
TESIS DOCTORAL

Design and Implementation of
Metaheuristic Algorithms for Social

Network Analysis

Autor:

Sergio Pérez Peló
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partamento de Ciencias de la Computación, Arquitectura de Computadores, Lenguajes
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Se está siempre muy lejos de la solución de un problema hasta que
uno realmente tiene la respuesta

—Stephen Hawking
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que siempre me han acogido como uno más, ayudándome en todo lo posible y sin
ponerme jamás un impedimento para sentirme parte de algo tan importante como
es la familia. No tengo más que agradecimiento hacia ellos.



Gracias también a todos mis amigos de toda la vida: Moha, Joseda, Julio,
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Chapter 1

Abstract

In a society where the immediacy is becoming more and more established, there
is a need to obtain solutions to real-world problems quickly and accurately. With
respect to precision, or more specifically optimality, the scientific discipline that
deals with this issue is optimization. This knowledge area can be seen as a meeting
point between various disciplines, such as operations research, statistics, computer
science or artificial intelligence. There are a lot of interesting real-life problems
that can be approached from the optimization point of view: calculating the fastest
route to go from home to work, finding the best way to place the maximum number
of containers in a ship to send products around the world, or knowing the weakest
point of a computer network in order to dedicate more resources to protect it. All
these problems can be solved by two different approaches: exact algorithms or
approximated algorithms.

The main problem of exact algorithms is that, when the space of solutions
to be explored is too large, the computation time required to provide an optimal
solution to the problem is unacceptable. In this context, approximated algorithms
emerge as an alternative, with the main disadvantage that they do not guarantee to
reach an overall optimal solution. However, if the adequate technique is selected, a
high-quality solution can be assured. This is the case of heuristic and metaheuristic
algorithms.

The Community Detection Problem (CDP) is an NP-hard problem that
belongs to the Social Network Analysis (SNA) family of problems. The main
objective in CDP is to group the users within a social network depending on
their characteristics, their relations and other properties of the network itself. It
is said that a good solution for the CDP is characterized by a good community
structure. Community structure is considered good when the resulting groups



contain nodes that are highly connected among them and sparsely connected with
nodes in other groups. There are different variants of the same problem in which
different constraints are considered. For example, the number of communities that
a solution contains is fixed a priori, or nodes can be assigned to different groups
simultaneously. The CDP can also be faced optimizing different objective functions
simultaneously, and taking into account single or multiple objectives. Despite all
of the above, the ultimate goal is always the same: to obtain solutions with a good
community structure.

In this Thesis different heuristic and metaheuristic algorithms are proposed
to solve the most extended variants of CDP. The problems have been tackled
by considering a wide variety of methodologies, such as Variable Neighborhood
Search (VNS), Iterated Greedy (IG) or Scatter Search (SS). Each proposal has
been evaluated against both synthetic and real-world networks to check their utility
and application in these contexts. Obtained results overcome the state of the art
proposals in all studied variants of CDP.
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Chapter 2

Introduction

This Doctoral Thesis belongs to the field of optimization. More specifically, this
document is focused on solving problems included in the Social Network Analysis
(SNA) from the optimization point of view. In particular, the solved problems be-
long to a family of problems that is commonly known as Community Detection
Problem (CDP). In this chapter, the Thesis context is presented, introducing the
optimization area and the tackled problems characteristics. Finally, the main hy-
pothesis of the work and the objectives derived from it are presented.

2.1 Optimization

In the last decades, the need to obtain solutions to real-world problems has
drastically increased. Every day new problems appear since mankind is evolving
more and more rapidly, and with it the problems we must face. In this context,
optimization problems appear as an important tool to solve these new real-life
problems, aiming to find feasible solutions to them. Optimization can be seen
as the confluence of several disciplines such as Operational Research, Applied
Mathematics, or Computer Science [3]. It tries to solve problems from different
scientific research areas since the time of Heron of Alexandria, who is credited with
one of the first optimization problems in history [4].

Generally, an optimization problem could be described as a concrete task
that has two general characteristics. The first one is that there are usually many
solutions to this problem. The second one is that there is a clear method for
comparing these solutions to each other [5].

In mathematical terms, an optimization problem can be defined by an ob-
jective function that must be minimized (or maximized), being subject to a set
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of constraints that must be satisfied in order to obtain a feasible solution. More
formally, an optimization problem (OP) can be described as follows:

OP =

{
Minimize f(σ)
subject to σ ∈ ϕ

(2.1)

where σ is a solution to the incumbent problem, f(σ) is the objective function
that will be optimized and ϕ is the set of feasible solutions. When tackling an
optimization problem, the solution that is tried to be found is the one known
as the optimal solution. A feasible solution is an optimal solution if and only
if it provides the minimum or maximum value for the objective function under
evaluation (depending on whether a minimization or maximization problem is
being addressed, respectively).

Scientific community has a widely interest in optimization problems, since
solving problems in this area implies solving them also in many other areas of
knowledge. Developing methodologies and algorithms capable to solve these kind
of problems derives in the generation of knowledge that is useful to solve real-
world difficulties, such as decide where to locate a new hospital, what is the most
ecological route between two points or how a large amount of orders must be
shipped to maximize the profit in the shortest time possible.

If more granularity to the definition of an optimization problem is added, it
can be defined as a set of decision variables that must be assigned to a certain
value that provides the best final value to the objective function in which they
are included, always satisfying the given restrictions. In terms of the type of vari-
ables involved, the objective function to be optimized and the constraints defined,
optimization problems can be divided into different families. More specifically,
we can distinguish among three well-known categories: Non-linear Programming
(or Global Optimization), variables that compose the problem take real values
and neither objective function nor constraints are restricted to be linear; Linear
Programming, where variables take real values and both objective function and
constraints must be linear; Integer programming, which differs from linear pro-
gramming in that the variables take integer values. However, this categorization
includes only those problems where constraints and objective function are clearly
known, but it is not the habitual situation in real-life problems. Indeed, a lot of
daily problems are difficult to them formulate mathematically due to their high
combinatorial character. Problems like Travelling Salesman Problem (TSP) [6, 7],
or Knapsack problem [8] belong to this family. In this work, all tackled problems
are Combinatorial Optimization Problems (COP) where solutions are modeled
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with integer numbers [9, 10]. Combinatorial Optimization Problems have a di-
mensionality n associated that is useful to represent a single solution σ, where
σ = (x1, x2, ..., xn). Having defined a solution, a value vi is assigned to each vari-
able xi of the problem, with vi belonging to the domain Di, i ∈ [1, n]. This ensures
that the solution addresses all the constraints of the problem. Mathematically,

COP =





σ = {x1, ..., xn}
D1, ..., Dn

f : D1 ×D2 × ...×Dn → R+

σ = {{(x1, v1), ..., (xn, vn)}|vi ∈ Di}
(2.2)

Another way to classify optimization problems is attending to how difficult
is for a machine (typically a computer) to solve the problem. In other words, the
classification is based on its computational complexity [11]. Given this classifica-
tion, algorithms can be also classified relating to the time that it takes for them
to solve a problem. This time can be sized using the Bachmann-Landau nota-
tion [12, 13], also known as Big-O notation (O-notation), which defines the time
required by an algorithm to solve certain problem in the worst case. Using this
notation, there are certain problems that can be solved by an existing algorithm
in polynomial time. It means that there exists a direct relation between the algo-
rithm’s input and the maximum time that it needs to solve a problem, and this
relation can be expressed using a polynomial function. The required time by an
algorithm to solve the problem in the worst case is denoted as O(nt), being t the
maximum exponent in the polynomial function. Problems that meet this charac-
teristic are said to belong to the family of P problems. Examples of P problems
can be the Strong Connected Components (SCC) problem, solved by Tarjan [14]
and Kosaraju-Sharir [15], the Topological Sorting problem, solved by Kahn [16],
or the Shortest Path Problem, solved by Dijkstra[17].

Although the set of P problems is quite large, the problems for which no
polynomial solution is known are numerous. In fact, most of today’s real-world
problems belongs to the NP problems class. Although there are not known solu-
tions for them, it is possible to probe if an obtained value conforms a solution for
the problem under study in polynomial time. Given this definition, all P problems
are also NP problems, because probing that a given solution is a solution for the
problem requires polynomial time too.

If real-world problems are analyzed, it is easy to find a large amount of them
that can be categorized as NP problems. In view of this circumstance, the need
to develop efficient methods to solve them emerges. Furthermore, some problems
require of high-quality solutions in short computational times, even if optimality
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cannot be guaranteed. In this context, heuristic methods [18] appear as a good
alternative to solve problems in a fast way, to the detriment of the guarantee
of obtaining an optimal solution. This is the main difference between exact and
heuristic methods. The former are developed to find the optimal solution for a
given problem [10, 19], while the latter does not give this guarantee.

On the one hand, the main difficulty related to exact algorithms is that there
are a large quantity of real-life problems that they cannot solve, either because of
the complexity of the problem itself or because an exact algorithm to solve it is not
yet known. On the other hand, the main problem faced by heuristic algorithms
is that they easily get stuck in a local optimum of the solution space. Under this
circumstance, metaheuristics emerge as a new kind of algorithms that guides the
heuristics during their search, with the aim of escaping from local optima and
improving the solutions found. Metaheuristic concept has been introduced by
Glover in 1986 [20] and was defined as an “strategy that guides and modifies other
heuristics to explore solutions beyond local optimality”. In the same definition,
Glover explains that “the heuristics guided by such a meta-strategy may be high
level procedures or may embody nothing more than a description of available moves
for transforming one solution into another, together with an associated evaluation
rule”.

Attending to this definition, metaheuristics are considered as a set of ap-
proximated algorithms that guides the heuristic procedure exploration in a smart
way, combining intensification (exploitation) and diversification (exploration) of
the search space of the problem under solution. By the intensification, a limited
but promising region of the search space is explored, looking for improvements in
the incumbent solution. This procedure is traditionally associated with local search
procedures. Regarding exploration, a large region of the search space is explored,
with the aim of increase the diversity among explored solutions. Metaheuristics
have been successfully applied in a large number of optimization problems, reach-
ing high-quality solutions in a reasonable computational time.

In this PhD Thesis, some of the most widely used metaheuristics have been
explored to solve optimization problems, providing high quality solutions for real-
life problems. Some of them are Greedy Randomized Search Procedure (GRASP)
[21, 22], Variable Neighborhood Search [23], Path Relinking [24, 25] and Scatter
Search [26]. Concretely, these metaheuristics are used in order to provide high
quality solutions to an optimization problem that belong to the Social Networks
Analysis (SNA) topic: the Community Detection Problem (CDP).
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2.2 Optimization problems in Social Network Anal-

ysis

The evolution of social networks in the last decades has aroused the interest of
scientists from different fields, from psychology to computer science. Millions of
people are constantly sharing all their personal and professional information on
different social networks [27]. In addition, social networks have become one of the
most widely used sources of information, mainly due to their ability to provide the
user with real-time content. Social networks are not only a new form of commu-
nication, but also a powerful tool that can be used to gather information related
to relevant questions, for example: which is the favorite political party for the up-
coming elections, what are the most talked about movies of the past year, which
is the best rated restaurant in a given area, etc. Extracting relevant information
from social networks is a topic of interest, mainly due to the enormous amount
of potential data available. However, traditional network analysis techniques are
becoming obsolete due to the exponential growth of social networks, in terms of
the number of active users and the relations among them. Social Network Analysis
(SNA) has become one of the most popular and challenging tasks in data science
[28]. One of the most addressed problems in social networks is the analysis of the
relevance of users in a given social network [29]. The relevance of a user is com-
monly related to the number of followers or friends the user has in a given social
network. However, this concept can be extended, as a user can be relevant not
only if they is connected to a large number of users, but also if they is connected
to relevant users. Several metrics have been proposed to analyze the relevance of
a user in a social network, with PageRank emerging as one of the most widely
used [30]. Moreover, it is interesting to know which users will be the most relevant
before they become influential [31]. Finally, in the field of marketing analytics,
there is a special interest in generating the profile of a user given a set of tweets
written by that user [32].

Assessing the relevance of a user has become a more complex problem that
consists of detecting specific users (often referred to as influencers) with certain
attributes that may be personal (credibility or enthusiasm) or related to their
social networks (connectivity or centrality).

These attributes allow them to influence a large number of users, either
directly or indirectly [33]. Another important issue related to the influence of
people on other users is sentiment analysis in social networks. This analysis focuses
on discovering what people think about a given topic by analyzing the information
they post on social networks. A complete survey on sentiment analysis techniques
can be found in [34].
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The problems described above deal only with individual users. However,
there are also some problems related to the network structure, dedicated to finding
specific attributes and properties that can help to infer additional information from
the whole social network. In this context, community detection emerges as one of
the most studied problems, which is the main topic that concerns this Thesis.

2.3 Hypothesis and objectives

Once the problem to be solved has been identified, the next point to be addressed
during the development of a research project is the formulation of an initial hy-
pothesis. This hypothesis is a tentative proposal that seeks to formulate a solution
to the problem posed. The hypothesis will represent a fundamental element in the
research process, since it will serve as a guide.

The hypothesis proposed for the development of this Doctoral Thesis can be
summarized in the following terms: the Community Detection Problem in social
networks is a task with practical interest in different scientific disciplines, but with
a high computational cost. Therefore, it is interesting to develop algorithms that
are able to solve it efficiently, obtaining optimal solutions if possible or, at least,
of high quality, in a reasonable amount of time. For this reason, heuristic algo-
rithms become relevant to solve this type of problems. In recent years, bioinspired
heuristics have been proposed to avoid the computational requirements of exact
implementations. In the area of bioinspired computation, evolutionary approaches
are the most popular algorithms. It is important to highlight the review performed
by Pizzuti in [35] about Evolutionary Computation (EC) techniques to detect com-
munities in networks. An interesting work about EC is the work published by Said
et. al [36], where authors designed a clustering coefficient-based genetic algorithm
able to detect cohesive groups from dense graphs and also, communities in sparse
networks. Other relevant work is [37] that presents a genetic algorithm that uses
a multi-individual ensemble learning-based crossover function. The algorithm is
improved with a local search strategy to speed up its convergence.

Other well-known bioinspired algorithms are the ones belonging to swarm
intelligence. In this new group, the most popular algorithms are Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO). These two algorithms
are inspired by the social behaviour of birds within a flock, and the behaviour
of ants seeking a path from the nest to the source of food, respectively. PSO
has been successfully used for CDP in [38], where a discrete PSO algorithm is
used to extract the communities in large-scale social networks by optimizing the
modularity. Regarding ACO algorithm, this algorithm has been used to extract
high-quality communities in Ego Networks [39].
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However, this family of algorithms has the disadvantage that they do not
leverage specific information obtained from the network. In this Thesis, the devel-
opment of algorithms based on traditional metaheuristics, performing an in-deep
study of the networks under evaluation opens a new perspective for future research
for community detection problems.

The proposed heuristic algorithms will make use of metaheuristic techniques,
which have been shown to be effective procedures when dealing with optimiza-
tion problems. In particular, population-based metaheuristics constitute a subset
of this type of techniques, characterized by taking into consideration more than
one solution simultaneously and providing combination mechanisms among them.
Techniques such as Scatter Search are a clear example of this type of metaheuris-
tics. On the other hand, the so-called trajectory-based metaheuristics start from
an initial solution and are capable of generating a trajectory in the solution space.
Examples of this type of metaheuristics are GRASP (Greedy Randomized Adap-
tive Search Procedure) or Path Relinking. The main objective of the Doctoral
Thesis is to develop algorithms that solve several optimization problems related
to the analysis of social networks and the detection of communities in them, ap-
proaching them from a heuristic point of view, both from the mono-objective and
multi-objective perspective.

To achieve the main objective described above, it is necessary to cover the
following partial objectives:

• To study the state of the art of the problem. An exhaustive literature
review must be performed to analyze both the proposed algorithms and the
instances to be evaluated.

• To design and develop a metaheuristic algorithm for solving the
problem. At this point, one or more metaheuristic algorithms are devel-
oped, modeling the initial constructive procedure (typically an heuristic),
the improvement method (normally a local search) and the metaheuristic
framework that guides the heuristic.

• To validate the heuristic algorithm. Once the proposed algorithm is
designed, it must be implemented and validated. This validation process
includes to check if it is generating feasible solutions and, if it is, to analyze
the relevance of each stage of the algorithm and its contribution to the final
solution.

• To experimentally compare the proposed algorithm with the state
of the art algorithms. In this stage, proposal is compared against the state
of the art methods using a reference dataset. Through this experimentation,
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the strengths and weaknesses of the developed algorithm and its contribution
to the literature can be studied. In this comparison, it will be necessary to
use statistical tests to confirm that the proposed algorithm is a relevant
scientific contribution to the area.

• Submit the partial results of the research work to review processes
by independent institutions. The results obtained during the whole pro-
cess are sent to conferences and journals of high impact in the research area
for their possible publication.

2.4 Memory structure

This document summarizes the research that has been conducted and is organized
as follows:

• In Part I , the developed research is shown, describing the addressed prob-
lem, as well as the followed methodology and the obtained results. Finally,
the conclusions derived from the work are exposed.

– In Chapter 2, optimization research area, Combinatorial Optimization
Problems, heuristics and metaheuristics are described. Hypothesis and
objectives for this work are also defined.

– In Chapter 3, the Community Detection Problem (CDP) is presented,
defining it in a detailed way, explaining each one of its variants.

– In Chapter 4, the followed methodology applied to the previously
described problem is explained. The main metaheuristic and all the
other techniques that lead it to achieve the obtained results are exposed.

– In Chapter 5, the obtained results for each variant of the problem and
the main contributions made are analyzed and discussed.

– In Chapter 6, the conclusions derived from the research and possible
future works are presented.

• In Part II the published articles associated with this Thesis are summarized
and gathered, together with information about the journal in which they are
published.

