a sig-
nificant increase. In this sense, the online commerce has appeared as one of the
next steps. In fact, many classical optimization problems have been reformulated
taking into consideration online restrictions.

As part of the supply chain, we focus our attention in the activities that
happen within a warehouse. More exactly, in the picking process of items. The
global objective of the picking activity is mainly related to satisfy the demand
of the customers as soon as possible. However, there are also other important
issues in which Warehouse Management Systems (WMS) must pay attention
to, such as: balance the workload of the workers in the warehouse, satisfy a
predefined due date, save energy, or simply reduce the travel time of the pickers
when collecting the items.

In this paper, we tackle the Online Order Batching Problem with Multiple
Pickers (OOBPMP). In this optimization problem, orders are arriving to the
warehouse 24 h a day/7 days a week, so it means that instances of the problem
are changing dynamically. The objective of this optimization problem is either
minimizing the time used to collect all the items in the orders received, or min-
imizing the maximum turnover time of any order (i.e., the time that an order
remains in the system). In this problem, the picking strategy is based the con-
cept of batch, which stands for a group of orders that are packed together, before
start collecting them. Then, all the items in the same batch are collected in a
single route. Notice that the orders can not be split into more than one batch.
Also, the batches can not exceed a predefined maximum capacity (weight and/or
volume restriction). Every batch can be assigned only to one picker, and every
picker can not simultaneously collect items from more than one batch. In this
sense, the picking strategy falls into the picker-to-part category. Additionally,
the OOBPMP takes into consideration the existence of multiple pickers in the
warehouse. In this paper, we propose several strategies to construct the batches,
to set the priority in which the batches are assigned to the pickers, and to deter-
mine a route to collect the items in the same batch. We do not study here the
impact of the storage policy, nor the influence of the different distributions of
arrival time moments of the orders.

There are different and well-known routing policies for the picker in the litera-
ture related to warehousing, which are suitable for this problem. These strategies
range from exact to heuristic methods. The performance of each method par-
tially depends on the shape and structure of the warehouse. The exact methods,
further than the longer times needed to calculate a route for the problem, are
frequently excluded from real scenarios, because many times they create routes
difficult to understand and follow by the operators. This difficulty increases as
the complexity of the warehouse grows. On the other hand, simple routing heuris-
tics are usually fast to calculate and they produce reasonable good results with
routes easy to understand for the pickers.
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The rest of the paper is organized as follows: in Sect. 2, we present the state
of the art of the Order Batching family of problems and we focus our attention
in the OOBPMP. We also review here the most outstanding heuristic routing
procedures in the literature. In Sect. 3, we present a new algorithm for tackling
the batching task of the considered problem. Section 4 compiles the computa-
tional results obtained with the proposed algorithms over some referenced data
sets. Finally, our conclusions and future research lines are exposed in Sect. 5.

2 State of the Art

The Order Batching Problem, further than a single optimization problem, can
be considered as a family of optimization problems which groups together those
problems related to the retrieval of goods from a warehouse, using a picking
policy based on the order batching strategy.

However, within this family of problems, the simplest and most classical
version is also referred to in the literature as Order Batching Problem (OBP)
[81]. The OBP consists in minimizing the total time needed to collect a group of
orders received in a warehouse in a context with a single picker, and having all
the orders considered at hand, before starting the batching process. This version
of the problem can be considered as static and it has raised a relevant interest
in the scientific community. Theoretical studies about the OBP indicated that
the problem is NP-hard for general instances [23], but solvable in polynomial
time if each batch does not contain more than two orders [23]. However, most
of the real instances does not usually fulfill the previous requirement. Due to
its hardness, but also to the necessity of finding solutions to the problem in
short amounts of time, heuristics and metaheuristics have been applied to tackle
the problem. The First-Come First-Served (FCFS) strategy was one of the first
heuristic strategies proposed and used in practice to assign orders to batches
in a warehouse. This strategy has been widely used due to its simplicity. Other
important heuristic methods are the seed methods [25,38,62] and the saving
methods [76]. In [13] it is possible to find a survey of those methods where the
authors proposed a classification. The first metaheuristic algorithm applied to
the simple OBP was based in a Genetic Algorithm and it was proposed in [42].
Later, a method based on the Variable Neighborhood Search methodology was
presented in [1]; an Iterated Local Search in [36] and a Tabu Search in [34]. In
[59], the authors proposed an new Iterated Local Search algorithm with a Tabu
Thresholding. The current state of the art for the problem, as far as we know,
was a multi-start Variable Neighborhood Search method proposed in [53].

Despite of the fact that the simplest OBP has received the largest attention,
other static variants have also been studied in the literature: the Order Batching
and Sequencing Problem (OBSP) is a variant of the OBP which introduce due
dates in the orders [33,52]; and the Min-Max Order Batching Problem (Min-Max
OBP) looks for a work balance among several operators in a warehouse [22,55].
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As far as the online variants are concerned (i.e., those which receive orders
continuously in the system) the first approach found was presented in [81], where
the authors proposed a simple FCFS algorithm and considered a variant of the
OOBP with multiple pickers. Later, in [86] the OOBP was studied for multiple-
block warehouses. In [77] the Online Rescheduling Problem with multiple pickers
was tackled by using a Steepest Descent Insertion strategy, and a Multistage
Rescheduling strategy. In [27,32,66] a single-block warehouse with a single picker
version was tackled in the online context. In the first case the authors proposed
an Iterated Local Search and, in the second case, they proposed an Estimation of
Distribution Algorithm (EDA). In [94,95] the authors added a new constraint to
the problem, related to the scheduling of the delivery. The first work considered
only one picker, meanwhile the second one considered multiple pickers. The most
recent approach within this context was presented in [10], where the OOBP was
studied for multiple blocks and multiple pickers.

We have summarized all the aforementioned methods in Table 1, where the
papers are classified depending on the variant of the problem considered. Par-
ticularly, we have divided the works into two columns: offline (static) and online
(dynamic). For each column we have separated those works which consider only
one picker from those which consider multiple pickers. Also we have classified
the papers depending on the inclusion or not of due dates in the orders.

Table 1. Publications related with the Order Batching Problem, classified according
to the variant of the problem tackled.

Online Offline

One picker With due date [19] [4,8,36,43,44,52,82,99]

Without due date [11,26,32,45,48,66,
69,72,81,86,87,91,
95,96]

[1,2,5,6,9,13,20,23–
25,34,38–40,42,46,49–
51,53,54,56,57,59–63,
65,67,68,73,76,78,83–
85,88–90,92,93,97,98]

Multiple pickers With due date – [37,41,79,80]

Without due date [10,21,77,94] [3,7,22,35,55]

In this paper we focus our attention in the online version of the OBP which
considers multiple pickers and do not include due dates, previously referred to as
OOBPMP. Next, in Sect. 2.1 we review the latest batching strategy published for
the problem in [94]. Finally, in Sect. 2.2, we review some the most outstanding
routing strategies in the context of the OBP.
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2.1 Batching State-of-the-Art Algorithm for the OOBPMP

As far as we know, the latest batching algorithm proposed for the OOBPMP
was introduced in [94]. The authors used the well-known “seed” strategy [38] for
clustering, in order to perform the batching task of the problem. This clustering
strategy consists in selecting a “seed” (in this case the seed is represented by
an order) as a centroid of a cluster (in this case the cluster is represented by a
batch). Then, the seed is assigned to an empty cluster (i.e., the order is assigned
to an empty batch) and other available orders might be added to the same
batch, depending on the similarity with respect the selected seed order, while
the capacity of the batch is not exceeded.

Therefore, for each “seed method” it is necessary to decide how to choose the
seed order, and how to determine the similarity of the orders with respect to the
seed. In this case, the strategy used to select an order as a “seed” is based on the
Smallest Arrival Time rule (i.e., the order which arrived first to the system and
has not been assigned yet to any batch is selected as a seed). Once the seed order
has been chosen, it is assigned to an empty batch. Then, the strategy used to
aggregate other orders to the same batch follows an Aisle-Time-Based strategy.
This strategy takes into consideration two dimensions: the percentage of orders
that the seed order has in common with the candidate order; and also, since
we are in an online context, it includes a measure related to the arrival time of
the considered order. This similarity measure is calculated for every order whose
device-capacity demand do not exceed the remaining capacity of the picking
cart, and then the next order be added to the current batch is selected in a
greedy way. Once the batch is full (i.e., no other order among the available ones
can be added) the method selects a new seed and so on, until all the orders have
been assigned to a batch. We invite the reader to carefully review this method
in [94].

2.2 Routing Algorithms

The routing algorithm is responsible for generating a path to collect every item
in the orders of the batch, following a single route. As it was aforementioned,
the order picking operations are one of the most important and costly processes
in a warehouse [12,16]. In this case, when the picking policy is based on batches,
considering the batching and picking tasks together might suppose a reduction
up to 35% in the total travel time [14].

The problem of finding a route within the warehouse, where the picker must
visit a group of positions, is a simplified version of the Travelling Salesman
Problem (TSP) [15] and therefore, there are many different proposals available
in the literature to solve it. Particularly, in this case, specific algorithms have
been developed considering the rectangular structure of the warehouse used in
this paper, which defines a special metric space, whose properties can be used
in the design of the route. In fact, there are an exact method [74], based on
dynamic programming, which generates the optimal path within this context.
However, further than the extra time needed to compute the route, the exact
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method generates complicated paths for the pickers, which make them to have
difficulties to remember and interpret the generated routes [23]. In this sense,
other simpler methods, like heuristic ones, are commonly used in practice to solve
the problem. The heuristic procedures are usually very fast to compute and they
generate simple paths, which are easy to follow for the pickers. Many routing
heuristics have been proposed in the literature (see [28,70,71,75] for several
proposals and comparisons). In this paper we review the most important and
used heuristic procedures in the literature: S-Shape, Largest Gap and Combined.

S-Shape. The S-shape algorithm is one of the most used routing algorithms in
the literature mainly due to its simplicity. It is not only easy to implement but
also it generates simple routes for the operators. The method constructs a route,
starting from the depot, which begins traversing the leftmost aisle which contains
at least one item to collect. Then it goes through all the aisles that have items to
pick up from any order in the batch. Therefore the picker is performing changes
from the front-cross aisle to the back-cross aisle and the other way round. If the
number of aisles to be traversed is even, the last parallel aisle will be completely
covered (i.e., the picker will finish the route in the front-cross aisle). However,
if the number of aisles to traverse is odd, the last corridor is only covered until
the last element to be collected and then, the picker performs a U-turn, in order
to come back to the front-cross aisle (which contains the depot). An example of
a route following this strategy is depicted in Fig. 1. Notice, that in this example
there are 5 aisles which contain items to collect.

Fig. 1. Path created with S-Shape method.
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Largest Gap. The Largest gap algorithm, along with the S-shape, is one of
the routing algorithms widely used in the literature. To understand the largest
gap, we first define the concept of gap as the space in an aisle between every
two positions which contain an item to collect. Additionally, the space between
the front cross-aisle and the first position which contains an item to collect and,
the space between the last position which contains an item to collect and the
back-cross aisle are also considered gaps. For each aisle that has items to pick
up, the largest gap in an aisle is the longest distance among all the possible
gaps in the aisle. Then, the Largest gap strategy avoids traversing the largest
gap of each aisle by performing an U-turn each time a picker arises the position
where the largest gap starts/ends. This algorithm also starts exploring the first
aisle to the left which contains items to collect. This aisle will be fully traversed,
in order to start collecting from the back-cross aisle. Similarly, the last parallel
aisle with items to collect will be also fully traversed in order to come back to
the front-cross aisle. An example of a route following this strategy is depicted in
Fig. 2.

Fig. 2. Path created with Largest Gap method.

Combined. The Combined algorithm was first proposed in [47]. The idea was
to combine the two previously introduced methods (S-shape and Largest gap)
in order to make a more efficient method. In this case, the algorithm decides,
for each parallel aisle, if it is shorter to collect the items in that aisle using an
S-shape strategy or a Largest gap one. Then, the algorithm selects the most
convenient way. The method has to consider that the number of parallel aisles
traversed with S-shape must be even. In some occasions, the circumstances may
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force the algorithm to change the previously selected strategy for a particular
aisle, in order to end the route in the front-cross aisle. An example of a route
following this strategy is depicted in Fig. 3.

Fig. 3. Path created with Combined method.

3 Algorithmic Proposal

In this section we present our algorithmic proposal to tackle the OOBPMP.
In particular, we propose the use of the Basic Variable Neighborhood Search
(BVNS) schema [31,58]. BVNS is a variant of the VNS methodology which was
proposed in [58] as a general method to solve hard optimization problems. It
is based on the concept of change of the neighborhood structure in order to
escape from local minima. There are many different variants of VNS, however
the best known ones are: Reduced VNS (RVNS), Basic VNS (BVNS), Variable
Neighborhood Descent (VND), General VNS (GVNS), Skewed VNS (SVNS),
and Variable Neighborhood Decomposition Search (VNDS). Those variants dif-
fers in the use of stochastic/deterministic explorations or a mix of both (as it
is the case of BVNS) of the neighborhoods considered. We refer the reader to
[29,30,58] for a deep understanding. Some other interesting variants of the VNS
methodology have been recently proposed. Among others, we can find: Variable
Formulation Search (VFS) [64], Multi-Objective Variable Neighborhood Search
[17], and Parallel Variable Neighborhood Search [18,55].

In Algorithm 1 we present a pseudocode of the BVNS method proposed in
this paper. The method receives three input parameters: (i) an initial solution
S; (ii) a value kmax; and (iii) the maximum time (tmax). The initial solution
will be calculated using an external method that will be described in Sect. 3.1.
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On the other hand kmax determines the maximum number of neighborhoods
that will be explored. Particularly, the method explores the current neighbor-
hood of the solution trying to obtain a better solution. BVNS includes three
different stages to explore the current neighborhood and it determines if there
has been an improvement. First, the method performs a perturbation to the
current solution, in order to escape from the current local optimum. Second,
the method runs an improvement procedure based on a local search, which is
able to find a local optimum in the current neighborhood. Third, the procedure
Neighborhoodchange, determines if there has been any improvement in the solu-
tion. If so, the next neighborhood to explore will be the first one. Otherwise, the
value of the variable k is increased and, therefore, in the next iteration the num-
ber of perturbations performed to the current solution in the Shake procedure is
increased. The method stops when the value of k equals kmax, and the maximum
allowed time is reached.

Algorithm 1. BVNS(S, kmax, tmax)
1: repeat
2: k ← 1
3: while k ≤ kmax do
4: S′ ← Shake(S, k)
5: S′′ ← LocalSearch(S′)
6: k ← NeighborhoodChange(S, S′′, k)
7: end while
8: until t < tmax

9: return S

The description of the Shake and LocalSearch procedures are presented, in
Sects. 3.2 and 3.3 respectively. The NeighborhoodChange procedure follows an
standard implementation which can be reviewed in [58].

3.1 Constructive Procedure

We have used a random algorithm as a constructive method in order to provide
an initial solution to the BVNS algorithm. The constructive algorithm receives
a list of orders Lorders as an input parameter. In each iteration, an order is
randomly selected from the list and it is placed in the next available batch. When
the selected order does not fit in the current batch, a new batch is created with
this order. Then, the next order will be placed in this new batch and the process
is repeated until the order list is fully scanned and all the orders have a batch
assigned. Once the process is finished, the procedure returns a list of batches S
as a solution. In Algorithm 2 we present a pseudocode of this procedure.
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Algorithm 2. Constructive(Lorders)
1: S ← NewBatchList()
2: B ← NewBatch()
3: repeat
4: o ← ChooseRandomOrder(Lorders)
5: Lorders ← Lorders \ o
6: if Fits(B, o) then
7: Add(B, o)
8: else
9: Add(S,B)

10: B ← NewBatch()
11: Add(B, o)
12: end if
13: until Lorders = ∅
14: return S

3.2 Shake Procedure

The shake procedure is in charge of performing a perturbation to the current
solution. The method starts by selecting two random batches. Then, it selects
two random orders (one from each batch) and finally, the method tries to perform
an exchange move. The move is not done if the size of any of the selected batches
is exceeded. This process is repeated as many times as indicates k.

The Shake procedure receives two input parameters: an initial solution S
and the size of the perturbation k. In each iteration, k indicates the number
of perturbations to perform. At the end of this procedure, a solution in a dif-
ferent neighborhood is returned. We present a pseudocode of this procedure in
Algorithm 3.

Algorithm 3. Shake(S, k)
1: repeat
2: repeat
3: Bi ← ChooseRandomBatch(S)
4: Bj ← ChooseRandomBatch(S)
5: until Bi �= Bj

6: oi ← ChooseRandomOrder(Bi)
7: oj ← ChooseRandomOrder(Bj)
8: if Fits(Bi \ oi, oj) and Fits(Bj \ oj , oi) then
9: Bi ← Bi \ oi

10: Add(Bi, oj)
11: Bj ← Bj \ oj
12: Add(Bj , oi)
13: k ← k − 1
14: end if
15: until k = 0
16: return S



Basic VNS for a Variant of the Online Order Batching Problem 27

3.3 Local Search Procedure

The BVNS uses a local search in order to deterministically find a local optimum
in the current neighborhood. The local search proposed here is based in the one-
to-one exchange move. The only input parameter to the local search is a solution
S. The method will return another solution which is locally optimum with respect
to the initial solution and the neighborhood defined by the exchange move. The
local search ends when all candidate interchanges have been explored and no
one produces an improve in the current solution. We present the pseudocode of
the local search procedure in Algorithm 4.

Algorithm 4. LocalSearch(S)
1: repeat
2: improved ← false
3: for ∀ oi ∈ S do
4: for ∀ oj ∈ S do
5: S′ ← Exchange(S, oi, oj)
6: if f(S′) < f(S) then
7: S ← S′

8: improved ← true
9: break

10: end if
11: end for
12: end for
13: until improved = false
14: return S

4 Results

In order to test our proposals, we compare our BVNS with the Seed method
introduced in [94] and described in Sect. 2.1. The objective function used to
compare the algorithms is the total time needed to collect all the orders in a
context where the number of pickers is two. The experiments were run an Intel
(R) Core (TM) 2 Quad CPU Q6600 2.4 Ghz machine, with 4 GB DDR2 RAM
memory. The operating system used was Ubuntu 18.04.1 64 bit LTS, and all the
codes were developed in Java 8.

The 64 instances used in our experiments were derived from those reported
in [32]. Those instances represent a real warehouse with one block, rectangular
shape and 900 storage positions. Particularly, there are 10 aisles with shelves
at both sides of the aisle and 45 picking positions in each side. The warehouse
layout and the distribution of the items are key elements in the design of the
batches. We consider both: random and ABC sorting strategies of the items. The
depot (i.e., the place where the items are handed once they have been collected)
is placed in the front cross-aisle, either in the left corner or in center of the aisle.
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As far as the orders are concerned, the instances contain different number of
orders (40, 60, 80, 100). Also there are several picking-cart sizes (30, 45, 60, 75).
It is important to notice that, not all the orders represented in each instance are
available at the beginning of the process, but they arrive through the working
time observed. Particularly, in this paper we consider a time horizon of 4 h.
This means that we will observe the behaviour of our algorithms in four hours
(remember that in an online problem, the system is actually working 24 h). Then,
then number of orders of each instance must arrive to the system in four hours.
We use an exponencial distribution for determining the instant in the time when
each order arrives to the system, as it is customary in this kind of scenarios.

The BVNS algorithm was parameterized with kmax = 5 and tmax = 30 s,
and then it has been successfully compared with a variant of the Seed algorithm
described in the Sect. 2 using different routing methods. In Table 2 we report the
results obtained when using the S-Shape routing method. Similarly, in Table 3
and Table 4 we report the results obtained when using the Largest Gap and
Combined routing methods, respectively. For each table, we report the average
time used to collect all the orders (Avg. (s)), the deviation with respect to
the best value found in the experiment (Dev. (%)) and the number of best
solutions found (#Best). In these three experiments we have compared both
methods (BVNS and Seed) using the same routing algorithm. Therefore, the
results obtained are merit just from the batching strategy. As it is possible to see
observing these three tables, BVNS is consistently better than Seed considering
both: deviation and number of best solutions found. However, the differences
in deviation are very small for the three routing methods. Additionally, when
using the Largest Gap routing method, the number of best solutions found by
the BVNS and Seed method are almost the same.

However, despite of the fact that we have paired either BVNS and Seed
methods with three routing strategies, the original proposal of the Seed method
introduced in [94] was based only on the S-Shape routing algorithm. Next, we
compare the results obtained by our BVNS paired with Largest Gap and Com-
bined routing methods with respect to the Seed method paired with S-Shape (as
it is described by the authors). The results are reported in Tables 5 and 6 respec-
tively. In both cases, the deviation obtained has been considerably improved with
respect to the method in the state of the art. Similarly, the number of best-known
values has also been increased.

In order to facilitate future comparisons, in the AppendixA we report the
best values found per each of the instances considered in this paper.

Table 2. Comparison with the state of the art using the S-Shape routing method.

Batching BVNS Seed [94]

Routing S-Shape S-Shape

Avg. (s) 32886 33046

Dev. (%) 0,29% 0,91%

#Best 48 28
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Table 3. Comparison with the state of the art using the Largest Gap routing method.

Batching BVNS Seed [94]

Routing Largest Gap Largest Gap

Avg. (s) 32315 32309

Dev. (%) 0,44% 0,51%

#Best 37 36

Table 4. Comparison with the state of the art using the Combined routing method.

Batching BVNS Seed [94]

Routing Combined Combined

Avg. (s) 31420 31534

Dev. (%) 0,21% 0,66%

#Best 46 24

Table 5. Comparison between the BVNS paired with Largest Gap with respect to the
Seed method paired with S-Shape.

Batching BVNS Seed [94]

Routing Largest Gap S-Shape

Avg. (s) 32315 33046

Dev. (%) 0,91% 3,18%

#Best 42 22

Table 6. Comparison between the BVNS paired with Combined with respect to the
Seed method paired with S-Shape.

Batching BVNS Seed [94]

Routing Combined S-Shape

Avg. (s) 31420 33046

Dev. (%) 0,04% 5,01%

#Best 60 4

5 Conclusions

In this paper we have dealt with a variant of the Online Order Batching Problem.
Particularly, the variant which considers multiple pickers to collect the items in
the batches. We have reviewed the state of the art of the problem and highlighted
the latest approach to tackle it. We have also designed an algorithm, based on
the Basic Variable Neighborhood Search methodology, in order to provide good
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quality solutions for the OOBPMP. The obtained results have been compared
with the state of the art using different routing algorithms. In all the considered
cases, the BVNS proposed improved the previous method in the state of the art.
We also noticed that the use of the Combined routing method was the most
effective among the considered ones for this problem.

A Best-Known Values per Instance

See Table 7.

Table 7. Best-known values of the objective function Time (s) per instance.

Instance Time (s) Instance Time (s) Instance Time (s)

abc1 40 29 23992 abc1 40 30 22398 abc1 40 31 22526

abc1 40 32 22528 abc1 60 37 31029 abc1 60 38 28469

abc1 60 39 25501 abc1 60 40 24796 abc1 80 61 41391

abc1 80 62 33856 abc1 80 63 29225 abc1 80 64 29963

abc1 100 69 44026 abc1 100 70 35298 abc1 100 71 32068

abc1 100 72 31089 abc2 40 9 23942 abc2 40 10 21370

abc2 40 11 21098 abc2 40 12 20909 abc2 60 17 29979

abc2 60 18 29193 abc2 60 19 27954 abc2 60 20 22775

abc2 80 45 38246 abc2 80 46 31943 abc2 80 47 30175

abc2 80 48 28280 abc2 100 53 49381 abc2 100 54 35574

abc2 100 55 36281 abc2 100 56 30630 ran1 40 29 26011

ran1 40 30 23601 ran1 40 31 24904 ran1 40 32 21948

ran1 60 37 35830 ran1 60 38 30448 ran1 60 39 26893

ran1 60 40 27907 ran1 80 61 47704 ran1 80 62 39016

ran1 80 63 31755 ran1 80 64 30074 ran1 100 69 52084

ran1 100 70 39676 ran1 100 71 35887 ran1 100 72 33779

ran2 40 9 25476 ran2 40 10 25794 ran2 40 11 22076

ran2 40 12 21629 ran2 60 17 33661 ran2 60 18 30619

ran2 60 19 26974 ran2 60 20 26496 ran2 80 45 44121

ran2 80 46 36148 ran2 80 47 32117 ran2 80 48 30286

ran2 100 53 56735 ran2 100 54 40345 ran2 100 55 40688

ran2 100 56 33380
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46. Koch, S., Wäscher, G.: A grouping genetic algorithm for the Order Batching Prob-
lem in distribution warehouses. J. Bus. Econ. 86(1–2), 131–153 (2016). https://
doi.org/10.1007/s11573-015-0789-x

47. Koster, R.D., Poort, E.V.D.: Routing orderpickers in a warehouse: a comparison
between optimal and heuristic solutions. IIE Trans. 30(5), 469–480 (1998)

48. Le-Duc, T.: Design and control of efficient order picking processes. Ph.D. thesis,
Erasmus University Rotterdam. Erasmus Research Institute of Management, Rot-
terdam, Holland, September 2005

49. Lenoble, N., Frein, Y., Hammami, R.: Optimization of order batching in a picking
system with a vertical lift module. In: Temponi, C., Vandaele, N. (eds.) ILS 2016.
LNBIP, vol. 262, pp. 153–167. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73758-4 11

50. Lenoble, N., Frein, Y., Hammami, R.: Optimization of order batching in a picking
system with carousels. In: 20th World Congress of the International Federation of
Automatic Control, IFAC 2017 (2017)

51. Lin, C.C., Kang, J.R., Hou, C.C., Cheng, C.Y.: Joint order batching and picker
manhattan routing problem. Comput. Ind. Eng. 95, 164–174 (2016)

52. Menéndez, B., Bustillo, M., Pardo, E.G., Duarte, A.: General variable neighbor-
hood search for the order batching and sequencing problem. Eur. J. Oper. Res.
263(1), 82–93 (2017)

53. Menéndez, B., Pardo, E.G., Alonso-Ayuso, A., Molina, E., Duarte, A.: Variable
neighborhood search strategies for the order batching problem. Comput. Oper.
Res. 78, 500–512 (2017)

54. Menéndez, B., Pardo, E.G., Duarte, A., Alonso-Ayuso, A., Molina, E.: General
variable neighborhood search applied to the picking process in a warehouse. Elec-
tron. Notes Discrete Math. 47, 77–84 (2015)

55. Menéndez, B., Pardo, E.G., Sánchez-Oro, J., Duarte, A.: Parallel variable neigh-
borhood search for the min-max order batching problem. Int. Trans. Oper. Res.
24(3), 635–662 (2017)

56. Menéndez, B., Pardo, E.G., Duarte, A.: Búsqueda de vecindad variable general
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58. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)
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A B S T R A C T

The Online Order Batching Problem with Multiple Pickers (OOBPMP) consists of optimizing the operations
related to the picking process of orders in a warehouse, when the picking policy follows an order batching
strategy. In this case, this variant of the well-known Order Batching Problem considers the existence of multiple
workers in the warehouse and an online arrival of the orders. We study three different objective functions for
the problem: minimizing the completion time, minimizing the picking time, and minimizing the differences
in the workload among the pickers. We have identified and classified all previous works in the literature for
the OOBPMP. Finally, we propose a multistart procedure hybridized with a Variable Neighborhood Descent
metaheuristic to handle the problem. We test our proposal over well-known instances previously reported in
the literature by empirically comparing the performance of our proposal with previous methods in the state
of the art. The statistical tests corroborated the significance of the results obtained.

1. Introduction

The Online Order Batching Problem (OOBP) is an optimization
problem which occurs in a warehouse when the picking policy follows
an order batching strategy, i.e., orders are grouped into batches prior to
be picked, and all orders in the same batch are collected together. The
OOBP is considered a dynamic optimization problem since orders are
received online in the system, which means that the arrival of orders
occurs continuously (24 h a day/7 days a week) while the optimization
algorithms are running. Therefore, an order can arrive to the system
while the picking process of other orders is in progress. The main task
within the OOBP consists of determining the best assignation of the
orders into batches of a maximum predefined capacity (the maximum
load that a picker can carry at the same time), with the aim of per-
forming an efficient picking operation. However, this assignation can
only be considered as one of the subproblems that need to be handled
within the OOBP. Other necessary operations include: establishing a
sequence of the constructed batches, assigning each batch to a picker,
determining the moment in the time for starting the picking (time
window), or designing the route to follow by the picker. Despite the
fact that the previous ones are also optimization problems that could
be considered in isolation, in the context of the OOBP, they are only
parts that need to be taken into account to calculate the main objective
function.

∗ Corresponding author.
E-mail addresses: sergio.gil@upm.es (S. Gil-Borrás), eduardo.pardo@urjc.es (E.G. Pardo), antonio.alonso@urjc.es (A. Alonso-Ayuso),

abraham.duarte@urjc.es (A. Duarte).

Additionally, the picking operation in this context is also influenced
by different static and dynamic parameters (Petersen, 1997). Among
the static ones, we can find parameters related to the warehouse design
such as: the number of blocks, the number of aisles, the width of
each aisle, the number of depots, the position of the depots, etc. Also,
the distribution of the products in the warehouse can sometimes be
considered as a static parameter (other times the same product is stored
in a different position through the time). Furthermore, products can be
placed at random in the warehouse, or following an ABC distribution
(i.e., the most demanded products are placed closer to the depot).
Additionally, it is possible to consider one or more locations for each
kind of products. On the other hand, the dynamic parameters include
aspects such as: the variable number of pickers, the number and size
of the orders arrived to the warehouse, the existence of due dates in
some orders, or the priorities among the items in the same order. Also,
if the storage location of the product varies through the time, it can be
considered a dynamic parameter too.

Previous works in the literature of the OOBP with multiple pickers
(also known in the literature as OOBPMP) have reported different
objective functions within this context. Also, they have studied several
important parameters for the problem. However, in general, they do
not provide a wide comparison framework. Our main hypothesis is
the existence of relationships among the optimization of some of the
previously studied objective functions. Moreover, there might exist
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important parameters, such as the number of pickers, the time horizon
considered, or the congestion in the arrival of orders that could have
a deep impact on the performance of the algorithms, depending on
the considered objective function. Therefore, the main objective of this
research is to study the different objective functions tackled in the
literature in the context of the OOBPMP. Particularly, we compare the
performance of the most relevant previous methods in combination
with parameters such as the time horizon or the number of pickers,
which influence the congestion rate in the system. Furthermore, we
explore the existence of algorithms with good performance in a wide
range of scenarios.

In this paper, we focus our attention on the OOBP with multiple
pickers for rectangular-shaped single-block warehouses by studying
three objective functions: the minimization of the total picking time,
the minimization of the maximum completion time, and the minimiza-
tion of the differences in the workload of the pickers. These objective
functions are explained in detail Section 3. Our main contributions are:
(i) a comprehensive classification of the studied problem within the
OBP literature and the study and analysis of the previous methods in
the state of the art for the OOBPMP; (ii) a new algorithmic proposal
based on the combination of a multistart procedure (MS) with the
Variable Neighborhood Descent (VND) metaheuristic, named MS-VND;
(iii) the use and study of several objective functions to tackle the
OOBPMP; (iv) an empirical study of the influence of two important
parameters (the congestion in the arrival of orders, and the number of
pickers) in the performance of the algorithms; and (v) the improvement
of the results of the state of art methods, previously proposed for the
same problem, supported by statistical tests.