• In Part III additional articles that are not directly related with CDP, but
that are the results of using the contributions derived from this Thesis are
listed and replicated, together with information about the journal in which
they are published.
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• Finally, Part IV contains the abstract of the dissertation and its conclusions
in Spanish language.
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Chapter 3

Community Detection Problem

In this chapter the classical Community Detection Problem is introduced. Then,
the main exact and heuristic algorithms, as well as the most extended metrics used
in the literature to solve them are described. Finally, the variants of the problem
studied in this dissertation are exposed and defined.

3.1 Community Detection Problem

In recent years, the importance of social networks has experimented an exponential
growth. Every day new users and connections among them appear in the context
of social networks, generating a large amount of information that can be analyzed
in different ways. Many research fields can be derived from social networks, that
are joint in the Social Network Analysis area. In this field, many different sub-
areas can be found, such as sentiment analysis, radicalization detection or influence
analysis. This Thesis is focused on one of these sub-areas: the community detection
problems. Most of the social networks present a common characteristic known
as community structure [40]. It is said that networks with a good community
structure can be divided into groups in such a way that connections between users
in the same group are dense, while connections between users in different groups
are sparse. The connections between users can represent different characteristics
depending on the nature of the social network and the profile of the users, i.e.,
from professional relationships to friendships or common hobbies. The community
detection tasks are dedicated to find and analyze these groups with the main
objective of better understanding and visualizing the structure of the network and
the relationships between its users.

Running community detection algorithms in modern social networks is a
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computationally intensive task, mainly due to their continuous growth. More-
over, since these networks are constantly changing (new friendships, mentions to
users, viral information, etc.), it is interesting to perform community detection
in the shortest possible computational time, producing information in real time.
These characteristics make exact methods unsuitable for the current size of social
networks, requiring heuristic algorithms to speed up the process without losing
quality. Recent works have addressed the community detection problem from a
non-exact perspective to generate high quality solutions in small computational
time [39]. Several studies are devoted to reduce the computational effort to detect
communities in social networks [41, 42]. When comparing traditional algorithms
in large modern social networks, it can be observed that some of the algorithms
require more than 40 000 seconds for networks with approximately 10 000 nodes,
and cannot provide a solution after 24 hours of computation for networks with
more than 50 000 nodes. The growth of social networks makes more difficult their
representation and understanding. Communities in a social network generally
summarize the entire network, but reducing its size and, thus, making it easier to
analyze. In addition, community detection in social networks has several practical
applications. Recommendation systems analyze the data of similar users to sug-
gest content that may be of interest to them. To find similar users in a network,
we can simply perform community detection across the network [43], improving
the results of the recommendation system. Communities in social networks also
identify people with similar interests, allowing us to evaluate the popularity of a
political party [44], or even detect radicalism in social networks [45]. While there
are several community detection algorithms that have been proposed with the ob-
jective of identifying similar users in networks, most of the available procedures
have been designed to optimize a specific objective function, making it difficult to
adapt the algorithm to a different one. However, the constant evolution of this area
results in a continuous proposal of new metrics that better represent the commu-
nity structure of a given network. In this Thesis, efficient and versatile algorithms
are proposed that can be easily adapted to different optimization metrics.

In mathematical terms, a social network can be represented as a graph
G = (V,E), where V is the set of vertices (users) and E is the set of edges
(connections among users). It is worth to mention that graphs representing social
networks can be directed or undirected, depending on the nature of the social
network that is being analyzed. In social networks like Twitter, where a follower-
followed relationship between two users is given, a directed graph emerges as the
natural representation of the network. However, in networks like Facebook, where
a friendship relation occurs, an undirected graph is a better option, given that
if user A is a friend of user B, then B is also a friend of A. Given this definition,
the main objective of Community Detection Problems (CDP) is to find subgraphs
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(communities) with a good community structure. As it was aforementioned, a good
community structure is reached when the found communities have nodes densely
connected among them and sparsely connected to nodes in others subgraphs. The
ideal situation is the one in which each community conforms a different connected
component in the whole graph, but this is a circumstance that rarely occurs in real-
world social networks. However, there are different approaches that use this idea
as starting point, trying to solve the CDP by identifying cliques in the graph that
represents the network [46, 47, 48]. Despite of this, there are several approaches
based on completely different ideas, such as obtaining the centrality metrics of
each node and joining in the same community those that are close to a central
node [49], or taking into account the number of edges that connect different nodes
to generate the different communities [50]. In this sense, Section 3.2 presents a
first approach to the community detection.

Attending to the evaluation of the quality of a given solution for the CDP,
there are different metrics that have been designed with the aim of measuring
how good the community structure of the reached solution is. In Community
Detection Problems, two or more different metrics must be used, since the same
metric cannot be applied to generate high-quality solutions and to evaluate them.
On the one hand, one (or more) must be selected as objective function. On the
other hand, different metrics must be considered for evaluating the performance
of the algorithms, with the aim of providing a fair comparison among algorithms.
There are many metrics that focuses in the same goal: evaluating the community
structure of a solution. Section 3.1.1 compiles and describes some of them.

3.1.1 Metrics used in the Community Detection Problem

As it has been stated, there is no consensus on what is the best metric to be opti-
mized when facing a Community Detection Problem. There is a general agreement
on what shaped communities should be like, but not on exactly how to measure
that quality. In this scenario, many authors working in the Community Detec-
tion Problem have proposed new metrics, all of them pursuing the same goal: to
establish a metric that, when optimized, allows to generate communities with in-
dividuals densely connected to each other and sparsely connected to individuals
belonging to other communities.

The most widely used metric for both evaluation and optimization is the
modularity. This metric was formally proposed in [51] and slightly reduced in [52].
Modularity evaluates the quality of a network structure based on the number of
edges that are included in a community minus the expected number of them in a
network where these edges are randomly placed. Mathematically, given a graph G
and a solution S for this graph, modularity Q(G,S) can be described as:
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Q(G,S) =
K∑

k=1

(
|ECk←|
|E| −

(
sdCk

2 · |E|

)2
)

(3.1)

where K is the number of communities in a solution, |E| is the number of edges
in the whole graph G that identifies the network under evaluation, ECk← repre-
sents the set of intra-community edges in community k (it is, edges that connect
nodes in the same community), and sdCk

represents the sum of degrees of all
nodes belonging to community k. Following this definition, it seems clear that a
high modularity value is obtained when nodes in the same community are highly
connected among them and slightly connected with nodes in others communities.
Modularity value is always in the [−1, 1] range. A value of 1 is obtained when all
nodes are in the same community and the network represents a complete graph,
it is, each node is connected to all other nodes.

Another good metric used in community detection problems is the conduc-
tance [53, 54, 55]. This metric tries to size how well-connected are the nodes that
belong to a community, considering that good community structure is reached
when splitting a community in more has no sense. Given a network G, a solution
S, and a specific community Ck, its conductance, Co(Ck, S,G), is calculated as
the number of inter-community edges (it is, the number of edges that connects
one node assigned to community k with a node assigned to a different community)
divided by the minimum between the number of edges in one community (intra-
community and inter-community edges) and the number of edges that connect
nodes that do not belong to the community Ck. More formally,

Co(Ck, S,G) =
|ECk→|

min{|ECk← ∪ ECk→|, |E ∩ (ECk← ∪ ECk→)|}
(3.2)

Having given this definition, the conductance of a complete solution Co(S,G)
is evaluated as the average conductance for all the communities in the graph. In
mathematical terms,

Co(S,G) =

∑K
k=1Co(Ck, S,G)

K (3.3)

where K is the number of communities in the incumbent solution S. With these
definitions, it is clear that a lower value of conductance represents a better con-
nectivity among members of a community, so the higher conductance, the better.

Community Score [56] is another good objective function to be established
when solving the CDP. This metric sizes the number of edges belonging to a
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single community with respect to the size of the community, evaluating how dense
is the subgraph generated by the community under evaluation. More formally,
community score can be defined as follows:

CS (S) =
K∑

k=1

(
2 · |{v ∈ (Vk \ {u}) : (u, v) ∈ ECk

}|
|Ck|

)2

,∀u ∈ Ck (3.4)

where ECk
represents the set of edges in Ck. As it can be derived, a high value of

CS implies a high degree of connectivity in the detected communities. Therefore, a
high value of community score indicates that generated groups are considered good
communities, so when it is used as objective function a maximization problem is
being tackled.

Average Out-Degree function metric [57] sizes the number of edges in a single
community that connect nodes belonging to different communities. In this case,
the metric evaluates if the found communities in a given solutions have a large
amount of inter-cluster edges, which is a bad feature in the context of community
detection. Mathematically,

AVG ODF (S) =
K∑

k=1

(
1

|Ck|
∑

u∈Ck

ECk→(u)

d(u)

)
(3.5)

where ECk→(u) is the number of inter-cluster edges in community Ck with u as an
endpoint, and d(u) is the degree of node u. Minimizing this metric, well inter-
connected groups are reached, so a lower value of AVG ODF indicates a good
community structure.

Ratio Association (RA) [58] is another used metric that measures the per-
centage of edges connecting nodes in the same community that exists with respect
to the size of the community under evaluation. In mathematical terms,

RA(Ck) =
|ECk←|
|Ck|

(3.6)

Maximizing this metric, the number of edges that relates users in the same commu-
nity is maximized too, so higher values of RA indicates better community structure
in the obtained solutions.

Ratio Cut (RC) [59] is the opposite of RA, given that it evaluates the per-
centage of edges connecting nodes in different communities for each community
present in certain solution with respect to its size.
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RC(Ck) =
|ECk→|
|Ck|

(3.7)

Regarding at this definition, it is clear to see that lower values of Ratio Cut
imply less connections among users in different groups, so the lower the RC value,
the better.

Similarly, the RA and RC of a complete solution S are defined as:

RA(S) =
K∑

k=1

RA(Ck) RC(S) =
K∑

k=1

RC(Ck) (3.8)

There are more metrics that are also suitable for solving the CDP. As it
has been aforementioned, different authors have proposed their own metrics and
objective functions, trying to approach the problem from a different point of view.
However, all the metrics found in the state of the art are based on the same
principles as those already mentioned: to obtain communities densely connected
to each other and sparsely connected to other communities. Once the main metrics
used in the CDP problem have been summarized, different variants of CDP are
presented.

3.2 The α-separator problem

The α-separator problem is the first problem considered in the framework of this
Doctoral Thesis. Given a network, the main objective in this problem is to find
the minimum set of nodes whose removal divides the network into connected com-
ponents with a size less than or equal to ⌈α ·n⌉, where n is the number of elements
in the network. If the network is modeled as a graph G = (V,E), where V is the
set of nodes and E is the set of edges, the objective is to divide the graph in p
subgraphs (M1, ...,Mp, where p ≥ 2) by removing a subset L of vertices (L ⊆ V ).
For the sake of clarity, Figure 3.1 illustrates the problem with an example network
and a feasible solution for the α-separator problem.

In this figure, two feasible solutions are represented. The first one, Fig-
ure 3.1b, shows a solution with a separator conformed by nodes B, C, F, and H,
whose size is 4, while the second on, Figure 3.1c, represents a better solution,
given that the separator includes only two nodes: A and B. The α-separator prob-
lem has been proved NP-hard, since when considering α = 1/n, it is equivalent
to the minimum vertex cover problem [60]. It can be also proven that, if α = 2/3,
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(a) (b)

(c)

Figure 3.1: Example of a network and two feasible solutions for the α-separator
problem. The first one (3.1b) has 4 nodes in the separator (B, C, F, and H). The
second one (3.1c) represents a better solution with 2 nodes in the separator (A and
B).
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then, the α-separator problem is analogous to the minimum dissociation set prob-
lem (see [61] for more node-deleting problems). Therefore, it can be considered
that the α-separator is a generalization of these problems, that were also proven
NP-hard in [62].

Regarding at the solution structure, it can be seen that induced graphs can
be derived from the original one. Performing the removal of the nodes included
in the separator, the graph will be divided into different subgraphs, each one of
them corresponding to a different connected component generated after the re-
moval. These induced graphs are usually a good starting point for the Community
Detection Problem, in which the nodes that belong to the same induced graph (or
connected component) are assigned to the same community and only the nodes
included into the separator need to be assigned. This idea is similar to the one
applied in [46, 47, 48], where the process of finding communities is reduced to
finding cliques.

Another direct application in the context of community detection consists of
considering the separator nodes as the centroids for the communities. It is, they
can be used to expand the communities from them, given that their presence into
the separator indicates that they are relevant nodes in the network that is being
analyzed. This is similar to the idea behind the k-Nearest Neighbors algorithm,
being the main difference that the number k of centroids is not previously defined
and the concept of nearness must be adapted to the context of social networks.

3.3 The classical Community Detection Problem

In the classical CDP, the main objective is the one exposed in Section 3.1: given a
certain network represented as a graph G, the main objective is to find a grouping
of nodes such that nodes belonging to each group are highly connected to each
other and lowly connected to nodes in other groups.

To illustrate the CDP, let us define a network as an undirected graph G =
(V,E), where V represents the set of vertices (users) and E represents the set
of edges (relations among users). Figure 3.2 depicts an example network with
G = (V,E), V = {A, B, C, D, E, F, G, H} and E ={(A, B), (A, C), (A, D), (B, D), (C,
D), (D, E), (D, F), (F, G), (F, H), (G, H)}. For the sake of clarity, the size of these two
sets are defined as |V | = n and |E| = m, respectively. In the figure, n = 8 and
m = 10.

Many different valid solutions for this example can be reached. Depending
on the metric that is being optimized and the evaluation metric used, one solution
is considered better than the others. Figure 3.3 shows a feasible solution for the
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Figure 3.2: Example network for the CDP.

example network. In this example, a solution with three different communities is
shown. These three communities can be numbered as C1, C2 and C3, each one
identified with a different colour in the figure. Therefore, this solution can be
defined as S1 = {C1, C2, C3}, where C1 = {A, B, C}, C2 = {D, E} and C3 = {F, G, H}.

Figure 3.3: Example of a feasible solution for the CDP, with S1 = {C1, C2, C3}.

As it has been aforementioned, there is not an unique objective function in
CDP. Depending on the context of the social network, the applications of the prob-
lem and others circumstances, one objective function will be more suitable than
others. Without loss of generality, we consider modularity metric Q (explained in
Section 3.1.1) as the objective function for the CDP, which is high when a good
community structure is reached in a given network G. Having defined this objec-
tive, the optimal solution for the CDP for a given network can be formally defined
as follows:
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S∗ = argmax
S∈ϕ

Q(G,S) (3.9)

The CDP is subject to only two constraints: in a given solution, all users
must be assigned to one community and a user must be only associated to a single
community. More formally,

∀v ∈ V, ∃i : v ∈ Ci and Ci ∩ Cj = for 1 ≤ i, j ≤ K (3.10)

where K is the number of a communities in a given solution.

Given these definitions, the modularity value for the solution S1 shown in
Figure 3.3 can be calculated as:

Q(G,S1) =

(
2

10
−
(

7

2 · 10

)2
)
+

(
1

10
−
(

6

2 · 10

)2
)
+

(
3

10
−
(

7

2 · 10

)2
)

= 0.265

(3.11)

As it has been defined in Section 3.1.1, the modularity value is calculated
as the sum of the modularity values associated to each community. This value
corresponds to the subtraction of two fractions: on the one hand, the number of
intra-community edges divided by the number of total edges of the network. On
the other hand, the sum of the degree of all nodes belonging to the community
divided by 2 times the total number of edges of the network, all squared. Following
this definition, for the first community (highlighted in red) the associated value is
the number of intra-community edges, 2, divided by the number of edges in the
graph, 10, minus the sum of the degree of all nodes belonging to the community,
7, divided by twice the number of edges in the whole graph. The evaluation of the
remaining communities is performed in a similar way.

Another possible solution for the Figure 3.2 is the one represented in Fig-
ure 3.4. In this second example, a solution with two different communities is
reached. These communities can be numbered as C1 and C2, each one identified
with a different colour in the figure. Therefore, this solution can be defined as
S2 = {C1, C2}, where C1 = {A, B, C, D, E} and C2 = {F, G, H}.

For this solution, the modularity value can be calculated as follows:

Q(G,S2) =

(
6

10
−
(

13

2 · 10

)2
)

+

(
3

10
−
(

7

2 · 10

)2
)

= 0.355 (3.12)
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Figure 3.4: Example of a feasible solution for the CDP, with S2 = {C1, C2}.

Given these both solutions, and the objective function mentioned above, it
can be seen that the solution represented in Figure 3.4 is better than the solution
in 3.4. But, as it has been aforementioned, in Social Network Analysis context,
the metric used as objective function should not be used to compare solutions. In
order to compare the two obtained solutions, the conductance metric (defined in
Section 3.1.1) is used. It should be recalled that conductance for a single commu-
nity is calculated as the number of inter-community edges divided by the minimum
between the number of edges belonging to the community and the number of edges
that does not belong to the community under evaluation. Given this definition,
the conductance value for the solution S is calculated as:

Co(S1, G) =

3
min(5,5)

+ 4
min(5,5)

+ 1
min(4,6)

3
=

3
5
+ 4

5
+ 1

4

3
= 0.55 (3.13)

Regarding to the second solution S2, its conductance value can be calculated
as follows:

Co(S2, G) =

1
min(7,3)

+ 1
min(4,6)

2
=

1
3
+ 1

4

2
= 0.29 (3.14)

In view of these results, it can be confirmed that solution S2 is better than
S1, as could already be intuited in view of the results obtained using modularity.
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3.4 The multi-objective Community Detection

Problem

Community Detection Problem can be also approached from a multi-objective
point of view. In a multi-objective problem, the goal is to optimize two or more
different objective that are in conflict, it is, one of them can not be improved
without make the others worse. More formally, a multi-objective problem can be
described as follows:

MOP =

{
Minimize (f1(σ), f2(σ), f3(σ), ..., fk(σ))

subject to σ ∈ ϕ
(3.15)

where k is the number of objectives and σ is a solution to the incumbent problem,
f(σ) is the objective function that will be optimized and ϕ is the feasible solutions
set.

Solving the CDP from a multi-objective perspective allows to solve the main
problem associated to the single-objective approach. Given that the optimization
metrics are traditionally considered in an isolated way, this approach results in
the loss of certain information related to the community structure. Tackling the
problem in a multi-objective way is a possible solution for this problem, consid-
ering multiple metrics simultaneously with the aim of improving the community
detection in a social network, focusing in different characteristics at the same time.
The challenge faced by this type of approach is to find quality metrics that are also
in conflict with each other [63]. Most of the works in the literature are focused on
adapting well-known evolutionary algorithms such as NSGA-II to solve different
multi-objective community detection problems. Some of them are based in decom-
position, such as [64, 65]. Another evolutionary algorithm for solving CDP in a
multi-objective way is presented in [66]. The authors use a continuist view with
respect to what is considered a good community structure in the single-objective
version of the problem, considering as objective functions the maximization of
the intra-link strength of the communities and the minimization of the inter-link
strength, which are very similar to those considered in [64]. Following this line, in
[67] a bioinspired algorithm based on enhanced firefly methodology is proposed.
In this work, authors select as objective functions the maximization of the in-
degree of the nodes that belong to each community and the minimization of their
out-degree. In [1] the authors present a local-based information multi-objective
approach for solving the CDP, considering the Negative Ratio Association and
Ratio Cut metrics. Negative Ratio Association corresponds to the negated value
of Ratio Association metric defined in Section 3.1.1, while Ratio Cut is the same
one defined in the aforementioned section.
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Without loss of generality, these two metrics will be used to illustrate the
Multi-objective Community Detection Problem (MOCDP). As it has been done
to exemplify the classical CDP, an undirected graph G = (V,E) representing a
network is defined. For the sake of clarity, the same network shown in Figure 3.2
is used. As it occurs in the CDP, different valid solutions for the MODCP can
be reached in this example. Again, the quality of a single solution depends on
the metrics applied to evaluate and solve the problem. Given the multi-objective
nature of the problem, two or more metrics must be used as objective functions.
For the sake of clarity, NRA and RC metrics are used as minimization objectives.
NRA is the negated version of Ratio Association metric, while RC is the Ratio Cut
metric, both of them defined in Section 3.1.1. Having these definitions, solutions
represented in Figure 3.5 and in Figure 3.6 represent feasible solutions for the
MOCDP.

Different solutions can be reached in this context. Figure 3.5 shows a feasible
solution for the proposed network. In particular, a solution with three different
communities is presented. These three communities are numbered as C1, C2, and
C3, each one identified with a different colour in the figure. Therefore, this solution
can be defined as S1 = {C1, C2, C3}, where C1 = {A, C, E}, C2 = {B, D, H} and
C3 = {F, G}.

Figure 3.5: Example of a feasible solution for the MOCDP, with S1 = {C1, C2, C3}.

As it has been aforementioned, in MOCDP there is more than one objective
function to be optimized, and NRA and RC are taken into account. The RC and
NRA values for the solution S1 (Figure 3.5) are:

RC(S1) =
|EC1→|
|C1|

+
|EC2→|
|C2|

+
|EC3→|
|C3|

=

=
4

3
+

7

3
+

3

2
= 5.17

(3.16)
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NRA(S1) = −
( |EC1←|
|C1|

+
|EC2←|
|C2|

+
|EC3←|
|C3|

)
=

=
1

3
− 1

3
− 1

2
= −1.17

(3.17)

Another possible solution for the Figure 3.2 is the one represented in Fig-
ure 3.6. In this second example, a solution with four different communities is
reached. These communities can be numbered as C1, C2, C3 and C4, each one
identified with a different colour in the figure. Therefore, this solution can be
defined as S2 = {C1, C2, C3, C4}, where C1 = {A, B, C}, C2 = {D, F}, C3 = {E}, and
C4 = {G, H}.

Figure 3.6: Example of a feasible solution for the MOCDP, with S2 =
{C1, C2, C3, C4}.

For this solution, the NRA and RC values can be calculated as follows:

RC(S2) =
|EC1→|
|C1|

+
|EC2→|
|C2|

+
|EC3→|
|C3|

+
|EC4→|
|C4|

=

=
3

3
+

6

2
+

1

1
+

2

2
= 6

(3.18)

NRA(S2) = −
( |EC1←|
|C1|

+
|EC2←|
|C2|

+
|EC3←|
|C3|

)
=

=
2

3
+

1

2
+

0

1
+

1

2
= −1.67

(3.19)

As it can be seen, NRA and RC objectives are in conflict (as it has been
proven in [1]). It means that one objective function can not be improved without
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deteriorating the others. This situation implies that it cannot be said that one
solution is better than other one. To provide a definition of optimality in the multi-
objective context, a more global point of view is needed. Chapter 4 enumerates
different techniques that can be applied to deal with this problem.

3.5 The Overlapping Community Detection Prob-

lem

In both classical and multi-objective CDP variants a common constraint must be
satisfied to guarantee the feasibility of a solution: one node (user) must be assigned
to one and only one group (community). Nevertheless, in real-world networks this
is a constraint that is rarely met, since one user can belong to different groups
simultaneously. For example, in the context of Facebook social network, an user
could be part of a group that is interested in basketball and, simultaneously, belong
to a musicians group, So a user does not exclusively belongs to a certain community,
but more than once. To deal with this reality, the Overlapping Community Detec-
tion Problem (OCDP) [68] is tackled. It describes problems in which users have to
be grouped in different communities, but each user may belong to more than one
community at the same time. In the literature different authors have addressed
the detection of overlapping communities. Two of the most extended algorithms
to solve this problem are Cluster-Overlap Newman Girvan Algorithm (CONGA)
[69] and Cluster-Overlap Newman Girvan Algorithm Optimized (CONGO) [70].
CONGA is based on the traditional Girvan-Newman algorithm [40], but splitting
the vertices in a different way. CONGA has the same computational complexity
that Girvan-Newman, which is O(m3) (being m = |E|). With the aim of im-
proving this complexity, CONGO was proposed in 2008, reducing the algorithmic
complexity to O(n · log n) where n represents the number of nodes. In the litera-
ture it can be found algorithms that have been adapted to solve the overlapping
version of CDP. Some of them are the Clique-Percolation-Method (CPM) [71] or
Label Propagation [72]. All these algorithms applied to Overlapping CDP suffer
from the same drawbacks as the non-overlapping algorithms: the computational
cost required to evaluate solutions. One of the latest research papers published
that uses a metaheuristic approach for this purpose is the one authored by Xu et
al. [2]. In this work the authors propose an extended adaptive version of the den-
sity peaks algorithm [73] for overlapping CDP, named EADP (Extended Adaptive
Density Peaks). This algorithm selects the centre for the different communities
and allocates to those centres the nodes following the density peak algorithm. To
select these centres, it computes the distance to any pair of nodes. This distance
depends on the number of nodes connected to them.
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In the context of OCDP, new evaluation and optimization metrics must be
proposed to evaluate the obtained solutions. It is because in the overlapping
variant of CDP, the main constraint of the classical variant is removed. In the
OCDP, a single node can be assigned to more than one group simultaneously.
Another option is to adapt the existing metrics to make them fit this new situation.
For example, in [74] authors propose an adaptation of the traditional modularity
for the overlapping scenario, taking into account the possibility for a node to belong
to several communities at once. This adaptation consists of adding a factor that
represents the number of different communities to which a node belongs to. For
a single solution S, the overlapped modularity is calculated as the sum of this
value for each community and, then, averaging the results for all communities.
Mathematically,

MO(S) =

K∑
k=1

MO(Ck)

|S| (3.20)

where |S| is the number of detected communities in the incumbent solution. Given
a community Ck = (Vk, Ek) its overlapping modularity MO(Ck) is evaluated as:

MO(Ck) =
1

|Vk|
∑

u∈Vk

|ECk←(u)| − |ECk→(u)|
du · su

· |ECk
|

|Vk|·(|Vk|−1)
2

(3.21)

where du indicates the degree of node u, and su represents the number of groups
u has been associated to. Finally, given that the size of each community could
be rather different, a normalization of the result is need to be applied. To do so,
the difference between intra and inter-community edges is multiplied by the ratio
between the number of edges that actually exists in the community (|Ei|), and the
number of edges that a community conformed by a complete graph representing
this community would have ( |Vi|·(|Vi|−1)

2
).

Using any metric adapted to the context of overlapping community detection
as the maximization objective function (f1), the optimal solution for OCDP can
be defined as follows:

σ∗ = argmax
σ∈ϕ

f1(G, σ) (3.22)
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To illustrate the OCDP, the example network G from Section 3.3 is used
as the network under evaluation. Nevertheless, given the overlapping nature of
the problem, different solutions will be reached. With the aim of evaluating the
solutions quality and compare them, the previously exposed overlapped modularity
metric is used. An example of feasible solution is presented in Figure 3.7. Solution
S1 is defined as S1 = {C1, C2, C3}, where C1 = {A, B, C, D}, C2 = {D, E, F} and
C3 = {F G, H}.

Figure 3.7: Example of a feasible solution for the OCDP, with S1 = {C1, C2, C3}.

As it can be seen, in this solution nodes D and F are overlapped nodes, it is,
they belong to two communities at the same time. This is the main characteristic
of OCDP. As it has been aforementioned, this value is calculated as the average
of the sum of the individual modularities of each community. More specifically,

MO(C1) =
1

4
·
(
3− 1

3 · 1 +
2− 1

2 · 1 +
2− 1

2 · 1 +
3− 2

5 · 2

)
· ( 7

4·3
2

) = 0.52 (3.23)

MO(C2) =
1

3
·
(
2− 4

5 · 2 +
1− 0

1 · 1 +
1− 3

3 · 2

)
· ( 7

3·2
2

) = 0.36 (3.24)

MO(C3) =
1

3
·
(
2− 1

3 · 2 +
2− 1

2 · 1 +
2− 1

2 · 1

)
· ( 4

3·2
2

) = 0.52 (3.25)

So, for this particular solution S1, the modularity value is calculated as fol-
lows:
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MO(G,S1) =
0.52 + 0.36 + 0.52

3
= 0.47 (3.26)

Another example of feasible solution for the OCDP is shown in Figure 3.8.
This time, the solution S2 is defined as S2 = {C1, C2}, where C1 = {A, B, C, D, E, F}
and C2 = {D, F, G, H}.

Figure 3.8: Example of a feasible solution for the OCDP, with S2 = {C1, C2}.

Once again, the solution presents D and F as overlapped nodes (they are
assigned to communities C1 and C2 simultaneously). The modularity for this
second solution can be calculated as:

MO(C1) =
1

6
·
(
3− 1

3 · 1 +
2− 1

2 · 1 +
2− 1

2 · 1 +
5− 1

5 · 2 +
1− 0

1 · 1 +
1− 3

3 · 2

)
· 9

6·5
2

= 0.27

(3.27)

MO(C2) =
1

4
·
(
1− 5

5 · 2 +
3− 1

3 · 2 +
2− 1

2 · 1 +
2− 1

2 · 1

)
· 8

4·3
2

= 0.31 (3.28)

MO(G,S2) =
0.27 + 0.31

2
= 0.29 (3.29)

In view of these results, it can be said that S1 is better than S2. It is impor-
tant to remark that, as it happens in the classical and multi-objective variants of
the problem, the objective function and the evaluation function can be adapted
depending on the work context or network structure.
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3.6 The Dynamic Community Detection Prob-

lem

So far, the variants of the problem analyzed have focused on the study of static
networks, it is, a single graph with no changes is analyzed and a single solution
is provided for this network. Nevertheless, this situation does not fit very well
with the real world. Every day millions of new users and relations among them
appear or disappear from a social network, so it is necessary to develop algorithms
that are capable to suit this reality. In this context, the Dynamic Community
Detection Problem (DCDP) is proposed. In this variant of the problem, a network
is analyzed in different instants of time, also known as snapshots. These snapshots
are taken in intervals of time that are longer or shorter depending on the nature of
the network under analysis. In each one of these snapshots the network is evolving.
This evolution can occur in four different ways:

• One or more nodes appear in the graph, it is, there are new users that join
to the social network.

• One or more edges appear in the graph, it is, there are new relations between
network users.

• One or more nodes disappear from the graph. If it occurs, then there are
users that left the social network. Typically, when an user disappears, the
relations associated to him (i.e, the edges that have and endpoint in the
disappeared user) are removed too.

• One or more edges disappear from the graph. In this situation, there are
users who no longer interact at a given time instant.

Many authors in literature have been approached the DCDP problem. As
it occurs in the context of CDP, regardless of the variant, each author propose
a new methodology to reach the same objective: generate solutions with good
community structure. In [75] authors use a Particle Swarm Optimization algorithm
to face the Dynamic Community Detection Problem. In this work, the concept
of consensus community is proposed. This concept is the one which is used to
propagate information between different snapshots of the same instance. Authors
in [76] propose an evolutionary algorithm that is supported in the Evolutionary
Clustering Framework. In this work sE-Autoencoder algorithm is proposed. It is a
semi-supervised algorithm that overcomes the problems that prevent the use of the
original framework. The dynamic version of the Community Detection Problem
can be also tackled from a multi-objective point of view. An example of this
approach can be found at [77], where the authors propose an immune algorithm
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to optimize simultaneously modularity and normalized mutual information [78]
metrics.

With the aim of illustrating the DCDP, Figure 3.9 represents the example
of a network with three snapshots (T1, T2 and T3) taken in three different instants
of time. As it can be seen, the four possible changes in the context of DCDP are
represented in the example.

(a) Snapshot T1. (b) Snapshot T2. (c) Snapshot T3.

Figure 3.9: Example of network evolution for three different snapshots.

To solve the DCDP, all snapshots must be solved independently. It means
that a full solution for the DCDP is represented by the set of solutions for each
snapshot. More formally, a solution S can be defined as S = {ST1 , ST2 , .., , STy , },
where y is the number of snapshots, and STy = {C1, C2, ...Cn}, where n is the
number of communities detected in a single snapshot. The process to obtain the
solution of the second and subsequent snapshots can be accelerated and improved
by regarding at the changes that occur in the network and the solution obtained
from the previous snapshot (with respect to the current one). It is the main
difference of DCDP with respect to the other variants. This situation implies that
the best solution of one snapshot (in terms of the evaluation metric) can be used as
starting point to the next one. As usual in CDP problems, the objective function
and the evaluation metric are not the same. It means that, in each snapshot, the
solution is built by optimizing the objective function, but the best solution, it is,
the one that marks the starting point for the next snapshot is the evaluation metric.
Therefore, it can be said that the optimal solution is the one that maximizes (or
minimizes) the objetive function. In mathematical terms,

σ∗ = argmax
σ∈ϕ

fo(G, σ) (3.30)

where fo is the selected objective function for the current problem. For the sake
of clarity, modularity is considered as objective function to illustrate the DCDP,
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and Community Score is selected as evaluation metric.

A possible solution for the example networkG proposed in Figure 3.9 is shown
below. In the first snapshot, a solution is built from scratch, given that there is
not previous information that can be exploited. However, this first solution is a
good starting point to solve the second snapshot. Figure 3.10 represents a feasible
solution for the first snapshot.

Figure 3.10: Example of a feasible solution for snapshot T1 with S1 = {C1, C2}.

From this point on, different solutions can be reached. Figure 3.11a and
Figure 3.11b represent two feasible solutions for the second snapshot.

(a) Solution S2a for snapshot T2. (b) Solution S2b for snapshot T2.

Figure 3.11: Example of two different feasible solutions for snapshot T2.
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Solution S2a can be defined as S2a = {C1, C2, C3}, where C1 = {A, B, C, D, E},
C2 = {F, G, H} and C3 = {I}. Its modularity value can be calculated as follows:

Q(G,S2a) =

(
6

11
−
(

14

2 · 11

)2
)
+

(
3

11
−
(

7

2 · 11

)2
)
+

(
0

1
−
(

1

2 · 11

)2
)

= 0.31

(3.31)

Solution S2b can be defined as S2b = {C1, C2}, where C1 = {A, B, C, D, E, I}
and C2 = {F, G, H}. The modularity value for this solution is calculated as:

Q(G,S2b) =

(
7

11
−
(

15

2 · 11

)2
)

+

(
3

11
−
(

7

2 · 11

)2
)

= 0.34 (3.32)

To select which of them will be the starting point to the third snapshot,
Community Score of both solutions is calculated. For solution S2a , the Community
Score value is:

CS (S2a , G) =
2

3
+

1

1
+

1

3
= 2 (3.33)

Regarding to the second solution S2b , its community score is calculated as
follows:

CS (S2b , G) =
1

3
+

1

3
= 0.67 (3.34)

In view of these results, it seems clear that solution S2b is better than solution
S2a in terms of both objective function and evaluation metric, so it is the selected
one as starting point for the third snapshot. Finally, a feasible solution for the
third snapshot could be the one represented in Figure 3.12.

With this solution, the modularity and community score values for the last
snapshot are calculated as follows:

Q(G,S3) =

(
7

9
−
(

15

2 · 9

)2
)

+

(
1

9
−
(

3

2 · 9

)2
)

= 0.17 (3.35)

C (S3, G) =
1

1
+

1

2
= 1.5 (3.36)
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Figure 3.12: Example of a feasible solution for snapshot T3 with S3 = {C1, C2}.
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Chapter 4

Methodology

Metaheuristic algorithms have been proven to be a great instrument to provide
solutions to complex combinatorial optimization problems. Real-world tasks such
as to decide the best route for a vehicle float minimizing the global cost, select the
best location to open a new hospital in such a way the people covered by its services
is maximized or schedule the jobs of an assembly line are examples of problems
where metaheuristics emerge as a well option to obtain high quality solutions in low
computing times. Example of these metaheuristics are Iterated Greedy, GRASP,
Tabu Search, Evolutionary Algorithms, or Scatter Search, among others.