The rest of this paper is structured as follows: in Section 2, we
provide a comprehensive classification of the studied problem in the
literature and we review the main approaches related with the online
order batching with multiple pickers. In Section 3, we describe in detail
the problem tackled in this work. Then, in Section 4, we present the
algorithms proposed in this paper to tackle the OOBPMP. Particularly,
we use a multistart procedure combined with a Variable Neighborhood
Descent as a local search procedure. Then, a wide number of numerical
experiments are compiled in Section 5. Finally, conclusions and open
research lines are given in Section 6.

2. State of the art

This paper is focused on a variant of the online order batching
problem, which considers multiple pickers in a warehouse. As part
of the picking process of orders in a warehouse, the order batching
strategy has guided practitioners in the field to a wide range of related
optimization problems. Within this family, problems can be classified
as single/multi-picker and offline/online.

The majority of the previous studies in the literature handle the
variant with the restriction of considering a single picker (Henn, Koch,
& Wäscher, 2012), while a more general and realistic scenario, the
existence of multiple pickers in the warehouse, has been less studied.
In fact, the multiple-pickers version is a generalization of the case of a
single picker. Similarly, offline versions of the OBP (i.e., all orders are
available at the beginning of the process) have received more attention
in the literature than the more realistic online versions (i.e., orders
arrive to the system while the picking process is in progress). Notice
that the online version of the problem is a generalization of the offline
one.

The most common objective functions studied in the literature of
order batching problems are the minimization of the picking time
(Chen, Wei, & Wang, 2018; Rubrico, Higashi, Tamura, & Ota, 2011), the
minimization of the traveled distance (Öncan, 2015; Pérez-Rodríguez
& Hernández-Aguirre, 2015), or the minimization of the tardiness
(Menéndez, Bustillo, Pardo, & Duarte, 2017; Zhao, Jiang, Bao, Wang, &
Jia, 2019). However, the appearance of multiple workers uncovers ad-
ditional objective functions such as: finding a balance in the workload

of the pickers (Zhang, Wang, Chan, & Ruan, 2017), or minimizing the
average waiting time of the pickers, due to blocking situations among
them (Chen, Wang, Qi, & Xie, 2013; Chen, Wang, Xie, & Qi, 2016; Hahn
et al., 2017). Similarly, some objective functions only make sense when
considering the online version of the problem such as: minimizing the
turnover time (Gil-Borrás, Pardo, Alonso-Ayuso, & Duarte, 2020b; Tang
& Chew, 1997) or minimizing the completion time (Gil-Borrás, Pardo,
Alonso-Ayuso, & Duarte, 2020a; Henn, 2012).

In this paper, we focus our attention on the Online Order Batching
Problem with multiple pickers. For this variant of the OBP, we have
found eight different previous proposals in the literature. However,
taking a closer look to each of them, we can find differences among
the constraints considered.

As far as we know, the first approach for the OOBPMP was proposed
by Yu and De Koster (2009). In that paper, the authors dealt with
a version of the OOBPMP which considers different picking zones
within the warehouse for different pickers. Additionally, the ware-
house instances used present random storage policy, and the objective
function was the minimization of the average throughput time. Yu
and De Koster (2009) proposed an approximation model based on the
queuing network theory, to tackle the batching problem. They also
considered a S-shape routing strategy and a Poisson distribution for the
order arrivals.

Rubrico et al. (2011) tackled the Online Rescheduling Problem
with multiple pickers. In this variant, they considered the existence
of static and dynamic arrival of orders, with the restriction that the
newly arrived orders were composed of only one type of product. The
studied objective function in this case was the minimization of the
makespan. Rubrico et al. (2011) proposed a Steepest Descent Inser-
tion method with a Multistage Rescheduling strategy to perform the
batching task. They also considered the S-shape routing algorithm.

Zhang et al. (2017) tackled the OOBPMP with the aim of minimizing
the turnover time, which is also known as the maximum completion
time of all batches (i.e., the time needed to collect all orders including
waiting, routing, batching and service time). Further than the pursued
objective function, they also reported the obtained average workload
and average idle time per picker. Zhang et al. (2017) proposed a
Hybrid Rule-Based Algorithm (which includes a strategy based on seed
methods for batching), and they used the S-shape routing strategy.

In 2018, first, Chen et al. (2018), studied the OOBPMP for a
multiple-block warehouse with narrow aisles (two pickers cannot cross
their routes). In this case, the authors considered that the batches can
be altered once the picker has already begun picking, and that an
order can be split into more than one batch. In this sense, not only
the order arrival is dynamic but also the batch composition might
change at the picking time. The studied objective function consists
of minimizing the service time of a single order. Chen et al. (2018)
proposed a heuristic batching strategy named Green Area, and they
compared their proposal with several time-window-based strategies,
consisting of batching together the orders arrived in a particular chunk
of time. They studied either the fixed time window and variable time
window strategies. For the routing task, they considered both: the
S-Shape and the Largest Gap routing algorithms.

Also in 2018, Van Der Gaast, Jargalsaikhan, and Roodbergen (2018)
considered the OOBPMP with the possibility of modifying a batch
which is currently being picked, by adding new orders arrived to
the warehouse. In this case, the objective function studied was the
minimization of the order throughput time (the time that an order
remains in the system, which is also known in the literature as the
order turnover time). However, despite of minimizing that objective
function, they reported additional metrics (orders in backlog, tour
duration, replanned tours, picker walking distance, etc.) which were
used in other papers as objective functions (Henn, Koch, Doerner,
Strauss, & Wäscher, 2010; Menéndez, Pardo, Alonso-Ayuso, Molina, &
Duarte, 2017; Öncan, 2015; Scholz, Schubert, & Wäscher, 2017; Zhang
et al., 2017). In this case, the layout of the studied warehouse includes
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multiple blocks. Van Der Gaast et al. (2018) proposed the combination
of a method based on linear programming with column generation,
together with Tabu Search and Branch-and-bound pricing, to tackle the
problem. This time, the routing strategy was based on three different
proposals: the Nearest Neighbor, the S-shape, and the Largest Gap.

A more recent approach in the literature within this context is
found in Hojaghania, Nematian, Shojaiea, and Javadi (2019), where the
authors studied the maximum turnover time of an online multipicker
variant, which considers different zones within the warehouse, each of
them operated by a picker. In this paper, the objective function, further
than the turnover time, includes the idle time of the pickers. They
used the proposal in Zhang et al. (2017) as a baseline to compare their
approach. The algorithmic proposal included an Ant Colony Algorithm
and an Artificial Bee Colony for the batching task, and the S-Shape
strategy for the routing task.

Finally, Alipour, Mehrjedrdi, and Mostafaeipour (2020) made an
extension of a previous algorithm proposed by Henn (2012). The orig-
inal work was designed for an online context with just a single picker
with the aim of minimizing the completion time. This time, the authors
studied the maximum completion time in a multipicker scenario by
using the Iterated Local Search algorithm proposed by Henn as the
batching method, and the S-shape and the Largest-gap as the routing
methods. The proposal was compared against Clarke & Wright II (C&W
II) and First Come First Served (FCFS) methods as baseline.

As it is possible to observe, despite the fact that all previous variants
handle the Online Order Batching Problem with multiple pickers, the
additional constraints or objective functions studied are not the same,
which sometimes make difficult the comparison among the methods.

In this paper, we handle the Online Order Batching Problem with
Multiple Pickers by studying the minimization of the maximum com-
pletion time. However, we also evaluate the workload balance of the
pickers and the picking time of our solutions, to provide a wide compar-
ison framework for other approaches. In this matter, we consider the
following characteristics/restrictions for the problem: the warehouse
has a single block (instead of the multiple blocks considered in Chen
et al. (2018) or Van Der Gaast et al. (2018)); there are no narrow-
aisles restrictions (as the ones introduced in Chen et al. (2018)); once a
picking route has started, the batch and the route cannot be modified
(as it happens in Chen et al. (2018) or Van Der Gaast et al. (2018),
where newly arrived orders can be added to batches being collected at
that moment, and the associated routes adapted); orders cannot be split
in multiple batches (as it is the case in Chen et al. (2018)); the whole
warehouse is handled as a single zone in terms of picking (instead of
considering multiple zones as in Yu and De Koster (2009)); orders can
be composed of different kind of products (unlike in the dynamic arrival
of orders used in Rubrico et al. (2011)).

With the previous assumptions at hand and to end this section, we
analyze in depth the two most similar previous works to our proposal,
which are used in the experimental section as a comparison framework
for our algorithms: Zhang et al. (2017) and Alipour et al. (2020).

Particularly, Zhang et al. (2017) proposed a batching method based
on the ‘‘seed’’ strategy. This strategy had been previously introduced
in the context of clustering problems (Ho & Tseng, 2006). The adap-
tation from a clustering problem to the batching problem is trivial,
since it consists of selecting an order (that will represent the ‘‘seed’’)
as a centroid of an empty batch (which in this case represents the
cluster). Then, other available orders might be added to the same batch,
depending on the similarity with respect to the selected seed order.
Notice that the addition of orders to that batch is bounded by the
maximum capacity of the batch. The general strategy based on ‘‘seed
methods’’ consists of deciding the criterion to select the seed order
and determining the similarity function between orders. Zhang et al.
(2017) used the Smallest Arrival Time rule to select the ‘‘seed’’ order,
which consists of selecting the earliest available order arrived to the
system. Also, they used the Aisle-Time-Based strategy to determine the
similarity, which takes into consideration two variables: the percentage

of common products between the compared orders; and the proximity
of the arrival time between the orders compared. In both cases, the
selection is made on a greedy basis. Once no other orders can be added
to the batch (i.e., the batch is full), the algorithm chooses a new seed
order and so on. Further details of the proposed method can be found
in Zhang et al. (2017). This method was tested over the data sets
provided by Henn (2012) and the arrival of orders is scheduled on a
time horizon of 4 h.

The proposal made by Alipour et al. (2020) is based on the well-
known Iterated Local Search (ILS) previously proposed in Henn (2012),
but adapted to the multipicker scenario. The initial solution was con-
structed based on the First Come First Serve strategy. That solution was
then improved by the ILS method, which is formed by two different
phases: perturbation and improvement. The perturbation selects two
batches at random and exchanges 𝑛 orders also selected at random.
The improvement phase follows a first improvement strategy and it
is based on two different neighborhoods: swap and shift moves. The
swap move selects two orders in different batches and exchanges their
assignation. The shift move inserts one order in another batch. Once all
batches have been conformed, the authors studied different strategies
for selecting the next batch to be collected: FIRST, SHORT, LONG, and
SAV (see Alipour et al. (2020), Henn (2012) for a detailed description
of each of them) being FIRST the most suitable approach. The order
is then assigned to the first picker who becomes available. Finally,
the S-shape and the Largest-gap were tested and compared as routing
methods. The experiments were conducted only with two pickers over
the instances reported in Henn (2012) and the arrival of orders was
scheduled on a time horizon of 8 h.

3. Problem description

The OOBPMP tackled in this paper consists of performing an ef-
ficient picking operation of all products within the orders arrived
online to a warehouse, by following an order picking strategy based
on batches, when multiple pickers are available. The OOBPMP is a
dynamic optimization problem which studies the efficient picking of
orders which arrive online (24/7) to a warehouse. Since the described
scenario is a non-stopping context, to study the problem and the
associated proposals, it is necessary to observe the behavior of the
algorithms in a particular chunk of time (denoted as time horizon).

An order is a list of products demanded by the same customer
at the same time. The products in the same order must be collected
together (i.e., orders cannot be splitted into more than one batch). A
batch is a group of orders with a predefined maximum capacity. It is
assumed that no order is larger than the maximum capacity of a batch.
Each batch is assigned to one picker and all orders in the same batch
are collected together in a single route through the warehouse. An
important issue of the OOBPMP is that the orders are not fully available
at the beginning of the process, but they arrive at the warehouse while
the picking operation has already begun. This is why the problem is
considered online. To handle online problems, it is necessary to define
a time horizon and to observe the behavior of the proposals in that
chunk of time. An additional characteristic of the OOBPMP is that there
are multiple pickers in the warehouse available to perform the picking
operation. Notice that we will not consider interblocking situations
(aisles in the warehouse are wide enough for allowing several pickers
crossing their routes).

When solving the OOBPMP, it is necessary to handle several sub-
problems: to decide when to consider the new orders arrived to the
system (adding); to determine how the orders are grouped into batches
(batching); to choose which batch is going to be collected next (select-
ing/sequencing); to determine which picker is going to retrieve that
batch (assigning); to set the moment in the time when the picker starts
its route (waiting); and to design the route that the picker will follow
(routing).

To better understand the processes involved in the OOBPMP and
the focus of this research, we introduce the activity diagram depicted
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Fig. 1. Activity diagram of the processes involved in the OOBPMP.

in Fig. 1. In this figure we can observe the main processes involved
in the OOBPMP in the time horizon considered: Adding, Batching,
Waiting, Selecting, Assigning, Routing, and Picking (depicted as ac-
tivities/rectangles in the diagram). Also, the diagram represents the
decisions that need to be taken (depicted as rhombuses) and the possi-
ble answers considered (Yes/No). The process flow starts by checking
if there are new orders arrived at the system waiting to be collected.
Then, it tries to group the available orders in efficient batches, depend-
ing on the objective pursued. Once a solution has been conformed,
if there is still available time for batching (usually denoted as ‘‘time
window’’), the process checks again if new orders have arrived at the
system. If so, it incorporates them to the current solution. Otherwise,
the best solution until that moment is moved ahead in the process. At
this point, if there is at least one available picker, a batch is selected and
assigned to the picker. Finally, a picking route is calculated, and the
picking task starts. The process continues repeatedly until all arrived
orders in the time horizon considered have been processed. In this
research, we are interested in the general behavior of the algorithms for
the OOBPMP. Particularly, we focus on the batching task by proposing,
in Section 4.2, a new batching algorithm for the problem. For the rest
of the activities, we describe the strategy followed.

3.1. Objective functions

Among the different objective functions previously introduced in the
literature, we focus our attention on three of them:

• Minimization of the picking time: the objective is to minimize
the sum of the picking time spent by each picker in the warehouse
in the duty of collecting a batch. Each tour of a picker in the
warehouse has a picking time associated, which is calculated as
the sum of: the setup time (time needed by the picker to get
ready for starting a new route); the routing time (time needed
by the picker to traverse the warehouse to reach each picking
position); and the extraction time (time needed by the picker to
decelerate/accelerate the picking cart and to extract the items
from their picking locations). Among others, this objective func-
tion has been considered in Chen et al. (2018), Rubrico et al.
(2011) and Gil-Borrás et al. (2020b).

• Minimization of the completion time: the objective is to mini-
mize the total time needed to collect all items from a set of orders
received in a warehouse. This time can also be described as the

4
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Fig. 2. Layout of the warehouse studied in this paper, with two cross aisles and a
variable number of parallel aisles.

time elapsed between the moment when the picking starts and
the moment when the last order is handed. Among others, this
objective function has been considered in Henn (2012) and Zhang
et al. (2017).

• Minimization of the differences in the workload: in the case of
multiple pickers, a common objective function is also to minimize
the differences among the workload of the pickers in any sense:
number of orders processed, distance traversed, number of items
retrieved, total time retrieving items, etc. In this case, we look
for the minimization of the maximum difference between the
picking time spent by any picker and the average picking time
of all pickers. Among others, this objective function has been
considered in Menéndez, Pardo, Sánchez-Oro, and Duarte (2017)
and Zhang et al. (2017).

Finally, it is important to notice that a solution for the OOBPMP
consists of the assignation of the orders received in the warehouse to
batches, the assignation of each batch to a picker and the determination
of the moment of time when each picker should start a new route.

3.2. Type of instances/warehouse description

The warehouse structure studied in this paper is the one depicted
in Fig. 2. This structure is the most classical one used in the context
of order batching problems. It presents a rectangular shape with only
one block of parallel aisles and two crossing aisles (one at the back
and one at front of the warehouse). Each parallel aisle contains several
picking positions at each side of the aisle. In the example in Fig. 2, the
warehouse has five parallel aisles formed by shelves with 18 picking
positions considering the shelves at both sides of the aisle. The depot
is the place where pickers start and finish their routes, and it is placed
at the front cross aisle (either at the leftmost corner or at the center of
the aisle).

We consider that only one product is stored per picking position.
Also, a product can only be stored in one picking position along the
whole warehouse and this position does not change through the time.
Products can be stored at random or following the well-known ABC
distribution (i.e., the most demanded products are placed closer to the
depot). No stock limitations are considered for the products.

3.3. Mathematical formulation

In this section, we present a Mixed Integer Non-Linear Mathematical
Model for the OOBPMP. It is important to notice that it is not possible to
mathematically formulate and solve a problem if all input information
is not known beforehand, as it is the case of online problems. However,

in this case, the online version of the problem is equal to the offline
version if we observe a particular instant in time, which considers only
the orders which are currently in the system. Previous formulations
for offline variants of the problem are available in the literature.
Particularly, Gil-Borrás et al. (2020b), Henn (2012) studied the offline
model of the OBP with a single picker, while Zhang et al. (2017) studied
the offline model of the OBP with multiple pickers. The ideas presented
here are based on those formulations.

A solution in the context of the OOBPMP consists of the assignation
of the available orders to batches, and the assignation of each batch to a
picker. Then, the evaluation of a solution requires the use of a routing
algorithm, which determines the route necessary to pick all items in
a batch. Therefore, we first present the formalization of the routing
algorithm used in this paper (S-Shape routing algorithm, Hall (1993)).
Particularly, in the context of this problem, we are only interested in
the time that the picker needs to collect the items in the batch.

The S-Shape routing algorithm was previously formalized in Öncan
(2015) and Zhang et al. (2017). First, in Table 1 we compile the
parameters and variables needed to define the algorithm, while in
Table 2, we compile the rest of the parameters and variables needed
to define the OOBPMP.

For the sake of simplicity, the variable 𝑑𝑖𝑠𝑗 contains the traveled
distance to collect all orders in batch 𝑗. Notice that the traveled distance
is the sum of the distance traveled through the cross aisles (𝐷𝐻

𝑗 ) and
the distance traveled through the parallel aisles (𝐷𝑉

𝑗 ):

𝑑𝑖𝑠𝑗 = 𝐷𝐻
𝑗 +𝐷𝑉

𝑗 (1)

with 𝐷𝐻
𝑗 and 𝐷𝑉

𝑗 calculated as follows:

𝐷𝐻
𝑗 = |𝐴𝐿

𝑗 − 𝐴𝐷| ⋅ 𝐶 + |𝐴𝐿
𝑗 − 𝐴𝑅

𝑗 | ⋅ 𝐶 + |𝐴𝑅
𝑗 − 𝐴𝐷| ⋅ 𝐶. (2)

𝐷𝑉
𝑗 =

{
𝐴𝑗𝐿, 𝑜𝑑𝑑𝑗 = 0(
𝐴𝑗 − 1

)
𝐿 + 2𝐷𝐹

𝑗 , 𝑜𝑑𝑑𝑗 = 1.
(3)

and the variables needed to compute these distances are calculated as
follows:

𝑧𝑗𝑞 = 𝑝𝑖𝑞 ⋅ 𝑥𝑗𝑖, ∀ 𝑗 ∈ {1,… , 𝑚}, ∀ 𝑖 ∈ {1,… , 𝑛}, ∀ 𝑞 ∈ {1,… , 𝑄}. (4)

𝐴𝑗 =
𝑄∑
𝑞=1

𝑧𝑗𝑞 , ∀ 𝑗 ∈ {1,… , 𝑚}. (5)

𝑜𝑑𝑑𝑗 = 𝐴𝑗 mod 2, ∀ 𝑗 ∈ {1,… , 𝑚}. (6)

𝐴𝐿
𝑗 = min

𝑞∈{1,…,𝑄}
𝑞 ⋅ 𝑧𝑗𝑞 ∶ (𝑞 ⋅ 𝑧𝑗𝑞 > 0), ∀ 𝑗 ∈ {1,… , 𝑚}. (7)

𝐴𝑅
𝑗 = max

𝑞∈{1,…,𝑄}
𝑞 ⋅ 𝑧𝑗𝑞 , ∀ 𝑗 ∈ {1,… , 𝑚}. (8)

𝐷𝐹
𝑗 = max

𝑖∈{1,…,𝑛}
𝑙𝑎𝑠𝑡𝑖,𝐴𝑅

𝑗
⋅ 𝑥𝑗𝑖, ∀ 𝑗 ∈ {1,… , 𝑚}. (9)

Once we have defined the distance needed to collect the batch 𝑗, we
can define the function which calculates the routing time as follows:

𝑇 𝑟𝑜𝑢𝑡𝑖𝑛𝑔
𝑗 =

𝑑𝑖𝑠𝑗
𝑣𝑟𝑜𝑢𝑡𝑖𝑛𝑔

, ∀ 𝑗 ∈ {1,… , 𝑚}. (10)

where 𝑣𝑟𝑜𝑢𝑡𝑖𝑛𝑔 is a parameter which represents the velocity of the picker.
This parameter is compiled in Table 2 together with the rest of the
parameters needed to evaluate a solution.

As it was previously introduced in Henn (2012) and Gil-Borrás et al.
(2020b), the time needed to collect the batch not only depends on the
routing time, but also on the setup time and the extraction time. Let us
denote as 𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔

𝑗 as the time needed to collect the items in the batch
𝑗. More formally,

𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑗 = 𝑇 𝑟𝑜𝑢𝑡𝑖𝑛𝑔

𝑗 + 𝑇 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑗 + 𝑡𝑠𝑒𝑡𝑢𝑝, ∀ 𝑗 ∈ {1,… , 𝑚}. (11)

Considering that 𝑤𝑖 is the number of items in the order 𝑖 and
𝑣𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the number of items that the picker is able to search and
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Table 1
Parameters and variables needed for the definition of the S-Shape routing algorithm.
Parameters

𝐶 → Center-to-center distance between two parallel aisles.
𝐿 → Length of a parallel aisle.
𝐴𝐷 → Aisle placed in front of the depot.
𝑄 → Number of parallel aisles in the warehouse.
𝑙𝑎𝑠𝑡𝑖𝑞 → Distance from the front cross aisle to the furthest article placed at aisle 𝑞, demanded

in the order 𝑖.

𝑝𝑖𝑞 →

{
1, if order 𝑖 has an item in the aisle 𝑞,
0, otherwise.

Variables

𝐴𝑗 → Number of aisles that contain at least one pick location in batch 𝑗.
𝐴𝐿

𝑗 → Leftmost aisle that contains at least one pick location in batch 𝑗.
𝐴𝑅

𝑗 → Rightmost aisle that contains at least one pick location in batch 𝑗.
𝐷𝐹

𝑗 → Given the rightmost aisle with an item in batch 𝑗, it measures the distance from the
farthest item to collect to the front aisle.

𝐷𝐻
𝑗 → Distance traveled through the cross aisles to collect batch 𝑗.

𝐷𝑉
𝑗 → Distance traveled through the parallel aisles to collect batch 𝑗.

𝑜𝑑𝑑𝑗 →

{
1, if 𝐴𝑗 is odd,
0, otherwise.

𝑧𝑗𝑞 →

{
1, if batch 𝑗 has an item in aisle 𝑞,
0, otherwise.

Table 2
Parameters and variables for the OOBPMP.
Parameters

𝑛 → Number of orders at the system in a particular time instant.
𝑚 → Upper bound of the number of batches (a straightforward value is 𝑚 = 𝑛).
𝑙 → Number of pickers.
𝑣𝑟𝑜𝑢𝑡𝑖𝑛𝑔 → Number of units of length that the picker can traverse in the warehouse per unit of

time (velocity).
𝑣𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 → Number of items that a picker can search and pick per unit of time.
𝑡𝑠𝑒𝑡𝑢𝑝 → Constant time needed by the picker to process each batch.
𝑤𝑖 → Number of items in order 𝑜𝑖 (1 ≤ 𝑖 ≤ 𝑛).
𝑊 → Maximum capacity of a batch.
𝑎𝑟𝑖 → Arrival time of order 𝑖.

Variables

𝑠𝑡𝑗 → Start time of batch 𝑗.

𝑥𝑗𝑖 →

{
1, if order 𝑖 is assigned to batch 𝑗,
0, otherwise.

𝑦𝑗𝑘 →

{
1, if picker 𝑘 is assigned to batch 𝑗,
0, otherwise.

pick per unit of time, the extraction time for a batch 𝑗 can by defined
as follows:

𝑇 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑗 =

𝑛∑
𝑖=1

𝑤𝑖 ⋅ 𝑥𝑗𝑖
𝑣𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

, ∀ 𝑗 ∈ {1,… , 𝑚}. (12)

Finally, 𝑡𝑠𝑒𝑡𝑢𝑝, is a parameter which represents the additional time
needed by the picker to process the batch (either before starting the
picking and/or after finishing it).

Once the model of the routing algorithm has been formalized, we
introduce the models of the three studied problems, whose objective
functions are defined next.

The objective function in (13) minimizes the total picking time
needed to collect all orders arrived to the system. Notice that it avoids
waiting times.

min
𝑚∑
𝑗=1

𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑗 . (13)

The objective function in (14) minimizes the completion time,
which is determined by the moment in the time when the picker
delivers the last batch.

min max
𝑗∈{1,…,𝑚}

(
𝑠𝑡𝑗 + 𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔

𝑗
)
. (14)

Finally, the objective function in (15) minimizes the maximum
difference between the picking time used by the picker which works
the most and the average picking time of all pickers in the system.

min max
𝑘∈{1,…,𝑙}

𝑚∑
𝑗=1

𝑦𝑗𝑘 ⋅ 𝑇
𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑗 −

𝑚∑
𝑗=1

𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑗

𝑚
. (15)

Next, we define the constraints that must be satisfied by any of the
studied optimization problems.

Constraints in (16) guarantee that each order is assigned only to one
batch:
𝑚∑
𝑗=1

𝑥𝑗𝑖 = 1, ∀ 𝑖 ∈ {1,… , 𝑛}. (16)

Constraints in (17) guarantee that each batch is assigned only to one
picker:
𝑙∑

𝑘=1
𝑦𝑗𝑘 = 1, ∀ 𝑗 ∈ {1,… , 𝑚}. (17)

Constraints in (18) guarantee that the maximum capacity of a batch is
not exceeded:
𝑛∑
𝑖=1

𝑤𝑖 ⋅ 𝑥𝑗𝑖 ≤ 𝑊 , ∀ 𝑗 ∈ {1,… , 𝑚}. (18)
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Constraints in (19) guarantee that the batch 𝑗 starts to be collected only
if there is at least one picker available:

𝑠𝑡𝑗 ≥ min
𝑘∈{1,…,𝑙}

max
𝑠∈{1,…,𝑗−1}

𝑦𝑠𝑘 ⋅
(
𝑠𝑡𝑠 + 𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔

𝑠
)
, ∀ 𝑗 ∈ {2,… , 𝑚}. (19)

Constraints in (20) guarantee that the batch 𝑗 starts to be collected,
once the collection of the batch 𝑗 − 1 has already begun:

𝑠𝑡𝑗 ≥ 𝑠𝑡𝑗−1, ∀ 𝑗 ∈ {2,… , 𝑚}. (20)

Constraints in (21) guarantee that the collection of batch 𝑗 do not start
before the orders assigned to that batch have arrived to the system:

𝑠𝑡𝑗 ≥ 𝑎𝑟𝑖 ⋅ 𝑥𝑗𝑖, ∀ 𝑖 ∈ {1,… , 𝑛}, ∀ 𝑗 ∈ {1,… , 𝑚}. (21)

Constraints in (22) state that 𝑠𝑡𝑗 cannot be negative:

𝑠𝑡𝑗 ≥ 0, ∀𝑗 ∈ {1,… , 𝑚}. (22)

Finally, constraints in (23) state that the variables 𝑥𝑗𝑖 are binary:

𝑥𝑗𝑖 ∈ {0, 1}, ∀ 𝑗 ∈ {1,… , 𝑚}, ∀ 𝑖 ∈ {1,… , 𝑛}. (23)

4. Algorithmic proposal

In this section, we describe our algorithmic proposal to tackle the
OOBPMP. Particularly, we describe the strategy proposed for each of
the aforementioned subproblems within the OOBPMP. Notice that in
this paper we focus our attention on the batching task, while we use
several well-known/straight-forward strategies to handle the rest of the
subproblems. Initially, it is necessary to introduce a method in charge
of the synchronization of all involved processes (see Section 4.1) that
happen in the picking process during the considered time horizon.

4.1. General schema of the MS-VND

In this section, we describe a general orchestration method which
organizes all processes involved in the problem and its associated
relationships. This method is in charge of the simulation of the picking
process and determines the different aspects involved, such as: the
arrival of orders, the batching operation, the selection of the next
batch to collect, the routing operation, the assignation of batches to
the pickers, the picking of orders, and the update of the associated
data structures. However, since the main contribution of this paper
is focused on the batching task, we have used the strategies used for
this task (multistart procedure and VND) to denote the algorithm as
MS-VND.

In Algorithm 1 we introduce the proposed orchestration method MS-
VND. The algorithm receives the list of orders (𝑜𝑟𝑑𝐿𝑖𝑠𝑡) to collect as an
input parameter. Notice that, in a real scenario, orders arrive online,
so it means that not all orders are available at the beginning of the
process. However, to illustrate the online behavior, we consider that the
input list of orders contains not only the orders but also the moment in
time when those orders arrive to the system within the considered time
horizon. It is also important to remark that the schedule of the arrival
of orders is calculated following a Poisson Point process distribution,
as we will describe in Section 5, which will scatter the arrival of the
orders within the considered time horizon, approximately.

The method is continuously running until all orders have been
collected. It starts by initializing several data structures: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑
contains the orders which have already arrived to the system but
that have not been collected yet; 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙, contains a partial tempo-
rary solution (i.e., batches conformed with the orders in 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)
calculated by the batchingAlgorithm in the current iteration;
𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 contains the best 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 found with the orders in
𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑. Notice that new partial solutions are being calculated
(steps 6–11) until the waitingAlgorithm determines that at least
a picker can start the picking operation of the next available batch;
𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙 contains an ordered list of batches with the orders already
collected.

Once all variables have been initialized, the orchestration method
in Algorithm 1 updates the list of 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 (step 8) and calcu-
lates a partial solution with the batching algorithm (step 9). Then,
it updates (if necessary) the 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 found with the current
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 obtained (step 10). The update consists of replacing the cur-
rent 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 with 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙. Notice that this update is produced
when either 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 is better than 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 in terms of quality,
or when 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 contains new orders arrived in the system. This
process is repeated while the 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 is empty (i.e., there are
not orders in the system awaiting to be collected) or if there exists a
waiting strategy which determines that the picker should wait for the
arrival of new orders, before starting the picking operation (step 11).