In recent years, the metaheuristics research area has received the attention
of many researchers from different fields. Statistics, engineers, computer scientists
and operational research analysts, among others, have encountered in metaheuris-
tics a field that can be suitable and proficient to their research. A clear proof of
this fact is the large amount of international conferences devoted to spread the
knowledge in the metaheuristics area and its application in other research fields.
Example of these conferences are Metaheuristics International Conference (MIC),
the International Conference on Variable Neighborhood Search (ICVNS), or the
Genetic and Evolutionary Computation Conference (GECCO).

In this Chapter, the main metaheuristic techniques applied in the context
of this Thesis are described. These algorithms have been applied for solving
NP-hard problems summarized in Chapter 3. In particular, Greedy Random-
ized Adaptive Search Procedure (GRASP, Section 4.1), Variable Neighborhood
Search (VNS, Section 4.2), Iterated Greedy (IG, Section 4.3) and Path Relinking
(PR, Section 4.4) are described. Furthermore, different techniques to apply when
a multi-objective problem is tackled are described in Section 4.5.
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4.1 Greedy Randomized Search Procedure

Greedy Randomized Search Procedure (GRASP) is a metaheuristic developed by
T. Feo and M. Resende as an algorithm to solve set covering problems [21]. In year
1994 it acquired a definitive terminology and form as a general purpose metaheuris-
tic [22]. GRASP is a multi-start procedure [79, 80, 81] in which each start corre-
sponds to an iteration of the algorithm. Each iteration has two well-differentiated
phases: construction phase, that is in charge of obtaining a high-quality feasible
solution, and the improvement phase, that locally optimizes the solution obtained
in the previous phase. Pseudocode shown in Algorithm 1 includes a complete de-
scription of the algorithm behavior. In this algorithm, parameter C represents the
components for a certain solution to a given problem.

Algorithm 1 GRASP(C, α)

1: c← selectSeed(C)
2: S ← {c}
3: CL← C \ {c}
4: while not isFeasible(S) do
5: gmin ← minc∈CL g(c)
6: gmax ← maxc∈CL g(c)
7: µ← gmax − α · (gmax − gmin)
8: RCL← {c ∈ CL : g(c) ≥ µ}
9: c← SelectElement(RCL)
10: S ← S ∪ {c}
11: CL← CL \ {c}
12: end while
13: Improve(S)
14: return S

GRASP comes from the semi-constructive heuristic proposed in [82], which is
also characterized because it is a multi-start method based in a greedy randomized
construction. The main difference with respect to GRASP is that this technique
did not use an improvement procedure.

The construction phase is an iterative procedure in charge of building a so-
lution S element by element. Initially, it starts from a seed that is a component or
components set that determine a partial solution. This seed can be randomly se-
lected or, if it is known that certain sub-structures are part of the optimal solution,
they can be the seed [83, 84] (step 1). The included components are marked as non
available and the rest are included in the selectable elements set: the Candidate
List (CL). Once the Candidate List is built, it is sorted using a greedy function
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that assigns a value to each candidate. This algorithm phase corresponds to the
Greedy word in the name of the metaheuristic (step 3).

Once the Candidate List is sorted, a good candidate must be selected. In
the GRASP context, the best candidate is not selected since, in that case, the
algorithm becomes purely greedy and, therefore, the same solution is constructed,
eliminating the diversification phase. For this reason, a candidate is randomly
selected from a subset of candidates. This subset is named Restricted Candidate
List or RCL. To build the RCL, a threshold is defined using the maximum and
minimum cost values assigned to the elements in the Candidate List in a certain
iteration. If cmax and cmin are the higher and the lower cost values, respectively,
the RCL is conformed by all the elements whose cost does not exceed (in a mini-
mization problem) the threshold provided by the following expression:

µ = cmax − α · (cmax − cmin) (4.1)

where the α parameter is a value between 0 and 1 (0 ≤ α ≤ 1) that determines the
RCL size (steps 5-8). On the one hand, if α = 1, then the the algorithm is purely
greedy (only the best candidate is present in the RCL). On the other hand, if
α = 0, then the algorithm is totally random (all the candidates are included in the
RCL). In the standard implementations of GRASP, the α parameter is randomly
selected in each iteration. There are different studies about how GRASP behave
depending on the α value. Examples of these studies can be found at [85, 86, 87].
Diverse strategies have been proposed to select the α value, among which the
following stand out:

• Randomly select the α value from an uniform distribution of discrete prob-
ability (in the general case) [85].

• Automatically adjust the α value regarding to the recently obtained solutions
quality (reactive GRASP) [88, 89].

• Select the α value from a non-uniform discrete descending distribution, where
there are a higher probability of choose the better values. [88, 90].

• Fix the α value to certain number (similar to the pure greedy selection)
[86, 87].

Figure 4.1 shows a representation of the original Candidate List (CL) and
the Restricted Candidate List (RCL) generated with the best candidates present
in the CL. The RCL size is marked by the vertical line, that depends on the α
value.
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Figure 4.1: GRASP Candidate List and Restricted Candidate List composition.

Once a candidate from the RCL has been selected (step 9 in Algorithm 1),
it is introduced in a partial solution S (step 10) and it is marked as non-selectable
element (step 11). The rest of the elements are still selectables, so the contribu-
tion to the objective function of each one of them if they were part of the solution
must be re-calculated. This calculus is done through the greedy function estab-
lished. Therefore, the partial solution of GRASP is adapted each time that a new
candidate is added to it. The constructive phase of GRASP ends when a feasible
solution is reached (step 4). This initial solution is not necessarily a local optimum,
given there are many stochastic elections. It implies that constructive phase does
not guarantee an optimality of the solution with respect to a certain neighborhood
structure.

To deal with this problem, GRASP applies a second phase (improvement
phase) that consists of a local optimization procedure based on a local search
function or, even, in a complete metaheuristic (step 13). Generally, this phase im-
proves the initial solution, but it does not guarantee the optimality of the obtained
solution. Nevertheless, it is proven experimentally that the quality is considerably
improved.

In the standard GRASP implementation, the improvement phase is a local
search procedure. This fact implies that a neighborhood structure must be defined
and examined to make a movement to the neighbor that produces some improve-
ment in the objective function. This movement must maintain the feasibility of the
solution, and the local improvement method is executed until no better solutions
can be found in the explored neighborhood.
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In [85] there are some that are considered determining factors influencing
local search:

• The neighborhood structure, that is typically simple.

• The local optimization algorithm applied for the neighborhood. Depending
on the type of movement, the improvement methods can be classified into:

– First-Improvement, that consists of selecting the movement that leads
to the first neighbor that improves the incumbent solution.

– Best-Improvement, that consists of evaluating all the movements in the
neighborhood, selecting the one that produces the highest profit.

In practice, both alternatives may produce similar solutions in terms of qual-
ity. Therefore, given that the second method has a higher computational
effort associated, the first one is more extended. In addition, it has been
empirically observed that with the second option GRASP converges with
higher probability to non-global optima.

• Evaluation of the greedy function of the candidates.

• The initial solution by itself. The objective is to build high-quality solutions
to minimize as much as possible this fact.

The improvement phase ends when there are not movements that leads to a
better solution.

There are different methods that can be introduced in the GRASP standard
implementation that can result in important improvements for certain problems.
The following is a brief description of those considered most relevant:

• Reactive GRASP: This method provides memory to GRASP, making the α
value election non-random, but taking into account the past results. In this
framework, those α values that have lead to better solutions in the past are
more probably chosen. In [90] a selection rule is proposed. Generally, this
implementation improves the standard GRASP results [89].

• Cost perturbation: this method consists of adding a slight noise to the costs
in a similar way to noisy methods [91]. This options adds flexibility to the
GRASP implementation, specially in those problems that are not so sensible
to the randomization. It is useful too when there is not a simply randomizable
greedy function [92, 93, 10].

• Bias functions: this technique establish an smarter criterion to select can-
didates from the RCL, in such a way that, instead of all candidates being
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equi-probable, a distribution function is used that emphasizes some candi-
dates over others. In [94] different probability distributions are proposed and
in [90] they are applied to the job shop scheduling problem [90, 92, 10].

• Smart construction (memory and learning): this method consist of introduc-
ing a long-term memory in the GRASP framework, in such a way that the
past history is taken into account when making a decision. It was originally
proposed by Fleurent and Glover [95] as an useful strategy for all multi-start
metaheuristics.

4.2 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic (also considered a meta-
heuristics framework) proposed by Hansen and Mladenović [96, 23] in the late 90’s.
For the sake of simplicity, it can be said that it tries to avoid to get stuck in local
optima by performing systematic neighborhood changes, both when searching for
a local optima and trying escape from it. In the original proposal, the three main
variants of VNS were presented: Variable Neighborhood Descent, Basic VNS and
Reduced VNS. Later, when the framework began to catch the attention of re-
searchers, new schemas (like General VNS or Skewed VNS [97]) where proposed
and described [98].

The basic principle of the VNS schema is based on the systematic changes
in the structure of a neighborhood inside a local search procedure. The novel
idea that VNS introduces is the handling of a determined set of neighborhood
structures. Under this concept, for each solution σ that belongs to the solutions
space ϕ a set of neighborhoods Nk(σ) is defined, where 1 ≤ k ≤ kmax, being k
the neighborhood under exploration and kmax the maximum neighborhood to be
explored. These neighborhoods are built following one or more metrics that are
context-based, it is, are specific of the problem that is being solved. As it has been
described in [98], VNS is based in the following points:

1. A local optimum with respect to a neighborhood Ni(σ) could not be a local
optimum with respect to another neighborhood Nj(σ).

2. A global optimum is a local optimum with respect to all possible neighbor-
hood structures.

3. Local optima with respect to one or more neighborhood structure are rela-
tively close among them for many problems.

It is worth mentioning that last affirmation has not been proven experimen-
tally, it is an empirical observation. This observation implies that, sometimes, the
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local optimum provides information about the global optimum. For example, a
local optimum can contain several elements that are present in the global opti-
mum, that normally are not known [99]. When an optimization problem is being
solved, a solution can be defined as locally optimal only with respect to a single
neighborhood structure. Stating this for different neighborhood structures is not
necessarily true and, in fact, probably is not. Therefore, the solution space land-
scape is determined by the neighborhood structure defined [100]. It means that
defining the neighborhood structure implies determining the topological properties
of the search space. For the sake of clarity, Figure 4.2 shows two different profiles
corresponding to two different neighborhood structures. In Figure 4.2a, the VNS
framework starts from point x0 and it could reach the local optimum represented
in x1 through some local search procedure. VNS would be stuck in this point of
the solutions space. Figure 4.2b represents a situation where, by increasing the
neighborhood size and, therefore, also increasing the jump size, the neighborhood
structure is changed. As a consequence, some peaks of the search space could
disappear, it is, the landscape of the search space is also changing. Applying these
changes, the solution x2 could be reached through a local search procedure.

(a) (b)

Figure 4.2: Landscape of the search space for two different neighborhood struc-
tures.

The effectiveness of VNS methodology has lead the scientific community to
develop several variants, which can be classified according to the way in which the
three main aforementioned ideas are combined (deterministic or stochastic way).

Reduced VNS (RVNS) [101, 102] is focused in diversification, considering
stochastic changes of neighborhoods. This strategy randomly selects a solution
from a certain neighborhood, without applying a local search procedure to it.
This strategy is a good option when the computational time required by the local
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search procedure is large or, even more, were local search procedures are really
difficult to design.

On the other hand, Variable Neighborhood Descent (VND) [103, 104] is
devoted to intensification by performing deterministic exploration of the search
space. In this implementation, the different neighborhoods are explored in an
exhaustive way, changing the neighborhood when a local optimum is reached with
the aim of escaping from it. Given this behavior, the obtained solution is a local
optimum with respect to all the explored neighborhoods.

Finally, Basic VNS (BVNS) [105] emerges as a compromise between diversi-
fication and intensification by combining stochastic and deterministic changes of
neighborhoods. This balance comes from the way BVNS selects a solution from
the neighborhood (randomly, as in RVNS) and the process that it applies to it
after selecting it (a local search procedure).

As a result of the successful application of the methodology to different prob-
lems, several new variants have been proposed. The combination between BVNS
and VND results in General VNS (GVNS) [106]. In this variant, a random solution
is in the neighborhood is selected (as in BVNS) but the local search procedure is
replaced by a complete VND algorithm. For this reason, GVNS reaches a local
optimum from every randomly selected solution in a certain neighborhood, for all
the explored neighborhoods. This behavior eventually leads to better solutions.

Other implementations found in the literature are Variable Neighborhood
Decomposition Search (VNDS) [107], Skewed VNS (SVNS) [108], or Variable For-
mulation Search (VFS) [109], among others.

4.3 Iterated Greedy

Iterated Greedy (IG) is a metaheuristic originally proposed in [110] by Rubén
Ruiz and Thomas Stützle to solve the permutation flowshop scheduling problem.
It is based on the idea of repeating greedy constructions of solutions, but reducing
the main problems associated to this methodology: time-consuming constructions,
no information taken from one construction to another one, and, thus, repeated
constructions that does not exploit the knowledge extracted from the past con-
structions. To do this, IG generates an initial solution and, then, it partially
destroys and regenerates the initial solution resulting in a different one, repeating
the process until certain termination condition is met. This condition is context-
dependent and could be defined as a certain number of iterations, a number of it-
erations without improvement or simply be time-limited. Typically, a local search
procedure is executed after the regeneration method, with the aim of finding a
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local optimum in the neighborhood of the reconstructed solution. As it can be
derived from this description, Iterated Greedy requires of an initial solution to op-
erate. This initial solution can be randomly generated or be built using a greedy
algorithm, even using a whole metaheuristic (like GRASP).

From an algorithmic point of view, Iterated Greedy consists of three differ-
entiated phases:

1. Destruction phase: in this step, some of the elements belonging to the solu-
tion are removed, resulting in a partial solution.

2. Construction phase: starting from the partial solution resulting from the
previous step, a construction heuristic is applied, generating a new complete
solution.

3. Acceptance Test: in this step, the next solution to be destroyed is selected.
This solution could be the initial solution or the solution resulting from the
construction phase. In the simplest case, the best solution regarding to the
objective function is accepted.

It is important to remark that the strategy used to generate the initial so-
lution and the procedure used in the construction phase could be different and
use different heuristics. The advantage of using different constructive heuristics
in the context of an iterative process provides to Iterated Greedy algorithm with
some advantages comparing it with the construction of different solutions from
scratch. First, the required time to build a solution is significantly reduced by two
main reasons: less constructive steps are needed and the required decision time
per construction is reduced as there are less solution components to be chosen
while the larger the partial solution is. Furthermore, a precise acceptance crite-
rion can intensify the search process, finding the best solutions of search space
region explored.

The success of the Iterated Greedy applications resides in the followed strat-
egy when destroying and reconstructing solutions. There are different approaches
that can be followed when destruction and construction phases are being devel-
oped. Some of the main important points to be taken into account are the follow-
ing:

• In the destruction phase, it must be decided how many components of the
solution are going to be destroyed. There are two extreme settings concern-
ing to this point. On the one hand, only one component is destroyed. On
the other hand, the solution is totally destroyed, it is, all components in it
are removed. Nevertheless, these extreme situations are not suitable with
the main principles of Iterated Greedy. In the first case, the behavior of the
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algorithm would be similar to a randomized local search procedure. In the
second one, it could result in a multi-start approach since the solution result-
ing from each iteration will be completely different from the original ones.
Intermediate values result in a balance between diversification and intensifi-
cation in the search procedure: by removing a small number of components
leads to a more intense search, while removing a larger number of solution
components the algorithm explores more distant solutions in the solutions
space. Once this decision is taken, another choice must be made: to establish
a fixed number of components to be removed or to make it variable during
the algorithm execution. If it is variable, a technique to adapt this value is
required. If it is fixed, it must be experimentally tuned. The last question
that need to be answered when implementing Iterated Greedy destruction
phase is which components should be chosen. Again, there are different
possible answers. First, destruct components randomly escapes from the
cycling risk that implies doing it in a deterministic way. Using a stochastic
destruction, components could be uniformly chosen at random. More sophis-
ticated processes could take into account metrics regarding the components
or the remaining partial solutions, introducing a bias in the choice, prioritiz-
ing components that have larger contributions (lower costs) to the objective
function.

• Regarding to the construction phase, using a constructive mechanism is cru-
cial, given that one of the main ideas in IG is that the repairing phase is
performed using one of them. Typically, the selected constructive mecha-
nism has a greedy behavior and iterates in a deterministic way. However, it
is not necessarily be the case, given that any constructive mechanism that
can generate a complete solution starting from a partial one can be used in
the Iterated Greedy algorithm. In the construction phase, two main groups
of heuristics can be distinguished: the adaptive and the static ones. In an
adaptive approach, the partial solution influences the heuristic value assigned
to a particular option. This will normally result in better quality solutions
than the static approach. However, this quality is typically associated to
a higher computational effort. Given the flexibility of Iterated Greedy, any
algorithm compatible with the idea of constructing solutions is compatible
with this technique.

• Thinking about the acceptance criterion selected, it can be seen that it has a
high influence on the diversification-intensification behavior of IG. Accepting
any new solution without regard to its quality is as valid as accepting only
solutions with higher quality than the previous one. Again, the richness of
the method lies in the intermediate options, providing the whole algorithm
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with a balance between intensification and diversification.

• Finally, the natural extension of any constructive heuristic is the improve-
ment of the generated solutions using local search procedures. Iterated
Greedy includes the improvement phase when the reconstruction phase is
performed, trying to reach the local optimum of the neighborhood that con-
tains the new generated solution.

Some examples of successful applications of Iterated Greedy in different prob-
lems can be found at [111, 112, 113, 114].

4.4 Path Relinking

Path Relinking (PR) methodology was originally proposed as an strategy that
combines diversification and intensification processes in the Tabu Search [99] con-
text. It is a relatively novel proposal and is still being developed. PR is established
formally and methodologically in conjunction with Scatter Search [115], another
extended metaheuristic that has been successfully applied to different optimiza-
tion problems. The operation principle followed by Path Relinking is that it gen-
erates new solutions by exploring trajectories in the solutions space. To do this,
it starts by selecting two high-quality solutions (origin solution and destination
solution). Then, a path is generated from origin to destination, traversing the
search space. Combination Method in Path Relinking is based in the trajectory
generation among solutions in the search space, instead of carrying out linear com-
binations among them as it is done in Scatter Search. The way in which the path
between the origin solution (S1) and destination solution (S2) is built is by per-
forming movements that tries to reach S2 from S1. The trajectory S1 → S2 is
generated by gradually removing the attributes of the starting solution to intro-
duce attributes that belong to the guiding solution. The goal is to find a better
solution than S1 and S2 in the built trajectory between them.

To provide a more specific example of how Path Relinking works with a
pair of solutions (origin solution and guiding solution), Figure 4.3 shows how the
metaheuristic would behave in a context where a minimization objective function is
being optimized. In this figure it can be seen how the trajectory between the origin
solution and the guiding one is built, traversing the search space and, eventually,
finding a solution that provides an objective function value better than the two
from which it is based.

Path Relinking is a metaheuristic that allows modifications in their pro-
cedures. Some of the modifications that have improved the performance of the
metaheuristic for certain problems are:
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Figure 4.3: Specific example of Path Relinking behavior for a concrete pair of
solutions.

• Variation: it generates simultaneously two different trajectories. One of them
starts from the origin solution and tries to reach guiding solution and the
other one performs the opposite movement: it tries to reach origin solution
starting from the guiding one. Both trajectories stop in an intermediate
point, and the final trajectory is built from these two reached intermediate
points. This modification introduces more diversification to the metaheuris-
tic, allowing to explore a larger region of the search space.

• Tunneling: this modification allows the variation in the neighborhood struc-
ture. By doing this, solutions that would not be explored in the original
proposal, since the solutions are limited to a single neighborhood, are taken
into account. For example, solutions that does not belong to the feasible
region could be taken into account, but the search can not be get stuck in a
non-feasible solution, given that guiding solution is always feasible.

• External Relinking: this method generates trajectories between two solutions
by extending the path that connect them. To do this, the path is constructed
by trying to move the two solutions away from each other. To do this,
the procedure eliminates components common to the source solution and
the guiding solution and replaces them with other components, arriving at
different solutions at the end of the process.

• Multiple parents: this technique uses a guiding solutions set instead of only
one. In this context, the next movement from the origin solution it is deter-
mined by the influence of all the components that are present in the parents,
in such a way that those parents with a more suitable component regarding
the objective function will guide the trajectory building.
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• Constructive neighborhoods: it starts with an incomplete starting solutions
(even an empty one) to generate a trajectory influenced by a set of solutions.
The solution is built by making movements to the guiding solutions, progres-
sively introducing their elements. In general, the inclusion of features in the
solution is performed using a vote mechanism.

Examples of applications of these modifications can be found at [116, 25,
117, 118, 119].

4.5 Multi-objective approaches

Real-life problems are usually not single-objective, but involve more than one ob-
jective simultaneously. For example, companies engaged in freight transportation
will usually want to maximize their profit, but they will also want to minimize
the maintenance cost of their trucks, the miles an employee traversed reduces in a
given period of time, or maximize the achievable sales area. Typically, several (if
not all) of these objectives will be in conflict. In other words, improving the value
of one objective will necessarily mean worsening the value of another one. This
situation is known as multi-objective optimization, and it is present in multiple
knowledge areas, such as logistics [120], engineering [121], or economics [122].

When two or more conflicting objectives are taken into account at the same
time when solving a problem, the concept of nondominance appears. This term
was introduced by Vilfredo Pareto (1848–1923) in the economics field, and it is
also known as Pareto optimality [123]. A solution is considered nondominated (or
Pareto optimal) if it is not possible to improve the value of one objective function
without making one of the others worse. For the sake of clarity, the improvement
of Pareto, the dominance of Pareto, and the Pareto optima terms are defined:

• Given an initial solution, a Pareto improvement is a new solution in which
some objectives are improved and none gets worse.

• A solution is Pareto dominated if there exists a possible Pareto improvement

• A solution is a Pareto optimum if it does not exist any change that could
drive to a better value in any objective without making another objective
worse.

Given these definitions, the Pareto front is the set of all Pareto optimal
solutions. Depending on the problem that is being solved, could be an infinite
number of Pareto optimal solutions or could be only one. Typically, the definition
of Pareto efficiency is relaxed with the aim of obtaining a more diverse set of
solutions. In this context, a Pareto improvement is considered when a solution is
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better than one that is present in the front under construction in, at least, one
objective function value.

Then, when a multi-objective optimization [124] problem is tackled, a good
approach is to slightly change the concept of solution, taking into account the whole
front of non-dominated solutions as the solution to the problem instead of a single-
solution. By doing it, a solution from the front could be selected depending on
the specific necessities of the problem under being solved. To do this, is important
to keep the front updated. It is, when a new solution is generated (using some
constructive heuristic, for example), it is compared with all the solutions that
are present in the non-dominated front. If the new solution dominates a solution
that is already present at the front, then it will be included in the front, and
all solutions that are dominated by the new solution will be removed from it.
Figure 4.4 shows an example of a non-dominated front (in red colour) and some
dominated solutions (in grey colour). The x-axis represents the values of each
solution for a maximization objective and the y-axis represents the values of the
same solution for a minimization objective that is in conflict with the first one.

Figure 4.4: Example of a non-dominated front and some dominated solutions.

When non-dominated fronts are applied to solve a multi-objective problem,
different metrics are used to evaluate the quality of the obtained fronts. These
metrics provide an idea of how well-built is the front, based on their characteristics
(number of solutions that are present in the front, size of the area under the curve
generated by the front, etc.). Some of the most extended metrics in the multi-
objective context are the following:

• Coverage metric. This metric, C(F1, F2) evaluates the number of solutions
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of the non-dominated front F2 that dominates the solutions from the front
F1. When comparing two different fronts, a good approach is to generate a
reference front R which is conformed for the non-dominated solutions that
are present in both fronts under evaluation (i.e., the front constructed by
the union of all the non-dominated fronts under evaluation). Therefore,
an smaller value of coverage metric represents a better value, given that it
means that the reference front is dominating less solutions at the front under
comparison.

• Hypervolume. This metric, HV(F ) evaluates the size of the space covered
by the F set of solutions. More specifically, it measures the hypervolume of
the space region that is weakly dominated by a non-dominated front. Then,
a greater value of HV(F ) implies that F is better, given the more space
covered by the front, the better.

• ϵ-indicator. This metric, EPS(F,R) sizes the smallest distance that is re-
quired to transform every solution present in the non-dominated front under
evaluation (F ) in the closest point of the reference front (R). It is a metric
equivalent to the coverage one. Then, obtaining lower values of ϵ-indicator
implies that the non-dominated front under evaluation is better than others.

• Inverted Generational Distance plus. This metric, IGD+(F,R), is evaluated
as the inversion of the well-known generational distance metric. It sizes the
distance from the non-dominated set under evaluation (F ) to the reference
set (R). Then, the lower value of IGD+, the better, given that it means that
the evaluated front is closer to the reference front.

As it has been aforementioned, it could exist multiple Pareto optimal solu-
tions to multi-objective optimization problems, which means solving such a prob-
lem is not as direct as it is for a typical single-objective optimization problem.
Using Pareto front as solution is not the unique existing technique to tackle this
kind of problems. Another widely used approach is to convert the original multi-
objective problem into a single-objective optimization problem. This is what is
known as a scalarized problem. When scalarizing a problem, it must be formu-
lated in such a way that optimal solutions to the single-objective optimization
problem are Pareto optimal solutions to the multi-objective version [125]. Scalar-
ization techniques that are commonly used to tackle a multi-objective problem as
a single-objective one are:

• Linear scalarization [126, 127]. By using this technique, all the implied objec-
tives in the multi-objective problem are weighted and expressed as a single-
objective function. By using this mechanism, the relevance of each objective
must be decided and expressed by the associated weight.
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• ϵ-constraint method [128]. In this scalarization method, one objective is
selected as the objective function of the single-objective model, while the
rest are set as constraints of the problem, so that the values associated
with these objectives must be strictly smaller (or larger, if we are solving
a maximization problem) than a defined epsilon.

Examples of successful applications of linear scalarization can be found at
[129, 130, 131]. ϵ-constraint methodology has also been used to solve several multi-
objective problems [132, 133].
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Chapter 5

Joint discussion of results

In this chapter, a discussion of the obtained results for all the optimization prob-
lems tackled in this dissertation is presented. A brief summary of the different
proposals is also exposed. For each solved problem, the results summarize the av-
erage value for the objective function taken into account when a single-objective
problem is tackled and widely used multi-objective metrics average when a multi-
objective problem is being summarized. Also, other metrics that justify the quality
of the proposal (as CPU time required by the algorithm) are presented. In all tables,
the best found results are highlighted in bold font. In Section 5.1, the results for
a first approach to community detection are exposed. Section 5.2 summarizes the
obtained results when solving the classical CDP. The results for the multi-objective
CDP are shown in Section 5.3, while results for the overlapping CDP are illustrated
in Section 5.4. Finally, in Section 5.5 the obtained results for the multi-objective
Dynamic Communtiy Detection Problem are presented. These results are extracted
from the publications that can be found at Part II of this Thesis.

5.1 Results on the Alpha separator problem

As it has been aforementioned, a good starting point to solve community detection
problems is to find cliques in the network under study [46, 47, 48]. Another good
approach is to detect which are the critical nodes whose removal produces the net-
work division in different connected components, generating initial communities.
This problem is an NP-hard problem by itself, named α-separator problem, and
it is addressed in [134]. The objective function of this problem is to find the min-
imum separator that divides the given network in connected components with a
size lower than ⌈α ·n⌉ nodes, where n is the total number of nodes in the network.
The results on the α-separator problem have been published in a JCR journal;
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specifically, it has been published in Expert Systems, a journal with an impact
factor of 2.587 and situated in Q2 of JCR. More details about the journal can be
found at Chapter 7 in Part II. In this work, an algorithm based on the Greedy Ran-
domized Adaptive Search (GRASP) combined with Path Relinking metaheuristic
is proposed. In this proposal, GRASP is used as the constructive metaheuristic
following two different approaches: on the one hand, a Greedy Random approach,
where the first element that is part of a solution is selected at random and the
restricted candidate list is built following a greedy criterion. On the other hand, a
Random Greedy approach, where the first element in the solution is selected in a
greedy way, while the restricted candidate list is randomly built. The greedy crite-
rion used is a well-known metric widely used in Social Network Analysis context:
the closeness. In the Greedy Random version, the first node added to the separa-
tor is selected at random, with the aim of diversifying the search procedure. The
candidate list is built using the closeness metric for each node, and the restricted
candidate list is built with the nodes that have associated a large value of this
function. Then, the next vertex to be added to the separator is randomly selected
from the restricted candidate list. The Random Greedy approach works in a simi-
lar way, but the greedy and random phase are exchanged: the RCL is constructed
with a set of elements randomly selected from the candidate list and, then, the
next element included in the solution is selected in a greedy manner. Regarding
at the computing time required by each algorithm, the Random Greedy version is
faster than the Greedy Random, because it does not require an evaluation of the
whole candidate list. Also, as it has been experimentally proven, it provides better
results in average than the Greedy Random approach.

In the improvement phase, a local search procedure is defined to find a local
optimum with respect to a predefined neighborhood. The neighborhood for this
local search is the one defined by all the solutions that can be generated by applying
a movement in which two vertices are removed from the solution and a new one is
added. With respect to the order in which the neighborhood is explored, a First
Improvement method is applied. There are two main reasons for this decision: the
first one is that, normally, a First Improvement approach is so much less time-
consuming than the Best Improvement, given that the former does not traverse
the entire neighborhood, but it only performs the first improving move found. The
second one is that, when a successful movement is performed, it necessarily implies
an improvement in the objective function, given that a minimization problem
is being solved, and the local search performs movements in which two nodes
that are present in the solution are removed and substituted by only one. The
local search method proposed randomly explores the neighborhood, increasing the
diversification of the search. This phase stops when no improvement is found after
exploring the complete neighborhood.
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The GRASP procedure generates a set of diverse and high quality solutions,
and an Elite Set is constructed with the most promising ones. Once the Elite Set
is generated, Path Relinking is applied with the aim of exploring the trajectories
between each pair of solutions included in it. This is known as static design. In a
dynamic design, the Elite Set is updated each time a trajectory is explored. In this
problem, the trajectory between two solutions is generated by performing a Swap
movement. This movement removes a node that is present in the initial solution
but is not included in the guiding one, and replaces it by one present in the guiding
solution and not yet added to the initial separator. Through these exchanges, the
initial solution approaches the guiding solution, until the two solutions end up
being exactly the same. In each iteration, a new intermediate solution is generated.
This intermediate solution will be infeasible with a high probability, so it must be
repaired to make it feasible again. In this work, a repairing process is performed
by randomly adding nodes to the separator until reaching the feasibility again,
increasing the diversification of the search. Once the repair has been performed, the
separator could contain redundant nodes (i.e. nodes that are not needed anymore
to have a feasible solution), so the solution is traversed looking for redundant nodes
that are removed.

Typically, to select the next node that is being removed from the separator,
two different Path Relinking strategies exist. On the one hand, Random Path Re-
linking (RPR) generates the next solution in the path by randomly selecting one
of the Swap moves in the trajectory. On the other hand, Greedy Path Relinking
(GPR) selects the best Swap movement available. In this work, a third variant is
proposed: Greedy Randomized Path Relinking (GRPR). In this strategy, RPR and
GPR strategies are mixed, in such a way that all possible intermediate solutions
are generated (as it occurs in GPR), but it selects one of the best solutions instead
of the best one, in a similar manner that GRASP does. Finally, a new PR strat-
egy, named Exterior Path Relinking (EPR) is presented. This version, originally
proposed in [135], tries to reduce the generation of short trajectories generated
by the classical approach by removing from the initial solution elements that are
present in the guiding one. By doing this, the initial solution is getting farther to
the guiding one in each iteration. This strategy ends when the initial solution does
not have any common component with the guiding one. It is important to remark
that solutions obtained by any of these methods are not necessarily a local opti-
mum with respect to the neighborhood under exploration, so the aforementioned
local search procedure is applied to the obtained solutions.

The computational experiments were performed over a set of 50 instances
extracted from Erdös-Renyi model. These graphs are built in a way in which each
new inserted node has the same probability of being connected to any existent node
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in the graph. The preliminary experiment is in charge of analysing the performance
of the proposed GRASP procedures and selecting the best variant, and do the same
for the different local search procedures and Path Relinking proposed versions.
The final experimentation analyses the contribution of the proposal by comparing
it with the state-of-the-art method found in the literature, an algorithm based
on Random Walks (RW). Table 5.1 shows the results comparing the average of
objective function value, the required computing time, the deviation percentage
when the best solution is not reached and the times that an algorithm finds the
best solution.

Algorithm Avg. Time (s) Dev. (%) #Best

GRASP 63.18 137.41 5.90 14
GRASP+PR 62.00 822.29 3.68 34

RW 71.78 1070.36 18.26 18

Table 5.1: Final comparison between GRASP, GRASP+PR, and the best previous
method found in the state of the art.

The main conclusion obtained from these results is that the followed ap-
proach, based on high-diversification, allows to find high-quality solutions in a low
computing time. In this work, the best version of the proposed algorithm is the
one that combines the Exterior Path Relinking with the Random Greedy version
of GRASP with an α value of 0.25. This approach is compared with the Ran-
dom Walks-based algorithm, clearly showing a superiority in terms of objective
function values and required computing times. These results are supported by a
non-parametric statistical test. Specifically, the pairwise Wilcoxon Signed Rank
Test has been performed, with a resulting p-value smaller than 0.001, indicating
that there exists statistically significant differences between the proposal and the
state-of-the-art algorithm, with a significance level of 95%. More specifically, the
proposal is able to reach 34 times the best solutions for the set of 50 instances,
having a low value of deviation with respect to the best value found when it is not
able to find it (3.68% of deviation in average).

5.2 Results on the Classical Community Detec-

tion Problem

The classical Community Detection Problem (CDP) is studied in [136] (Chap-
ter 3.3, Part II) using a GRASP approach. The proposed algorithm exploits the
diversification versatility provided by GRASP to reach high-quality solutions. To
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do this, in the constructive phase of grasp, an agglomerative approach is followed.
The algorithm starts by locating each node in a single community conformed by
itself. Then, the candidate list is generated with all the communities present in
the network. The RCL is built using the modularity as objective function, and
it is ordered in a decreasing order regarding to this value. Once the candidate
list and the restricted candidate list are built, a random community is selected
from the RCL. Then, the algorithm looks for the best community to be joint with
the first one. To decide what is the best community to be joint, a simulation of
the fusion of the candidate community with all the others is performed. Then,
the candidate community and the best one found are merged. If this movement
results in an improvement in the modularity, then the new community becomes
a new candidate and the current solution is updated. Otherwise, the candidate
community is removed from the candidate list, given that it cannot be merged
with other community without making worse the objective function. When there
is not more possible merge movements, the construction phase is over.

In the local improvement phase of the algorithm, a local search procedure
is proposed. In this procedure, the neighborhood that is explored is conformed
by all solutions that can be reached by performing a movement that removes one
node from its current community and inserts it in a new one. It is important to
remark that this movement could lead to make a community empty if all its nodes
are removed. In the same way, a new community could be generated if this move-
ment improves the modularity of the general solution. This situation causes that,
after the local search, a solution could contain a different number of communities
(greater or lower). In order to decide which node is going to be removed from its
corresponding solution, a heuristic criteria is applied. Concretely, the percentage
of intra-community edges with respect to the total number of edges in the graph
for each vertex is evaluated. Then, the algorithm selects the vertex with a lower
value of this metric, and it is moved to the community that maximizes the modu-
larity. The proposed local search follows a first improvement approach, restarting
the search when the first improvement of the neighborhood under exploration is
found, and stopping it when an improvement is found.