Once there is at least one picker is available (step 13), the
selectingAlgorithm chooses a batch within the 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙
(step 14) and the routingAlgorithm calculates the route to follow
for collecting the orders in the selected batch (step 15). In step 16,
the assigningAlgorithm determines if the selected 𝑏𝑎𝑡𝑐ℎ and its
associated 𝑟𝑜𝑢𝑡𝑒 can be assigned to the selected available 𝑝𝑖𝑐𝑘𝑒𝑟. Notice
that depending on the objective pursued, the assignation might not
be straight forward (i.e., an available picker can be the one with
the larger workload and the method might determine to wait until
another picker becomes available). If the assignation is performed, the
picking operation starts (step 17), the collected orders are removed
from 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 and from the list of 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 (step 18). Finally,
the collected 𝑏𝑎𝑡𝑐ℎ is added to the 𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙 (step 19). The whole
process is repeated until the list of input orders becomes empty and
there are not orders pending to be collected in the system.

Algorithm 1 Orchestration method MS-VND
1: function MS-VND(𝑜𝑟𝑑𝐿𝑖𝑠𝑡)
2: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 ← ∅
3: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 ← ∅
4: 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 ← ∅
5: 𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙 ← ∅
6: do
7: do
8: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 ∪ 𝚐𝚎𝚝𝙾𝚛𝚍𝚎𝚛𝚜𝙰𝚛𝚛𝚒𝚟𝚎𝚍(𝑜𝑟𝑑𝐿𝑖𝑠𝑡)
9: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 ← 𝚋𝚊𝚝𝚌𝚑𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)

10: 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 ← 𝚞𝚙𝚍𝚊𝚝𝚎(𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙)
11: while 𝚠𝚊𝚒𝚝𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)||(𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 = ∅)
12: for each 𝑝𝑖𝑐𝑘𝑒𝑟 ∈ 𝚐𝚎𝚝𝙰𝚟𝚊𝚒𝚕𝚊𝚋𝚕𝚎𝙿𝚒𝚌𝚔𝚎𝚛𝚜() do
13: 𝑏𝑎𝑡𝑐ℎ ← 𝚜𝚎𝚕𝚎𝚌𝚝𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙)
14: 𝑟𝑜𝑢𝑡𝑒 ← 𝚛𝚘𝚞𝚝𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑏𝑎𝑡𝑐ℎ)
15: if 𝚊𝚜𝚜𝚒𝚐𝚗𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑝𝑖𝑐𝑘𝑒𝑟, 𝑏𝑎𝑡𝑐ℎ, 𝑟𝑜𝑢𝑡𝑒) then
16: 𝚌𝚘𝚕𝚕𝚎𝚌𝚝(𝑝𝑖𝑐𝑘𝑒𝑟, 𝑏𝑎𝑡𝑐ℎ, 𝑟𝑜𝑢𝑡𝑒)
17: 𝚛𝚎𝚖𝚘𝚟𝚎(𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑, 𝑏𝑎𝑡𝑐ℎ)
18: 𝚊𝚍𝚍(𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙, 𝑏𝑎𝑡𝑐ℎ)
19: end if
20: end for
21: while (𝑜𝑟𝑑𝐿𝑖𝑠𝑡 ≠ ∅) || (𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 ≠ ∅)
22: return 𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙
23: end function

There are five remarkable methods within the MS-VND procedure
presented in Algorithm 1. The batching algorithm
(batchingAlgorithm), which conforms the batches to be collected,
is described in Section 4.2. The waiting algorithm
(waitingAlgorithm), which determines the time window available
to update the current partial solution, is described in Section 4.3. Notice
that this algorithm determines whether a picker can start the picking
or must wait to improve the current partial solution. The selection al-
gorithm (selectingAlgorithm), which determines the next batch
of the partial solution to be assigned to an available picker, is described
in Section 4.4. The assigning algorithm (assigningAlgorithm),
which determines if the selected batch is assigned to an appropriate
picker by following a workload balance criterion, is described in
Section 4.5. Finally, the routing algorithm (routingAlgorithm),
which determines the route that a picker must follow to collect a batch,
is described in Section 4.6.
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4.2. Batching algorithm

In this paper, we focus our attention on the batching algorithm as
one of the key procedures in the context of any variant of the OOBP.
The batching procedure consists of grouping all orders received at the
warehouse in clusters, named batches. Each batch has a maximum
predefined capacity, and all orders in the same batch are collected
together. We propose a batching algorithm (which is introduced in
Algorithm 2) based on the combination of a constructive procedure
(step 2 in Algorithm 2), which is in charge of constructing feasible
solutions for the OOBPMP, and an improvement procedure (step 2 in
Algorithm 2) which is in charge of reaching a local optimum within
the neighborhood of the solution previously constructed. Notice that
this procedure is being continuously run following a multistart strategy
(steps 7 to 11 in Algorithm 1) while the stopping criterion is not met.
In each iteration of those steps, a single call to the batching algorithm
(Algorithm 2) is performed, considering a single partial solution at the
same time. This solution might contain one or more batches.

Algorithm 2 Batching Algorithm
1: function batchingAlgorithm(𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)
2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝𝚒𝚟𝚎(𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)
3: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝚅𝙽𝙳(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
4: return 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
5: end function

The constructive method is inspired by the ideas presented within
the Greedy Randomized Adaptive Search Procedure (GRASP) method-
ology (Feo & Resende, 1995). Particularly, it uses a greedy function
to build a feasible solution step by step, combining its greediness
with the randomization of several decisions. The pseudocode of the
constructive method is presented in Algorithm 3. The method starts
from an empty solution (step 2) and it adds a new order to the solution
in each iteration (steps 5 to 11). The selection of the order to be added
in each iteration is based in two principles: a greedy function which
helps to select a set of promising candidate orders to be added to the
solution, and a random function which selects one order within the
list of promising candidate orders. Initially, all available orders are
inserted in the Candidate List (𝐶𝐿) (step 3) and a random value 𝛼
(step 4) is calculated. The greedy function (𝚏) evaluates the orders in
the 𝐶𝐿 by measuring the weight of each order in such a way that all
candidate orders are sorted in a descending way based on that weight. A
percentage of the heaviest orders in the 𝐶𝐿 are included in a Restricted
Candidate List (𝑅𝐶𝐿), at step 7, by using the threshold 𝑡ℎ previously
calculated in the step 6. The value of 𝑡ℎ is based on the maximum
(arg max 𝚏(𝐶𝐿)) and minimum (arg min 𝚏(𝐶𝐿)) weight of any order in
the 𝐶𝐿, and the previous random value 𝛼 ∈ 𝑈 [0, 1]. Those orders with a
weight over the threshold are inserted in the 𝑅𝐶𝐿. Finally, an order is
selected at random from the 𝑅𝐶𝐿 (step 8), added to the solution (step
9) and removed from the 𝐶𝐿 (step 10).

This procedure determines the sequence in which the orders will
be added to the solution, however it is also necessary to determine
the receiver batch for each particular order. Specifically, the algorithm
starts with an empty batch and it adds the current selected order to the
first batch with enough available space to handle the order. If none of
the previously created batches have enough space, then a new empty
batch is added to the solution.

The improvement phase of this multistart algorithm is based on a
metaheuristic procedure. Particularly, instead of using a simple local
search procedure, we propose the use of a Variable Neighborhood
Descent (VND) method. Therefore, in each iteration, the method con-
structs an efficient solution, and this solution is further improved with
a VND procedure. This schema is repeated until the method runs out
of time, or the maximum number of iterations is reached.

The Variable Neighborhood Descent is a variant of the well-known
Variable Neighborhood Search (VNS) methodology which was pro-
posed by Mladenović and Hansen (1997) with the main idea of chang-
ing the neighborhood structure during the search to reach different

Algorithm 3 Constructive procedure
1: function Constructive(𝑜𝑟𝑑𝑒𝑟𝑠)
2: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← ∅
3: 𝐶𝐿 ← 𝑜𝑟𝑑𝑒𝑟𝑠
4: 𝛼 ← 𝚛𝚊𝚗𝚍𝚘𝚖𝚅𝚊𝚕𝚞𝚎()
5: while 𝐶𝐿 ≠ ∅ do
6: 𝑡ℎ ← arg max 𝚏(𝐶𝐿) − 𝛼(arg max 𝚏(𝐶𝐿) − arg min 𝚏(𝐶𝐿))
7: 𝑅𝐶𝐿 ← 𝚋𝚞𝚒𝚕𝚍𝚁𝙲𝙻(𝑡ℎ, 𝐶𝐿)
8: 𝑜𝑟𝑑𝑒𝑟 ← 𝚛𝚊𝚗𝚍𝚘𝚖𝚂𝚎𝚕𝚎𝚌𝚝𝚒𝚘𝚗(𝑅𝐿𝐶)
9: 𝚊𝚍𝚍(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑜𝑟𝑑𝑒𝑟)

10: 𝐶𝐿 ← 𝐶𝐿 ⧵ {𝑜𝑟𝑑𝑒𝑟}
11: end while
12: return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
13: end function

local optima. VNS has been used as the main procedure to solve
many optimization problems. The original idea has been extended
with many different variants. The classical ones are: Reduced VNS
(RVNS), Variable Neighborhood Descent (VND), Basic VNS (BVNS),
General VNS (GVNS), Skewed VNS (SVNS), and Variable Neighbor-
hood Decomposition Search (VNDS) (Hansen & Mladenović, 2001;
Hansen, Mladenović, & Moreno-Pérez, 2010; Mladenović & Hansen,
1997). Other recent approaches include: Parallel Variable Neighbor-
hood Search (PVNS) (Duarte, Pantrigo, Pardo, & Sánchez-Oro, 2016;
Menéndez, Pardo, Sánchez-Oro et al., 2017), Variable Formulation
Search (VFS) (Pardo, Mladenović, Pantrigo, & Duarte, 2013), and Multi-
Objective Variable Neighborhood Search (MO-VNS) (Duarte, Pantrigo,
Pardo, & Mladenovic, 2015).

VNS methodology has been previously used in the context of order
batching problems. On one hand, it has been used to tackle several
offline variants of the problem. As far as we know, the first use
of this methodology to tackle the OBP was proposed by Albareda-
Sambola, Alonso-Ayuso, Molina, and De Blas (2009), where the authors
minimized the picking time through the use of a VND. This objective
function was also studied using BVNS and GVNS in Menéndez, Pardo
et al. (2017), Menéndez, Pardo, Duarte, Alonso-Ayuso, and Molina
(2015). Also in an offline context, the minimization of the tardiness
was studied by Henn (2015) with VND and GVNS. This variant was
again tackled by Menéndez, Bustillo et al. (2017) with a GVNS and, an
extension of the problem with the same objective function, was also
studied with a VND by Scholz et al. (2017). Finally, a Parallel VNS
was presented in Menéndez, Pardo, Sánchez-Oro et al. (2017) for the
minimization of the maximum picking time of a batch. On the other
hand, VNS has been also used in an online context by Gil-Borrás et al.
(2020b). In that paper, the authors proposed a VND to minimize the
completion time and the maximum turnover time.

The key idea behind the VNS methodology is the definition and
exploration of different neighborhood structures. These neighborhoods
have been used for different tasks in the context of order batching
problems: move orders among batches (Albareda-Sambola et al., 2009;
Menéndez, Pardo et al., 2017), sort the batches to establish a se-
quence to collect them (Henn, 2015; Scholz et al., 2017), or assign
orders/batches to pickers (Henn, 2015; Scholz et al., 2017). In this
paper we focus on the task of batching orders. Therefore, we next
review the neighborhood structures previously proposed to handle this
task. The most common neighborhood structure used in the literature
is the one defined by the swap operation, consisting of interchanging
two orders belonging to different batches. This neighborhood has been
previously studied in Albareda-Sambola et al. (2009), Gil-Borrás et al.
(2020b), Henn (2015), Menéndez, Bustillo et al. (2017), Menéndez,
Pardo et al. (2017), Menéndez et al. (2015), Menéndez, Pardo, Sánchez-
Oro et al. (2017), Scholz et al. (2017). The second most studied
neighborhood in the literature is the one defined by the insert op-
eration, which consists of removing an order from its current batch
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and assigning it to a new batch. This neighborhood structure has been
previously used in: Albareda-Sambola et al. (2009), Gil-Borrás et al.
(2020b), Henn (2015), Menéndez, Bustillo et al. (2017), Menéndez,
Pardo et al. (2017), Menéndez et al. (2015), Scholz et al. (2017). The
extension of this neighborhood structure, consisting of removing two
orders from a batch and inserting them in another batch was presented
in Albareda-Sambola et al. (2009). Similarly, another extension consists
of removing two orders from a batch and interchanging them with
one order from another batch. This neighborhood was used by Gil-
Borrás et al. (2020b), Menéndez, Pardo et al. (2017). Other complex
neighborhoods have also been explored in previous research, such as:
two consecutive swap/insert operations in chain (Albareda-Sambola
et al., 2009; Menéndez, Pardo et al., 2017; Menéndez, Pardo, Sánchez-
Oro et al., 2017); the insertion of two orders from the same batch in two
different batches (Albareda-Sambola et al., 2009); the insertion of two
orders from different bathes into one batch (Albareda-Sambola et al.,
2009).

The VND strategy proposed in this paper is designed to systemat-
ically explore three different neighborhood structures. The obtained
result from the VND procedure is therefore a local optimum with
respect to all three neighborhood structures considered.

In Algorithm 4 we present the pseudocode of the VND procedure
used in this paper for the OOBPMP. The initial solution received
by the VND as a starting point is calculated with the constructive
procedure previously presented. This solution is explored by three local
search procedures which follow a first improvement strategy. Each
local search explores a different neighborhood and then determines if
an improvement has been made (steps 13 to 18 in Algorithm 4) or not.
If a local search procedure is not able to improve the current solution
by exploring its neighborhood, then the method jumps to the next
available neighborhood, otherwise it returns to the first local search
procedure. The process is repeated until not further improvements are
made with any of the local search methods considered.

Notice that the function used to evaluate the quality of the solution
(𝚎𝚟𝚊𝚕 in Algorithm 4) determines if a new solution visited can be
considered as an improvement during the search. Therefore, different
𝚎𝚟𝚊𝚕 functions might guide the search to different areas of the solution
space. In this paper we have explored two different 𝚎𝚟𝚊𝚕 functions:
the workload balance and the picking time, obtaining two different
search strategies that are compared in Section 5. However, to compute
any of the objective functions considered, it is previously necessary to
compute the picking route using a routing algorithm (see Section 4.6).

The VND in Algorithm 4 is configured with the following local
search procedures:

• The 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝙸𝚗𝚜𝚎𝚛𝚝𝟷𝚡𝟶 is based on an insert neighborhood,
which considers all possible solutions reached by the insertion of
any order in the solution in all available batches.

• The 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝚂𝚠𝚊𝚙𝟸𝚡𝟷 is based on an interchange neighbor-
hood, which considers all possible solutions reached by the ex-
change of every pair of two orders within the same batch, with
any single order in any other batch.

• The 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝚂𝚠𝚊𝚙𝟷𝚡𝟷 is based on an interchange neighbor-
hood which considers all possible solutions reached by the inter-
change of any pair of orders assigned to a different batch in the
solution.

Notice that it is mandatory that the resulting batches after any move
within the proposed local search procedures do not violate the maxi-
mum capacity restriction on a batch. Otherwise, the solution obtained
is discarded.

Neighborhood structures are typically sorted depending on its size,
which is usually related to the time needed to explore them, being the
fastest to be explored considered firstly and the slowest considered at
the end. However, this is an empirical rule that can be also tested when
considering a specific set of neighborhoods for a particular optimization

Algorithm 4 Variable Neighborhood Descent
1: function VND(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
2: 𝑘 ← 1
3: 𝑘𝑚𝑎𝑥 ← 3
4: 𝑏𝑒𝑠𝑡 ← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
5: repeat
6: if 𝑘 == 1 then
7: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′ ← 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝙸𝚗𝚜𝚎𝚛𝚝𝟷𝚡𝟶(𝑏𝑒𝑠𝑡)
8: else if 𝑘 == 2 then
9: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′ ← 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝚂𝚠𝚊𝚙𝟸𝚡𝟷(𝑏𝑒𝑠𝑡)

10: else if 𝑘 == 3 then
11: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′ ← 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝚂𝚠𝚊𝚙𝟷𝚡𝟷(𝑏𝑒𝑠𝑡)
12: end if
13: if 𝚎𝚟𝚊𝚕(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′) < 𝚎𝚟𝚊𝚕(𝑏𝑒𝑠𝑡) then
14: 𝑏𝑒𝑠𝑡 ← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′

15: 𝑘 = 1
16: else
17: 𝑘 = 𝑘 + 1
18: end if
19: until 𝑘 > 𝑘𝑚𝑎𝑥
20: return 𝑏𝑒𝑠𝑡
21: end function

problem. In this case, the order of the local search procedures and its as-
sociated neighborhoods presented in Algorithm 4 has been empirically
determined.

As a final remark to this section, we would like to remark the
relevance of the strategies chosen to handle the batching task. First,
the use of a multistart procedure is devoted to the online nature of the
problem, since each construction in a multistart strategy can consider
new orders arrived at the system, in addition to the ones available
in the previous iteration. Among the different multistart algorithmic
methodologies, GRASP was selected since it contributes to construct
diverse solutions which make room in the batches constructed, due to
the randomization nature of the procedure. This fact simplifies the task
for local search procedures. Finally, as it was previously reviewed, VNS
methodology resulted a very successful methodology in the past, when
tackling other variants of the OBP. This fact has conducted researchers
to very simple and successful ideas in the definition of neighborhood
structures that can be easily adapted to the OOBPMP. Finally, GRASP
and VNS have been widely combined in the past when tackling hard
optimization problems by typically using VND as the local search phase
of GRASP. This is the reason why VND is selected among the different
variants of VNS.

4.3. Waiting algorithm

The waiting method is in charge of determining the time window
that a picker must wait before starting a new route. Notice that, in some
situations and depending on the objective function considered, it must
be worthy to wait until more orders are available in the system before
composing the batches. This is due to the fact that a larger number of
orders might allow the batching algorithm to configure batches which
retrieval is more efficient. In this paper, we follow the most naive
waiting algorithm used in the literature of the OBP, which establishes
that a picker can start its route as soon as it becomes available and
there is at least one batch ready to be collected.

4.4. Selecting algorithm

Depending on the number of orders arrived to the system, the solu-
tion provided by the batching algorithm might have several batches. In
this case, the selection method is in charge of determining which is the
next batch that must be collected. The method proposed for this task

9



S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

Fig. 3. Example of the route obtained with the S-Shape routing algorithm to collect
the boxes in the figure.

sorts all batches in the current partial solution in a descending way with
respect to its weight. Then, the method selects the heaviest batch as the
next one to be collected. In the case that more than one batch achieves
the largest weight, the tie is broken by selecting the batch which can
be collected faster according to the routing method.

4.5. Assigning algorithm

In warehouses with multiple pickers, the assigning algorithm is in
charge of determining who, among the pickers, will be assigned to the
next waiting batch chosen by the selecting algorithm. This method is
very relevant when the objective is to balance the workload among the
pickers. In this case, we use the method proposed by Zhang et al. (2017)
which assigns the next available batch to the picker that has traveled
less until that moment.

4.6. Routing algorithm

Once there is a waiting batch assigned to an available picker, the
picker must follow an efficient route within the warehouse to collect
all orders in the assigned batch. This route is calculated by the routing
algorithm. Routing algorithms for the OBP have been widely studied in
the literature and it is possible to find exact and heuristic approaches. In
this paper, we propose the use of the S-Shape routing algorithm (Hall,
1993) which has also been referred to as Traversal in the literature.
This method has been widely used due to its simplicity for the pickers
and its fast calculation process. In Fig. 3 we show an example of this
algorithm. In this case, the depot is placed at the front cross aisle at the
leftmost corner. The route starts and ends at the depot and all parallel
aisles with at least an item to be collected are fully traversed except
for the case when the number of aisles with items to collect is odd. In
that situation, the last aisle is entered from the front cross aisle and the
picker performs a U-turn when the last item is reached, to return to the
front cross aisle, as this is the case of the example depicted in Fig. 3.

5. Computational results

The algorithmic proposals presented in this paper have been deeply
evaluated over data sets of instances previously reported in the liter-
ature. In Section 5.1, we describe in detail the characteristics of the
warehouses, orders, and arrival times which compose the instances
used in our experiments.

To test our proposals, we have carried out a wide empirical study
which can be divided in two main parts: on one hand, we have eval-
uated the performance of our methods, by considering three different

objective functions: completion time, picking time, and workload bal-
ance, and comparing our results with the previous methods in the state
of the art (see Sections 5.2, 5.3, and 5.4, respectively). For each ob-
jective function, we varied the number of pickers and the time horizon
considered. All results were analyzed using statistical tests. Particularly,
we used the Friedman Rank Test (Friedman, 1937) for comparing the
results of multiple algorithms, and the Wilcoxon Test (Wilcoxon, 1992)
for the comparison of pairs of algorithms. On the other hand, we
have performed an additional analysis by studying the influence of the
number of pickers (see Section 5.5) and the influence of the congestion
in the arrival of orders (see Section 5.6), in the performance of the
methods compared when handling the same scenario.

All methods, including the ones in the state of the art, were coded
in Java 8 and run in an Intel (R) Core (TM) 2 Quad CPU Q6600 2.4 Ghz
machine, with 4 GB DDR2 RAM memory. The operating system used
was Ubuntu 18.04.1 64 bit LTS.

5.1. Instances

We have selected two widely used data sets of instances previously
reported in the state of the art of different variants of the Order
Batching family of problems. One data set was introduced by Albareda-
Sambola et al. (2009) and the other one was presented by Henn (2012).
The specifications and main characteristics of each data set are sum-
marized in Table 3. The data sets were originally designed and used in
the context of the OBP (the offline version of this problem) and used in
the related literature (De Koster, Van der Poort, & Wolters, 1999; Koch
& Wäscher, 2016; Menéndez, Bustillo et al., 2017; Menéndez, Pardo
et al., 2017; Menéndez et al., 2015; Menéndez, Pardo, Sánchez-Oro
et al., 2017; Scholz et al., 2017; Scholz & Wäscher, 2017). Later, those
instances have been adapted for the online multipicker version of the
OBP. In this sense it is necessary to determine two additional aspects:
an arrival time for each order within the observed time horizon, and the
number of pickers. Notice that these instances and the straightforward
adaptation to the online multipicker context has also been used in
previous research papers (Alipour et al., 2020; Gil-Borrás et al., 2020b;
Pérez-Rodríguez, Hernández-Aguirre, & Jöns, 2015; Zhang et al., 2017;
Žulj, Kramer, & Schneider, 2018).

Since the experiments in the context of the OOBPMP are performed
in real time, the execution time of the study might be extremely large
when considering many instances. To avoid this drawback, we have
used the selection of a representative subset of instances proposed
by Menéndez, Pardo et al. (2017) and later used in Gil-Borrás et al.
(2020b), in order to have a reduced data set which can be handled
in a reasonable amount of time. Particularly, the first reduced data
set is composed by 80 instances, while the second reduced data set is
composed by 64 instances. It is important to notice that the authors
in Menéndez, Pardo et al. (2017) demonstrated that the selection of
instances they made resulted in a representative data set, avoiding the
necessity of using a larger number of instances from the same origin.

In addition to the characteristics of the warehouse, it is also nec-
essary to take into consideration other parameters which affect the
time needed to perform the picking operation. Particularly, in Table 4
we report: the travel speed of the pickers, once they have started
their routes; the extraction speed of items, once the picker is placed
at the picking position; and the batch setup time, which contains the
necessary time to prepare the picking cart before starting the next
route.

Finally, the arrival of orders to the warehouse in the context of
the OOBPMP is distributed through a particular time horizon. In this
sense, it is necessary to configure a simulation environment, which
provides the orders to the system prior calculating the batch config-
uration and picking route. The time horizon of the arrival of orders
to the warehouse has been set between 1 and 4 h, depending on the
experiment.

To simulate the arrival time for each order, we follow a Poisson
point process. Since the time horizon is set between 1 and 4 h (t =
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Table 3
Warehouse characteristics of the data set introduced in Albareda-Sambola et al. (2009) and Henn (2012).

Albareda-Sambola et al. (2009) Henn (2012)

W1 W2 W3 W4 W5

Storage policy Random/ABC Random/ABC
Depot position Center/Left corner Center
Order size U(1,7) U(2,10) U(5,25) U(1,36) U(5,25)
Item weight 1 1 1 U(1,3) 1
Batch capacity (weight) 12 24 150 80 30 / 45 / 60 / 75
Number of parallel aisles 4 10 25 12 10
Number of items per aisle 2 × 30 2 × 20 2 × 25 2 × 16 2 × 45
Number of items 240 400 1250 384 900
Parallel aisle length 50 m 10 m 50 m 80 m 45 m
Center distance between two consecutive parallel aisles 4.3 m 2.4 m 5 m 15 m 5 m
Number of instances 20 20 20 20 64

Table 4
Configuration parameters proposed in Henn (2012)
involved in the evaluation of the solutions.
Travel speed 48 LU/min
Extraction speed 6 items/min
Batch setup time 3 min

1,2,3,4). The number of events in the interval of length t is a Poisson
random variable 𝑋(𝑡) with mean 𝐸[𝑋(𝑡)] = 𝜆 ∗ 𝑡. The 𝜆 value is selected
depending on the number of orders considered in the experiment. In
this case, the 𝜆 values chosen for our experiments are compiled in
Table 5. It is important to remark that the time horizon defined for the
arrival of orders in each experiment, is also the time that all evaluated
methods are running.

5.2. Empirical study of the completion time

In this section, we evaluate the performance of the algorithms when
considering the minimization of the completion time, one of the most
reported objective functions used in the state of the art of the OOBPMP.
The completion time indicates the elapsed time since the start of the
experiment until the moment in time when the last order, among the
considered ones in the instances, has been collected and handled in
the depot. This time includes the time needed for any activity in the
warehouse: batching, waiting, selecting, assigning, and routing, and it
also depends on the number of pickers simultaneously working.

In all experiments of this section, we compare the two previously
proposed methods in the state of the art (Alipour et al., 2020; Zhang
et al., 2017) with the Multistart VND (MS-VND) proposed in this
paper. Notice that we have tested two variants of the MS-VND. Both
methods are equal, but they use a different evaluation function to
guide the search (i.e., the function used to determine which solution
is more promising). The MS-VND-1 uses the workload balance function
to compare two solutions, while the MS-VND-2 uses the picking time
function. The rationale behind this strategy is that just varying the
evaluation function which guides the search, lets the method to explore
different areas of the space search.

First, we have evaluated the impact of the time horizon studied
on the performance of the methods, by considering 2 h time horizon
(see Table 6) and 4 h time horizon (see Table 7). For each considered
time horizon, we have also studied the influence of varying the number
of pickers (2, 3, 4, and 5) for each experiment. Each configuration
has been executed over the 144 instances previously selected and the
results per configuration have been reported separated by the data
set and all together. For each configuration, we report the averaged
values of the objective function (Avg. (s)) and the deviation to the best
value obtained in the experiment (Dev. (%)). In each table, we have
highlighted in bold type font the results obtained by the best algorithm.

We observe that MS-VND-1 is the best overall method in terms of
completion time, since it achieves the smaller deviation to the best
solution in the experiment in most of the studied scenarios. To confirm

the relevance of the results found, we have performed a Friedman
rank test (see the row ‘‘2 h’’ in Table 10). The obtained 𝑝-value of
0.000 indicates that the differences among the compared methods
are significant with MS-VND-1 ranking in the first position. Also, we
corroborated that there were significant differences when comparing
only our best variant MS-VND-1 with any of the two methods from the
state of the art in isolation. To that aim, we carried out two Wilcoxon
tests. The obtained 𝑝-values of 0.000 in both comparisons also indicate
that the differences between the compared methods are significant.

The results of the 4 h context presented in Table 7 are very similar
to the 2 h context, resulting again the MS-VND-1, the best method
among the compared ones. The significance of the results was also
corroborated by the Friedman rank test (see row ‘‘4 h’’ in Table 10),
and again confirmed by the Wilcoxon test when comparing MS-VND-1
with each of the previous proposals separately.

We have also studied the behavior of the compared methods with
respect to the completion time, when fixing the number of pickers and
varying the number of available hours for the arrival of orders. In
Table 8 we report the results for 2 pickers and, in Table 9, for 5 pickers.
Again, in both scenarios MS-VND-1 was the best compared method and
the differences found with other methods were statistically significant
(see rows ‘‘2 pickers’’ and ‘‘5 pickers’’ in Table 10).

Analyzing and summarizing our findings about the study of the
completion time, first we would like to highlight the importance of
the use of the completion time as objective function. This is because
minimizing the completion time results in an overall benefit for the
customers since it contributes to reduce the delivery time of products.
Increasing the time horizon for the schedule of the arrival of orders
results in an increase in the completion time. Also, an increase in the
number of pickers reduces the completion time. This point is verified by
all tested methods. However, increasing the number of pickers results
more beneficial for the completion time, with an upper bound of having
a picker available for each order arriving at the system, which clearly
results in unacceptable operational costs. However, this explains why
using the workload balance as the guiding function, which usually
provides solutions with a larger number of batches, helps to minimize
the completion time. Also, it is important to notice that in this paper
we do not consider blocking situations, which would also deteriorate
the solution when increasing the number of pickers.

5.3. Empirical study of the picking time

In this section, we have performed the empirical comparison be-
tween our proposals and the methods from the state of the art when
considering the picking time as objective function. In this scenario, we
have performed the same set of experiments described in Section 5.2,
but reporting the picking time, instead of the completion time. The
picking time indicates the sum of the times spent by the pickers in the
picking task, avoiding any waiting time. Notice that the picking task
includes the setup time (time needed for the pickers prior to starting a
new route to set up the picking cart and to review the assigned route),
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Table 5
Values of the Poisson parameter 𝜆, used to distribute the arrival of different number of orders in a particular time
horizon.