The computational experiments have been performed over a set of 100 in-
stances extracted from the Twitter SNAP dataset and from Network repository.
The experimental phase is divided in two different phases. The first one is devoted
to tuning the α value for the GRASP procedure. This experiment is performed
over a subset of 20 instances and it indicates that the selection of a random value
of alpha in each iteration of the algorithm results in the best configuration for the
algorithm.

The final experimentation has been carried out to compare the proposal
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with a set of well-known classical algorithms in the community detection area.
Concretely, it has been compared with Edge Betweenness (EB), Fast-Greedy (FG),
Label Propagation (LB), Multi-level (ML), Walktrap (WT), InfoMap (IM) and
Louvain (CL) algorithms. Table 5.2 shows the average modularity and conductance
values for each algorithm over the whole instance set. It is important to remark
that, in this work, the reported value is the opposite of conductance, evaluated as
1−Co(S,G), with the aim of having a direct comparison with modularity metric.

Modularity Conductance

Avg. #Best Avg. #Best

EB 0.20176 0 0.03363 7
FG 0.29441 3 0.44062 17
LP 0.15170 2 0.43734 6
ML 0.28843 2 0.43433 19
WT 0.26663 2 0.25224 7
IM 0.20611 2 0.37829 16
CL 0.31181 33 0.48002 9
GRASPAGG 0.31331 78 0.49483 37

Table 5.2: Comparison of the considered metrics over classical algorithms and the
proposal.

The first conclusion to be drawn is that the proposal, despite being the com-
bination of two simple heuristics, its powerful diversification and fast computation
allows obtaining high quality and very competent solutions with respect to classi-
cal community detection algorithms. Furthermore, the balance between greediness
and randomness in the constructive procedure, allows to the local search proce-
dure perform the intensification phase in a widely region of the solutions space,
obtaining good results thanks to the problem-based neighborhood definition.

The results are supported by non-parametric statistical tests. In particular,
the Friedman test and Wilcoxon test were performed. The Friedman test ranked
the compared algorithms from 1 (best algorithm) to n. The proposal and Louvain
algorithms obtained the first two positions in the rank. Both statistical tests
resulted in a p-value smaller than 0.00001, confirming that they are statistically
significant differences among the algorithms. These results have been published in
the Electronics JCR Journal, situated at third quartile (Q3) with an impact factor
of 1.764.
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5.3 Results on the multi-objective Community

Detection Problem

The community detection problem is tackled from a multi-objective point of view
in [137]. The full text can be found in Chapter 9, Part II. In this work, a Vari-
able Neighborhood Search methodology has been used. Specifically, a Basic VNS
(BVNS) algorithm has been implemented. Given that VNS framework was origi-
nally designed to solve single-objective optimization problems, it must be adapted
for the multi-objective scenario [138]. In this work, this adaptation is performed
by considering the non-dominated front of solutions instead of a single one as the
solution that must be returned by the algorithm. The BVNS algorithm runs until
the maximum neighborhood set as parameter is explored. In each iteration, the
shake, improvement and neighborhood change procedures are executed, updating
the non-dominated set of solutions.

Given that BVNS requires from an initial solution to work (i.e. a popu-
lated front of non-dominated solutions), it must be built in some way. For this
problem, this initial set is built following a GRASP procedure. In this work, only
the constructive phase of GRASP is taken into account. In this phase, the initial
solution is conformed by n communities, where n is the number of nodes in the
graph. The candidate list is built by assigning a greedy function value to each
community present in the solution. Then, communities are merged in pairs, by
randomly selecting an element from the RCL and merging it with the best existing
community in the incumbent solution. To select the best community to join with,
the selected greedy function corresponds to the ratio between intra-community
edges and the community edges (intra-cluster and inter-cluster) that would be if
two communities were merged. This methodology allows to generate a populated
non-dominated set of solutions. It is important to remark that not all built solu-
tions are included in the reference front, but only these that are non-dominated
ones.

Regarding at the shake procedure, in the proposal it consists of a movement
in which a single node is removed from its current community, inserting it in a
different one selected at random. Following this procedure, obtained solutions
will probably be worse than the original solution in terms of quality, but it is
important to remark that the main objective in shake procedures is to escape
from local optima. In this phase of the algorithm, what is sought is diversification
over intensification. Given the nature of the problem, it is not necessary to check
the feasibility of the resulting solution, because it is guaranteed that a single node
will be assigned to at least and only one community when the shake procedure
finishes.



Chapter 5. Joint discussion of results 62

With the aim of improving the quality of perturbed solutions, and, therefore,
focusing on the intensification of the solutions (i.e. trying to reach a local opti-
mum), a local search procedure is applied to any perturbed solution. In this work,
the improvement procedure takes a set of perturbed solutions as input and returns
a non-dominated front with all local optimum reached starting from the perturbed
set. Two different local improvement methods are studied in this work, both of
them following a first improvement approach. On the one hand, the first proposed
method improves each objective function under evaluation independently. On the
other hand, the second one tries to optimize both strategies simultaneously, con-
sidering alternatively one of them in each iteration of the procedure. Again, any
improved solution is tried to be included into the non-dominated front. The move-
ment that defines both local search procedures is the same: a node belonging to
a community is tried to be included into a different one. Then, the new solution
is tried to be added to the reference front. If it can be included, it means that it
dominates at least one solution that is present in the front, so an improvement has
been found. The procedure finishes when the reference front is not updated after
a complete execution of the local search.

Once a high-quality non-dominated set is generated, the neighborhood change
method is executed. In this work, this procedure has been adapted to suit the
multi-objective scenario. The main adaptation performed is the modification of
the improvement concept. In this context, an improvement is considered when the
non-dominated solutions front is updated. This update indicates that a solution
that dominates one present in the front has been found. Therefore, the algo-
rithm restart the search from the initial neighborhood if an improvement has been
performed. Otherwise, the next neighborhood is explored, until the maximum
neighborhood, set as an input parameter, is reached.

Regarding to the computational experiments, a set of 52 synthetic networks
and 12 real-world networks have been used. In this paper, two different kind of
metrics have been evaluated in order to test the robustness of the algorithm. On
the one hand, well-known multi-objective metrics have been studied. On the other
hand, the Normalized Mutual Information (NMI) and the modularity context-
based metrics have been taken into account. The experimentation have been di-
vided into an preliminary and final phases. The former is devoted to adjust the
parameters in the GRASP algorithm, the best configuration of the local improve-
ment method and the kmax parameter for the BVNS. The latter is performed to
compare the proposal against the best algorithm found in the state of the art. Ta-
ble 5.3 shows the comparison with respect to the multi-objective metrics. In this
table, it can be seen that the quality and computation time of the proposal over-
comes the best method found in the literature. In Table 5.4 the results regarding
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to context-based metrics are shown.

Algorithm CV HV EPS IGD+ T (s)
MOBVNS 0.07 0.14 0.86 0.22 214.64
LMOEA 0.36 0.02 0.27 0.21 1800.00

Table 5.3: Comparison of the reference front obtained with the best configuration
for MOBVNS and the LMOEA proposed by [1]. Best results are highlighted with
bold font.

LMOEA
Instance Avg. NMI Avg. Time (s) Best NMI Best Time (s)
dolphin 0.05 1800 0.069 1800
footbal 0.02 1800 0.033 1800
karate 0.1 1800 0.1 1800

MOBVNS
Instance Avg. NMI Avg. Time (s) Best NMI Best Time (s)
dolphin 0.751 0.41 0.77 0.11
footbal 0.864 1.8 0.877 0.27
karate 0.439 0.07 0.439 0.03

Table 5.4: Summary of the results of NMI metric obtained by the proposed MOB-
VNS and LMOEA when solving the real world instances.

It can be concluded that combining the GRASP constructive procedure with
the VNS framework is a powerful mechanism to solve multi-objective problems. It
is important to remark that the VNS framework requires to be adapted in order
to successfully manage the multi-objective scenario. More specifically, regarding
to the classical multi-objective metrics, it can be seen that MOBVNS proposal is
better in all of them, except in IGD+, where it is slightly higher than LMOEA.
Looking at the average computing time, the proposal takes approximately nine
times less time than the previous algorithm. Looking at real-time performance,
the proposal is able to reach higher values of NMI in four orders of magnitude less
time. These results have been published in Applied Soft Computing, a Q1 journal
in JCR with an impact factor of 6.725.
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5.4 Results on the Overlapping Community De-

tection Problem

This work is currently under review in Journal of Heuristics. Even the results are
still in process of being published, it is interesting to discuss the results obtained
from the research, as well as the conclusions extracted. In this work, an Iterated
Greedy metaheuristic is proposed to solve the CDP in its overlapping variant. To
generate the initial solution for the framework, a GRASP metaheuristic has been
applied. For the construction phase, an initial solution without communities is
generated. Then, the candidate list is built including all nodes in the network,
and the algorithm executes until all nodes have been assigned to, at least, one
community, i.e., until the CL gets empty. To give a score to the candidates and
construct the restricted candidate list, a greedy function is used. More specifically,
the PageRank metric is used. This metric was originally proposed with the aim of
evaluating the importance of a web page on the Internet, based on the links that
are referring to it in the whole network. This idea can be applied in the CDP, given
that a node that is connected to many others is a relevant node in the network and,
predictably, it will be a good candidate to start building a community. Then, a
candidate is randomly selected from the RCL and added to the community under
construction. To decide which nodes are going to be added to the same community,
a dynamic membership function algorithm is applied [139]. This method is a
good approach for the OCDP, given that a node can be included in different
communities if it satisfies the following membership criterion: a node is included
into a community if it improves the ratio between intra-community and inter-
community edges of the incumbent community. Those nodes that are included
into the community under construction are removed from the CL to avoid getting
them considered as starting points for a new community.

Once a solution has been built, the improvement phase of GRASP is applied.
In this work, the move operator that generates new solutions (that conforms the
neighborhood under exploration) consists in assign a node to a new community or
remove it from its currently assigned community. A node will be moved depending
on whether the subtraction between the number of edges towards a community
other than its own divided by its degree and the number of edges towards its
community divided by its degree is greater than a threshold defined as a parameter
of the algorithm. If it occurs, then the node is removed from its current community
and moved to the new one. If not, then the node is added to the new community,
producing the overlapping situation. In this proposal, a first improvement strategy
is followed with the aim of reducing the computing time of the algorithm. The local
search procedure ends when all solutions belonging to the current neighborhood
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are worse than the current one in terms of the objective function, i.e., when a local
optimum is found.

Once an initial solution has been constructed through GRASP, Iterated
Greedy metaheuristic framework is applied. In the destruction phase, a percent-
age of nodes of the solution are unassigned from the communities that they belong
to. This percentage is experimentally defined. To decide which nodes must be
removed from the solution, two different strategies has been followed. On the one
hand, a random destruction is performed. In this version of the destruction, the
nodes that will be removed from the current solution are randomly selected. On
the other hand, a greedy strategy is followed. Specifically, the nodes with a larger
ratio of inter-cluster edges with respect to their degree are removed from their
communities. Both of them result in an infeasible solution, given that some nodes
are not assigned to any community when the procedure ends.

To retrieve the feasibility of the destroyed solution, the reconstruction phase
is executed. To do this, the unassigned nodes must be re-assigned to, at least,
one community in the network. In this phase of the algorithm, nodes will be only
assigned to a single community. The decision of add a node to more than one com-
munity is responsibility of the local search procedure, that is going to be applied
after the reconstruction. To assign the nodes to a community, again, two different
strategies have been followed: re-assign the nodes to a random community and the
opposite strategy to that followed in the destruction phase, select the community
that maximizes the ratio of intra-cluster edges with respect to its degree as the
most suitable community for a node. Finally, the same local search procedure
applied in the improvement phase of GRASP is applied after the reconstruction
phase, with the aim of finding a local optimum in the solutions space region under
exploration.

Computational experiments have been performed to evaluate the quality of
the proposal. A set of 68 instances has been used. Preliminary experimentation is
devoted to adjust all the parameters of the algorithm: the α value of GRASP and
the percentage of destruction for Iterated Greedy. In addition, this experimenta-
tion is useful to select the best configuration for the construction and destruction
strategies. As a result of these experiments, the best configuration of the algo-
rithm is obtained. In the final experimentation, the algorithm is compared against
the best algorithm found in the literature. To evaluate the quality of solutions an
adapted version of modularity metric to the overlapping scenario has been used.
Table 5.5 shows the superiority of the proposal in a set of instances with different
size (n represents the number of nodes present in the network).

These results show that the proposal is, in average, a better option for the
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Iterated Greedy EADP
Avg. Dev (%) Time (s) #Best Avg. Dev (%) Time (s) #Best

0 ≤ n < 2500 0.319 3.399 5.501 13 0.216 34.855 0.507 2
2500 ≤ n < 5000 0.383 0.000 27.736 15 0.238 37.061 3.243 0
5000 ≤ n < 7500 0.377 0.000 48.293 18 0.236 37.102 10.781 0
7500 ≤ n ≤ 10000 0.377 0.000 87.124 9 0.234 37.171 36.943 0

Average 0.364 0.850 42.164 55 0.231 36.547 12.869 2

Table 5.5: Comparison of Iterated Greedy (IG) and EADP configured as stated in
[2].

evaluated networks. Although the computational time required by the EADP
algorithm is less than that required by the proposal, the solutions found by Iterated
Greedy outperform the previous algorithm. In addition, when Iterated Greedy is
not able to find the best solutions, it has a low percentage of deviation in average
(3.399% for the set of instances in which it is not able to find the best solution,
0.850% in average for the whole set of instances). The algorithm finds the best
solution a total of 55 instances, while the state-of-the-art method reaches the best
solution 2 times. Regarding at computing times, Iterated Greedy only takes an
average of 30 seconds more than EADP, so the improvement in the solutions quality
justifies the interest of the proposal.

The results derived from this research are currently under review in Journal
of Heuristics, a Q2 JCR journal with an impact factor of 2.247.

5.5 Results on the multi-objective Dynamic

Community Detection Problem

The paper that summarizes the research concerning this problem is under second
review in the Expert Systems With Applications journal. Nevertheless, it is inter-
esting to expose the strategies followed to solve it. In this work, a population-based
metaheuristic is adapted to solve the multi-objective Dynamic Community Detec-
tion problem: Scatter Search. This framework has been slightly modified with
the aim of facing the multi-objective nature of the problem that is being solved.
The main modifications have been performed in the improvement method, the
RefSet update method, and the Subset Generation Method. In the improvement
method, a solution is improved in two different ways, each one using as objective
function one of the optimization metrics of the problem: ICS (Inverted Com-
munity Score) and AVG ODF. The RefSet update procedure is modified in such
a way that two RefSets are maintained, one considering the ICS objective and
the other one considering AVG ODF. The subset generation method is adapted
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to reduce the number of pairs that are combined, by dividing the RefSet in four
different subsets: the one that contains high-quality solutions regarding to ICS,
the one that contains high-quality solutions regarding to AVG ODF, and the two
containing different solutions with respect to each of the objective functions. It is
important to remark that all generated solutions are tried to be included in the
non-dominated solutions set.

With the aim of populating the RefSet, high-quality solutions and diverse
solutions are generated and included in the set. In the context of MODCDP, the
distance between two solutions is calculated as the sum of nodes that are located
in different communities in the solutions under comparison. This is the metric
used to generate the diverse RefSet subsets.

In the Diverse Generation Method, a greedy randomized approach has been
followed. Based on the idea that finding a good community structure is a com-
putationally demanding task, an algorithm based in the McAllister work [140] is
applied. More specifically, a modified Breadth-First Search algorithm is applied.
The modification takes into account the McAllister function value associated to
each node in order to decide when the construction of the current community must
be stopped and a new one should be built. McAllister function is used because
it gives a priority to be joint to the current community to those nodes that have
more labeled neighbors, it is, more neighbors added to the community under con-
struction. This procedure ends when all nodes have been assigned to a community.

Once a diverse solutions set has been built, an improvement procedure is
executed with the aim of finding a local optimum with respect to a certain neigh-
borhood. A local search procedure is defined to reach this goal. The neighborhood
that will be explored is composed for all possible solutions that can be reached by
changing a node from its original community to a different one. To decide if a node
is a promising candidate to perform the movement, the number of intra-community
and inter-community edges is evaluated. If a node has more inter-community edges
than inter-community ones, it means that it could be assigned to a better commu-
nity. The destination community is selected by evaluating the number of adjacent
nodes that the removed nodes has in the community under evaluation. Performing
this movement, the quality of community structure will be improved, since a node
will always be reassigned to a community with more intra-cluster edges than it
had in its original assignment. A best improvement strategy has been followed
to traverse the aforementioned neighborhood, since the efficient way in which it
has been implemented allows a complete exploration of the neighborhood without
requiring a high computational time.

In the combination method, a Path Relinking approach is applied to each
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pair of solutions derived from the RefSet. More specifically, a solution belonging
to the high-quality subset of RefSet for one objective function is combined with
one that belongs to the diverse subset of RefSet for the same objective function.
This process is applied for both objective functions. To create a path between an
initial solution and a guiding solution, elements that are included in the guiding
one and that are not present in the initial solution, are added to the initial one.
In this work, a Random Path Relinking approach is followed, it is, the node whose
assigned community will be changed is randomly selected.

It is important to remark that there exists two different approaches to solve
the dynamic variant of the CDP. On the one hand, each solution can be generated
from scratch for each snapshot of the network. On the other hand, the solution
generated to one snapshot can be used as the starting point for the next one. In
this work, both approaches have been tested, emerging the second strategy as the
best one.

In the computational experimentation, both classical multi-objective metrics
and context-based metrics have been studied. Specifically, Coverage, Hypervol-
ume and Inverted Generational Distance + have been selected as multi-objective
metrics and modularity has been selected as context-based metric to evaluate the
quality of the solutions. A set of 69 synthetic and real-world instances has been
used to test the algorithms performance. The experimental phase has been di-
vided into two different set of experiments. The first one is devoted to select the
best strategy (start from scratch in each snapshot or take advantage of the so-
lution generated for the previous snapshot), and study the contribution of each
part of the algorithm to the final solution. In final experiments, the proposal is
compared against the best method found in the literature. Analyzing the results,
the proposal demonstrated to be better in both synthetic and real-world networks.
Table 5.6 shows the comparison between both algorithms regarding at the multi-
objective metrics in synthetic networks. As it is shown, Scatter Search proposal
demonstrates a superiority with respect to these metrics. More specifically, the
Scatter Search algorithm is able to reach the lowest possible values for the CV and
IGD+ metrics in all synthetic instances. Regarding to the HV, higher values than
Immigrants are reached for all the snapshots in all instances.

The same occurs for the real-world instances evaluated (Table 5.7). As it
can be seen, the Scatter Search based proposal obtains the best results in terms
of the CV metric and has a significant difference in average for the other two
multi-objective metrics studied.

Regarding at context-based metrics, the superiority of the proposal can be
also confirmed looking at the modularity values reported in Table 5.8 and Table 5.9.
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Snapshot
Scatter Search Repairing Immigrants MOGA

AVG. CV AVG. HV AVG. IGD+ AVG. CV AVG. HV AVG. IGD+

Snapshot 0 0.00 0.62 0.00 1.00 0.08 1.60
Snapshot 1 0.00 0.54 0.00 1.00 0.14 1.17
Snapshot 2 0.00 0.63 0.00 1.00 0.11 0.23
Snapshot 3 0.00 0.63 0.00 1.00 0.11 0.25
Snapshot 4 0.00 0.61 0.00 1.00 0.12 0.28
Snapshot 5 0.00 0.59 0.00 1.00 0.18 0.29
Snapshot 6 0.00 0.53 0.00 1.00 0.14 1.13
Snapshot 7 0.00 0.55 0.00 1.00 0.14 8.65
Snapshot 8 0.00 0.49 0.00 1.00 0.17 0.39
Snapshot 9 0.00 0.49 0.00 1.00 0.17 3.23

Table 5.6: Table comparing the obtained multi-objective metrics with Scatter
Search and Immigrants MOGA algorithms in synthetic networks.

Dataset
Scatter Search Repairing Immigrants MOGA

AVG. CV AVG. HV AVG. IGD+ AVG. CV AVG. HV AVG. IGD+

Travian Market 0.00 0.70 0.11 0.84 0.15 0.61
Travian Messages 0.00 0.62 0.27 0.33 0.13 0.31

Table 5.7: Table comparing the obtained multi-objective metrics with Scatter
Search and Immigrants MOGA algorithms in real-world networks.



Chapter 5. Joint discussion of results 70

More precisely, the Scatter Search algorithm obtains an average of modularity value
one magnitude order higher than MOGA proposal in all the snapshots of synthetic
instances. The same behavior can be seen in the real-world instances that have
been used in the experimental phase.

Snapshot
Scatter Search Repairing Immigrants MOGA

AVG. Mod AVG. Mod

Snapshot 0 0.3485 0.0242
Snapshot 1 0.4879 0.0177
Snapshot 2 0.5313 0.0167
Snapshot 3 0.5328 0.0191
Snapshot 4 0.5354 0.0168
Snapshot 5 0.5349 0.0136
Snapshot 6 0.5223 0.0116
Snapshot 7 0.5131 0.0045
Snapshot 8 0.4449 0.0090
Snapshot 9 0.3543 0.0678

Table 5.8: Table comparing the average modularity values obtained with Scatter
Search and Immigrants MOGA algorithms in synthetic networks.

Dataset
Scatter Search Repairing Immigrants MOGA

AVG. Mod AVG. Mod

Travian Market 0.0714 0.0065
Travian Messages 0.2179 0.0899

Table 5.9: Table comparing the average modularity values obtained with Scatter
Search and Immigrants MOGA algorithms in real-world networks.
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Chapter 6

Conclusions and future work

In this Chapter the conclusions derived from the performed research are presented.
The conclusions for each tackled variant of the problems are divided into sections.
Additionally, a section of future works is included.

6.1 Conclusions on the Alpha Separator Prob-

lem

The alpha separator problem has been studied as an starting point for the com-
munity detection problems. A GRASP based algorithm has been proposed to find
critical nodes in networks, being critical nodes those whose removal implies the
division of the network in n connected components with a restricted size (given as
parameter of the instance). In this work, the potential of GRASP coupled with
a Path Relinking combination strategy has been proven. Specially, regarding to
the computing time required by the algorithm to reach high-quality solutions, the
proposal emerged as the best method in the state of the art.

In particular, the main contribution of this work relies in the experimental
phase. Two different variants of GRASP using closeness metric as greedy func-
tion have been proposed: RandomGreedy and GreedyRandom, and the experiment
shown that RandomGreedy strategy is more suitable for this specific problem. In
addition, four different variants of Path Relinking have been proposed: Greedy
Randomized Path Relinking, Random Path Relinking, Greedy Path Relinking and
Exterior Path Relinking. The last one is the most novel approach, and also the
best one for solving the alpha separator problem.

One paper derived from this work has been published in a Q2 JCR journal,
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with an impact factor of 2.587 (JCR 2020): Finding weaknesses in networks using
Greedy Randomized Adaptive Search Procedure and Path Relinking [134], included
in Chapter 7 of Part II.

6.2 Conclusions on the classical Community De-

tection Problem

The main objective of the study of Community Detection Problem was to develop
a fast algorithm that demonstrates a better performance than classical algorithms
for community detection in networks. This goal was achieved with a GRASP
methodology, using the well-known modularity metric as objective function. This
metaheuristic has been proven to be a good starting point for solving commu-
nity detection problems, given its capacity to balance the diversification in the
construction phase and the intensification in the improvement phase, providing
high-quality solutions in low computing times.

In this work, two heuristic strategies have been proposed: the agglomerative
constructive procedure, that balances the greediness and the randomness of the
search, and the improvement procedure, where a problem-based neighborhood has
been successfully exploited to reach local optima.

The experimental phase allows to correctly adjust the GRASP α value, and
avoid to overfit the algorithm by selecting a subset of the whole instances set.
Additionally, the final experiment phase demonstrates that the objective of the
research has been accomplished, comparing the proposal with seven well-known
community detection algorithms.

The research on the CDP is presented in the paper named On the Analysis
of the Influence of the Evaluation Metric in Community Detection over Social
Networks [136], included in Chapter 8 of Part II. Specifically, this work is published
in Electronics journal, a Q3 JCR with an impact factor of 1.764 (JCR 2018).

6.3 Conclusions on the Multi-objective Commu-

nity Detection Problem

In this work a new metaheuristic method based on VNS for community detection is
presented. To solve it, VNS has been adapted to suit the multi-objective scenario,
considering a set of non-dominated solutions as a whole solution for the framework.
To generate the initial set of non-dominated solutions, a GRASP methodology
has been applied. This methodology has demonstrated to be a reliable and fast
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technique to produce initial solutions in the context of CDP. Using GRASP allows
the VNS framework to start the search from a promising region of the solution
space.

In this work, Ratio Cut and Negative Ratio Association have been defined as
objective function, trying to minimize both of them simultaneously. The evaluation
of the obtained fronts has been performed using classic multi-objective metrics, as
Coverage, Hypervolume, ϵ-indicator and Inverted Generational Distance +.

The experimentation has demonstrated that combining GRASP with VNS
results in high-quality solutions in a multi-objective context, and more specifically
in the MOCDP. The efficient implementation of the algorithm and the quality of
applied heuristics allows the algorithm to overcome the previous work.

The research on the MOCDP is exposed in the work named A fast variable
neighborhood search approach for multi-objective community detection [137], in-
cluded in Chapter 9 of Part II. More specifically, it is published in Applied Soft
Computing, a Q1 JCR journal with an impact factor of 8.623 (JCR 2021).

6.4 Conclusions on the Overlapping Community

Detection Problem

In this paper a new metaheuristic-method for overlapping community detection
problem is proposed. Specifically, the proposal hybridizes GRASP and Iterated
Greedy metaheuristics. The algorithm makes use of a modified version of the
classical modularity metric adapted to the overlapping scenario. One of the main
contributions of this work is the use of an intelligent move operator defined for
the local search procedure. It allows to improve the quality of the solutions gener-
ated by the GRASP procedure, that makes use of the PageRank metric as greedy
function. By using this local search procedure, the overlapping scenario is cov-
ered, generating solutions that allows having nodes assigned to more than one
community simultaneously.

Another contribution is the development of two different strategies for the
destruction and construction phases of Iterated Greedy, respectively, and their
combination. A random and a greedy strategies for the construction phase have
been proposed, as well as for the reconstruction phase. The experimental section
allowed to select the best version of the GRASP constructive procedure and the
best configuration for the local search. Also, the best combination of construction
and destruction phases strategies has been set. Results show that the proposal
provides a higher quality solutions than the state-of-the-art method, although
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requiring a slightly longer computation time.

This work has been sent for its review to Journal of Heuristics, an impact
journal indexed in the JCR (Journal Citation Reports), situated at the Q2 with
an impact factor of 2.247.

6.5 Conclusions on the multi-objective Dynamic

Community Detection Problem

In this work, a Scatter Search metaheuristic has been adapted to work in the
multi-objective context. Furthermore, the greedy randomized heuristic developed
allows to generate initial solutions for the Scatter Search framework in a fast way,
combining the potential of the well-known Breadth-First Search algorithm and
the fast calculation of the greedy McAllister function. Using this combination,
and modifying the Scatter Search scheme in such a way the reference set takes
into account all the objectives that are being optimized, high quality solutions are
reached in low computational times. In addition, the use of Path Relinking in its
random version to perform the combination method of the Scatter Search meta-
heuristic provides a greater diversification. This mechanism allows to populate
the non-dominated set of solutions, which derives in better results regarding to
the classical multi-objective metrics and the context-based metrics studied in this
work.

In the experimental phase, the contribution of each part of the algorithm is
demonstrated. Also, the proposal reports better solutions in terms of quality than
the best previous work found in the literature, giving the opportunity to researchers
and practitioners from different knowledge areas to obtain solutions with useful
and accurate information, even when the network is constantly evolving.

This work is a work in progress that will be sent to a journal indexed in JCR.

6.6 Future work

This Thesis has been focused on solving a well-known Social Network Analysis
problem: the Community Detection Problem. More specifically, it solves these
problems in a heuristic way. In future works, the combination of heuristic and exact
methodologies can be explored, applying math-heuristic algorithms to solve the
CDP. Also, exploring new objective functions to provide the heuristic algorithms
more accurate information about the problem that is being solved is a good future
line of research.
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From the obtained conclusions can be extracted the main idea that taking
into account the edges that are present in the network is one of the bullet points to
obtain high-quality results in community detection problems. In future research,
it would be interesting to exploit the social networks in such a way that allows to
associate information to the nodes, and not only to the edges. Using the informa-
tion related to an user in the network (and not only to their relations) could give
more reliable solutions, given that the knowledge about the network that is being
treated could be much greater.

Also, applying machine learning and deep learning techniques to solve the
community detection problems could be an interesting research line. Developing a
neural network that is able to generate high-quality solutions with an unsupervised
learning methodology is an interesting idea that can be studied in the future. In
this sense, a new good research line can be the study of the application of the Deep
Graph Library (DGL) [141], a very recent proposal that optimizes Graph Neural
Networks (GNNs) by translating its computational patterns into generalized sparse
tensor operations. Making a literature review, as far as we found, all related-
works to community detection problems that make use of DGL solve them in
a supervised learning based way. An interesting new research line is to solve
community detection problems with an unsupervised learning approach.

Finally, the study of the community detection problem has derived in the re-
search of problems that belong to different families, but that are interesting due to
their real-world applications and their predisposition to be solved by metaheuristic
algorithms due to their particular characteristics.
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Abstract

In recent years, the relevance of cybersecurity has been increasingly evident to

companies and institutions, as well as to final users. Because of that, it is important

to ensure the robustness of a network. With the aim of improving the security of the

network, it is desirable to find out which are the most critical nodes in order to pro-

tect them from external attackers. This work tackles this problem, named the

α-separator problem, from a heuristic perspective, proposing an algorithm based on

the Greedy Randomized Adaptive Search Procedure (GRASP). In particular, a novel

approach for the constructive procedure is proposed, where centrality metrics

derived from social network analysis are used as a greedy criterion. Furthermore, the

quality of the provided solutions is improved by means of a combination method

based on Path Relinking (PR). This work explores different variants of PR, also

adapting the most recent one, Exterior PR, for the problem under consideration. The

combination of GRASP + PR allows the algorithm to obtain high-quality solutions

within a reasonable computing time. The proposal is supported by a set of intensive

computational experiments that show the quality of the proposal, comparing it with

the most competitive algorithm found in the state of art.

K E YWORD S

critical nodes, GRASP, metaheuristic, Path Relinking, α-separator problem

1 | INTRODUCTION

In recent years, the words cyber-attack, information leakage, invasion of privacy, etc. have become increasingly common in the media. The

increase in the number of attacks on networks, as well as concerns about privacy on the Internet, have created the need for more secure, reliable

and robust networks. A cyber-attack on a company involving the leakage of personal information from its customers can cause significant eco-

nomic and social damage (Andersson et al., 2005). Moreover, Denial of Service and Distributed Denial of Service have become two of the most

widespread attacks as a successful attack can result, for example, in the deactivation of an Internet provider's service. On the other hand, if other

services depend in some way on the service under attack, a cascade down may occur, affecting a considerably high number of customers.

(Crucitti, Latora, & Marchiori, 2004).

It is important to identify which are the most important nodes in a network. This is a matter of concern to both actors: the attacker and the

defender. On the one hand, the former is interested in disabling these important nodes to make the network more vulnerable. On the other hand,

the second one will be interested in reinforcing the protection over these nodes, applying more robust security measures. Therefore, the identifi-

cation of the most critical/weakest nodes in the network is a key part of the network security system.

We define a network as a graph G = (V, E), where V is the set of vertices (jV j = n), and E is the set of edges (jE j = m). A vertex v ∈ V repre-

sents a network node, while an edge (u, v) ∈ E, with u, v ∈ V, indicates a connection or link in the network between nodes u and v. We define a
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network separator as the set of vertices S ⊆ V whose removal divides the network into p connected components, C1, C2, …, Cp, with p ≥ 2. It can

be trivially demonstrated that V∖S=[pi = 1 and Ci\Cj = ; with 1≤ i, j≤ p and i 6¼ j. Therefore, each subset Ci induces a subgraph Gi = {Vi, Ei} with Vi = Ci

and Ei = {(u, v)∈ E : u, v∈Ci}, which is disconnected from the remaining induced subgraphs.

This work focuses on the α-separator problem (α-SP), which consists of finding the minimum set of vertices S*, whose elimination separates

the network G into different connected components with fewer than dα � ne vertices in each component. It is worth mentioning that the number

of resultant connected components is not relevant to this problem. The actual constraint forces the number of vertices in each component to be

less than or equal to α � n, with α being an input network parameter. This problem is NP-hard for general topology networks when α≤2/3 values

are considered (Feige & Mahdian, 2006).

In Figure 1a, we show an example of a network with nine nodes and 10 links. Let us assume that α = 2/3. Then, the size of each resulting con-

nected component must not exceed dα � ne = 2/3 � 9 = 6 nodes. Figure 1b depicts a feasible solution S1 for the α-SP, with a separator conformed

with nodes B, C, E and I. If we remove the separator and the corresponding links, the network is divided into two connected components,

C1 = A,Df g and C2 = F,G,Hf g, with sizes 2 and 3, respectively. Then, the objective function value for this solution is equal to 4 (i.e. the size of the

separator). In Figure 1c, we represent a different solution S2 = A,Bf g. The removal of this separator (and the associated edges) produces three con-

nected components C1 = Ef g, C2 = Df g and C3 = C,G,H,I,Ff g that satisfy the size constraint (i.e. the size of each connected component is lower

than 6). Notice that S2 is better than the S1 as jS2 j < j S1j.
Special types of networks, such as those whose topology is a tree or a cycle, can be solved in polynomial time (Mohamed-Sidi, 2014). In that

work, an approximation algorithm is also presented, based on a greedy criterion, which provides an approach ratio of α � n + 1. Nevertheless, these

algorithms need to have a priori knowledge about the network topology, which is not usual in real-life problems. A different approach is described

in Wachs, Grothoff, and Thurimella (2012), where the authors present a heuristic algorithm to study the separators in Autonomous Systems1 of

Internet.

The α-SP is related with other well-known optimization problems. In particular, if α = 1/n, then it is equivalent to the minimum vertex cover

problem (Li, Hu, Zhang, & Yin, 2016. In addition, if α = 2/3, then it is analogous to the minimum dissociation set problem (see Yannakakis (1981) for

more node-deleting problems). The α-SP can be considered a generalization of these problems, which were also proven to be NP-hard in Garey

and Johnson (1979). A deep study on the complexity and some approximation results are presented in Ben-Ameur, Mohamed-Sidi, and

Neto (2015).

This problem has been mainly ignored from a heuristic point of view. In particular, the most competitive algorithm for solving the α-SP is

based on a Markov Chain Monte Carlo method hybridized with Random Walks Lee, Kwak, Lee, and Shroff (2017). Authors in that work show the

superiority of their proposal, comparing it with simple heuristics such as highest-degree-first and greedy procedures.