#orders

40 60 80 100 150 200 250

Time
horizon

1 h 0.667 1.000 1.334 1.667 2.500 3.334 4.167
2 h 0.334 0.500 0.667 0.834 1.250 1.667 2.084
3 h 0.223 0.334 0.445 0.556 0.834 1.112 1.389
4 h 0.167 0.250 0.334 0.417 0.625 0.834 1.042

Table 6
Comparison of the completion time with the state-of-the-art methods over several 2 h scenarios with different number of pickers.
Instances #pickers Completion time (With 2 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 32600 9.43% 35321 17.59% 30391 0.67% 30251 0.47%
3 22775 8.87% 24872 18.10% 21300 0.77% 21228 0.72%
4 18067 8.35% 19804 18.18% 16864 0.68% 16857 0.93%
5 15377 7.76% 16802 16.35% 14437 1.03% 14412 1.08%

Henn (64)

2 15609 8.95% 15239 5.64% 14386 0.43% 14467 0.93%
3 11416 7.45% 11105 4.41% 10662 0.81% 10692 1.06%
4 9658 6.28% 9417 3.35% 9169 1.04% 9210 1.40%
5 8885 5.99% 8636 2.77% 8458 0.86% 8483 1.15%

All (144)

2 25048 9.22% 26395 12.28% 23278 0.56% 23236 0.68%
3 17727 8.24% 18754 12.01% 16572 0.79% 16545 0.87%
4 14329 7.43% 15187 11.59% 13444 0.84% 13458 1.14%
5 12492 6.90% 13172 10.24% 11780 0.89% 11777 1.05%

Table 7
Comparison of the completion time with the state-of-the-art methods over several 4 h scenarios with different number of pickers.
Instances #pickers Completion time (With 4 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 34700 7.52% 36107 9.99% 32546 0.52% 32460 0.43%
3 25905 5.92% 26784 7.82% 24490 0.43% 24496 0.55%
4 22096 5.61% 22448 5.62% 21001 0.61% 21020 0.86%
5 19987 5.19% 20266 5.02% 19068 0.41% 19123 0.86%

Henn (64)

2 18235 6.56% 17767 3.45% 17164 0.43% 17207 0.62%
3 15968 5.41% 15401 1.48% 15206 0.33% 15278 0.77%
4 15552 5.60% 14867 0.79% 14803 0.38% 14817 0.48%
5 15441 5.60% 14691 0.35% 14655 0.11% 14687 0.32%

All (144)

2 27382 7.09% 27956 7.08% 25709 0.48% 25681 0.52%
3 21489 5.70% 21725 5.00% 20364 0.38% 20399 0.65%
4 19187 5.61% 19079 3.47% 18246 0.51% 18263 0.69%
5 17967 5.37% 17789 2.94% 17106 0.27% 17151 0.62%

Table 8
Comparison of the completion time with the state-of-the-art methods over several 2 pickers scenarios, varying the number of hours for the arrival of
orders.
Instances #Hours Completion time (With 2 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 32221 11.33% 34795 20.47% 29895 0.68% 29751 0.57%
2 32600 9.43% 35321 17.59% 30391 0.67% 30251 0.47%
3 33472 8.85% 35895 14.45% 31210 0.57% 31166 0.58%
4 34700 7.52% 36107 9.99% 32546 0.52% 32460 0.43%

Henn (64)

1 15206 9.48% 15779 12.50% 13931 0.19% 14049 1.05%
2 15609 8.95% 15239 5.64% 14386 0.43% 14467 0.93%
3 16547 7.74% 16114 4.39% 15439 0.78% 15419 0.49%
4 18235 6.56% 17767 3.45% 17164 0.43% 17207 0.62%

All (144)

1 24659 10.51% 26343 16.93% 22800 0.46% 22772 0.78%
2 25048 9.22% 26395 12.28% 23278 0.56% 23236 0.68%
3 25950 8.36% 27104 9.98% 24201 0.67% 24168 0.54%
4 27382 7.09% 27956 7.08% 25709 0.48% 25681 0.52%
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Table 9
Comparison of the completion time with the state-of-the-art methods over several 5 pickers scenarios, varying the number of hours for the arrival of
orders.
Instances #Hours Completion time (With 5 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 14052 10.76% 15141 18.00% 13055 1.11% 13040 1.34%
2 15377 7.64% 16802 16.21% 14437 0.91% 14412 0.96%
3 17546 5.96% 18332 8.33% 16667 0.82% 16631 0.86%
4 19987 5.19% 20266 5.02% 19068 0.41% 19123 0.86%

Henn (64)

1 7079 8.96% 7400 13.00% 6534 0.85% 6598 1.64%
2 8885 5.99% 8636 2.77% 8458 0.86% 8483 1.15%
3 11977 5.64% 11461 0.92% 11441 0.77% 11422 0.62%
4 15441 5.60% 14691 0.35% 14655 0.11% 14687 0.32%

All (144)

1 10953 9.96% 11700 15.78% 10156 0.99% 10177 1.47%
2 12492 6.90% 13172 10.24% 11780 0.89% 11777 1.05%
3 15071 5.82% 15279 5.03% 14344 0.80% 14316 0.75%
4 17967 5.37% 17789 2.94% 17106 0.27% 17151 0.62%

Table 10
Friedman rank test for different test scenarios, when studying the completion time.

Friendman rank test — Completion time

Alipour et al.
(2020)

Zhang et al.
(2017)

MS-VND-1
(Workload
Balance)

MS-VND-2
(Picking
Time)

Sig.
(𝑝-value)

2 h 3.47 3.16 1.66 1.71 0.000
4 h 3.67 2.69 1.79 1.85 0.000
2 pickers 3.47 3.33 1.56 1.65 0.000
5 pickers 3.45 2.97 1.75 1.81 0.000

the traveling time (time needed by the pickers to reach each picking
position), the time needed to accelerate or decelerate the picking cart,
and the extraction time of the items from the shelves. Particularly, in
Tables 11 and 12 we study the behavior of the algorithms over 2 and
4 h scenarios, respectively, varying the number of pickers (2, 3, 4, or
5). Then, in Tables 13 and 14 we fixed the number of pickers (2 or 5)
and varied the number of available hours (1, 2, 3, or 4) for the arrival
of orders.

In this case, we have also studied the statistical significance of the
results obtained. In Table 15, we report the obtained rank values for
the Friedman tests for each of the studied scenarios. In all cases, the
𝑝-values obtained were 0.000, which indicate significant differences
among the methods. However, this time our best variant was MS-VND-
2, which resulted ranked in the first position in two out of the four
scenarios. On the other hand, the proposal by Alipour et al. (2020)
resulted in the first position in the other two scenarios. Observing
the scenarios where the MS-VND-2 performed better, we can conclude
that MS-VND-2 is the best method when the warehouse presents a
higher congestion of orders. This might be due to the existence of fewer
pickers working at the studied moment or numerous orders currently
in the system. On the other hand, the method in Alipour et al. (2020)
performed better when dealing with scenarios with low congestion.
The results between the two best variants of the experiments (MS-
VND-2 and Alipour et al. (2020)) were also observed to be statistically
significant (𝑝-value = 0.000) in three out of the four studied scenarios
(4 h, 2 pickers and 5 pickers) when compared with the Wilcoxon test.
However, in the 2 h scenario, the obtained 𝑝-value = 0.061 indicates
no significant differences between the methods.

Analyzing and summarizing our findings about the study of the
picking time, the optimization of the picking time is usually related to
the energy saving and the enlargement of the life of the machinery.
The larger the number of pickers, the higher the picking time. The
reduction in the picking time is mainly due to the existence of fewer
batches with less empty space. This situation is more suitable when
the number of pickers is small, so there is more time to complete the

batches with new arrived orders. Therefore, introducing waiting times
between each departure might result in a reduction of the picking
time, since there are more full batches. The same observation can
be derived from a different perspective, i.e., a larger congestion rate
usually results in better picking times. Also, we noticed that the use
of the same objective function being minimized (picking time) as the
guiding function to determine the search direction is more beneficial
than using the workload balance.

5.4. Empirical study of workload balance

In this section, we have performed the empirical comparison be-
tween our proposals and the methods from the state of the art when
considering the workload balance as the objective function. In this
scenario, we have performed the same set of experiments described in
Sections 5.2 and 5.3, but reporting the workload balance. The workload
balance indicates the difference between the maximum picking time
needed by a picker to complete its assigned tasks, with respect to the
average picking time reported by all pickers. Particularly, in Tables 16
and 17 we study the behavior of the algorithms over 2 and 4 h
scenarios, respectively, varying the number of pickers (2, 3, 4, or 5).
Then, in Tables 18 and 19 we fixed the number of pickers (2 or 5) and
varied the number of available hours (1, 2, 3, or 4) for the arrival of
orders.

In this case, we have also studied the statistical significance of
the results obtained (see Table 20). In all cases, the 𝑝-values obtained
indicate significant differences among the methods. This time our best
variant (MS-VND-1) resulted ranked in the first position in all scenarios.
The differences found in the results obtained when comparing MS-
VND-1 and the best algorithm in the state of the art (Zhang et al.,
2017) were also observed to be statistically significant when compared
with the Wilcoxon test, with a 𝑝-value of 0.000 in all comparisons
performed.

Analyzing and summarizing our findings about the study of the
workload balance among different workers, we found that it is a key
criterion for maintaining a safe and healthy work environment. This
objective function has not been deeply studied in the literature and
previous methods usually fail when dealing with it. As observed, the
increase in the number of pickers also increases the hardness of finding
a better workload balance. On the other hand, higher congestion rates
increase the chance of finding a more balanced solution. Again, we
observed that the use of the same objective function being minimized
(workload balance) as the guiding function to determine the search
direction is more beneficial than using the picking time.
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Table 11
Comparison of the picking time with the state-of-the-art methods over several 2 h scenarios with different number of pickers.
Instances #pickers Picking time (With 2 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 61755 4.15% 67020 15.50% 60284 5.29% 59558 3.58%
3 62507 2.88% 68045 16.90% 62828 11.07% 61400 7.49%
4 63291 2.11% 69259 19.01% 65323 16.74% 63613 12.64%
5 64166 1.58% 70469 20.64% 68553 23.18% 66372 18.47%

Henn (64)

2 28635 2.95% 29585 6.59% 28231 2.68% 27930 1.32%
3 29407 1.35% 31278 9.73% 30643 8.82% 29859 5.47%
4 30397 0.43% 33684 14.36% 33827 16.24% 32560 11.23%
5 31554 0.17% 36616 20.58% 37252 23.80% 35653 18.04%

All (144)

2 47035 3.62% 50382 11.54% 46038 4.13% 45501 2.57%
3 47796 2.20% 51704 13.71% 48524 10.07% 47382 6.59%
4 48671 1.36% 53448 16.94% 51325 16.52% 49812 12.01%
5 49672 0.95% 55423 20.61% 54641 23.46% 52719 18.28%

Table 12
Comparison of the picking time with the state-of-the-art methods over several 4 h scenarios with different number of pickers.
Instances #pickers Picking time (With 4 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 62887 2.65% 68410 18.95% 63497 14.06% 62589 11.51%
3 64648 1.32% 72511 25.30% 69108 24.54% 67483 20.27%
4 66357 0.97% 76255 31.53% 75349 35.08% 72766 29.37%
5 67975 0.99% 80295 36.60% 81054 43.01% 77856 36.73%

Henn (64)

2 29892 0.82% 33046 14.75% 32497 14.40% 31884 11.53%
3 32097 0.10% 38529 24.84% 39536 29.34% 37810 23.06%
4 33923 0.01% 43621 33.92% 45425 39.84% 42880 32.22%
5 34934 0.00% 47236 41.14% 49013 46.22% 46763 40.08%

All (144)

2 48223 1.84% 52693 17.08% 49719 14.21% 48943 11.52%
3 50181 0.78% 57408 25.10% 55965 26.68% 54295 21.51%
4 51942 0.54% 61751 32.59% 62049 37.20% 59483 30.64%
5 53290 0.55% 65602 38.62% 66814 44.44% 64037 38.22%

Table 13
Comparison of the picking time with the state-of-the-art methods over several 2 pickers scenarios, varying the number of hours for the arrival of orders.
Instances #Hours Picking time (With 2 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 61628 5.30% 65206 12.28% 59418 1.94% 58720 0.57%
2 61755 4.15% 67020 15.50% 60284 5.29% 59558 3.58%
3 62201 3.34% 68234 17.86% 61534 9.49% 60886 7.56%
4 62887 2.65% 68410 18.95% 63497 14.06% 62589 11.51%

Henn (64)

1 28474 3.97% 29941 8.60% 27570 1.18% 27365 0.28%
2 28635 2.95% 29585 6.59% 28231 2.68% 27930 1.32%
3 29183 1.76% 30893 9.38% 29966 7.44% 29496 5.20%
4 29892 0.82% 33046 14.75% 32497 14.40% 31884 11.53%

All (144)

1 46893 4.71% 49533 10.64% 45263 1.61% 44784 0.44%
2 47035 3.62% 50382 11.54% 46038 4.13% 45501 2.57%
3 47526 2.64% 51638 14.09% 47504 8.58% 46935 6.51%
4 48223 1.84% 52693 17.08% 49719 14.21% 48943 11.52%

5.5. Influence of the number of pickers

Our next experiment is devoted to observe the influence of the
number of pickers on the performance of the algorithms compared over
the three objective functions studied. In Fig. 4 we report the averaged
Completion time of all methods for 2 and 4 h scenarios, when varying
the number of pickers. Similarly, in Figs. 5 and 6 we report the results
for the averaged picking time and the averaged workload balance for
the same scenarios.

As expected, we can observe a similar influence of the number
of pickers on the completion time (i.e., the larger the number of
pickers, the shorter the completion time) for any of the compared
methods. On the other hand, the performance of the methods in terms
of picking time benefits from higher congestion (i.e., orders arrive in
shorter times). This is due to the fact that a larger number of orders
in the system lets the batching algorithms to conform batches, which
retrieval times are shorter (i.e., the retrieval of each picking route
is more efficient). Finally, when observing the workload balance, all
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Table 14
Comparison of the picking time with the state-of-the-art methods over several 5 pickers scenarios, varying the number of hours for the arrival of orders.
Instances #Hours Picking time (With 5 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 62640 2.72% 69096 15.47% 63832 11.43% 61723 6.27%
2 64166 1.58% 70469 20.64% 68553 23.18% 66372 18.47%
3 66219 1.35% 75242 28.24% 75068 34.91% 72064 28.56%
4 67975 0.99% 80295 36.60% 81054 43.01% 77856 36.73%

Henn (64)

1 29290 1.03% 31075 7.57% 30740 8.57% 29792 4.60%
2 31554 0.17% 36616 20.58% 37252 23.80% 35653 18.04%
3 33690 0.05% 42948 33.36% 44502 38.33% 42344 31.96%
4 34934 0.00% 47236 41.14% 49013 46.22% 46763 40.08%

All (144)

1 47818 1.97% 52198 11.96% 49125 10.16% 47531 5.53%
2 49672 0.95% 55423 20.61% 54641 23.46% 52719 18.28%
3 51762 0.77% 60889 30.51% 61483 36.43% 58855 30.07%
4 53290 0.55% 65602 38.62% 66814 44.44% 64037 38.22%

Table 15
Friedman rank test for different test scenarios, when studying the picking time.

Friendman rank test — Picking time

Alipour et al.
(2020)

Zhang et al.
(2017)

MS-VND-1
(Workload
Balance)

MS-VND-2
(Picking
Time)

Sig.
(𝑝-value)

2 h 1.96 3.44 2.92 1.68 0.000
4 h 1.45 3.12 3.35 2.08 0.000
2 pickers 2.38 3.70 2.43 1.49 0.000
5 pickers 1.51 3.03 3.40 2.05 0.000

methods except the one introduced by Alipour et al. (2020) were able
to maintain the maximum workload difference when increasing either
the time or the number of pickers. However, the method by Alipour
performed worse with a larger number of pickers. This is due to the fact
that its algorithm assigns the next available batch to the first available
picker, instead of balancing its assignment.

As a general conclusion, the number of pickers influences the objec-
tive functions studied in different ways. Particularly, we observed that
increasing the number of pickers results in shorter completion times
and lower workload for each picker, however, finding a balance among
the work performed by each picker results more complicated and the
overall picking time increases, since pickers collect fewer items in each
picking tour. Also, we can conclude that less pickers than necessary
might result in delays in the completion time, while an excessive
number of pickers might result in more dead time in the activity, larger
costs, and a deterioration in the picking time.

5.6. Influence of the congestion rate

This last experiment is devoted to observe the influence of con-
gestion in the arrival of orders on the performance of the compared
algorithms over the three objective functions studied. Particularly, the
scenarios considered range from lower congestion rates (larger number
of available pickers and/or larger arrival time horizons) to higher
congestion rates (fewer pickers and/or shorter arrival time horizons).

In Fig. 7 we report the averaged completion time in several scenar-
ios. Similarly, in Figs. 8 and 9 we report the results for the averaged
picking time and the averaged workload balance for the same scenarios.

As expected, in Fig. 7 we can observe that larger time horizons
imply larger completion times, since the arrival of orders is more
scattered. Also, we can observe that the completion time, when two
pickers are available (Fig. 7(a)) is much larger than the case with five
pickers available (Fig. 7(b)). On the other hand, we observe that when
only two pickers are available, the increase in the number of hours
does not produce as large deterioration in the completion time as it
is the case of the five pickers configuration. We can conclude that the

benefit of using these algorithms with low congestion rates, in terms
of completion time, is more limited than using them in scenarios with
larger congestion rates.

As far as the picking time is concerned, we observe in Fig. 8, that
a larger number of pickers in the same time horizon implies worse
picking times. This is due to the fact that the batches conformed
are less compact (i.e., they have more available space in the batch),
and therefore there are more batches. Consequently, a larger number
of batches implies more picking routes and therefore larger picking
times. The same effect can be observed when focusing on scenarios
with the same number of pickers, but increasing the time horizon
arrival. Larger time for the arrival of orders implies a larger number of
batches and consequently larger picking times. Additionally, among the
compared algorithms, we can highlight that the approach by Alipour
performs better in very low congestion rate scenarios (5 pickers and
4 h time horizon). Again, we can conclude that the benefit of using
these algorithms with low congestion rates, in terms of picking time, is
more limited than using them in scenarios with larger congestion rates.

Finally, considering the workload balance reported in Fig. 9, we
observe that a larger number of pickers difficult an egalitarian distri-
bution of the work. On the other hand, increasing the number of hours
for the arrival of orders does not seem to influence the balance of the
workload, except for the method of Alipour in the 5 pickers scenario.
We can conclude that the behavior of the proposed algorithms, in terms
of workload balance, is very similar either with low congestion rates or
with larger congestion rates.

To summarize our findings, we observed in our experiments that
the guiding function has a large impact on the obtained results. Par-
ticularly, in this paper, we studied the optimization of three different
objective functions in the context of the OOBPMP: the workload bal-
ance, the picking time, and the completion time. To handle the previous
task, we proposed two methods: MS-VND-1 and MS-VND-2. The MS-
VND-1 uses the workload balance function to compare two solutions
and therefore to guide the search, while the MS-VND-2 uses the picking
time function for the same task. As it is intuitively expected, using the
objective function being minimized as a guiding function results in a
better performance (i.e., MS-VND-1 performed better when minimizing
the workload balance, while MS-VND-2 performed better when min-
imizing the picking time). Finally, when minimizing the completion
time, we observed that the strategy of using the workload balance as
the guiding function performed better than using the picking time. This
is explained due to the differences in the structure of the solutions
obtained with the two different guiding functions. Solutions obtained
with MS-VND-2 presented fewer number of batches (usually with less
empty space) than the solutions obtained with MS-VND-1.

In brief, MS-VND-1 is the best method overall when considering
any of the objective functions, however it is closely followed by the
MS-VND-2. The only exception to the previous assertion occurs in the
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Table 16
Comparison of the workload balance with the state-of-the-art methods over several 2 h scenarios with different number of pickers.
Instances #pickers Workload balance (With 2 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 448 2845% 387 2446.63% 15 0.00% 284 1769.37%
3 798 2112% 621 1620.24% 36 0.00% 518 1333.94%
4 1110 810% 718 489.00% 122 0.00% 610 399.91%
5 1413 486% 671 178.27% 241 0.00% 611 153.63%

Henn (64)

2 296 686% 246 553.70% 38 0.00% 282 648.57%
3 570 324% 393 192.23% 134 0.00% 410 204.90%
4 935 271% 480 90.55% 252 0.00% 497 97.35%
5 1257 274% 533 58.51% 336 0.00% 502 49.35%

All (144)

2 380 1410% 325 1188.04% 25 0.00% 283 1024.16%
3 697 773% 519 551.10% 80 0.00% 470 488.64%
4 1032 474% 613 240.73% 180 0.00% 560 211.39%
5 1344 374% 609 115.12% 283 0.00% 563 98.64%

Table 17
Comparison of the workload balance with the state-of-the-art methods over several 4 h scenarios with different number of pickers.
Instances #pickers Workload balance (With 4 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 691 2124.84% 445 1334.25% 31 0.00% 325 947.84%
3 1438 1003.44% 572 338.73% 130 0.00% 496 280.83%
4 2430 1041.98% 644 202.61% 213 0.00% 616 189.60%
5 3230 926.22% 698 121.69% 315 0.00% 653 107.59%

Henn (64)

2 507 439.67% 286 204.78% 94 0.00% 266 182.99%
3 1748 597.61% 382 52.40% 251 0.00% 400 59.66%
4 3001 783.68% 430 26.73% 340 0.00% 414 21.88%
5 4226 1006.96% 440 15.16% 382 0.00% 457 19.76%

All (144)

2 609 932.33% 375 534.98% 59 0.00% 299 406.59%
3 1576 757.56% 487 165.25% 184 0.00% 454 146.83%
4 2684 897.14% 549 103.99% 269 0.00% 526 95.55%
5 3673 965.98% 583 69.22% 345 0.00% 566 64.34%

Table 18
Comparison of the workload balance with the state-of-the-art methods over several 2 pickers scenarios, varying the number of hours for the arrival of
orders.
Instances #Hours Workload balance (With 2 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 444 3575.43% 404 3248.44% 12 0.00% 311 2473.98%
2 448 2844.79% 387 2446.63% 15 0.00% 284 1769.37%
3 502 1715.66% 379 1271.05% 28 0.00% 303 998.54%
4 691 2124.84% 445 1334.25% 31 0.00% 325 947.84%

Henn (64)

1 283 782.75% 292 813.62% 32 0.00% 267 733.62%
2 296 686.46% 246 553.70% 38 0.00% 282 648.57%
3 422 378.83% 245 177.86% 88 0.00% 202 129.05%
4 507 439.67% 286 204.78% 94 0.00% 266 182.99%

All (144)

1 372 1677.74% 355 1593.93% 21 0.00% 291 1291.37%
2 380 1409.74% 325 1188.04% 25 0.00% 283 1024.16%
3 466 754.91% 319 485.40% 55 0.00% 258 373.66%
4 609 932.33% 375 534.98% 59 0.00% 299 406.59%

picking time with low congestion rates, where the method proposed
by Alipour et al. (2020) performs better than our approaches. These
conclusions can be easily observed in Figs. 4 to 9, where lower values
indicate a better performance, with MS-VND-1 appearing to be the best
choice in most of the figures.

As a general conclusion, the congestion rate depends on the arrival
of orders in a particular time horizon, and on the pickers available at
the warehouse. Also, we can conclude that there exists a relationship
between this rate and the studied objective functions. Studying the
congestion rate could be used in modern and flexible warehouses to

determine the number of pickers needed per shift. Higher congestion
rates help to find a better workload balance and result in smaller
picking times, while lower congestion rates favor the completion time,
since it increases the possibilities of having pickers available as soon as
an order arrives to the system.

6. Conclusions

In this paper we have studied the Online Order Batching Prob-
lem with Multiple Pickers. This problem is one of the most realistic
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Table 19
Comparison of the workload balance with the state-of-the-art methods over several 5 pickers scenarios, varying the number of hours for the arrival of
orders.
Instances #Hours Workload balance (With 5 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 889 533.45% 765 444.73% 140 0.00% 674 380.14%
2 1413 486.32% 671 178.27% 241 0.00% 611 153.63%
3 2169 623.70% 691 130.61% 300 0.00% 668 122.92%
4 3230 926.22% 698 121.69% 315 0.00% 653 107.59%

Henn (64)

1 684 201.68% 576 153.94% 227 0.00% 514 126.70%
2 1257 274.09% 533 58.51% 336 0.00% 502 49.35%
3 2721 568.12% 469 15.14% 407 0.00% 482 18.23%
4 4226 1006.96% 440 15.16% 382 0.00% 457 19.76%

All (144)

1 798 346.39% 681 280.77% 179 0.00% 603 237.24%
2 1344 374.40% 609 115.12% 283 0.00% 563 98.64%
3 2414 594.75% 592 70.47% 348 0.00% 585 68.39%
4 3673 965.98% 583 69.22% 345 0.00% 566 64.34%

Fig. 4. Performance of the algorithms, in terms of completion time, when increasing the number of pickers for 2 and 4 h scenarios.

Fig. 5. Performance of the algorithms, in terms of picking time, when increasing the number of pickers for 2 and 4 h scenarios.

variants of the Order Batching family of problems, since it considers
the existence of several pickers in the warehouse at the same time,
and the online arrival of orders to the system. We have classified the
studied variant and identified all previous methods in the state of the
art. We noticed that several objective functions had been studied for
the problem, but not all previous papers report all of them. We have
compiled the most relevant objective functions for the problem and
empirically analyzed the behavior of the previous methods in the state
of the art for all of them. Particularly, we have studied the minimization

of the completion time, the minimization of the picking time, and the
minimization of the differences in workload among the pickers. Then
we have proposed two heuristic approaches based on a multistart VNS
to tackle the problem considering all identified objective functions for
the problem. Our approaches have been compared favorably with the
previous methods and the differences have been found to be significant
when using statistical tests. All experiments were performed over pre-
viously reported instances in the literature. Finally, we have studied
the influence of the increase in the number of pickers available in the
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Fig. 6. Performance of the algorithms, in terms of workload balance, when increasing the number of pickers for 2 and 4 h scenarios.

Fig. 7. Performance of the algorithms, in terms of completion time, when increasing the number of hours for the arrival of orders, for 2 and 5 pickers scenarios.

Fig. 8. Performance of the algorithms, in terms of picking time, when increasing the number of hours for the arrival of orders, for 2 and 5 pickers scenarios.

system and the influence of the congestion rate on the arrival of orders
in several scenarios. Next, we expose our conclusions derived from the
analysis of the obtained results.

Search procedures usually use the objective function being opti-
mized to guide the search looking for better solutions. However, this
approach is harder to follow when studying more than one objective
function at the same time. Analyzing the search strategies proposed in
this paper, we observed, as expected, that using the objective function
being optimized as the guiding function usually results in a better

performance in the optimization of that specific objective function. In
the case of the OOBPMP, we studied two different guiding functions
and we observed that either using the workload balance or the picking
time results in a reasonable guiding function to reduce the completion
time.

The number of pickers available and the congestion rate in the
arrival of orders highly influence in the efficiency of the warehouse and
both factors are closely related. On one hand, increasing the number
of pickers results in shorter completion times and lower workload for
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Fig. 9. Performance of the algorithms, in terms of workload balance, when increasing the number of hours for the arrival of orders, for 2 and 5 pickers scenarios.

Table 20
Friedman rank test for different test scenarios, when studying the workload balance.

Friendman rank test — Workload balance

Alipour et al.
(2020)

Zhang et al.
(2017)

MS-VND-1
(Workload
Balance)

MS-VND-2
(Picking
Time)

Sig.
(𝑝-value)

2 h 3.37 2.72 1.27 2.64 0.000
4 h 3.66 2.48 1.49 2.37 0.000
2 pickers 3.24 2.88 1.25 2.64 0.000
5 pickers 3.65 2.48 1.45 2.42 0.000

each picker, however, it is harder to find a better balance among the
work performed by each picker, and the overall picking time increases
(since pickers collect fewer items in each picking tour). This fact might
result in an increase in the energy consumption. On the other hand, the
study and segmentation of the congestion rate in the arrival of orders
should be used in modern and flexible warehouses to determine the
number of pickers needed per shift. Fewer pickers than necessary might
result in delays in the completion time. On the contrary, more pickers
than necessary might result in more dead time in the activity and a
deterioration in the picking time.

From a managerial point of view, the optimization of the objective
functions studied in this paper might result in an increase of the
benefits. Particularly, the reduction in the picking time reduces the
energy consumption, while the reduction of the completion time results
in a faster service of products for the customers. On the other hand,
the balance of the workload results in a healthier and safer work
environment and prevents the overload of the machinery.

Since real scenarios look for an increase in the benefits, future
research should focus on multiobjective optimization problems in-
cluding the objective functions studied in this paper and discovering
others. Optimizing several objective functions at the same time will
provide companies with non-dominated solutions that can result useful
in different scenarios.
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Chapter 6

Online Order Batching Problem with
Time window

The resolution of any variant of the Online Order Batching Problem includes to solve different
tasks. Among them, the waiting time consists of determining the time that a picker should wait
for the arrival of new orders, before starting a new route. This task has been little studied in
the literature despite the high impact that it has in the overall performance of order batching
methods. In this Doctoral Thesis, we have performed a study about the influence of the waiting
task and, as the result of the research performed, two articles have been elaborated (one of
them still under review) which are presented next. Then, for each publication, we compile the
bibliographic details of the publication (complete reference, journal, ranking index, category,
and ranking score) and, finally, a copy of the article is attached.

The article “Fixed versus variable time window warehousing strategies in real time” [91] was
the fifth work carried out for this Doctoral Thesis and presents the preliminary study about
solving the Online Order Batching Problem when considering a time window strategy. The
objective of this article is to study and compare different waiting strategies. Specifically, we
compared four Fixed Time Window (FTW) strategies based on waiting a prefixed amount of
time, and three Variable Time Window (VTW) strategies based on the number of orders arrived
to the system. The objective functions used to compare the algorithms are: the minimization of
the completion time and the minimization of the picking time, in an scenario with only one picker.
The arrival of orders occurs in a period of 4 hours. The problem is solved for a rectangular
warehouse with a single block, with 10 parallel aisles and a total of 900 picking positions/stored
products. The set of instances used for the problem is a reduced set of 16 instances widely
used in the literature [125]. We evaluated the influence of time window strategies considering
two batching algorithms (First Come First Served and a greedy algorithm based on weight).
The routing algorithm used was S-Shape, and the selecting algorithm for choosing the next
batch to be collected was a greedy algorithm based on the weight/occupancy of the batch. We
identified that a FTW strategy of no waiting was the best technique to reduce the completion
time. However, a VTW consisting in waiting until 16 orders have arrived to the system was the
best proposal to reduce the picking time in the evaluated scenarios. This article is attached in
Section 6.1.

The technical report “A comparative study of the influence of the time-window strategy in
the Online Order Batching Problem” [95] is currently under review (second round) in a JCR
journal. This technical report is the sixth article, chronologically speaking, obtained as the
result of the research performed in this Doctoral Thesis, and can be considered as an evolution
of the one presented in [91]. In this paper, our objective is to determine the real influence of
using a waiting strategy on the overall performance of methods which handle the OBP in online
contexts and to determine if the waiting time is dependent on other tasks such as routing or
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batching. To that aim we explored a wide range of working scenarios. Particularly, in this work,
we studied three different objective functions for the problem: minimizing the completion time,
minimizing the picking time, and minimizing the maximum turnover time. Also, we studied the
problem when varying the congestion of the system and the number of pickers (from 1 to 5),
the batching algorithm (First Come First Served, ILS, and GVNS), and the routing algorithm
(S-Shape, Largest Gap, and Combined). Finally, we reviewed the waiting strategies in the
literature and experimentally evaluated a total of eight different waiting strategies (two of them
proposed in this work). We used two different sets of instances widely used in the literature
[4, 125]. These sets represented a total of five different rectangular warehouse layouts with a
single block and different number of parallel aisles. The arrival of orders occurred in a period
of 4 hours. As a conclusion of this research we were able to associate different behaviors of
the algorithms for different Time-Window strategies. Furthermore, the two new time-window
methods proposed are able to improve in various scenarios the methods previously proposed in
the state of the art. This article is currently under review and its latest version is attached in
Section 6.2.

196



 

 

 

Published in "Progress in Artificial Intelligence" 

ISSN: 2192-6352 / 2192-6360 

https://doi.org/10.1007/s13748-020-00215-1 

Journal Citation Indicator (JCI): 0.28 

CiteScore 2020: 3.4 

SJR 2020: 0.322 

CiteScore rank 2020 

• Computer Science, Artificial Intelligence.  

Ranking 113/227 (Q2). 

Rank by Journal Citation Indicator (JCI) 

• Computer Science, Artificial Intelligence.  

Ranking 139/175 (Q4). 

 

 

 

 

Gil-Borrás, S., Pardo, E.G., Alonso-Ayuso, A., Duarte A. (2020) Fixed versus variable time window 

warehousing strategies in real time. Progress in Artificial Intelligence. (9), (p. 315–324). 

Tesis Doctoral Online Order Batching Problem

6.1 Fixed versus variable time window warehousing strate-
gies in real time

197



Progress in Artificial Intelligence
https://doi.org/10.1007/s13748-020-00215-1

REGULAR PAPER

Fixed versus variable time windowwarehousing strategies in real time

Sergio Gil-Borrás1 · Eduardo G. Pardo2 · Antonio Alonso-Ayuso2 · Abraham Duarte2

Received: 8 May 2020 / Accepted: 31 July 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Warehousing includes many different regular activities such as receiving, batching, picking, packaging, and shipping goods.
Several authors indicate that the picking operation might consume up to 55% of the total operational costs. In this paper, we
deal with a subtask arising within the picking task in a warehouse, when the picking policy follows the order batching strategy
(i.e., orders are grouped into batches before being collected) and orders are received online. Particularly, once the batches
have been compiled it is necessary to determine the moment in the time when the picker starts collecting each batch. The
waiting time of the picker before starting to collect the next available batch is usually known as time window. In this paper,
we compare the performance of two different time window strategies: Fixed TimeWindow and Variable TimeWindow. Since
those strategies cannot be tested in isolation, we have considered: two different batching algorithms (First Come First Served
and a Greedy algorithm based on weight); one routing algorithm (S-Shape); and a greedy selection algorithm for choosing
the next batch to collect based on the weight.

Keywords Time window · Fixed time window · Variable time window · Online order batching ·Warehousing

1 Introduction

The picking operation in awarehouse consist of collecting all
the items, demanded by the customers,which are stored in the
warehouse. This operation might consume up to 55% of the
total operational costs of the warehouse [34]. It is well doc-
umented that the picking is highly influenced by the layout
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of the warehouse, the storage policy, and the routing strat-
egy followed by the pickers [27]. The picking operation can
be divided into two main groups: strict order picking (each
order is collected individually) and order batching (orders
are grouped into batches before being collected).

In this paper, we focus our attention on the picking pol-
icy that follows an order batching strategy. When using
this strategy, a family of related optimization problems
(order batching problems) emerges. Order batching prob-
lems usually look for an efficient organization of the picking
operation. The simplest version of this family of problems,
usually known as Order Batching Problem (OBP) consist
of minimizing the total time needed to collect a group of
orders that have been received in a warehouse. This version
of the OBP has been tackled by many authors in the lit-
erature: Albareda et al. in [1] compared different classical
constructive heuristics (First Come First Served, Clarke and
Wright [5], and Seed methods [6]) with a Variable Neigh-
borhood Descent [23] metaheuristic over different sets of
instances derived from real warehouses. Later, Henn et al.
in [14] proposed the use of Iterated Local Search [32] and
Ant Colony Optimization [18] to tackle the problem. Again,
Henn et al. in [16] introduced the use of other twometaheuris-
tics for the problem: Tabu Search [10] and Attribute-Based
Hill Climbing [38]. An exact method based on a mixed-
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integer linear programming model, and a new Iterated Local
Search were introduced in [24,25].More recently, Menéndez
et al. in [20,21] proposed a newmulti-start method combined
with Variable Neighborhood Search which outperformed
previous approaches in the state of the art.

Despite of the fact that the simplest version of the OBP is
the one with a more extensive literature, other well-known
variants of this family of problems have also been tackled in
the state of the art. Each variant is characterized by either the
optimization of a different objective function or the consid-
eration of different constraints. Among the most outstanding
ones, we can find the Min–Max Order Batching Problem,
consisting of minimizing the maximum differences among
the working-time of a group pickers [12,22,31,39]; or the
Order Batching and Sequencing Problem which consists of
minimizing the total tardiness of a group of orders with a due
date associated to each order [3,13,15,19].

All the previous variants of the order batching family can
be considered as static variants, since all the orders are avail-
able at the beginning of the process and, therefore, all the
information is known beforehand. However, in this paper,
we focus our attention on a subtask that occurs within the
dynamic version of the OBP, usually known in the literature
as Online Order Batching Problem (OOBP). In this variant,
only a small part of the orders is available at the beginning
of the picking process and, the rest of the orders are received
online (i.e., they arrive to the warehouse at any time dur-
ing a considered time horizon, once the picking process has
already begun). In the version of theOOBP considered in this
paper, each batch is collected by a single picker,who retrieves
all the itemsbelonging to theorders sorted in that batch.Addi-
tionally, an order cannot be splitted into different batches.
Within this context it is possible to study different objec-
tive functions such as: the total time needed to collect all the
orders (completion time); the time that pickers spend collect-
ing the orders (picking/service time); the maximum/average
time that an order remains in the system (turnover time); the
balance of time among the pickers (workload balance); the
delays in handling the orders (tardiness); etc.

As in the case of the OBP, the OOBP has also been tackled
in the past using heuristic and metaheuristic methods. Par-
ticularly, S. Henn in [11] proposed an Iterated Local Search
for the OOBP. Later, Pérez et al. in [26] used a method
based on the Estimation Distribution Algorithm [17]. Then,
Zhang et al. in [41] also introduced several heuristics for
the OOBP, but this proposal was not compared with the pre-
vious ones. Finally, the most recent approaches have been
proposedbyGil et al. in [7,9],where the authors proposeddif-
ferent methods based on the Variable Neighborhood Search
metaheuristic, outperforming previous methods in the state
of the art. Closely related, Rubrico et al. in [30] studied a
multipicker variant of the OOBP by proposing a Steepest
Descent Insertion and a Multi-Stage Rescheduling method.

More recently,Gil et al. [8] also handled amultipicker version
of the problem by proposing a Basic Variable Neighborhood
Search for this variant.

In this paper, we study a subtask which occurs within the
context of the OOBP, consisting of determining the time that
a picker should wait before start collecting the next available
batch. This time is usually known as time window in the lit-
erature of the OOBP. The rest of the article is organized as
follows: in Sect. 2 we introduce the time window in the con-
text of theOOBP; in Sect. 3 we describe the routing, batching
and time window strategies used in the experimental com-
parison; in Sect. 4 we present the experiments performed;
and finally, the conclusions and future works are compiled
in Sect. 5.

2 Problem description

In the context of the OOBP it is necessary to study several
static and dynamic factors in order to design efficient algo-
rithms to handle the problem. Among the static ones we can
find: the warehouse design (number of aisles, width of each
aisle, number of blocks, number and position of the depots,
etc.), or the distribution of the products in thewarehouse (ran-
domdistribution,ABCdistribution, single/multiple locations
for the products, etc.), among others. As far as the dynamic
factors are concerned, we can find: the number of pickers,
the number and size of orders arrived to the warehouse, the
due date of some orders, among others.

In this paper, we focus our attention on the OOBP for
rectangular-shapedwarehouses composed by several parallel
aisles and two cross aisles. In Fig. 1 we show an example of
the structure of the warehouse considered. In this case, the
warehouse is composed by 5 parallel aisles and 2 cross aisles
(one at the front and another one at the back of the figure).
Each parallel aisle is formed by 9 picking positions at each
side of the aisle. The depot (i.e., the point where the routes
start and finish) can be placed either at the left most corner
or at the centre point of the front cross aisle. In the example
warehouse of the Fig. 1, the depot is placed at the centre
of the front cross aisle. The details of the set of instances
used in our experiments (number of parallel aisles, position
of the depot, distribution of the items, etc.) are described in
Sect. 4.1.

Additionally, when tackling the OOBP it is necessary to
face several subproblems that have been previously handled
in the literature: determining how the orders are sorted into
batches [7,20]; assigning each batch to a picker [8,11,22]; set-
ting the sequence in which the batches are retrieved [13,19];
and designing the route that the pickers will followwithin the
warehouse [29,35]. However, not much attention has been
paid to determining the time window strategy (i.e., the time
that a picker waits before starting to collect the next available
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Fig. 1 Warehouse layout
(adapted from [8])

Fig. 2 Events in the timeline of
a warehouse

batch). Since we focus our attention on this strategy, in the
Fig. 2, we graphically introduce the concept of time window.
In this figure we can observe the occurrence of several events
at different moments ti of the timeline considered. Particu-
larly t2 and t5 represent moments in the time when a new
order arrives to the system. Notice, that orders can arrive to
the system at any time with independence of the rest of the
tasks being performed in the warehouse (i.e., online arrivals).
On the other hand, t1, t4, t6 and t8 represent moments in the
time when a new solution has been found by the batching
algorithm. Notice that the batching process is continuously

been performed, trying to fit all the orders arrived to the sys-
tem, not previously collected, into new batches. Finally, t3
represents the moment in the time when the picker becomes
available (i.e., it has already handled all the orders from the
previous batch into the depot). Similarly, t7 represents the
moment in the time when a picker starts collecting the next
available batch (i.e., Batch #1 in the figure). Given this con-
text, the time window is defined as the difference in the time
between the moments t7 and t3.

As we will show in the experimental section of this paper,
we can affirm that the strategy used to determine the time

123



Progress in Artificial Intelligence

window has also a deep impact in the picking task. Generally
speaking, there are two main groups of strategies to handle
the time window subtask: Fixed Time Window (FTW) strat-
egy and Variable Time Window (VTW) strategy. The FTW
strategy establishes a fixed amount of time that a picker waits
before starting to collect the next available batch.On the other
hand, in theVTWthe time that the pickerwaits varies through
the time. In this sense there are many different VTW strate-
gies. However, the most common one is based on the rate of
orders that arrive to the system.

In the context of the OOBP, previous works in the state
of the art mention the use of a Time Window strategy to
increase the performance of their picking algorithms [4,33,
40]. Also, there are references in the literature which use
the time window as a part of their batching strategy [28,36].
More recent proposals include new algorithms to determine
the time window within a particular context [2,11,36,41].
However, as far asweknow, there are no specific comparisons
among the time window strategies present in the literature of
the OOBP.

This paper is focused on a preliminary comparison
between the twomain families of timewindowwaiting strate-
gies (FTW and VTW) in the context of the OOBP. With that
aim we have considered one well-known routing strategy (S-
Shape) and two different batching algorithms. Also, we study
the performance of the strategies depending on the objective
function reported. In this sense, we consider the picking time
(the time that the picker spends collecting items in the ware-
housewithout taking into consideration thewaiting time) and
the completion time (the total time needed to collect all the
orders, including the waiting time).

3 Algorithms

In this section we describe the algorithms used in our exper-
imental comparison. The section is divided considering the
subtask of the OOBP tackled. Particularly, the two compared
time window strategies are described in Sect. 3.4. However,
in order to tackle the OOBP it is also necessary to establish a
batching strategy (see Sect. 3.1 for the description of the two
batching strategies used), a selection strategy (see Sect. 3.2),
and a routing strategy (see Sect. 3.3). The objective is tomea-
sure the impact of the time window proposals in combination
with the other algorithms for the OOBP.

3.1 Batching algorithm

Here, we present the two batching strategies selected for our
experimental comparison. The batching algorithms used can
be considered as two basic batching strategies very well-
known in the literature of Order Batching problems.

– First Come First Served (FCFS) is a very simple batch-
ing algorithm which assigns the orders to the batches
based on the instant of the time when each order arrives
to the system. This is, the first order arriving to the system
is assigned to the first available batch, the second order
arriving to the system is tried to be assigned to the same
batch. If it does not fit in it a new batch is created and
the order is assigned to this new batch. The process is
repeated by trying to assign orders to the last available
batch or creating a new batch if it does not fit in the last
available one.

– Greedy algorithm based on weight sorts all the orders
available in the system (i.e., not collected yet) based on its
weight, in the way that the heaviest order come first and
the slightest is the last one. Then, it assigns the orders one
by one to the batches, by trying first to include the order
considered into an already existing batch (with the aim of
completing the batch as much as possible) or creating a
new batch if the order does not fit into any of the previous
ones.

3.2 Selection algorithm

Once the batching algorithm has sorted the orders into
batches it is necessary to determine which, among the avail-
able batches, will be the next one to be picked. This task
might be very important depending on the objective function
tackled. For instance, some variants of the OOBP consider a
due date for the orders. In these cases, the algorithm which
selects the next batch to be collected is a key component
of the process. However, in this paper, we do not focus our
attention on this task. Therefore, we have used a very sim-
ple selection algorithm which is based on the total weight
of the orders assigned to each batch. In particular, we calcu-
late, per batch, the sum of the weights of the orders assigned
to that batch. Then, we select the heaviest batch as the next
batch to collect. If there are more than one batch with the
same maximum weight, to break the tie we select the batch
which has assigned the shorter path to collect all the orders
in that batch. Notice that the length of the path depends on
the routing algorithm that is presented in Sect. 3.3.

3.3 Routing algorithm

In the context of the OOBP it is necessary to establish a route
for collecting all the items within the orders assigned to the
same batch. Notice that all items must be collected in the
same route by a single picker. In this paper, we propose the
use of a very well-known routing algorithm in the literature
(S-Shape), in order to determine the path that the picker
must follow. All routes start and end at the depot. The S-
Shape algorithm establishes that the picker fully traverses
each parallel aisle with an item to collect, using the front and
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Fig. 3 S-Shape routing strategy
(adapted from [8])

back cross aisles to change from one parallel aisle to another
one. The first parallel aisle to be traversedwill be the leftmost
onewith items to be collected. If the number of parallel aisles
to be traversed is odd, then the picker performs a U-turn in
the last parallel aisle in order to return to the front cross aisle,
where the depot is placed. In Fig. 3 we show an example of a
route designed using S-Shape for the warehouse introduced
in Fig. 1.

3.4 Time window algorithm

The time window in the context of the OOBP is the time
that a picker is waiting at the depot before starting to col-
lect the next available batch. A naive time window strategy
would be a “no-waiting policy”. This policy indicates that
the picker starts a new route as soon as he/she finishes the
previous one and there are orders awaiting to be collected.
However, a more elaborated strategy might result in a better
performance. The main contribution of this paper is the com-
parison of two families of time window strategies together
with two objective functions, two batching algorithms, and
one routing algorithm. Next, we describe the time window
strategies compared:

– Fixed Time Window (FTW) strategy consists of defin-
ing a fixed number of minutes that the picker must wait
before starting a new route. In this paper, we have con-
sidered three different time horizons: 3, 6, and 12min.
Notice that if after the considered time horizon there is
not at least one order available, the picker waits until a
new order comes into the system.

– Variable TimeWindow (VTW) strategy varies thewait-
ing time depending on the environmental conditions of
the warehouse. In this case, the VTW strategy used is
based on the arrival rate of orders. In particular, the picker
waits until there are a minimum number of orders await-
ing in the system before starting the picking. We have
considered the cases of 4, 8, and 16 orders.

It is important to highlight that the most suitable timewin-
dow strategy might depend on many different factors such as
the routing and batching strategies used, the objective func-
tion considered, or the static conditions in the warehouse.

4 Experimental comparison

In this section we present the data used in our experiments
and the computational results obtained with the algorithms
described in Sect. 3. Since our objective is devoted to com-
pare different time window strategies, for each experiment
we report the performance of the considered time window
algorithms: FTW, andVTWwith several configurations. Par-
ticularly, FTW has been configured with 3, 6, and 12 waiting
minutes. This means, that the picker waits that number of
minutes before starting to collect the next available batch.
Similarly, the VTW has been configured with 4, 8 and 16
orders, which means that the picker waits until there are at
least that number of orders awaiting to be collected.Addition-
ally, in order to set a reference baseline, we have also reported
the performance of the no-waiting strategy (the picking of the
next batch starts as soon as the picker becomes available).
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Table 1 Comparison of Time Window strategies for the OOBP with
picking time objective function, using the FCFS batching algorithm and
the S-Shape routing algorithm

Picking time

Method Dev. (%) #Best Avg. (s)

No-waiting 4.91 1 27,934

FTW 3Min. 4.91 1 27,934

FTW 6Min. 4.91 1 27,934

FTW 12Min. 4.04 1 27,764

VTW 4 orders 0.96 7 27,243

VTW 8 orders 0.33 10 27,104

VTW 16 orders 0.04 14 27,057

The time horizon considered for the arrival of orders has
been set to 4h and the distribution of the arrival of the orders
follows a Poisson point process [37]. The Poisson point pro-
cess uses the 4h as an input parameter to distribute the
instants in the time for the arrival of each considered order
in the instance, which results in an approximate total time of
4h. Notice, that the picker will only collect the orders sched-
uled by this distribution. However, the picking process might
take longer than the 4h considered as the time horizon.

Experiments are organized in two different sections
(depending on the batching strategy followed) and, per sec-
tion, we include two tables depending on the objective
function considered. For all tables we report the deviation
to the best solution found in the experiment (Dev. (%)), the
number of best solutions found in the experiment (#Best),
and the average of the objective function (Avg.(s)) measured
in seconds. Additionally, we have included, in each section, a
figurewhichgraphically compares the quality of the solutions
obtained with respect to each objective function. Finally, we
have performed a set of statistical tests in order to determine
if the differences found in the results are statistically signifi-
cant.

All the experiments were run in an Intel (R) Core (TM) 2
QuadCPUQ66002.4GHzcomputer,with 4GBDDR2RAM
memory. The operating system used was Ubuntu 18.04.1
64bit LTS, and all the codes were developed in Java 8.

4.1 Instances

The data set used in our experiments is composed by 16
diverse instances derived from a larger dataset originally pro-
posed in [11]. The size of the selected instances ranges from
40 to 100 orders. The one-block, rectangular-shaped ware-
house considered is similar to the one presented in Sect. 2. In
this case, all the instances are referred to a warehouse with
10 parallel aisles, and with the depot placed at the centre of
the front cross aisle. The products are organized following
an ABC distribution.

Table 2 Comparison of Time Window strategies for the OOBP with
completion time objective function, using the FCFS batching algorithm
and the S-Shape routing algorithm

Completion time

Method Dev. (%) #Best Avg. (s)

No-waiting 0.53 6 28,194

FTW 3 Min. 0.53 5 28,194

FTW 6 Min. 0.53 4 28,194

FTW 12 Min. 0.23 8 28,127

VTW 4 orders 1.38 3 28,430

VTW 8 orders 4.69 0 29,189

VTW 16 orders 10.93 0 30,499

Fig. 4 Comparison of the performance in Dev. (%) of the different
variants of the algorithms configured with the FCFS batching strategy
for the two objective functions

Table 3 Friedman rank test for each objective function when using the
FCFS batching method

FCFS

Picking time Completion time

Method Rank val Method Rank val.

VTW 16 orders 1.91 FTW 12 Min. 2.72

VTW 8 orders 2.28 FTW 6 Min. 2.88

VTW 4 orders 2.63 No-waiting 3.03

FTW 12 Min. 4.69 FTW 3 Min. 3.13

FTW 6 Min. 5.50 VTW 4 orders 3.63

FTW 3 Min. 5.50 VTW 8 orders 5.72

No-waiting 5.50 VTW 16 orders 6.91
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Fig. 5 Representation of the Wilcoxon test comparison by pairs of
methods, for the picking time objective function and FCFS batching
strategy

Fig. 6 Representation of the Wilcoxon test comparison by pairs of
methods, for the completion time objective function and FCFS batching
strategy

4.2 Comparison of time window strategies using
FCFS batching algorithm

We compare the performance of the algorithms designed for
the OOBP configured with FCFS as the batching method,
S-Shape as the routing method and the two Time Window
strategies configured with 3 different parameters each. In
Tables 1 and 2 we report, respectively, the results obtained
for the “picking time” and the “completion time” objective
functions. For the instances considered in these experiments,
we observe, in Table 1, that all the strategies based on VTW

outperform the results by the FTW ones. Particularly, the
best strategy for the picking time objective function is the
VTW with 16 orders in terms of deviation to best solution
found and in the number of best solutions. On the other hand,
in Table 2 we observe the results for the completion time
objective function. In this case, all the strategies based on the
FTW approach outperform the VTW ones. In particular, the
FTWwith 12min is the best strategy closely followed by the
no-waiting strategy and the other FTW configurations.

Since the best performance for each objective function has
been reached by a different TimeWindowalgorithm, in Fig. 4
we compare the performance of the different configurations
of the algorithms with respect to both objective functions.
Observing the figure, we find that the performance of some
configurations is very good in one of the objective functions
and very poor in the other. However, the algorithm which
includes VTW with 4 orders finds a balance between the
two objective functions compared. Notice that, as it is shown
in the figure, there are no differences among the no-waiting
strategy, the FTW with 3min strategy and the FTW with
6min, when considering both objective functions.

In order to confirm if the differences found among the
methods in Tables 1 and 2 are statistically significant, we
have conducted a set of statistical tests. First, we have com-
pared all the methods using the Friedman Rank test per table.
In both cases, the obtained p values of 0.000 indicate that the
methods differ among them, when considering all of them
together. Additionally, in Table 3 we report the rank values
obtained for each method in both: the picking time and the
completion time. As we can observe some of the methods
differ greatly, but others achieve the same or almost the same
rank value. To complement this test, we have compared each
pair of methods individually, with the Wilcoxon signed rank
test, in order to identify differences between the objective
function values of the best solutions found by each method
with respect to the rest of them. In Figs. 5 and 6 we report a
graphical representation of the differences by pairs, among
the 7 methods compared, for the picking time and the com-
pletion time objective functions, respectively. In both figures,
a black line between each pair of methods indicates that there
are statistically significant differences between them, while
the absence of a link between a pair of methods indicates that
there are no differences between them.

4.3 Comparison of time window strategies using
Greedy batching algorithm

Similarly, in this section, we compare the performance of
the algorithms designed for the OOBP configured with the
Greedy as the batching method, S-Shape as the routing
method and different configurations of the Time Window
strategies. In Tables 4 and 5 we respectively report the
results obtained for the “picking time” and “completion time”
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Table 4 Comparison of Time Window strategies for the OOBP with
picking time objective function, using the Greedy batching algorithm
and the S-Shape routing algorithm

Picking time

Method Dev. (%) #Best Avg. (s)

No-waiting 6.13 0 26,407

FTW 3 Min. 3.74 0 26,042

FTW 6 Min. 3.17 0 25,955

FTW 12 Min. 1.57 2 25,675

VTW 4 orders 1.86 2 25,668

VTW 8 orders 0.18 4 25,375

VTW 16 orders 0.20 9 25,383

Table 5 Comparison of Time Window strategies for the OOBP with
completion time objective function, using the Greedy batching algo-
rithm and the S-Shape routing algorithm

Completion time

Method Dev. (%) #Best Avg. (s)

No-waiting 0.21 9 26,667

FTW 3 Min. 2.84 0 27,248

FTW 6 Min. 5.64 0 27,832

FTW 12 Min. 8.38 0 28,380

VTW 4 orders 1.19 6 26,892

VTW 8 orders 3.46 1 27,450

VTW 16 orders 9.87 0 28,826

objective functions. For the instances considered in these
experiments, when the objective function is the picking time,
we observe that the best strategy is the VTW with 8 orders
closely followed by the VTW with 16 orders (see Table 4).
On the other hand, in Table 5 we observe that, when the
objective function is the completion time, the best strategy is
the no-waiting one.

Again, in Fig. 7 we compare the performance of the meth-
ods over the two objective functions simultaneously. In this
case, the VTW with 4 orders and the VTW with 8 orders
are the methods which find a better balance between both
objective functions.

As in the case of the FCFS batching method, in order
to confirm if the differences found among the methods in
Tables 4 and 5 are statistically significant, we have conducted
a Friedman Rank test per table. In both cases, the obtained
p values of 0.000 indicate that the methods differ among
them, when considering all of them together. However, in
Table 6 we report the rank values obtained for each method
in both: the picking time and the completion time for the
Greedy batching method. As it was the case of the FCFS
batching method, we can observe some of the methods differ
greatly, but others achieve the same or almost the same rank

Fig. 7 Comparison of the performance in Dev.(%) of the different vari-
ants of the algorithms configured with the Greedy batching strategy for
the two objective functions

Table 6 Friedman rank test for each objective function when using the
Greedy batching method

Greedy

Picking time Completion time

Method Rank val. Method Rank val.

VTW 16 orders 2.06 No-waiting 1.50

VTW 8 orders 2.09 VTW 4 orders 2.19

VTW 4 orders 3.38 FTW 3 Min. 3.23

FTW 12 Min. 3.38 VTW 8 orders 3.97

FTW 6 Min. 5.13 FTW 6 Min. 4.75

FTW 3 Min. 5.31 FTW 12 Min. 5.69

No-waiting 6.66 VTW 16 orders 6.66

value. To complement this test, we have also compared each
pair of methods individually, with the Wilcoxon signed rank
test, in order to identify differences between the objective
function values of the best solutions found by each method
with respect to the rest of them. In Figs. 8 and 9 we report a
graphical representation of the differences bypairs among the
7methods compared, for the picking time and the completion
time objective functions, respectively. In both figures, a black
line between each pair of methods indicates that there are
statistically significant differences between them, while the
absence of a link between a pair of methods indicates that
there are no differences between them.
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Fig. 8 Representation of the Wilcoxon test comparison by pairs of
methods, for the picking time objective function and and the Greedy
batching strategy

Fig. 9 Representation of the Wilcoxon test comparison by pairs of
methods, for the completion time objective function and the Greedy
batching strategy

5 Conclusions and future work

In this paper, we have compared two families of timewindow
strategies in the context of the Online Order Batching Prob-
lem. The compared strategies have been evaluated together
with two different batching algorithms andwith two different
objective functions. However, we have only considered one
routing algorithm (S-Shape) for all the methods compared.

Our main conclusion is that the time window strategy
highly impacts in the quality of the solutions obtained in the
context of theOOBP.Also,weobserved that themost suitable

time window strategy might depend on the objective func-
tion evaluated, and on the routing and batching algorithms
considered. However, the influence of the timewindowwhen
using the FCFS batching algorithm seems to be smaller than
in the case of using a more elaborated one. Furthermore,
when more than one objective function is optimized at the
same time, some time window strategies find a balance in the
quality of the solution.

Given the previous findings, we suggest to enlarge this
study by performing a more elaborated comparison. In par-
ticular, the most outstanding time window algorithms in the
state of the art should be considered and paired with differ-
ent batching and routing strategies. Also, several warehouse
configurations could be evaluated by enlarging the data set
used in our experiments.
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23. Mladenović, N., Hansen, P.: Variable neighborhood search. Com-
put. Oper. Res. 24(11), 1097–1100 (1997)

24. Öncan, T.: MILP formulations and an iterated local search algo-
rithm with Tabu thresholding for the order batching problem. Eur.
J. Oper. Res. 243(1), 142–155 (2015)
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1. Introduction

Logistics in a warehouse encompasses a large number of activities. Among
them, the collection of orders is one of the most important, due to the high
cost associated with this operation compared to the rest of the processes.
The operational costs of order picking has been the target for may researchers
during the years. Back to the eighties / nineties, it was estimated that the
operational costs could represent up to 60% of total costs within a ware-
house (Drury, 1988; Coyle et al., 1996). More recent approaches indicated
that labor costs related to the picking process consume about 50-60% of all
labor activities in the warehouse (Gademann and Velde, 2005). Although the
introduction of technology in the warehouses has partially reduced the costs
associated with picking, it is still identified as the most important operation
activity in achieving an efficient warehouse management Shah et al. (2017);
Rushton et al. (2022).

This paper focuses on warehouse order picking systems, which follow the
batch order picking policy (i.e., orders are grouped in batches before being
collected and orders in the same batch are collected in the same picking tour) .
In this type of system, there are numerous factors that significantly influence
the performance of the collection process. In Petersen (1997), the authors
identified the following factors: The layout of the warehouse, which consists
of the shape, number of blocks, number of aisles, number of picking positions,
etc.; the routing policy, which consists of determining the route that pickers
follow within the warehouse to collect the orders; the sorting policy, which
consists of determining when and how the picked products are separated
in orders; the storage strategy, which determines where to store each type
of product; the batching method, which determines how the products are
grouped in batches prior to being collected.

Our article focuses on another additional factor, named Time Window
(TW), not considered by Petersen, which also has a significant influence on
the picking time (i.e., the time that pickers need to perform the picking task)
and the completion time (i.e., the picking time together with the waiting
time) (Gil-Borrás et al., 2020a) . The TW, also known as waiting time in
this context, is defined as the time that a picker waits idle in the depot, before
starting a new picking route. This factor is studied as an additional task that
needs to be determined in the context of problems using a batch collection
policy. Determining the waiting time is especially relevant when the arrival
of orders is dynamic (i.e., online), although it could make sense also in multi-
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picker contexts, when all orders are known before starting the pickup (i.e.,
offline) but there are potential deadlock situations, such as several pickers
trying to access simultaneously to a picking position, to a corridor, or just
to the depot.

This work is motivated by the lack of previous works related to determin-
ing the time window in the context of the Online Order Batching Problem
(OOBP). Despite the fact that there are works in the literature where the
time window is taken into consideration, it is only studied by applying a
specific algorithm / function to determine it. However, there is no previous
paper focusing on the influence of this task on objective functions related to
the OOBP, nor comparing the most common existent time-window strategies
for different scenarios.

This work can be considered as an extension of a previous work presented
in Gil-Borrás et al. (2020a). In that work, the authors performed a prelimi-
nary study which compared the two main families of time-window strategies:
Fixed Time Window and Variable Time Window. However, the authors only
considered some basic heuristic strategies for the task. In this article, we
focus on studying, in a detailed way, the influence of the time window on
the value of the objective function , in the context of OOBP, depending on
different factors such as: Batching, routing, objective function, or congestion
in the arrival of orders. Also, we compile and compare the most outstanding
strategies for determining the time window in each of the compared scenar-
ios.

The main contributions of this work are: First, a chronological review of
the evolution of the concept of time window related to the OOBP. Second,
a compilation and classification of the most relevant time-window methods
in the literature. Third, a detailed empirical study on the influence of the
time window in several objective functions defined for the OOBP. Fourth,
the proposal of two new Variable Time Window methods for determining
the time window. And fifth, an extensive experimental analysis about the
performance of each method in different scenarios.

The rest of the article is organized as follows. In Section 2 we describe
the OOBP. In Section 3, we present the state of the art related to the time
window. Next, in Section 4, we describe the methods to determine the time
window found in the state of the art, and the two new methods proposed in
this article. In Section 5, we describe the comparative study carried out. In
this section, we also review the algorithms for the rest of the tasks that need
to be handled in the context of OOBP. In Section 6, we present the experi-
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ments of this paper. Finally, in Section 7, some conclusions and pointers for
future research are presented.

2. Online Order Batching Problem

The Online Order Batching Problem is a dynamic optimization problem
in which orders continually arrive at a warehouse during the processing time.
In this way, not all orders to be processed nor their arrival times are known
beforehand. In this context, orders are grouped into batches prior to be
picked. The batch collection process can be carried out by a single picker
or by several pickers. To solve the OOBP, it is necessary to tackle different
tasks / subproblems. First, the orders that reach the system are grouped into
batches for later collection. This process of grouping orders into batches is
known as batching. Once the batches have been generated, a decision must be
made on whether it is more convenient to start collecting any of the batches
or to wait for new orders to arrive. This process is known as determining
the time window. Although at first glance it may seem unnatural (even
inefficient) to wait, new orders may arrive during the time window, which
potentially could improve the distribution of orders in the batches already
created. The time window can be a fixed amount of time or a variable one
(i.e., a different waiting time for each picker on each new route). Furthermore,
it is necessary to decide which batch, among all generated ones, is going
to be collected next. This process is known as selecting. Notice that the
term selecting is used when only the next batch to collect is chosen, as it
is customary in dynamic / online environments, since the conditions might
change in the future. On the other hand, the term sequencing is used for
the same task when all the conformed batches are sorted to determine the
order in which they will be picked, as it is customary in static / offline
environments. Finally, once the batch and the time for starting the route
are decided, it is necessary to determine the route that the picker should
follow through the warehouse to perform the picking. This process is known
as routing. Sometimes, there is an additional process consisting in sorting
the products collected on the same picking route. This is due to the fact that
products belonging to different orders are collected together and they might
be placed in the same basket during picking. Therefore, a sorting process
must be performed afterward to separate the products into different orders.
However, we do not study the influence of this task in our work.

Next, we mathematically define the OOBP. To that aim, in Table 1, we
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Parameters
n → Number of customer orders received in the system
m → Upper bound of the number of batches (a straightforward value

is m = n).
l → Number of order pickers.
vrouting → Routing velocity: number of length units that the picker can

traverse in the warehouse per unit of time.
vextraction→ Number of items that the picker can search and pick per time

unit.
tsetup → Time that the picker needs to initiate a new route with a new

order list and end the route let the collected orders in the depot.
wi → Number of items of order oi for 1 ≤ i ≤ n.
W → Maximum number of articles that can be included in a batch

(device capacity).
ari → Arrival time of order i for 1 ≤ i ≤ n.

Variables
stj → Start time of batch j for 1 ≤ j ≤ m.

xji →





1, if order oi is assigned to batch bj,

for 1 ≤ i ≤ n, and 1 ≤ j ≤ m.

0, otherwise.

yjk →





1, if picker pk is assigned to batch bj,

for 1 ≤ k ≤ l, and 1 ≤ j ≤ m.

0, otherwise.

Table 1: Parameters and variables for the General OOBP.
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first present the parameters and variables used in the model. Then, we define
the OOBP considering the minimization of the picking time (i.e., the sum of
picking time of all pickers) as an objective function as follows:

min
m∑

j=1

Tservice(bj). (1)

subject to,

m∑

j=1

xji = 1, ∀ i ∈ {1, . . . , n}. (2)

l∑

k=1

yjk = 1, ∀ j ∈ {1, . . . ,m}. (3)

n∑

i=1

wi ∗ xji ≤ W, ∀ j ∈ {1, . . . ,m}. (4)

stj ≥ min
k∈{1,...,l}

max
s∈{1,...,j−1}

ysk ∗
(
sts + Tservice(bs)

)
, ∀ j ∈ {2, . . . ,m}. (5)

stj ≥ stj−1, ∀ j ∈ {2, . . . ,m}. (6)

stj ≥ ari ∗ xji, ∀ i ∈ {1, . . . , n}, and ∀ j ∈ {1, . . . ,m}. (7)

stj ≥ tw(), ∀ j ∈ {1, . . . ,m}. (8)

stj ≥ 0, ∀j ∈ {1, . . . ,m}. (9)

xji ∈ {0, 1}, ∀ j ∈ {1, . . . ,m} and ∀ i ∈ {1, . . . , n}. (10)

yjk ∈ {0, 1}, ∀ j ∈ {1, . . . ,m} and ∀ k ∈ {1, . . . , l}. (11)

where dis represents the distance function (i.e., the routing algorithm) used
and tw represents the time-window function that is being evaluated. The con-
straints in (2) guarantee that each order is assigned to a single batch. The
constraints in (3) guarantee that each batch is assigned to a single picker.
The constraints in (4) guarantee that the maximum capacity of each batch
is not exceeded. The constraints in (5) guarantee that the collection of batch
bj begins once a picker is available. The constraints in (6) guarantee that
the collection of batch bj starts once the collection of batch bj−1 has already
started. The constraints in (7) guarantee that the route to collect a batch
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bj cannot start before the timestamps (moments in time) when the orders oi
assigned to that batch have reached the system. The constraints in (8) guar-
antee that the collection of batch j does not start before the time indicated
by the time-window function. The constraints in (9) guarantee that stj is
positive. The constraints in (10) guarantee that the variables xji are binary.
Finally, the constraints in (11) guarantee that the variables yjk are binary.
Additionally,

Tservice(bj) =
dis(bj)

vrouting
+

n∑

i=1

wixji

vextraction
+ tsetup, ∀j ∈ {1, . . . ,m}. (12)

Similarly, the same problem can be studied by minimizing the completion
time of the received orders or the maximum turnover time. In both cases, the
only difference with respect to the previous model would be the replacement
of the objective function (Eq. 1) with Eq. 13 (in the case of the completion
time) or Eq. 14 (in the case of the maximum turnover time).

min max
j∈{1,...,m}

(
stj + Tservice(bj)

)
. (13)

min max
i∈{1,...,n}

m∑

j=1

(
(stj + Tservice(bj)) ∗ xji

)
− ari. (14)

It is worth mentioning that the completion time is determined by the
moment in which the picker delivers the last batch, while the maximum
turnover time objective function is determined by the turnover time of the
order that remains longer in the system.

3. State of the art

In this section we review the chronological evolution of the concept of time
window in the literature, which has changed during the years. In addition,
we highlight the contribution of each reviewed paper to this concept. Next,
in Section 4 we classify and detail the most relevant time-window methods
proposed in the state of the art.

The time-window concept emerges in the context of the development of
batching algorithms as an additional batching strategy, and it has evolved
until being studied as an independent part of the picking process. The first
study dates from 1983 (Quinn, 1983) where the term time-window batching
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is used as a strategy to reduce picking time. Il-Choe and Sharp (1991)
presented several results for its general application in improving the efficiency
of a picking system. Tang and Chew (1997) and Chew and Tang (1999)
performed various mathematical analyses related to the use of time-window
batching as a batch generation method. Specifically, the upper and lower
limits are calculated for the problem, as well as the estimation of the variance
and the mean of several objective functions such as travel time, service time,
and turnover time. Yu and De Koster (2009) expanded previous works by
presenting a model based on queueing theory and introducing the calculation
of the concept of “Expected waiting time to form a new batch” (E[Wj])
applied to this type of problem. The same year, Van Nieuwenhuyse and
De Koster (2009) published an article that estimates the average processing
time of an order, using Variable Time-Window Batching (VTWB) or Fixed
Time-Window Batching (FTWB) as a batching algorithm. In the same study,
the impact of two picking policies (pick-and-sort and sort-while-pick) is also
compared for the same Time-Window Batching scenario. This article also
develops the concept of E[Wj]. Later, in 2012, a new method was introduced
in Bukchin et al. (2012) for the first time to accurately calculate the departure
time of each picker, assuming that all the arrival times of the orders are
known. Based on this information, an approximate model is proposed to
determine the waiting strategy for future arrivals of orders. The previous
article uses Markov Decision Processes and they are compared with a couple
of naive heuristics. This work studies the minimization of delays in the
delivery of orders, as well as the costs associated with the overtime of the
pickers. The same year, Henn (2012) presented a metaheuristic algorithm
(Iterated Local Search) for batching, together with a heuristic to calculate
the time window.

Xu et al. (2014) presented new results using E[Wj] for the VTWB cal-
culation, together with the First Come First Served (FCFS) algorithm for
the batching process. In this paper, the authors calculate the optimal size
of batches in this context, for the minimization of the average throughput
time . Subsequently, Zhang et al. (2016) first and Zhang et al. (2017) later
introduced a rule-based hybrid heuristic, which linked the computation of the
time window together with seed-type algorithms for batching. The same year,
Giannikas et al. (2017) proposed three variants of a so-called intervention-
ist strategy, consisting in new Variable Time-Window policies based on the
number of orders that arrive at the system. Duda and Stawowy (2019), used
a Variable Neighborhood Search (VNS) to study the Joint Batch Sequenc-
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ing and Picker Routing Problem with time windows. In this work, batches
are formed beforehand and known in advance. Specifically, they divide the
time window into fixed periods of 30 minutes and propose four new neigh-
borhoods to solve the problem in a comprehensive way. Later, Gil-Borrás
et al. (2020a) performed a simple comparison between Fixed Time-Window
and Variable Time-Window methods. Finally, in the same year, Leung et al.
(2020) presented the Intelligent B2B order handling system, solving the In-
tegrated Online Pick-to-sort Order Batching using the Fixed and Variable
Time-Window Batching strategies.

4. Time-window methods

According to the literature, a possible classification of time-window meth-
ods would divide them into Fixed Time Window and Variable Time Window.
In this work, we use these categories to classify the descriptions of the most
relevant time-window methods present in the state of the art. Furthermore,
some of these methods are selected to be empirically compared in Section 6.

4.1. Fixed Time-Window methods in the literature

Fixed Time-Window (FTW) methods are characterized by determining
a fixed waiting time that can depend on different factors of the system /
instance, such as the available space in the batch, the distribution of the
arrival of orders, or the average number of articles of the received orders .
Specifically, the strategy that determines the time window could set a single
fixed time for all instances of the problem. Alternatively, a FTW strategy
could also set a different fixed time for each instance, but depending on a
parameter of the instance. The most representative Fixed Time-Window
methods in the literature are described below:

• No-wait method (FTW NW): This is the simplest FTW method.
It consists of starting the picking of the next batch as soon as there is
a picker available and a batch waiting to be picked. This strategy is
one of the most used in the literature. In fact, if not stated otherwise,
it is taken as the default strategy. Some examples of works that use
this strategy are Gil-Borrás et al. (2020a,b, 2021).

• Methods with the same fixed time for all instances (FTW CT):
It consists of establishing, following any criteria (e.g., a specific time
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after each picking route, a fixed schedule for departures, etc.) , a fixed
time that a picker must wait, each time the picker is available, regard-
less of the specific instance in which the picker is working. This strategy
was explored in Gil-Borrás et al. (2020a), where different time-window
methods are compared. Specifically, the authors in this paper demon-
strate how, in general, this type of method returns worse solutions than
methods which use a Variable Time-Window strategy.

• Methods with a calculated fixed time for each instance
(FTW ZH): These methods can be considered as a particularization
of the FTW CT. They consist of setting a fixed time based on a calcu-
lation per instance. Specifically, the time window t to start collecting
the batch b is calculated as follows: t = (Q/q)·λ·β, where Q is the max-
imum batch capacity, q is a uniform distribution indicating the number
of items of an order, and λ defines the distribution that indicates the
arrival rate. Therefore, (Q/q) · λ estimates the average time to fulfill a
batch. Finally, β is a coefficient of the desired average of fulfillment of
a batch before starting the picking process. Notice that β is a search
parameter that is studied in Section 6.2.1 . An example of the use of
this type of methods was described in Zhang et al. (2017) although it
is based on the studies of Xu et al. (2014) and Van Nieuwenhuyse and
De Koster (2009). In this work, the authors determined the expected
arrival time of the next k orders, required to complete a batch, on the
basis of the arrival information of previous orders.

We have selected FTW NW and FTW ZH methods to be experimentally
evaluated in Section 6 since according to the previous comparison (Gil-Borrás
et al., 2020a) FTW CT methods performed worse.

4.2. Variable Time-Window methods in the literature

Variable Time-Window (VTW) methods are characterized by having a
variable waiting time, which can be different at each picking moment for
the same instance depending on different factors. The most representative
methods in the literature are described below:

• Methods based on a minimum number of orders in queue
(VTW QO): This strategy consists of starting the collection of or-
ders in a batch when there is a minimum number of pending orders
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to be collected in the system. This method was recently used in Gil-
Borrás et al. (2020a), where the authors explored the performance of
this strategy for different number of queued orders (4, 8, and 16).

• Methods based on a minimum number of batches (VTW BA):
This method sets a different time window depending on the completion
of a minimum number of batches previously defined, prior to starting
picking. The simplest version of this strategy consists of waiting until
the first batch is full. Particularly, when a new batch is configured,
it is assumed that the previous batch does not have the capacity to
accommodate new orders, so at that time the picker can start collecting
the first batch, and so on.

• Reactive methods according to the collection conditions
(VTW HE): This method determines the time window on the basis
of the specific system conditions such as the arrival times of the orders
and the service times to collect them (Henn, 2012). Specifically, if
there is more than one batch available for being collected a new route
is started as soon as a picker becomes available. Otherwise, the method
calculates the moment to start a new route using the following formula:
max(t, (1 + α) · ri + α · sti − stj), where t is the current instant time,
stj is the service time of the batch j, sti is the longest service time of
any order i in batch j when it is collected in isolation, and ri is the
arrival time of order i. Finally, α is a coefficient that weighs the arrival
time of the order i and the service time of the current batch under
construction. Notice that α can be considered as a search parameter
and its influence is studied in Section 6.2.2.

• Methods based on data-built models (VTW MM): In addition
to the previously introduced heuristic methods, there is a family of
methods based on machine learning models. Specifically, in Bukchin
et al. (2012) the authors propose a method that uses Markov decision
processes to calculate a subsequent model that determines the optimal
moment in which a picker should have started the picking of each batch.
Based on the model built with previous data, it establishes a decision-
making system for future orders. However, the construction of the
exact model presents the difficulty of being a computationally costly
task.
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According to a previous comparison (Gil-Borrás et al., 2020a), VTW BA
and VTW HE methods perform better than VTW QO. Therefore, we have
selected the former methods to be experimentally evaluated in Section 6.
Additionally, VTW MM is impractical for real-size instances as the ones
used in this paper.

4.3. New time-window methods

In addition to the previous methods identified in the state of the art,
in this work, we propose two new VTW methods to determine the time
window, with the aim of finding balance between the effect of waiting in two
different objective functions: picking time and completion time. Particularly,
waiting might improve the picking time for a particular batch, but could
also deteriorate the completion time of the whole system. The proposed
strategies try to determine the expectancy of the next order that will arrive
at the system to fit the current batch. These methods have been tested in
different empirical scenarios and improve the methods in the state of the art
in several of them. The experiments are reported in Section 6.

• Method based on the available capacity (VTW M1): This method
considers that an available picker should wait while there is a batch un-
der construction still incomplete, together with a high estimated prob-
ability that the next order will fit in the available capacity. Since the
method is based on estimations, in the event that the next order that
arrives in the system exceeds the available capacity (i.e., generating a
new batch), the picker will start collecting the previous batch. On the
other hand, while the capacity is not exceeded after a new arrival, the
method constructs a probability distribution based on the size of the
orders previously arrived at the system. Based on this distribution, it
calculates the probability that the next order will have a smaller size
than or equal to the available capacity in the current batch. Then,
based on a threshold, the method decides whether to start picking or
to wait. The probability threshold is a search parameter and should be
adjusted experimentally.

• Method based on the available capacity with rules (VTW M2):
This method could be considered an extension of VTW M1, but adding
two new criteria to start picking: 1) the time calculated for the picking
task of the orders currently in the batch under construction is shorter
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than the time needed until the estimated instant of arrival of the next
order; 2) the average time required to pick the items assigned to the
batch under construction is at least 10% shorter than the average pick-
ing time of items previously collected.

The VTW M1 and VTW M2 methods have been included in the experi-
mental evaluation in Section 6.

5. Description of the comparative study

To evaluate the time-window algorithms exposed in Section 4, it is nec-
essary to define the strategies that will be used for the rest of the activities
in the context of the OOBP. Also, it is necessary to determine the objective
functions to be optimized.

For variants with a single picker, it is necessary to define the batching,
selecting, and routing strategies. Moreover, if there are multiple pickers, it
is necessary to handle an additional task known as assigning, which consists
in determining which picker is assigned to the collection of which batch. .

In this work, we study different batching and routing strategies, which
are described in Section 5.1 and Section 5.2, respectively. On the other hand,
the selecting method used consists of selecting the batch that contains the
largest number of items. In the event that there is more than one batch
with the maximum number of items, we select the batch with the shortest
picking route. Additionally, the assigning method, which decides which batch
is collected by which picker, assigns the next batch to be collected to the
first available picker. Finally, we study the minimization of three different
objective functions: Picking time, completion time, and maximum turnover
time, which are described in Section 5.3.

5.1. Batching strategies

The batching task consists of grouping a set of orders in a batch, which
will be collected together in a single picking route. We consider that or-
ders cannot be split into different batches. There is a great variety of algo-
rithms published in the literature for this task. In this work, we compare
three different batching strategies: FCFS, Iterated Local Search (ILS), and
General Variable Neighborhood Search (GVNS). The purpose of exploring
different batching strategies is to determine if the time-window method se-
lected depends on the batching algorithm used. Next, we review the batching
strategies considered.
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5.1.1. First Come First Served

FCFS is a simple heuristic algorithm that sorts orders according to the
arrival time of each order to the system. Then, batches are generated starting
from an empty one and adding orders to the batch one by one following the
previous predefined sequence, starting with the earliest arrived order . Once
an order does not fit into the current batch, that batch is considered complete,
and a new batch is generated. The process is repeated until all orders have
been assigned. This simple algorithm is widely used in the literature and is
usually considered a baseline method for comparison.

5.1.2. Iterated Local Search

ILS metaheuristic was devised in Lourenço et al. (2003) as a method
based on local search to perform an efficient exploration of the solution space.
Specifically, it consists of alternating an improvement phase with a pertur-
bation phase. The former is devoted to reach a local minimum, while the
latter is used to diversify the search. ILS algorithm was used in the con-
text of OBP in Henn et al. (2010). In this work, the improvement phase
uses two neighborhoods: The first one is based on the exchange operation
of two orders located in two different batches (swap); and the second one is
based on the insertion of an order in a different batch from the current one
(shift). On the other hand, the perturbation phase is based on the exchange
of a random number of orders between batches selected at random. We have
coded and used the strategy proposed in Henn et al. (2010) for our exper-
iments. Particularly, the method received an initial solution obtained with
the FCFS strategy. Then, it was executed following the recommendations of
the authors, during at least 60 seconds and 100 iterations before considering
a solution to select the next batch to collect.

5.1.3. General Variable Neighborhood Search

The VNS methodology was initially proposed in Mladenović and Hansen
(1997) as a search strategy based on the concept of neighborhood change to
escape from local optima. Among the multiple VNS variants, Variable Neigh-
borhood Descent (VND) is characterized by systematically exploring several
neighborhoods using a local search procedure. General Variable Neighbor-
hood Search (GVNS) uses VND as an intensification strategy, but adds a
perturbation strategy for diversification purposes. In this work, a GVNS al-
gorithm has been used in combination with the VND procedure proposed in
Gil-Borrás et al. (2020b) for the OOBP context. This algorithm uses three
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neighborhoods based on the following operations: Exchange of two orders
belonging to a different batch (1x1); exchange of two orders belonging to a
batch with an order belonging to a different batch (2x1); and insertion of an
order in a different batch than the current one (1x0). The neighborhoods and
their order have been established as indicated by the authors. The proposed
local search procedures use a first improvement strategy. Finally, the per-
turbation phase consists of performing a random exchange of orders between
orders belonging to different batches. The initial solution provided to the
GVNS was obtained at random. The method is then continuously executed
for 15 seconds, restarting the search afterwards from a new random solution.

5.2. Routing strategies

The routing task consists of generating a route that enables the collection
of the selected set of orders in a batch within the warehouse. This strategy
is also used to determine aspects such as picking time or distance traveled.
In general, there are three families of strategies to generate the route: Exact
methods, heuristic methods, and metaheuristic methods. This research fo-
cuses on rectangular-shaped warehouses with two crossing aisles (one at the
front and one at the back) and a variable number of parallel aisles where the
products are stored. For this warehouse layout, heuristic methods are the
most popular in the literature and in real scenarios, because they are easy
to implement and easy to understand by pickers (Hall, 1993; Petersen and
Schmenner, 1999; Fontin and Lin, 2020).

In this work, three routing heuristic algorithms have been compared: S-
shape, Largest-gap, and Combined for demonstrating that the time-window
strategy is independent of the routing algorithm used. Specifically, we have
identified and reviewed 123 journal articles related to Order Batching. Among
them, the S-Shape was used in 54% of the cases, the Largest Gap in 17%
of the cases, and the Combined in 9% of the cases. The rest of the papers
reviewed include a variety of methods such as: Mid-Point, Return, Com-
bined+, or Ratliff and Rosenthal, among others. An empirical comparison
of the three selected procedures can be found in Petersen (1997) and Petersen
and Aase (2004).

5.2.1. S-Shape

The S-Shape method is a heuristic strategy in which pickers start their
routes at the depot, which is located in the front cross aisle. Pickers move
through the front cross aisle until they reach the leftmost parallel aisle with

15



items to collect in the warehouse. Then, the pickers fully traverse this parallel
aisle and any other that contains items to collect. To change from one parallel
aisle to another, the picker can use either the front cross aisle or the back
cross aisle indistinctly, depending on the route. However, pickers must finish
their route in the depot again, so in the event that the number of parallel
aisles to traverse is odd, the last aisle will only be traversed until reaching the
last item to be collected and then, the pickers turn around and come back
to the front cross aisle to return to the depot and finish the picking route.
We refer the reader to Hall (1993) and Petersen (1995) for a further detailed
description of this strategy.

5.2.2. Largest Gap

The Largest-Gap method is a heuristic strategy based on the concept
of gap. The gap is defined as the distance between two items to be picked
consecutively and located in the same parallel aisle, or also the distance
between a cross aisle and the first item to be picked in a parallel aisle. Again,
the picking route begins and ends in the depot, which is located in the front
cross aisle. Notice that the entrance to the parallel aisles can be made from
any of the two crossing aisles (either the back or the front cross aisle) and
pickers only enter the aisles that have items to collect. The Largest-Gap
strategy consists of avoiding going through the part of the aisle with the
largest gap. To that aim, when the pickers arrive at the position where the
largest gap starts, they turn around in the parallel aisle and go back to the
initial cross aisle. This procedure is performed except for the first and last
parallel aisles with items to collect, which are fully traversed. Therefore,
pickers might enter the same aisle twice: One from the front cross aisle and
one from the back cross aisle. We refer the reader to Hall (1993) and Petersen
(1995) for a further detailed description of this strategy.

5.2.3. Combined

Finally, the Combined heuristic strategy consists of the combination of
the two previous heuristics: S-Shape and Largest Gap. Specifically, the
Combined method uses the lowest cost technique (S-Shape or Largest Gap)
in each aisle with items to collect. As in the previously studied methods,
the pickers begin their route at the depot, which is located in the front cross
aisle. Pickers traverse the front cross aisle until they reach the leftmost
parallel aisle with items to collect, deciding the best strategy for performing
picking in that and subsequent aisles. Notice that the restrictions associated
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with either Largest Gap or S-Shape strategies must be satisfied. Once all
items have been collected, the pickers return to the depot. We refer the
reader to De Koster and Van Der Poort (1998) and Menéndez et al. (2017b)
for a further detailed description of this strategy.

5.3. Objective functions

In this work, three widely used objective functions for different variants
of the OBP are compared: The minimization of the picking time; the min-
imization of the completion time; and the minimization of the maximum
turnover time. Specifically, we have identified and reviewed 123 journal arti-
cles related to Order Batching. Among them, 51% of the papers studied the
picking time as the objective function, 22% of the papers considered the com-
pletion time, while 19% of them studied the turnover time (including those
papers which consider the existence of due dates in the orders). Finally, the
remaining 8% of papers considered other related objective functions such as
cost or workload balance, among others.

The picking time is the time that pickers need to perform the picking
task of all orders once the batches are conformed. The completion time is
similar to the picking time, but also includes the waiting time for the arrival
of new orders. Reducing the picking and completion times, frees some time
for the pickers to perform other activities. Also, it helps to reduce energy
consumption (in the case that the picking uses machinery) or to reduce the
tiredness of the workers (in the case that they walk through the warehouse).
Finally, the maximum turnover time is the maximum time that an order
remains in the system since it arrives until it is served. Reducing the turnover
time results in a direct benefit for the customer since it helps to deliver the
products faster.

6. Experiments

This section presents different experiments to evaluate the time-window
methods previously detailed in the context of the OOBP. Also, we study
the relationship between time-window strategies and other strategies, such
as routing or batching algorithms, as well as the influence of either the set
instances or the optimized objective function on the performance of the meth-
ods.

All methods used in the experimentation, including those of the state of
the art, were coded in Java 8 and run on an Intel (R) Core (TM) 2 Quad
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CPU Q6600 2.4 Ghz computer, with 4 GB DDR2 RAM memory and Ubuntu
18.04.1 64 bit LTS operating system.

In Section 6.1, we present the sets of instances used in the comparison.
In Section 6.2, we perform a set of preliminary experiments to adjust the
values of the different compared time-window algorithms. Finally, in Section
6.3, we present the final experiments. In those experiments, we compare the
behavior of routing and batching algorithms when combined with different
time-window strategies.

6.1. Instances

Two sets of instances widely used in the state of the art of different vari-
ants of order batching problems have been selected for this article. It is
important to note that, to the best of our knowledge, there are no previ-
ous specific datasets for “time-window algorithms” in the context of OOBP,
since there are no previous studies just devoted to this concept in isolation.
However, most of the methods included in our comparison, which deal with
the concept of time window, are presented in articles using these data sets.
The objective of using two sets of instances is to evaluate whether there is
any dependence of the time-window strategies on the set of instances used.

The first data set (Dataset #1) is composed of 80 instances corresponding
to 4 different warehouses (denoted as W1, W2, W3, and W4 ). It was
originally proposed in Albareda-Sambola et al. (2009), and it has been used
in many related works (Gil-Borrás et al., 2020b; Menéndez et al., 2017b,
2015).

The second data set (Dataset #2) is composed of 64 instances correspond-
ing to a single warehouse (denoted as W5 ). It was originally proposed in
Henn (2012), and it has also been used in many related papers (Aerts et al.,
2021; Alipour et al., 2020; Gil-Borrás et al., 2020b; Koch and Wäscher, 2016;
Menéndez et al., 2017a,b; Pérez-Rodŕıguez et al., 2015).

Instances in both data sets correspond to rectangular single-block ware-
houses with two cross aisles, one at the front and one at the back. The cross
aisles are linked by several parallel aisles containing shelves with picking po-
sitions at both sides of the aisle. The depot is the place in the warehouse
where pickers start and end the picking routes and where the products are
deposited once they have been collected. We consider that there is a single
depot in the warehouse that is located in the center or in the left corner of the
front cross aisle, depending on the instance. These data sets can be down-

18



Dataset #1 (Albareda-Sambola et al. (2009)) Dataset #2 (Henn (2012))

W1 W2 W3 W4 W5

Storage policy Random / ABC Random / ABC

Depot position Center / Left corner Center

Order size U(1,7) U(2,10) U(5,25) U(1,36) U(5,25)

Item weight 1 1 1 U(1,3) 1

Batch capacity (weight) 12 24 150 80 30 / 45 / 60 / 75

# parallel aisles 4 10 25 12 10

# of picking positions per aisle 2x30 2x20 2x25 2x16 2x45

# of total picking positions 240 400 1250 384 900

Parallel aisle length 50 m 10 m 50 m 80 m 45 m

Parallel aisle width 4.3 m 2.4 m 5 m 15 m 5 m

# of instances 20 20 20 20 64

Travel speed (m/min.) 48 48 48 48 48

Extraction speed (items/min) 6 6 6 6 6

Batch setup time 3 min 3 min 3 min 3 min 3 min

Table 2: Characteristics of the warehouses and the work parameters.

#Customer orders

40 50 60 80 100 150 200 250

4 Hours 0.167 0.208 0.250 0.334 0.417 0.625 0.834 1.042

Table 3: λ values for each number of orders.

loaded at http://grafo.etsii.urjc.es/optsicom/oobp/. In Table 2, we compile
the main characteristics of the instances used in our experiments.

Additionally, since these experiments occur in a dynamic / online con-
text, where orders arrive dynamically (i.e., once the picking task has already
started) it is also necessary to model the arrival of the orders to the system.
In this case, we have studied a scenario where the arrival of orders follows
an exponential distribution derived from a Poisson process (Poisson, 1837)
characterized by a time horizon of 4 hours (t = 4). The number of events
(the arrival of orders in this context) that occur in a time interval t is a
random variable X(t) with mean E[X(t)] = λ ∗ t. The λ value is selected
depending on the number of orders considered for each instance. In Table 3,
we report the values of λ for each case considered.

6.2. Preliminary experiments

This section is devoted to tuning the parameters of the compared time-
window algorithms: FTW ZH (Zhang et al., 2017), VTW HE (Henn, 2012),
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VTW M1, and VTW M2 (proposed in this paper). To make these adjust-
ments, a diverse subset of 24 instances has been selected from the original sets
of instances previously described. It is worth mentioning that, in the case
of VTW BA, three different configurations (2, 3, and 4 generated batches)
are used in the final experiments, denoted as: VTW B1, VTW B2, and
VTW B3, respectively.

6.2.1. Selection of parameter β in FTW ZH

The time-window method proposed in Zhang et al. (2017) uses a β pa-
rameter in the formula that determines the fixed time interval of the time
window. We refer the reader to Section 4.1 for a detailed description of this
parameter.

In this experiment, different values of β (0.5, 1, and 1.5) and their influ-
ence are compared. In Table 4, we compare, for each value of β, the average
value of the picking time measured in seconds, Avg.(s), the deviation to the
best solution of the experiment, Dev.(%), and the number of best solutions
found, #Best. Similarly, the same metrics are reported for the completion
time and turnover time . Observing the results, the configuration that ob-
tained the highest number of best solutions in either picking time, completion
time, or turnover time was β = 1.5 with a good performance in the other two
indicators. Therefore, we used this configuration for the final experiments.

β value

0.5 1.0 1.5

Picking

time

Avg.(s) 41291 41300 41293

Dev.(%) 0.17% 0.31% 0.18%

#Best 10 9 13

Completion

time

Avg.(s) 41955 41967 41950

Dev.(%) 0.20% 0.36% 0.19%

#Best 7 7 10

Maximum
turnover time

Avg.(s) 36385 36157 36180

Dev.(%) 6,55% 7,28% 8,61%

#Best 7 7 10

Table 4: Study of different values for the β parameter in FTW ZH method for picking
time and completion time.
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6.2.2. Selection of parameter α in method VTW HE

The time-window method proposed in Henn (2012) uses a parameter α to
determine the time window before starting the picking of the next batch un-
der construction. We refer the reader to Section 4.2 for a detailed description
of this parameter.

In this experiment, different values of α (25%, 50%, 75%, and 100%) are
compared. The value 0% for α is not evaluated as it would be equivalent to
the FTW NW method that is already included in the final experiments.

In Table 5, we show the three previously introduced quality indicators
for the considered values of α for the three objective functions. In this case,
it can be observed that the best value for the parameter α is 50% in the
three indicators for two out of the three objective functions studied. For this
reason, α = 50% is selected for the configuration of the method VTW HE in
the final experiments.

α value

25% 50% 75% 100%

Picking

time

Avg.(s) 40515 40430 40483 40518

Dev.(%) 0.61% 0.51% 0.57% 0.73%

#Best 6 12 7 5

Completion

time

Avg.(s) 42121 42022 42085 42111

Dev.(%) 1.06% 0.83% 0.97% 1.02%

#Best 3 7 3 3

Maximum
turnover time

Avg.(s) 36895 37254 38035 36887

Dev.(%) 7,46% 10,06% 14,67% 9,44%

#Best 6 5 2 11

Table 5: Study of different values for the α parameter in VTW HE method for picking
time and completion time.

6.2.3. Study of the capacity threshold in VTW M1

The VTW M1 method determines the probability that the next order
arriving in the system will fit into the available capacity in the batch under
construction. In this experiment, we study different thresholds to start pick-
ing if the probability is below that threshold. Specifically, we have evaluated
threshold values between 20% and 70% (in steps of 10%). Extreme values
have not been evaluated, as a threshold of 0% indicates that the next or-
der would not fit in the batch, therefore there is no point in waiting for it.
Similarly, a value of 100% would equate to the batch being empty.
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In Table 6, we report the same quality indicators as previously introduced
for the different threshold values evaluated, both for the picking time and for
the completion time. In this case, the best value for this parameter in the
three proposed indicators, for both objective functions, is 60%. Therefore,
this value has been selected for the configuration of VTW M1 in the final
experiments.

Threshold (%)

20% 30% 40% 50% 60% 70%

Picking

time

Avg.(s) 40738 40793 40779 40856 40721 40813

Dev.(%) 0,24% 0,38% 0,36% 0,31% 0,21% 0,33%

#Best 7 4 4 6 8 5

Completion

time

Avg.(s) 41725 41776 41760 41839 41701 41799

Dev.(%) 0,23% 0,37% 0,34% 0,30% 0,19% 0,34%

#Best 4 1 5 6 6 2

Maximum
turnover time

Avg.(s) 36792 36541 36314 36851 36469 35910

Dev.(%) 15,51% 14,45% 15,85% 14,61% 13,85% 7,42%

#Best 1 2 4 5 4 8

Table 6: Study of different threshold values in VTW M1 method for the picking time and
completion time.

6.2.4. Study of the capacity threshold in VTW M2

The VTW M2 method determines the probability that the next order
arriving to the system will fit into the available capacity (as VTW M1) but
including several additional rules. Specifically, we have evaluated the thresh-
old values between 20% and 70% (in steps of 10%). Again, the extreme
values have not been evaluated as a threshold of 0% indicates that the next
order would not fit in the batch; therefore, there is no point in waiting for it.
Similarly, a value of 100% would be equivalent to waiting always.

In Table 7, we show the same three quality indicators presented previ-
ously. In this case, the best value for this parameter, for two out of the
three objective functions, is 40% for all the proposed indicators, except for
the number of best solutions in the case of completion time. Therefore,
this value has been selected for the configuration of VTW M2 for the final
experiments.

6.3. Final experiments
The aim of this work is to evaluate the behavior of the strategies selected

previously to determine the time window in different scenarios. To that
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Threshold (%)

20% 30% 40% 50% 60% 70%

Picking

time

Avg.(s) 40359 40335 40285 40334 40310 40295

Dev.(%) 0,43% 0,47% 0,27% 0,36% 0,34% 0,41%

#Best 6 4 6 6 5 3

Completion

time

Avg.(s) 40858 40838 40784 40837 40815 40790

Dev.(%) 0,41% 0,47% 0,28% 0,35% 0,35% 0,39%

#Best 4 5 3 5 5 2

Maximum
turnover time

Avg.(s) 38408 39093 38720 38589 38641 38316

Dev.(%) 4,20% 9,35% 5,52% 6,73% 7,56% 5,15%

#Best 6 2 7 2 4 3

Table 7: Study of different threshold values in VTW M2 method for the picking time and
completion time.

aim, we have divided our final experimentation in four sections where we
vary: The routing strategy, the batching strategy, or the characteristics of
the instance (number of pickers and congestion in the arrival of orders ). Our
objectives are: 1) study the influence of the time-window algorithm on the
performance of the methods depending on the objective function; 2) identify
the best strategy for determining the time window in each scenario; and 3)
determine if there exists a dependency of the waiting strategy with respect to
either the batching or routing strategies, or other factors such as the number
of pickers or the congestion in the arrival of orders.

Notice that all experiments use the same selection and assignment strate-
gies (see Section 5). Additionally, in those experiments where the number
of pickers in the warehouse is not explicitly indicated, it is considered that
there is only one picker. All experiments in this section have been performed
on the whole data set of instances introduced in 6.1. Finally, in Section 6.3.5,
we have performed a statistical analysis of the results.

6.3.1. Impact of time-window algorithms on the performance of the studied
methods for different objective functions, when combined with several
routing strategies

In this experiment, we study the picking time and the completion time
objective functions when varying the routing and waiting strategies. Par-
ticularly, we combined a GVNS batching method (see Section 5.1.3) with
three different routing algorithms (S-Shape, Largest-Gap, and Combined) in-
troduced in Section 5.2, and with eight time-window algorithms (VTW B1,
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VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW-
ZH) introduced in Section 4.

In Figure 1, we represent the different algorithmic variants compared
in terms of completion time and picking time. Particularly, we report the
average among all instances of the minimum completion time or the minimum
picking time. It can be observed that the time-window method substantially
influences the results obtained (either in terms of picking time or in terms of
completion time) regardless of the routing method. Also, it is observed that
the influence of each time-window strategy on the final result (both in picking
time and in completion time) remains constant for each routing method.
That is, the best time-window method when using Combined, Largest Gap,
or S-Shape routing method is always VTW B3 in terms of picking time. It is
also observed that the best time-window method to minimize the picking time
(VTW B3) is not the best time-window method to minimize the completion
time. In this case, VTW M1, VTW M2, FTW NW, and FTW ZH, behave
similarly one to each other, and they can be considered the best methods
among the compared ones for the completion time.
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Figure 1: Behavior of the picking time and completion time when combining the GVNS
batching algorithm, with different routing strategies (S-Shape, Largest-Gap, and Com-
bined) and different time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE,
VTW M1, VTW M2, FTW NW, and FTW ZH).

24



Similarly, in Figure 2, we compare the performance of the previous meth-
ods in terms of maximum turnover time, compared to the completion time.
In this case, it is confirmed that, whatever the routing method is, the use of
one or another time-window method substantially influences the result ob-
tained in terms of maximum turnover time. Again, we report the average
values obtained among all instances. In this case, similarly to what happens
with the completion time, the methods VTW M1, VTW M2, FTW NW, and
FTW ZH perform alike and they can be considered as the best ones among
the compared methods, for minimizing the maximum turnover time.
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Figure 2: Behavior of the maximum turnover time and completion time when combin-
ing the GVNS batching algorithm, with different routing strategies (S-Shape, Largest-
Gap, and Combined) and different time-window strategies (VTW B1, VTW B2, VTW B3,
VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH).

The detailed results to elaborate Figure 1 and Figure 2 can be found in
Appendix A.

6.3.2. Impact of time-window algorithms on the performance of the studied
methods for different objective functions, when combined with several
batching strategies

In this experiment, we study the picking time and the completion time
objective functions when varying the batching and waiting strategies. Par-
ticularly, we combined three different batching methods (GVNS, ILS, and
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FCFS) described in Section 5.1, with the S-Shape routing strategy (see Sec-
tion 5.2.1), and with eight time-window algorithms (VTW B1, VTW B2,
VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) in-
troduced in Section 4.

In Figure 3, we represent the different algorithmic variants compared in
terms of completion time and picking time. As it can be observed, whatever
the batching method is, the use of one or another time-window method sub-
stantially influences the results obtained (either in terms of picking time or in
terms of completion time). Also, it is observed that regardless of the chosen
batching method, the influence of each time-window strategy on the final re-
sult (both in the picking time and in the completion time) remains constant.
That is, the best time-window method for picking time when using GVNS
or FCFS is VTW B3, while VTW B2 is slightly better than VTW B3 when
combined with ILS. It is also observed that the best time-window method to
minimize the picking time (VTW B3) is not the best time-window method
to minimize the completion time. In this case, again, VTW M1, VTW M2,
FTW NW, and FTW ZH are the best methods and behave similarly one to
each other for any of the batching methods compared.

Similarly, in Figure 4, we compare the performance of the previous meth-
ods in terms of maximum turnover time when compared with the comple-
tion time. In this case, it is confirmed that, whatever the batching method
is, the use of one or another time-window method substantially influences
the result obtained in terms of maximum turnover time. In this case, sim-
ilar to what happens with the completion time, the methods VTW M1,
VTW M2, FTW NW, and FTW ZH perform alike and they can be con-
sidered as the best ones among the compared methods, for minimizing the
maximum turnover time, for any of the batching strategies compared.
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Figure 3: Behavior of the picking time and completion time when combining dif-
ferent batching algorithms (GVNS, ILS, and FCFS), with several time-window algo-
rithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and
FTW ZH) using the same routing algorithm (S-Shape).
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Figure 4: Behavior of the maximum turnover time and completion time when combining
different batching algorithms (GVNS, ILS, and FCFS), with several time-window algo-
rithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and
FTW ZH) using the same routing algorithm (S-Shape).
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The detailed results to elaborate Figure 3 and Figure 4 can be found in
Appendix B.

6.3.3. Impact of time-window algorithms on the performance of the studied
methods for different objective functions, when varying the number of
pickers

In this experiment, we study the picking time and the completion time
objective functions, when varying the number of pickers and the waiting
strategies. Particularly, we combined the GVNS batching strategy (see Sec-
tion 5.1.3), with the S-Shape routing strategy (see Section 5.2.1), and with
eight time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE,
VTW M1, VTW M2, FTW NW, and FTW ZH) introduced in Section 4 for
scenarios with a different number of pickers (1, 2, 3, 4, and 5). The results
of this experiment are presented in Figure 5.
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Figure 5: Behavior of the picking time and completion time when increasing the number
of pickers (1, 2, 3, 4, and 5 pickers) for different time-window algorithms (VTW B1,
VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH), using
a GVNS batching algorithm and a S-Shape routing strategy.

As expected, there is an increase in the picking time when increasing the
number of pickers, but also a decrease in the completion time. On the other
hand, it is observed that the method configured with VTW B3 is the best
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in terms of picking time for any scenario (1, 2, 3, 4, and 5 pickers). Simi-
larly, the methods FTW NW, FTW ZH, VTW M1, and VTW M2 present
a similar behavior in terms of completion time, and can be considered as the
best methods for the minimization of this objective function, in any of the
scenarios studied (1, 2, 3, 4, and 5 pickers).

Finally, it is observed that the differences between the best and the worst
methods for the same number of pickers are very small when considering the
completion time, regardless of the time-window method. However, in the
case of picking time, the differences increase substantially as the number of
pickers increases.

Similarly, in Figure 6, the same methods are compared in terms of the
maximum turnover time and the completion time. In the case of the maxi-
mum turnover time, it is generally observed that it decreases as the number of
pickers increases. More specifically, observing the algorithm configured with
the same time-window strategy but for a different number of pickers, both
the maximum turnover time and completion time decrease as the number of
pickers increases. Furthermore, when the number of pickers increases, the
influence of the time-window strategy is more relevant in terms of maximum
turnover time, since the difference between the worst and the best meth-
ods also increases. Derived from the experiments carried out, the methods
FTW NW, FTW ZH, VTW M1, and VTW M2 (which behavior is similar
in terms of maximum turnover time) can be considered the best methods for
the minimization of the maximum turnover time objective function, in any
of the scenarios studied (1, 2, 3, 4, and 5 pickers).

The detailed results to elaborate Figure 5 and Figure 6 can be found in
Appendix C.

6.3.4. Impact of time-window algorithms on the performance of the studied
methods for different objective functions, when varying the congestion
in the arrival of orders

In this last experiment, we compare the picking time, the completion
time, and the maximum turnover time for different variants of an algorithm
configured with the GVNS batching strategy (see Section 5.1.3), the S-Shape
routing strategy (see Section 5.2.1), and each of the eight compared time-
window strategies (see Section 4), for instances with different number of
orders received within the same time horizon (i.e., varying the congestion in
the system). Specifically, the set of instances extracted from Dataset #2 in
Henn (2012) has a size which varies from 40 to 100 orders, while the set of
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Figure 6: Behavior of the maximum turnover time with respect to the completion time
when the number of pickers is increased (1, 2, 3, 4, and 5 pickers), for several time-window
algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW,
and FTW ZH), using a GVNS batching algorithm and a S-Shape routing strategy.

instances extracted from Dataset #1 in Albareda-Sambola et al. (2009) has
a size which varies from 50 to 250 orders. The results are presented in Tables
8-13 ordered by the objective function (picking time, completion time, and
maximum turnover time) and set of instances. Additionally, for each table,
the results are organized according to the number of orders.
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Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

4
0

Avg (s) 15966 16071 16544 16501 16919 16990 17647 17639

Dev (%) 0.22% 0.94% 4.22% 3.90% 6.67% 7.25% 12.20% 12.16%

#Best 10 5 1 0 0 0 0 0

6
0

Avg (s) 23066 23176 23352 23368 23574 23618 24123 24087

Dev (%) 0.13% 0.72% 1.45% 1.63% 2.59% 2.77% 5.57% 5.40%

#Best 12 3 0 0 1 0 0 0

8
0

Avg (s) 30783 30843 30956 30931 31134 31061 31372 31423

Dev (%) 0.14% 0.35% 0.72% 0.65% 1.36% 1.19% 2.37% 2.56%

#Best 8 6 0 1 0 0 1 1

1
0
0

Avg (s) 36680 36694 36817 36875 37066 37115 37225 37347

Dev (%) 0.28% 0.31% 0.64% 0.78% 1.32% 1.44% 1.91% 2.18%

#Best 7 7 2 0 0 0 0 0

Table 8: Behavior of the picking time when varying the number of orders (congestion),
for several time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1,
VTW M2, FTW NW, and FTW ZH) using the GVNS batching algorithm and the S-
Shape routing strategy on the instances extracted from Dataset #2 (Henn, 2012).

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

5
0

Avg (s) 20042 20215 20744 20774 21506 21912 23604 23378

Dev (%) 0.13% 1.89% 6.60% 7.34% 14.27% 20.11% 36.03% 35.56%

#Best 11 4 0 0 1 1 0 1

1
0
0

Avg (s) 39603 39757 39917 39919 40172 40256 40655 40633

Dev (%) 0.13% 0.72% 2.13% 2.16% 3.37% 3.80% 6.00% 5.80%

#Best 11 2 0 1 0 1 2 0

1
5
0

Avg (s) 58155 58115 58261 58155 58332 58344 58795 58673

Dev (%) 0.27% 0.44% 0.77% 0.65% 1.13% 1.07% 2.19% 1.98%

#Best 7 4 2 0 2 1 0 0

2
0
0

Avg (s) 76521 76615 76588 76693 76823 76747 77155 76872

Dev (%) 0.26% 0.27% 0.49% 0.56% 0.85% 0.76% 1.41% 1.25%

#Best 3 6 2 2 1 0 0 2

2
5
0

Avg (s) 95337 95154 95317 95438 95547 95454 95796 95980

Dev (%) 0.22% 0.18% 0.49% 0.57% 0.61% 0.61% 1.21% 1.21%

#Best 7 4 2 1 0 2 0 0

Table 9: Behavior of the picking time when varying the number of orders (congestion),
for several time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1,
VTW M2, FTW NW, and FTW ZH) using the GVNS batching algorithm and the S-
Shape routing strategy on the instances extracted from Dataset #1 (Albareda-Sambola
et al., 2009).
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Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

4
0

Avg (s) 20527 19578 18511 18527 18336 18328 18281 18273

Dev (%) 14.08% 8.47% 2.12% 2.23% 1.17% 1.14% 0.75% 0.72%

#Best 0 0 0 4 3 2 4 3

6
0

Avg (s) 25978 25287 24704 24728 24519 24557 24546 24508

Dev (%) 7.60% 4.42% 1.54% 1.72% 0.83% 0.97% 0.91% 0.75%

#Best 0 1 1 1 6 3 1 3

8
0

Avg (s) 32982 32390 31832 31811 31742 31669 31734 31792

Dev (%) 5.07% 2.97% 0.90% 0.84% 0.64% 0.47% 0.67% 0.87%

#Best 0 0 1 2 2 4 5 2

1
0
0

Avg (s) 38715 38108 37628 37684 37673 37721 37624 37747

Dev (%) 3.73% 1.88% 0.43% 0.57% 0.53% 0.64% 0.41% 0.68%

#Best 1 0 3 1 2 4 2 3

Table 10: Behavior of the completion time when varying the number of orders (congestion),
for several time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1,
VTW M2, FTW NW, and FTW ZH) using the GVNS batching algorithm and the S-
Shape routing strategy on the instances extracted from Dataset #2 (Henn, 2012).

Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

5
0

Avg (s) 26635 25521 24648 24633 24541 24381 24521 24288

Dev (%) 13.24% 7.63% 2.73% 2.77% 2.06% 1.13% 1.19% 0.70%

#Best 0 0 0 0 2 7 3 5

1
0
0

Avg (s) 42452 41848 41147 41146 41064 41089 40999 40986

Dev (%) 5.93% 3.50% 1.16% 1.21% 0.77% 0.75% 0.65% 0.51%

#Best 0 0 0 1 3 4 4 4

1
5
0

Avg (s) 59892 59407 59183 59081 59094 59113 59230 59114

Dev (%) 2.67% 1.49% 0.84% 0.72% 0.66% 0.63% 0.86% 0.67%

#Best 0 1 2 2 5 2 1 3

2
0
0

Avg (s) 78173 77922 77474 77581 77590 77490 77670 77385

Dev (%) 1.80% 1.12% 0.45% 0.54% 0.56% 0.45% 0.56% 0.40%

#Best 0 0 2 1 3 2 2 6

2
5
0

Avg (s) 96846 96351 96224 96362 96396 96297 96421 96647

Dev (%) 1.17% 0.55% 0.41% 0.51% 0.41% 0.40% 0.66% 0.71%

#Best 0 4 3 3 2 4 0 0

Table 11: Behavior of the completion time when varying the number of orders (congestion),
for several time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1,
VTW M2, FTW NW, and FTW ZH) using the GVNS batching algorithm and the S-
Shape routing strategy on the instances extracted from Dataset #1 (Albareda-Sambola
et al., 2009).
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Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

4
0

Avg (s) 17100 13604 11433 11847 10025 9628 10458 9297

Dev (%) 154.41% 100.03% 54.76% 60.19% 22.83% 18.30% 23.75% 7.97%

#Best 0 1 2 0 3 3 1 6

6
0

Avg (s) 22006 20437 19820 19586 18945 19005 19022 18690

Dev (%) 38.42% 24.04% 19.27% 18.84% 15.23% 13.76% 16.55% 9.76%

#Best 1 0 2 1 2 5 2 3

8
0

Avg (s) 27653 27940 26877 27079 27286 27065 26781 26917

Dev (%) 15.17% 15.15% 11.55% 11.85% 12.51% 11.45% 10.00% 11.67%

#Best 3 0 1 3 1 3 3 2

1
0
0

Avg (s) 34425 34161 33085 33300 33989 32864 32452 33536

Dev (%) 15.08% 13.09% 9.29% 10.21% 12.46% 8.17% 6.46% 10.48%

#Best 1 0 1 3 0 4 2 5

Table 12: Behavior of the maximum turnover time when varying the number of orders (con-
gestion), for several time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE,
VTW M1, VTW M2, FTW NW, and FTW ZH) using the GVNS batching algorithm and
the S-Shape routing strategy on the instances extracted from Dataset #2 (Henn, 2012).

Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

5
0

Avg (s) 23219 21542 17319 16898 15952 15490 14223 15420

Dev (%) 361.54% 311.83% 144.50% 128.32% 33.13% 23.38% 4.51% 9.54%

#Best 0 0 1 2 0 4 7 4

1
0
0

Avg (s) 37576 36891 34410 35450 34145 34973 34912 34827

Dev (%) 48.68% 42.05% 18.58% 23.60% 9.18% 10.92% 15.57% 14.37%

#Best 0 0 3 2 4 2 4 1

1
5
0

Avg (s) 56722 55610 55806 54965 55661 55196 55506 55520

Dev (%) 8.80% 5.59% 4.83% 5.17% 4.28% 3.42% 4.62% 4.59%

#Best 0 1 1 2 3 6 0 3

2
0
0

Avg (s) 75048 74190 73723 74862 74633 74113 74592 74075

Dev (%) 6.22% 5.10% 3.11% 5.29% 4.78% 4.88% 4.65% 3.98%

#Best 0 2 4 1 2 3 1 3

2
5
0

Avg (s) 93737 92925 93034 93645 93731 92555 92986 93099

Dev (%) 4.08% 2.52% 2.19% 2.97% 2.65% 2.08% 3.03% 2.17%

#Best 1 1 1 1 3 4 3 2

Table 13: Behavior of the maximum turnover time when varying the number of orders (con-
gestion), for several time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE,
VTW M1, VTW M2, FTW NW, and FTW ZH) using the GVNS batching algorithm
and the S-Shape routing strategy on the instances extracted from Dataset #1 (Albareda-
Sambola et al., 2009).

Notice that the congestion in the system increases when, on the same
time horizon, the number of orders received is increased. Thus, it is observed
that the picking time, the completion time, and the maximum turnover time
also increase with the increase of congestion.

For the same number of orders, in all evaluated scenarios, we observe
significant differences between the worst and best time-window methods. On
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the other hand, the differences between the methods are greater with fewer
orders in the same time horizon. As far as objective functions are concerned,
it can be stated that the differences between the best and worst methods
are more accentuated in the case of minimizing the maximum turnover time.
This situation can be partially explained by the fact that it looks for the
minimization of a maximum value.

Finally, in the case of minimizing the picking time, regardless of the size
of the instance, the best time-window method was VTW B3. Similarly, for
completion time, the most competitive methods were: VTW M2, FTW ZH,
and FTW NW. Finally, in the case of maximum turnover time, the best
methods were: VTW M1, VTW M2, FTW ZH, and FTW NW.

6.3.5. Statistical analysis

To end this empirical comparison, we performed several statistical tests
to corroborate if the differences found among the methods are statistically
significant. We have compiled all the different executions performed in this
final experimentation, and we have performed a Friedman Rank Test. The
obtained p value of 0.000 indicates that there are differences among the meth-
ods. In Table 14 we report the rank reported by the test, where we can ob-
serve that VTW M2 is ranked at the first position, while VTW B3 is ranked
the last one. Further than the overall differences, we would like to observe
if there are differences between the methods that are closely ranked. To
that aim we have performed a pairwise comparison of the methods using the
Wilcoxon’s Signed Test. In Table 15 we report the obtained p value for each
comparison. As we can observe, the two variants of the proposed methods in
this paper VTW M2 and VTW M1 do not show statistically significant dif-
ferences (with a p value higher than 0.05) between them, however, there are
differences between the two proposed methods and any other of the compared
ones, including the third one in the ranking VTW HE. Also, we observe that
there are almost no differences between: VTW HE and VTW B1, VTW B1
and VTW NW, and VTW NW and VTW ZH.

Finally, we would like to remark that the fact that VTM M2 is ranked in
the first position when considering all the compared scenarios together indi-
cates a good average behavior regardless of the pursued objective function.
However, we repeated the Friedman Rank Test comparing only the scenarios
related to each of the objective functions separately. In this case, when rank-
ing the methods according to the picking time, the VTW B3 method ranked
in the first position. Additionally, when ranking the methods according to
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either the completion time or the turnover time, the FTW NW ranked in
the first position. In those scenarios, our best proposal (VTW M2) ranked
(6/8) in picking time, (2/8) in completion time, and (3/8) in turnover time.

Method Rank

VTW M2 4,09

VTW M1 4,12

VTW HE 4,26

VTW B1 4,29

FTW ZH 4,38

FTW NW 4,46

VTW B2 4,96

VTW B3 5,44

Table 14: Friendman’s Rank Test.

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW NW FTW ZH

VTW B3 - 0,000 0,000 0,000 0,000 0,000 0,000 0,000

VTW B2 0,000 - 0,000 0,000 0,000 0,000 0,000 0,000

VTW B1 0,000 0,000 - 0,518 0,002 0,000 0,101 0,003

VTW HE 0,000 0,000 0,518 - 0,013 0,003 0,022 0,000

VTW M1 0,000 0,000 0,002 0,013 - 0,629 0,000 0,000

VTW M2 0,000 0,000 0,000 0,003 0,629 - 0,000 0,000

FTW NW 0,000 0,000 0,101 0,022 0,000 0,000 - 0,172

FTW ZH 0,000 0,000 0,003 0,000 0,000 0,000 0,172 -

Table 15: Comparison of each pair of methods using the Wilcoxon’s Signed test.

7. Conclusions and future work

In this work, we have studied the influence of the time-window strategy
on the performance of the algorithms for the OOBP. Specifically, we have
reviewed the evolution of the concept of time window in the context of the
OOBP during the years. Additionally, we have reviewed the most relevant
previous strategies for determining the time window in the literature and
selected the most prominent ones to be empirically evaluated. Also, we have
proposed two new variable time-window strategies.

Our main conclusion is that it can be stated that there is a relevant
influence of the time-window algorithm on the performance of the methods
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for the OOBP when any of the following objective functions are studied:
Picking time, completion time, or maximum turnover time. Also, we have
identified that the time-window algorithm should be determined depending
on the objective function tackled, since there is no efficient time-window
algorithm for all objective functions.

We have also demonstrated that the influence of the strategy to deter-
mine the time window on the objective function does not depend on the
batching or routing methods used. It has also been shown that the selection
of the best time window for each scenario does not depend on the number of
orders processed. However, when considering multiple pickers, the larger the
number of pickers, the greater the differences among the compared methods,
when minimizing the picking time or the turnover time. On the other hand,
increasing the number of pickers results in a slight decrease of the differences
among the compared methods, when studying the completion time.

The results obtained in the experimentation carried out during this study
indicate that, in online contexts, the minimization of the picking time can be
in conflict with the minimization of the completion time. This is supported
by the fact that, when minimizing the picking time, we look for batches that
can be efficiently collected. To this end, it might be necessary to wait longer
for the arrival of new orders, so batches can be better composed. On the
contrary, waiting longer for the arrival of new orders implies that the total
picking time is increased. This circumstance does not occur in offline contexts
where the picking time and the completion time are aligned. Therefore, in
future works related to the OOBP, the completion time and the picking time
could be studied using a multiobjective approach.

The results obtained in this work indicate the importance of properly
defining the time-window strategy within the OOBP context. On average,
we observed that for a single picker and an arrival time horizon of 4 hours,
it is possible to save up to 17 minutes in the picking time, 21 minutes in the
completion time, and 49 minutes in the maximum turnover time, simply by
choosing an appropriate time-window algorithm. Furthermore, some of the
above savings increase as the number of pickers also increases. For example,
with 5 pickers, the differences in the picking time, choosing one or the other
time-window method, can be up to 311 minutes (> 5 hours).

Among the methods evaluated for determining the time window, when
minimizing the picking time, it is recommended to use the VTW B3 method,
while in the case of minimizing the completion time or the maximum turnover
time, it is recommended to use one of the following methods: VTW M1,
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VTW M2, FTW ZH, or FTW NW. Despite the fact that some methods in
the literature perform very well for specific objective functions, the methods
proposed in this paper (VTW M1 and VTW M2) have a very good behavior
for any of the objective functions studied in this paper.

Finally, we would like to highlight the importance of choosing adequately
the time-window method depending on the studied objective function, but
also on the context conditions (such as the number of pickers or the con-
gestion of the system). On the contrary, the selection of a time-window
method does not depend on the batching or routing method chosen. Given
the relevance of the time window, it might be interesting to explore new time-
window methods and their influence on other objective functions related to
the OOBP, not studied in this work, such as minimizing the blocking time or
minimizing the cost. Additionally, it would be interesting to study the effect
of the dynamic update of the batches, even if the tour to collect them has
already started.

Appendix A. Detailed results of the influence of time-window al-
gorithms on the performance of the studied meth-
ods for different objective functions, when combined
with different routing strategies

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

S
-S

h
a
p
e Avg (s) 44017 44071 44277 44295 44564 44611 45152 45115

Dev (%) 0.20% 0.64% 1.95% 2.03% 3.57% 4.33% 7.65% 7.57%

#Best 76 41 9 5 5 5 3 4

L
a
r
g
e
st
-G

a
p Avg (s) 43730 43818 44043 44024 44284 44337 44790 44817

Dev (%) 0.15% 0.76% 2.04% 2.06% 3.54% 4.43% 7.47% 7.46%

#Best 93 27 4 11 4 3 2 2

C
o
m
b
in
e
d Avg (s) 41390 41483 41694 41673 42519 42020 42499 42497

Dev (%) 0.13% 0.62% 1.91% 1.87% 7.77% 4.35% 7.73% 7.74%

#Best 90 29 6 15 2 1 1 2

Table A.16: Behavior in terms of picking time of a GVNS batching algorithm combined
with different routing strategies (S-Shape, Largest-Gap, and Combined) and different
time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2,
FTW NW, and FTW ZH).
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Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

S
-S

h
a
p
e Avg (s) 46911 46268 45706 45728 45662 45627 45670 45638

Dev (%) 6.14% 3.56% 1.18% 1.23% 0.85% 0.73% 0.74% 0.67%

#Best 1 6 12 15 28 32 22 29

L
a
r
g
e
st
-G

a
p Avg (s) 46724 46090 45568 45615 45469 45425 45406 45436

Dev (%) 11.77% 9.10% 6.74% 8.76% 6.25% 6.13% 5.99% 6.00%

#Best 0 0 5 52 28 19 16 26

C
o
m
b
in
e
d Avg (s) 44450 43856 43324 43296 43183 43210 43163 43181

Dev (%) 6.19% 3.58% 1.25% 1.17% 0.48% 0.67% 0.45% 0.47%

#Best 2 3 15 14 24 41 22 30

Table A.17: Behavior in terms of completion time of a GVNS batching algorithm combined
with different routing strategies (S-Shape, Largest-Gap, and Combined) and different
time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2,
FTW NW, and FTW ZH).

Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

S
-S

h
a
p
e Avg (s) 43054 41922 40612 40848 40485 40099 40104 40154

Dev (%) 72.49% 57.71% 29.79% 29.60% 13.00% 10.71% 9.90% 8.28%

#Best 6 5 16 15 18 34 23 29

L
a
r
g
e
st
-G

a
p Avg (s) 42970 41860 40542 40347 39960 39853 39804 39843

Dev (%) 69.44% 48.88% 30.82% 30.60% 11.43% 11.09% 9.40% 9.68%

#Best 6 7 16 19 25 25 24 24

C
o
m
b
in
e
d Avg (s) 40633 39665 38094 38351 37557 37477 37647 37571

Dev (%) 74.10% 54.93% 30.44% 28.95% 8.44% 10.15% 8.80% 8.71%

#Best 9 8 14 13 23 27 24 32

Table A.18: Behavior in terms of maximum turnover time of a GVNS batching algorithm
combined with different routing strategies (S-Shape, Largest-Gap, and Combined) and
different time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1,
VTW M2, FTW NW, and FTW ZH).
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Appendix B. Detailed results of the influence of time-window al-
gorithms on the performance of the studied meth-
ods for different objective functions, when combined
with different batching strategies

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

G
V
N
S

Avg (s) 44017 44071 44277 44295 44564 44611 45152 45115

Dev (%) 0.20% 0.64% 1.95% 2.03% 3.57% 4.33% 7.65% 7.57%

#Best 76 41 9 5 5 5 3 4

IL
S

Avg (s) 45820 45752 45849 45818 46123 46218 46715 46693

Dev (%) 1.15% 1.22% 2.05% 1.96% 3.38% 4.38% 7.60% 7.58%

#Best 41 42 27 26 12 13 4 8

F
C
F
S

Avg (s) 49582 49595 49671 49671 49854 49932 50486 50486

Dev (%) 0.18% 0.25% 0.68% 0.68% 1.54% 2.35% 5.49% 5.49%

#Best 97 89 72 72 52 51 18 18

Table B.19: Behavior in terms of picking time of different batching algorithms (GVNS,
ILS, and FCFS) combined with S-Shape routing strategy and different time-window algo-
rithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and
FTW ZH).

Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

G
V
N
S

Avg (s) 46911 46268 45706 45728 45662 45627 45670 45638

Dev (%) 6.14% 3.56% 1.18% 1.23% 0.85% 0.73% 0.74% 0.67%

#Best 1 6 12 15 28 32 22 29

IL
S

Avg (s) 49303 48648 48055 48022 47940 47948 47968 47934

Dev (%) 6.61% 4.08% 1.80% 1.71% 1.11% 1.08% 1.14% 1.12%

#Best 2 5 17 14 35 20 26 30

F
C
F
S

Avg (s) 52006 51401 50818 50818 50683 50669 50734 50734

Dev (%) 6.06% 3.65% 1.24% 1.24% 0.59% 0.48% 0.64% 0.64%

#Best 0 5 16 19 60 61 53 41

Table B.20: Behavior in terms of completion time of different batching algorithms (GVNS,
ILS, and FCFS) combined with S-Shape routing strategy and different time-window algo-
rithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and
FTW ZH).
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Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

G
V
N
S

Avg (s) 43054 41922 40612 40848 40485 40099 40104 40154

Dev (%) 72.49% 57.71% 29.79% 29.60% 13.00% 10.71% 9.90% 8.28%

#Best 6 5 16 15 18 34 23 29

IL
S

Avg (s) 45231 44122 43062 42963 42150 42380 42027 42093

Dev (%) 68.20% 45.85% 30.75% 28.84% 9.52% 9.58% 6.92% 8.12%

#Best 14 16 18 15 18 20 24 27

F
C
F
S

Avg (s) 46737 45408 44108 44108 43923 43972 44053 44068

Dev (%) 65.41% 36.62% 10.82% 10.82% 8.05% 7.64% 5.71% 5.76%

#Best 2 9 22 21 53 44 53 48

Table B.21: Behavior in terms of maximum turnover time of different batching algo-
rithms (GVNS, ILS, and FCFS) combined with S-Shape routing strategy and different
time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2,
FTW NW, and FTW ZH).

Appendix C. Detailed results of the influence of time-window al-
gorithms on the performance of the studied methods
for different objective functions, when varying the
number of pickers

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

1
P
ic
k
e
r Avg (s) 44017 44071 44277 44295 44564 44611 45152 45115

Dev (%) 0.20% 0.64% 1.95% 2.03% 3.57% 4.33% 7.65% 7.57%

#Best 76 41 9 5 5 5 3 4

2
P
ic
k
e
rs Avg (s) 44498 44726 45272 45240 46096 47154 48824 48904

Dev (%) 0.15% 1.26% 3.95% 3.79% 8.17% 15.47% 26.09% 26.25%

#Best 110 23 5 5 0 0 2 0

3
P
ic
k
e
rs Avg (s) 44924 45275 46169 46121 47946 50646 53877 54237

Dev (%) 0.15% 1.57% 5.36% 5.20% 12.76% 27.38% 45.96% 46.69%

#Best 108 21 3 6 0 2 6 1

4
P
ic
k
e
rs Avg (s) 45174 45604 46822 46797 49531 54327 58518 59401

Dev (%) 0.16% 1.77% 6.30% 6.10% 16.28% 39.18% 62.00% 64.06%

#Best 117 11 5 1 0 1 9 0

5
P
ic
k
e
rs Avg (s) 45220 45773 47074 47043 50588 57319 62291 63918

Dev (%) 0.15% 1.91% 6.56% 6.60% 18.53% 47.80% 74.45% 78.13%

#Best 118 14 1 2 1 0 9 0

Table C.22: Behavior in terms of picking time of a GVNS batching algorithm, combined
with S-Shape routing strategy and different time-window algorithms (VTW B1, VTW B2,
VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) when varying the
number of pickers.
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Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

1
P
ic
k
e
r Avg (s) 46911 46268 45706 45728 45662 45627 45670 45638

Dev (%) 6.14% 3.56% 1.18% 1.23% 0.85% 0.73% 0.74% 0.67%

#Best 1 6 12 15 28 32 22 29

2
P
ic
k
e
rs Avg (s) 27061 26501 26095 26125 25954 25869 25840 25819

Dev (%) 8.07% 4.98% 2.66% 2.80% 1.75% 1.24% 1.02% 0.83%

#Best 1 1 12 10 32 28 34 34

3
P
ic
k
e
rs Avg (s) 21568 21169 20889 20874 20743 20549 20555 20505

Dev (%) 7.58% 5.22% 3.52% 3.49% 2.56% 1.35% 1.17% 0.89%

#Best 0 1 9 7 18 48 47 40

4
P
ic
k
e
rs Avg (s) 19334 19113 18837 18810 18625 18463 18431 18309

Dev (%) 7.02% 5.79% 4.04% 3.90% 2.61% 1.58% 1.13% 0.54%

#Best 2 0 4 9 23 32 49 58

5
P
ic
k
e
rs Avg (s) 18141 18003 17748 17721 17522 17371 17256 17181

Dev (%) 6.72% 5.87% 4.28% 4.13% 2.76% 1.71% 0.84% 0.45%

#Best 1 0 5 5 21 29 65 59

Table C.23: Behavior in terms of completion time of a GVNS batching algorithm, com-
bined with S-Shape routing strategy and different time-window algorithms (VTW B1,
VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) when
varying the number of pickers.

Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

1
P
ic
k
e
r Avg (s) 43054 41922 40612 40848 40485 40099 40104 40154

Dev (%) 72.49% 57.71% 29.79% 29.60% 13.00% 10.71% 9.90% 8.28%

#Best 6 5 16 15 18 34 23 29

2
P
ic
k
e
rs Avg (s) 22547 20602 18766 18843 17451 17388 17310 17208

Dev (%) 226.61% 154.18% 93.41% 95.33% 25.49% 19.86% 11.67% 10.54%

#Best 5 2 10 14 19 20 37 51

3
P
ic
k
e
rs Avg (s) 16200 14191 12055 12199 10259 10175 10254 9910

Dev (%) 354.37% 249.60% 138.32% 145.16% 32.72% 25.01% 15.95% 6.14%

#Best 1 4 7 6 20 23 49 62

4
P
ic
k
e
rs Avg (s) 13649 11733 9390 9543 7594 7248 7415 6857

Dev (%) 421.39% 313.18% 175.75% 177.23% 43.66% 32.19% 31.63% 4.41%

#Best 4 1 4 5 16 16 65 75

5
P
ic
k
e
rs Avg (s) 12333 10667 8155 8115 6017 5798 5818 5358

Dev (%) 479.54% 379.97% 204.43% 199.38% 51.45% 37.71% 35.19% 3.15%

#Best 1 1 3 2 11 21 81 78

Table C.24: Behavior in terms of maximum turnover time of a GVNS batching algorithm,
combined with S-Shape routing strategy and different time-window algorithms (VTW B1,
VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) when
varying the number of pickers.
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Chapter 7

Conclusions and future work

In this chapter, we present the conclusions and future work of this Doctoral Thesis. First, in the
Section 7.1, we present the general conclusions of the thesis and also the conclusions related of
each variant of the problems tackled. Then, in Section 7.2, we present the future work that can
be devised from this Doctoral Thesis. Finally, in Section 7.3, we summarize the publications
obtained as the result of the research carried out. Finally,

7.1 Conclusions
In this Doctoral Thesis, we have tackled several variants of the Online Order Batching Problem
with a single picker and with multiple pickers. For each variant, we have deeply studied the
state of the art of the problem and proposed new strategies which outperformed previous ones
in the literature. We have studied four different objective functions for the family of problems
studied such as: minimizing the picking time, minimizing the total completion time, minimizing
the maximum turnover time, and minimizing the differences in the workload of the pickers. In
addition, we have analyzed the behavior of our algorithms by analyzing the influence of the
increase of congestion in the rate of orders that arrive to the system; and the suitable number of
pickers for the collection of orders depending on other parameters of the warehouse. This analysis
has allowed us to understand the foundations of the problem for improving the performance of
the proposed algorithms, depending on the warehouse characteristics and objectives pursued. It
also allowed us to provide insights about the configuration of some operational parameters of
the warehouse.

Among the processes involved in the resolution of the Online Order Batching Problem, we
have identified an important task which, surprisingly, has been neglected by practitioners in the
field: the time window determination. As we could observe, the waiting time before start a new
picking route is a key factor in the performance of online systems, where the arrival of orders is
continuous. This process has a deep impact in the batching task since waiting might provide
new orders which can help to perform an improved batch configuration.

From a managerial point of view, the optimization problems studied in this Doctoral Thesis
might result in an increase of the benefits and quality service of the picking operations in
a warehouse. Each objective function studied improves different aspects of order picking
systems. In particular, reducing the picking time reduces energy consumption, while reducing
the completion time or the maximum turnover time results in faster product service for customers.
Similarly, the balance of workload results in a healthier and safer work environment and prevents
the overload of the machinery.

Furthermore, the state-of-the-art work in this Doctoral Thesis has greatly contributed to the
field of the optimization of processes related to Order Batching. Particularly, in the literature
related to order batching, we can find more than one hundred publications in top-level journals.
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However, there has been little work in terms of sorting and classifying those papers. This fact
has obstructed researchers to identify previous papers in the literature that are directly related
to their research and, furthermore, to identify gaps in the field not visited yet. For instance,
we have identified many papers lacking of a proper comparison of their findings with other
previous proposals. Similarly, we have identified 36 different variants of the OBP, however only
18 of them have been studied. To overcome these problems, we proposed a new taxonomy
which compiles all the variants of the problem, on the basis of the processes involved in the
problem. Also we have compiled the state of the art related to any of the variants and we have
highlighted those which have never been tackled before. The taxonomy proposed is designed
to grow. Researchers in the field can extend the taxonomy with new constraints, objective
functions, or processes, making any new contribution to the literature clearer. In addition,
we emphasize that the family of Order Batching Problems is a growing group of optimization
problems of high economic importance to the industry.

7.1.1 Online Order Batching Problem with a Single Picker
The OOBP with a single picker is the first variant of the problem studied in this Doctoral Thesis.
This problem is an online variant of the studied family of problems, which present the difficulty
that all orders that must be retrieved are not available at the beginning of the process, but they
arrive at the warehouse at any time. The problem has been solved for different rectangular
warehouses with a single block and a single picker. The studied scenario considers that the
arrival of orders occurs in a period of four hours, but the picker might need longer time to
collect all the orders arrived in that time horizon.

This variant of the problem is probably the most studied one among the online variants and
it is usually devoted to minimize the completion time and/or the turnover time. As the result
of the research performed for this problem we have published two journal articles.

The first article, titled “New VNS Variants for the Online Order Batching Problem” ([89]),
study the minimization of the maximum time that an order remains in the system before being
served. To address this problem, we proposed a Basic Variable Neighborhood Search algorithm.
This BVNS was successful in comparison with the state-of-the-art classical greedy constructive
methods previously used for other variants of the OBP. Our algorithm was able to improve
more than 30% the results obtained by previous heuristics.

The second article for the problem, titled “GRASP with Variable Neighborhood Descent for
the online order batching problem” ([92]), can be considered as an extension of the previous one.
In this article, we studied two different objective functions. The first objective function looks
for the minimization of the maximum completion time, that is, the minimization of how long it
takes to collect all orders that arrive at the system. The second objective function looks for the
minimization of the maximum turnover time, i.e. the minimization of the maximum time that
an order remains in the system. In this case, the algorithmic proposal was a combination of two
metaheuristics for the batching task: i) GRASP used as a constructive method to generate a
different initial solution for each execution; ii) VND used as a local search procedure. For the
routing task, we proposed an S-shaped algorithm to calculate the route to collect the orders
grouped in each batch. In this case, our algorithmic proposal improved the state of the art by
more than 3%, on average, for the first objective function an by more than 6%, on average, for
the second objective function. In both cases, the significance of the results has been corroborated
by statistical tests. More specifically, we used the t-test for the difference of means in paired
samples. The results of this test support the conclusion that there are significant differences
between the results found.

The study of this variant of the OOBP has devised the identification of several successful
strategies. First, we observed that the use of several neighborhoods is an important strategy
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when dealing with the batching task to avoid the method to escape from local optima. This is
due to the fact that, when dealing with real warehouses, the size of the batch is reduced and,
therefore, it is not always easy to perform moves within the available space in batches. In this
sense many methods easily fall in local optima and the use of alternative neighborhoods helps
to avoid them.

Also, we observed that reducing the number of batches results in an improvement in the
objective functions studied. Therefore, an alternative objective function which helps to optimize
others, consists of minimizing the the wasted space in each batch. To achieve this goal, a
naive but successful strategy to generate the initial solution consists of sorting the orders in
descending size/weight, so the larger orders are assigned first to a batch and the smaller orders
might complete the partially completed batches.

7.1.2 Online Order Batching Problem with Multiple Pickers
The Online Order Batching Problem with multiple pickers can be considered as the general
case of the version with a single picker. As in the single picker variant, online variants present
the difficulty that all orders to retrieved are not available at the beginning of the process, but
they arrive at the warehouse at any time. In this case, the collection of orders is carried out by
several pickers simultaneously.

We have studied the problem for instances representing rectangular-shaped warehouses with
a single block. In this context, we considered different time horizons for the arrival of orders
and different number of pickers. Also, we have studied the influence of the congestion in the
performance of the algorithms. As a result of our research, we published two journal articles for
this variant.

The first article, titled “Basic VNS for a Variant of the Online Batching Problem” studied
the minimization of the total time needed to collect all orders. Particularly, in this paper, we
tackled this problem for two pickers. To that aim, we proposed several search heuristics in
a BVNS framework, which was successfully compared with several classical seed algorithms
presented in the literature of the problem [304]. In this article, we proposed to compare three
well-known routing algorithms (S-Shape, Largest-Gap, and Combined). We also noticed that
the use of the Combined routing method was the most effective among the ones considered
for this problem. Overall, the results were very promising, since we obtained an improvement
between 0.60% and 5% depending on the routing algorithm used.

This second article published for this variant was titled “A heuristic approach for the online
order batching problem with multiple pickers”. In this article, we studied three objective
functions: minimizing completion time, minimizing picking time, and minimizing differences in
workload among pickers. We expand the number of objective functions studied since previous
papers do not report all of them. Also, note that the difference between the completion time
and the picking time is that the completion time include waiting times. We have proposed two
heuristic approaches based on a multi-start VNS to tackle the problem considering all identified
objective functions for the problem. Our approaches have been successfully compared with
previous methods of the state-of-the-art. We compared the results obtained using statistical
tests and found that there are significant differences between them. We studied scenarios varying
the number of pickers, the congestion of the system, and the objective function.

We typically use the objective function to guide the search procedures. However, this paper
studies more than one objective function at the same time. For this reason, in this work, we
study two different guide functions (workload balance and picking time). We observed that
both guide functions are good at reducing the completion time.

We detected that the number of pickers available in the system and the congestion are
closely related factors and have a strong influence on the efficiency of order picking strategies.
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Particularly, increasing the number of pickers results in a shorter completion time and lower
workload for each picker. However, the total picking time increases since there are more
pickers collecting fewer items on each collection route. This results in an increase in the energy
consumption. When the congestion rate in the arrival of orders increases, we observed that the
picking time and the completion time also increase, but the workload balance remains stable. To
design modern and flexible warehouses, we need to determine the number of pickers needed per
shift, depending on the warehouse congestion. For example, having fewer pickers than necessary
could result in delays in completion time. However, having more pickers than necessary might
result in more dead time in the warehouse and worsening of the picking time.

7.1.3 Online Order Batching Problem with Time Window
Online arrival of orders means that not all orders that must be retrieved are available at the
beginning of the picking process. In this scenario, once a batch is configure, the use of a time
window means to wait for a particular period of time before start the picking. During this
waiting time, new orders might arrive at the warehouse and a better batch configuration can be
performed.

Our studies demonstrated that the waiting time has a large impact on the quality of the
solutions obtained in the context of the OOBP. The results obtained over the waiting time were
published in two papers.

The first article, titled “Fixed versus variable time window warehousing strategies in real
time” studied the influence of the waiting time, when minimizing the completion time and the
picking time on a single picker scenario. In this case, we compared several well-known Fixed
time window, and Variable Time Window strategies of the literature. This work demonstrates
the potential of using the Time Window within the context of the OOBP. Additionally, we
identified that the choice of the best time window strategy for the problem depends on the
objective function evaluated. Also, we noticed that the influence of the time window strategy is
greater in elaborated batching strategies than in naive heuristics such as FCFS.

This second article related to time window can be considered as an extension of the previous
one and it is titled “A comparative study of the influence of the time-window strategy in the
Online Order Batching Problem”. In this article, we study three objective functions: minimizing
completion time, minimizing picking time, and minimizing maximum turnover time, and six
well-known time window strategies. Additionally, we introduce two new time-window strategies
for the problem. Here, we demonstrated the existence of the independence of the waiting method
with respect to the batching and routing strategies used. In addition, the two new time-window
methods proposed improved the methods previously presented in the state of the art in various
scenarios.

We found that the choice of the time-window algorithm should be based on the objective
function being optimized, since there is no efficient time-window algorithm for all objective
functions.

As we have already pointed out, the minimization of the picking time can be in conflict with
the minimization of the completion time in online contexts. This happens because the longer
the waiting time, the fewer space in the generated batches, and thus they are of better quality,
and then picking time improves. However, a longer waiting time only affects the completion
time, by increasing it. I would like to remember that the completion time is the picking time
together with the waiting times.

To point out the importance of Time Window in the OOBP, we present some general results
obtained in the experimentation performed. On average, we observed that for a single picker
and an arrival time horizon of 4 hours, it is possible to save up to 17 minutes in the picking
time, 21 minutes in the completion time, and 49 minutes in the maximum turnover time, simply
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by choosing an appropriate time-window algorithm. Furthermore, some of the above savings
increase as the number of pickers also increases.

7.2 Future work
The research carried out in this Doctoral Thesis opens the door to several future works related
to the OOBP. Particularly, the order batching is a large family of optimization problems which
opens new research opportunities for practitioners in the field.

First, it is important to highlight that each of the papers obtained as the result of the research
of this Doctoral Thesis include future work. However, and generally speaking, we believe that
future research in the context of order batching should focus in more realistic scenarios, such
as: online arrival of orders, existence of multiple pickers, and existence of multiple objectives.
The development of new algorithms should also consider the simultaneous resolution of several
tasks. In this sense, we have identified that half of the variants of the problem, have never been
studied in the literature, which results in a large research opportunity. In particular, most of
the online joint versions of the problem have never been studied.

Additionally, we have identified only a few studies on multi-objective optimization variants of
order batching problems. We propose to advance in this direction. For example, researchers could
simultaneously address the picking time and completion time in a context with time window.
In general, optimizing several objective functions at the same time will provide companies with
non-dominated sets of solutions that could be useful in different applied scenarios.

The development of new and more efficient exact algorithms or matheuristics should be
explored for scenarios with low congestion and small size of instances.

Another new field to explore is the proposal of new time-window methods and the study
of their influence on other objective functions related to the OOBP, not studied yet, such as
minimizing the blocking time or minimizing the cost. Additionally, it is also interesting to study
new variants of the problem which consider a dynamic update of the batches once the tour to
collect them has already started, or the possibility of splitting the orders in different batches.

7.3 Publications
In this section we present a summary of the publications obtained as the result of this Doctoral
Thesis. Particularly, we present the publications in two different ways. First, in Table 7.1
we have grouped the publications on the basis of the variant of the problem tackled. For
each publication, we compile the year, the type of publication (SJR journal, JCR journal,
International conference, or National conference), and the reference.

Second, in Figure 7.1, we introduce a chronological representation of the publications over a
timeline with the different milestones reached in this Doctoral Thesis. In this figure, we can
find the month and year of each milestone and which variant of the problem/topic is addressed
(classified using colors). In addition, we can distinguish the type of publication (Journal /
Conference) and, in the case of the journals, the ranking of the journal. In the case of conferences,
we can differentiate whether it is a national conference or an international one.
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State of the art

2022
[94]

Journal JCR
Q1

Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., Duarte A. Order
Batching Problems: taxonomy and literature review. Submited to
European Journal of Operational Research, Article under review
(2nd round), 2022.

Online Order Batching Problem with a Single Picker

2017
[96]

International
conference

Gil-Borrás S., Pardo E. G., Alonso-Ayuso A., Duarte A. Online Order
batching problem. [p.366] Metaheuristics: Proceeding of the MIC
and MAEB 2017 Conferences (MAEB2017). Del 4 al 7 junio de 2017,
Barcelona (España). ISBN: 978-84-697-4275-1.

2018
[98]

International
conference

Gil-Borrás S., Pardo E. G., Alonso-Ayuso A., Duarte A. New VNS
variants for the Online Order Batching Problem. 6th International
Conference on Variable Neighborhood Search (ICVNS2018). From 3
to 7 October 2018, Sithonia (Greece).

2018
[97]

National
conference

Gil-Borrás S., Pardo E. G., Alonso-Ayuso A., Duarte A. Búsqueda
de Vecindad Variable para el problema de la agrupación y recogida
de pedidos online en almacenes loǵısticos. XVIII Conferencia de la
Asociación Española para la Inteligencia Artificial (CAEPIA2018). Del
23 al 26 octubre de 2018, Granada (España).

2019
[89]

Journal SJR
Q2

Gil-Borrás S., Pardo E. G., Alonso-Ayuso A., Duarte A. New VNS
Variants for the Online Order Batching Problem. In: Sifaleras A., Salhi
S., Brimberg J. (eds) Variable Neighborhood Search. Lecture Notes in
Computer Science, vol 11328. (p. 89-100) Springer, Cham, 2019.

2020
[92]

Journal JCR
Q1

Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., Duarte A. GRASP with
Variable Neighborhood Descent for the online order batching problem.
Journal of global optimization. 78, (p. 295–325), 2020.

2022
[103]

National
conference

Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., Duarte A.,
Matheuŕısticas aplicadas al problema de recogida de pedidos por lotes
en contextos offline. XXXIX Congreso Nacional de Estad́ıstica de
Investigación Operativa y de las XIII Jornadas de Estad́ıstica Pública
(SEIO2022). Del 7 al 10 de junio de 2022, Granada (España). ISBN:
978-84-09-41628-8.

Online Order Batching Problem with Multiple Pickers

2019
[217]

International
conference

Pardo, E. G., Gil-Borrás, S., Alonso-Ayuso, A., Duarte A. Multipicker
Order Batching Problem in Dynamic Environments. 2019 INFORMS-
ALIO International Conference (ALIO2019). From 9 to 12 June 2019,
Cancún (México).

Continued on the next page
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2019
[100]

National
conference

Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., Duarte A. Recogida
de pedidos por lotes en entornos dinámicos con mulltiples operarios.
XXXVIII Congreso Nacional de Estad́ıstica e Investigación Operativa
(SEIO2019). Del 3 al 6 de septiembre 2019, Alcoy (España). ISBN:
978-84-09-13580-6.

2019
[99]

International
conference

Gil-Borrás S., Pardo E. G., Alonso-Ayuso A., Duarte A. Basic VNS
for a variant of the Online Order Batching Problem. 7th International
Conference on Variable Neighborhood Search (ICVNS2019). From 3
to 7 October 2019, Rabat (Morocco).

2020
[90]

Journal SJR
Q3

Gil-Borrás S., Pardo E. G., Alonso-Ayuso A., Duarte A. Basic VNS
for a Variant of the Online Order Batching Problem. In: Benmansour
R., Sifaleras A., Mladenović N. (eds) Variable Neighborhood Search.
Lecture Notes in Computer Science, vol 12010. pp 17-36 Springer,
Cham, 2020.

2021
[93]

Journal JCR
Q1

Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., Duarte A. A heuristic
approach for the online order batching problem with multiple pickers.
Computers & Industrial Engineering, 160 (p. 107517), 2021.

Online Order Batching Problem with Time Window

2020
[91]

Journal SJR
Q2

Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., Duarte A. Fixed versus
variable time window warehousing strategies in real time. Progress in
Artificial Intelligence. (9), (p. 315–324), 2020.

2021
[101]

International
conference

Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., Duarte A. Time Window
for the Online Order Batching Problem with Variable Neighborhood
Search. 8th International Conference on Variable Neighborhood Search
ICVNS 2021. From 22 to 24 March, 2021, Abu Dhabi, (U.A.E). ISBN:
978-3-030-69624-5.

2021
[102]

National
conference

Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., Duarte A., Jiménez-
Merino, E., Algoritmos de estimación del tiempo de ventana en la
recogida de pedidos en almacenes loǵısticos. XIX Conferencia de la
Asociación Española para la Inteligencia Artificial (CAEPIA20/21)
& XIV Congreso Español de Metaheuŕısticas, Algoritmos Evolutivos
y Bioinspirado (MAEB 2021). Del 22 al 24 septiembre 2021 Málaga
(España). ISBN: 978-84-09-30514-8.

2022
[95]

Journal JCR
Q1

Gil-Borrás, S., Pardo, E. G., Jiménez, E. Kenneth, S. A comparative
study of the influence of the time-window strategy in online order
batching problems. Submited to Computers & Industrial Engineering,
Article under review (2nd round), 2022.

Table 7.1: Publications related to Online Order Batching Problem grouped by variant.
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Figure 7.1: Timeline with milestones of the publications obtained in this Doctoral Thesis.
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[2] B. Aerts, T. Cornelissens, and K. Sörensen. The joint order batching and picker routing
problem: Modelled and solved as a clustered vehicle routing problem. Computers &
Operations Research, 129:105168, 2021.

[3] A. R. Ahmadi Keshavarz, D. Jaafari, M. Khalaj, and P. Dokouhaki. Order picking
process: State-of-the-art on classification. Journal of Quality Engineering and Production
Optimization, 6(1):15–48, 2021.

[4] M. Albareda-Sambola, A. Alonso-Ayuso, E. Molina, and C. S. De Blas. Variable neigh-
borhood search for order batching in a warehouse. Asia-Pacific Journal of Operational
Research, 26(5):655–683, 2009.

[5] M. Alipour, Y. Z. Mehrjedrdi, and A. Mostafaeipour. A rule-based heuristic algorithm for
on-line order batching and scheduling in an order picking warehouse with multiple pickers.
RAIRO-Operations Research, 54(1):101–107, 2020.

[6] E. Ardjmand, H. Shakeri, M. Singh, and O. S. Bajgiran. Minimizing order picking
makespan with multiple pickers in a wave picking warehouse. International Journal of
Production Economics, 206:169–183, 2018.

[7] E. Ardjmand, O. S. Bajgiran, and E. Youssef. Using list-based simulated annealing and
genetic algorithm for order batching and picker routing in put wall based picking systems.
Applied Soft Computing, 75:106–119, 2019.

[8] E. Ardjmand, I. Ghalehkhondabi, W. A. Young II, A. Sadeghi, R. Y. Sinaki, and G. R.
Weckman. A hybrid artificial neural network, genetic algorithm and column generation
heuristic for minimizing makespan in manual order picking operations. Expert Systems
with Applications, 159:113566, 2020.

[9] R. D. Armstrong, W. D. Cook, and A. L. Saipe. Optimal batching in a semi-automated
order picking system. Journal of the operational research society, 30(8):711–720, 1979.

[10] P. Atchade-Adelomou, G. Alonso-Linaje, J. Albo-Canals, and D. Casado-Fauli. qrobot: A
quantum computing approach in mobile robot order picking and batching problem solver
optimization. Algorithms, 14(7), 2021. ISSN 1999-4893.

[11] M. Y. N. Attari, A. T. Ebadi, B. Malmir, and E. J. Neyshabouri. Robust possibilistic
programming for joint order batching and picker routing problem in warehouse management.
International Journal of Production Research, 59(14):4434–4452, 2021.

263



Tesis Doctoral Online Order Batching Problem

[12] A. H. Azadnia, S. Taheri, P. Ghadimi, M. Z. Mat Saman, and K. Y. Wong. Order batching
in warehouses by minimizing total tardiness: A hybrid approach of weighted association
rule mining and genetic algorithms. The Scientific World Journal, 2013(1–13):246578,
2013.

[13] M. S. Bazaraa. Nonlinear programming : Theory and algorithms. Wiley, New York, 1979.
ISBN 0471786101.

[14] J. Birge. Introduction to stochastic programming. Springer, New York Berlin Heidelberg,
2011. ISBN 9781461402367.

[15] M. Bortolini, M. Faccio, M. Gamberi, and R. Manzini. Diagonal cross-aisles in unit
load warehouses to increase handling performance. International Journal of Production
Economics, 170:838–849, 2015.

[16] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004.

[17] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric programming.
Optimization and engineering, 8(1):67–127, 2007.

[18] N. Boysen, R. B. M. De Koster, and F. Weidinger. Warehousing in the e-commerce
era: A survey. European Journal of Operational Research, 277(2):396 – 411, 2019. ISSN
0377-2217.

[19] Y. A. Bozer and J. W. Kile. Order batching in walk-and-pick order picking systems.
International Journal of Production Research, 46(7):1887–1909, 2008.

[20] J. Branke. Multiobjective Optimization : Interactive and evolutionary approaches. Springer-
Verlag, Berlin, 2008. ISBN 9783540889076.

[21] O. Briant, H. Cambazard, D. Cattaruzza, N. Catusse, A. L. Ladier, and M. Ogier. An
efficient and general approach for the joint order batching and picker routing problem.
European Journal of Operational Research, 285(2):497–512, 2020.
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[95] S. Gil-Borrás, K. Sorensen, E. Jiménez, and E. G. Pardo. A comparative study of the
influence of the time-window strategy in online order batching problems. Technical Report.
Submitted to Computers & Industrial Engineering, pages 1–47, 2022.

[96] S. Gil-Borrás, E. G. Pardo, A. Alonso-Ayuso, and D. A. Online order batching problem. In
Metaheuristics: Proceeding of the MIC and MAEB 2017 Conferences, page 366, Barcelona
(España), Del 4 al 7 junio 2017. ISBN: 978-84-697-4275-1.

[97] S. Gil-Borrás, E. G. Pardo, A. Alonso-Ayuso, and D. A. Búsqueda de vecindad variable
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