This paper is structured as follows. Section 2 proposes an algorithmic approach to solve this problem. Section 3 presents a post-processing

method based on the Path Relinking methodology. Section 4 tests the quality of the proposed algorithm, and finally, Section 5 exposes the con-

clusions obtained from this research.
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F IGURE 1 (a) Example graph derived from a network with nine nodes and ten connections between nodes, (b) a feasible solution with four
nodes in the separator (B,C,E and I) and (c) a better solution with two nodes in the separator (A and B)
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2 | GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start strategy that was originally proposed in Feo and Resende (1989), but it

was not formally defined until Feo, Resende, and Smith (1994). As a multi-start method, GRASP tries to avoid getting trapped in local optima by

restarting the search from a different starting point in the search space. This behaviour allows the algorithm to increase the diversification of the

search. This metaheuristic has been recently used successfully in several optimization problems (Duarte, Sánchez-Oro, Resende, Glover, & Martí,

2015; Quintana, Sánchez-Oro, & Duarte, 2016; Sánchez-Oro, Laguna, Martí, & Duarte, 2016).

Each GRASP iteration has two distinct phases: construction and improvement. The former is designed for constructing an initial high-quality

solution, while the objective of the latter is to improve the initial solution by means of a local optimization method (F. W. Glover & Kochenberger,

2006). On the one hand, constructive methods start from an empty solution and then iteratively adding elements to it. On the other hand, the

local optimizer considered for the second phase is a local search method, but GRASP is commonly hybridized with more complex search methods,

such as Tabu Search (F. Glover & Laguna, 1998) or Variable Neighbourhood Search (Hansen & Mladenovi�c, 2014), among others, which highlights

the versatility of GRASP methodology.

2.1 | Construction phase

The constructive procedure, named GreedyRandom, starts from an empty solution, and it iteratively adds nodes to the solution under construction

until it becomes feasible. With the aim of diversifying the search, the first node to be inserted into the separator (i.e. the solution in the context of

the α-SP) is randomly selected from V. Then, it is necessary to add vertices to it until the problem constraint is satisfied: the size of every con-

nected component in the network should be smaller than dα � ne. Algorithm 1 presents the pseudocode of the proposed method.

Algorithm 1 GreedyRandom(G, β)

1: v Random(V)

2: S {v}

3: CL V \ {v}

4: while not isFeasible(S) do

5: gmin minv ∈ CLg(v)

6: gmax maxv ∈ CLg(v)

7: μ gmax − β � (gmax − gmin)

8: RCL {v ∈ CL : g(v) ≥ μ}

9: v Random(RCL)

10: S S [ {v}

11: CL CL \ {v}

12: end while.

13: return S

The procedure starts by randomly choosing the first node that will be included in the solution (steps 1–2). The random selection of this first

node allows the procedure to increase the diversity of the solutions generated at the construction phase. Next, the candidate list CL is created

with all the nodes of the network except the initially chosen one (step 3). Then, the constructive method iteratively adds a new node to the solu-

tion until it satisfies the aforementioned problem constraints (steps 4–12). The is Feasible function is intended to check that the size of all the con-

nected components of the network is smaller than dα � ne.
The selection of the next element to be incorporated in the solution under construction is a key aspect in the design of effective GRASP

constructive methods. Considering the complexity of the proposed greedy function (based on the closeness centrality metric, Newman

(2008)), it will be thoroughly described in Section 2.2. For the sake of clarity, we now refer to this function as g. Steps 5 and 6 evaluate the

minimum and maximum value of the greedy function among all the candidates, respectively. These two values are used to calculate the μ

threshold (step 7) that is responsible for limiting the nodes that will be part of the restricted candidate list RCL (step 8). The threshold value

depends on a β parameter (with 0 ≤ β ≤ 1) that controls the randomness/greediness of the method. On the one hand, if β = 0, then μ = gmax,

and, therefore, only those vertices with the maximum value of the greedy function will be considered in the RCL, resulting in a totally greedy

method. On the other hand, if β = 1, then μ = gmin, allowing the selection of every node in the CL, becoming a totally random method.

Through this way, the higher the value of the β parameter, the more random the method is and vice versa. Section 4 will discuss how this

parameter affects the quality of the obtained solutions.
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This work additionally proposes an alternative constructive procedure, named RandomGreedy, where the greedy and random phases are swapped.

In the GreedyRandom variant, the RCL is created with the most promising elements of the CL (i.e. those whose greedy function value exceeds a certain

threshold), and then, it randomly selects the next element from the RCL. On the contrary, the RandomGreedy variant first constructs the RCL with a set

of β � j CLj elements randomly selected from the CL, and then, it chooses the element with the largest greedy function value among those included in

the RCL. The main difference between the GreedyRandom and RandomGreedy constructive procedure is the interchange between the greedy and random

phases of the constructive procedure. In addition, it is worthmentioning that RandomGreedy is presumably faster thanGreedyRandom as it does not require

the evaluation of the completeCL but it requires the evaluation of the elements included in theRCL (this hypothesis will be confirmed in Section 4).

2.2 | Greedy criterion

The selection of the next element to be incorporated in a partial solution in GRASP methodology depends on a greedy criterion. Specifically, for

each node v ∈ V, it is necessary to define a greedy function g(v), which evaluates the relevance of inserting it into the partial solution. In the con-

text of the α-SP problem, the greedy criterion should indicate how likely a node is to be critical.

This work presents a novel approach to identify whether a node is critical or not. In particular, it consists of using criteria derived from social

network analysis (SNA). Following this idea, the greedy criterion will consider the network a social network, identifying which nodes are relevant

in the network as if it were a SNA problem. In SNA, a node is considered relevant if it is responsible for maintaining a large number of users con-

nected through it Scott and Carrington (2011). Therefore, the analogy with the α-SP problem is straightforward: a node is important in the net-

work if its removal disconnects several devices from the network.

The literature of SNA offers a vast amount of metrics to evaluate the relevance of a user in a social network. However, it must be kept in

mind that the evaluation of most of them is rather computationally demanding. This is mainly because most of them, such as betweenness

(Brandes, 2001) or pagerank (Page, Brin, Motwani, and Winograd (1999)), need to know all the shortest paths between each pair of users in the

network. It is worth mentioning that the construction of all shortest paths between each pair of vertices is unapproachable for real problems.

Then, it is usually tackled by considering a fixed number of the shortest paths (Yen (1971)).

In this work, we will use the metric known as closeness (Newman (2008)), which considers that a vertex is important if it is close to several

nodes in the network. More formally, given a connected network G, the closeness value for a vertex is calculated as the inverse of the sum of the

lengths of the shortest paths between the analysed node and the remaining nodes in the graph. It should be noted that the evaluation of this met-

ric only requires the evaluation of the shortest path between each pair of vertices, so it is enough to make a breadth-first search (if the network is

not weighted) or to apply the Dijkstra algorithm (if the network is weighted). The idea that underlies this metric is that the more central a node is,

the closer to all the other nodes it is. Indeed, the larger the closeness value, the more relevant a node.

We need to adapt the general definition of closeness to the α-SP as this optimization problem deals with different connected components. It

becomes a problem because the distance between nodes in different connected components is evaluated as infinite. Then, we only evaluate dis-

tances from each node v in a specific connected component Ci (with 1 ≤ i ≤ p, with p being the number of connected components) to the

remaining nodes in Ci. Specifically, the closeness of a node v ∈ Ci, defined as C(v), is then evaluated as the inverse of the sum of the distances from

that node v to the other nodes in the same connected component. In mathematical terms,

C vð Þ= 1
P

u∈Ci

d v,uð Þ

where d(v, u) is the distance between nodes v and u, and Ci is the connected component to which both nodes belong. The distance between nodes

v and u considered in this work is evaluated as the length of the shortest path that connects u with v in the network.

2.3 | Improvement phase

Solutions generated in the construction phase described in Section 2.1 are constructed by a randomized procedure that controls its greediness

through a parameter β. For this reason, the solution constructed may not be a local optimum, and therefore, it can be further improved through

any local optimization method. This work proposes a local search procedure to improve those solutions.

Local search procedures are designed with the objective of finding the local optimum of a solution with respect to a predefined

neighbourhood. A neighbourhood can be defined as all the solutions that can be obtained from a single one by means of a single movement. Then,

prior to defining the neighbourhood, we must define the considered movement. We define the movement Move2x1(S, v, u, w) as the removal of

nodes v and u from the current solution (i.e. separator) and the insertion of node w into it. More formally,
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Move2x1 S,v,u,wð Þ= S∖ u,vf gð Þ[ wf g

Notice that this movement may lead to unfeasible solutions as the resulting one might not be a separator for the problem under consider-

ation. The proposed local search method will only consider those moves that result in a feasible solution, discarding those moves that produce

unfeasible solutions. In addition, it is worth mentioning that any feasible movement will result in an improvement as the size of the separator

would have been decreased in one unit.

Then, given a feasible solution S, its associated neighbourhood N2 × 1(S) is defined as all the solutions that can be generated by applying the

Move2x1 operator to solution S, with any of the available nodes. More formally,

N2×1 Sð Þ S0  Move2x1 S,v,u,wð Þ 8v,u∈S^8w∈V∖Sf g

The last step for defining a local search method consists of establishing the order in which the neighbourhood will be explored. Traditionally,

two methods for exploring the neighbourhood are considered: First Improvement and Best Improvement. The former performs the first improving

move found when the scanning the neighbourhood, while the latter requires the complete neighbourhood to be analysed, performing the move-

ment that leads to the best solution. This work only considers the First Improvement approach, mainly due to the following reasons. First, the First

Improvement strategy is usually less computationally demanding than Best Improvement because it does not explore the complete set of reachable

solutions in each step but performs the first improving move found. Furthermore, note that, given the defined neighbourhood, any movement that

leads to a feasible solution will produce a better solution in terms of the objective function value. Specifically, the new solution will outperform

the original one in one unit as the new separator will contain one node less than the original solution. Then, the Best Improvement approach is dis-

carded for this local search.

Finally, there is a need to indicate the order in which the neighbour solutions will be explored as, in the context of First Improvement, the order

of exploration may affect the quality of the resulting solutions. The local search proposed in this work randomly explores the neighbourhood to

increase the diversification of the search.

The local search method stops when no improvement is found after exploring the complete neighbourhood, returning the best solution found

during the search.

3 | PATH RELINKING

Path Relinking (PR) is a solution combination method originally proposed as a methodology to integrate intensification and diversification strate-

gies in the Tabu Search context (F. Glover, 1996). The PR behaviour is based on exploring the trajectories that connect high-quality solutions, with

the objective of generating intermediate solutions that can eventually be better than the original solutions used to build the trajectory. Laguna

and Martí (1999) adapted PR to the GRASP context with the aim of increasing the intensification of the search. The PR algorithm operates over a

set of solutions, called Elite Set (ES), that is usually ordered following a predefined descendent quality criterion of each solution. In this work, we

consider the value of the objective function of the solution as a quality criterion. In particular, the ES consists of the highest-quality solutions gen-

erated by the GRASP algorithm. This design is generally denominated static (F. Glover, Laguna, & Martí, 2000) because GRASP is first applied to

build the ES, and then, PR is applied to explore the trajectories between all pairs of solutions in the ES. On the contrary, the dynamic design con-

siders updating the ES each time a trajectory is explored.

A trajectory between an initial solution Si and a guiding one Sg is generated by iteratively including attributes or properties of the guiding

solution into the initial one. In the context of α-SP, we will include in the separator of the initial solution those nodes that are present in the

separator of the guiding one by interchanging them with those nodes that are in the initial solution but not in the guiding one. For this purpose,

we first need to define a new movement that removes from a separator S the node v and inserts node u into it, producing a new solution S
0  (S

\ {v}) [ {u}. For the sake of clarity, we named this move S
0  Swap(S, v, u).

Then, a trajectory between two solutions is created by iteratively performing Swap(Si, v, u) moves, where v ∈ Si \ Sg and u ∈ Sg \ Si until

Si becomes Sg. In each iteration, PR performs a swap movement that generates a new intermediate solution in the trajectory. It should be noted

that this movement produces, with high probability, an unfeasible solution (i.e. the intermediate solution is not a valid separator), so a repair oper-

ator must be applied to the intermediate solution to make it feasible. The proposed repair operator consists of adding random nodes to the sepa-

rator until the solution becomes feasible, thus increasing the diversification of the search.

Figure 2 shows a trajectory created between two solutions, Si = B,I,G,Hf g and Sg = A,B,C,Ff g , for the graph depicted in Figure 1a, but this

time considering α = 1/3. Then, the network must be disconnected in components of dα � ne = 1/3 �9 = 3 nodes at most. The illustration is divided

into three parts: path, which represents the actual path created between both solutions; repair, which considers those solutions of the path that

have been repaired in order to make them feasible; and clean, which includes solutions of the path that originally contained redundant nodes

(i.e. those that are not needed any more in the separator) where these redundant nodes have been removed. In this example, the initial solution is
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Si, while the guiding one is Sg, so the trajectory consists of creating a path of solutions from Si to Sg. In each step of the path, a new element

belonging to the separator of Sg will be included in Si, swapping it with an element included in Si that does not belong to Sg. Figure 2 shows the

nodes included in the separators of each solution, and the nodes in common with Sg have been highlighted in grey.

The first solution in the path, S1, is generated by performing the move Swap Si,I,Gð Þ, thus removing node I from the separator and replacing

it with G. Notice that the resulting solution S1 is not feasible as the graph is divided into components C1
1 = Ef g and C1

2 = A,D,C,If g, so jC1
2 j >3, vio-

lating the problem constraint. Then, S1 must be repaired by inserting new nodes into the solution until it becomes feasible. Inserting node A into

the separator generates solution S2, which is a feasible solution. After repairing a solution, we may have introduced redundant nodes in the sepa-

rator that are not required anymore. Therefore, we scan the separator in order to remove those nodes that are not required to maintain the feasi-

bility of the solution. In this case, nodes B, F, G and H are removed from the solution, generating solution S3, which is feasible. In addition, the

number of nodes in S3 is 2, being the best solution found in the path so far.

Once reaching a feasible solution, the path continues with the original unfeasible one, which is S1. The next solution, S4, is generated from

the move Swap S1,G,Cð Þ, which is already a feasible solution, disconnecting the network into C4
1 = Ef g, C4

2 = Gf g and C4
3 = A,D,If g, all of them with

a number of nodes lesser than or equal to 3. This move may produce a solution with redundant nodes again. In this case, node F is not necessary

anymore in the solution, so we remove it to generate S5, obtaining a better solution than S4.

The last movement, Swap S4,H,Að Þ, leads us to reaching Sg, concluding the trajectory between Si and Sg. At this point, the algorithm returns the

best solution found in the trajectory, which is S3, as it only contains two nodes in the separator. This new solution achieves an improvement of

two nodes with respect to the solutions considered to be endpoints of the trajectory.

The choice of the next Swap movement to be performed in each iteration results in two different PR strategies. On the one hand, Greedy PR

(GPR) selects, in each iteration, the best Swap movement available. In particular, it generates all the possible solutions that can be generated in the

current trajectory, also applying the repair operator. Then, the trajectory continues through the best intermediate solution. On the other hand,

Random PR (RPR) generates the next solution of the trajectory by randomly selecting one of the available Swap moves in the path. Notice that

GPR is focused on intensification, sacrificing computational time, while RPR aims for diversification, resulting in the fastest strategy as it does not

require a complete analysis of the available Swap moves to be performed.

In this work, we propose a third variant that mixes the GPR and RPR, named Greedy Randomized PR (GRPR). This new strategy generates all

the possible intermediate solutions as in GPR, but instead of selecting the best one, it selects one of the most promising ones, following the same

strategy than the GRASP constructive stage. We consider a parameter σ ∈ [0, 1] (equivalent to β in GRASP), which is able to establish a trade-off

between greediness and randomness of the strategy. This strategy allows us to create a path focused on intensification but escaping from local

optima derived from choosing a totally greedy variant, balancing the diversification and intensification of the search. Notice that evaluating all

possible paths between solutions can eventually lead to the evaluation of a large number of intermediate solutions. The number of intermediate

solutions is limited by the number of different critical nodes in the solutions considered to construct the path. However, high-quality solutions

share a reasonable percentage of critical nodes, so the number of different critical nodes in two high-quality solutions is small, thus leading to a

small number of intermediate solutions in the path between them. This behaviour allows the algorithm to evaluate all possible paths between two

solutions.

B F G H A

B C HA G

B I G H B F G H B C F H A B C F

Path

Repair

Clean

F IGURE 2 Example of a trajectory created between solutions Si = B,I,G,Hf g and Sg = A,B,C,Ff g, considering α = 1/3
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The intermediate solutions generated during trajectory exploration are not necessarily locally optimal with respect to any neighbourhood,

even more considering the repair operator. Therefore, the local search method described in Section 2.3 is applied to the best solution found in

the path to further improve its quality.

This work considers that all the constructed solutions are included in the ES (avoiding repeated solutions). Hence, PR is applied to every pair

of different solutions generated in the constructive and improvement phases of the algorithm.

Finally, a new PR strategy, named Exterior PR, is presented. The aforementioned variants (GPR, RPR and GRPR) are focused on constructing a

path that connects two solutions. However, if the solutions considered for the path are very similar, then the trajectory will be short, which is not

interesting in the PR methodology. The Exterior PR (EPR) variant was originally proposed by Duarte et al. (2015) with the aim of exploring trajecto-

ries that go beyond the considered solutions. In particular, starting from the initial (Si) and guiding (Sg) solutions, EPR tries to generate, in each iter-

ation, a solution obtained by removing from the initial solution those elements that are already present in the guiding one. Therefore, the main

idea of EPR is not getting closer to the guiding solution but getting further from it. Hence, this strategy is totally focused on the diversification of

the search, trying to generate intermediate solutions that are rather different from the two endpoints of the path. EPR ends when the initial solu-

tion becomes completely different to the guiding one (i.e. Si \ Sg = ;), returning the best solution found in the path. Again, the local search method

is applied to the best intermediate solution in order to obtain a local optimum.

4 | COMPUTATIONAL RESULTS

This section has two main objectives: 1) find the best values for the parameters of the proposed algorithm and 2) compare the selected variant

with the best previous method found in the state of the art. All the algorithms have been developed in Java 9, and the experiments have been

conducted in an Intel Core 2 Duo 2.66 GHz with 4GB of RAM computer.

It is important to remark that the instance set used in the best previous method is not publicly available, and we have not received a response

from the previous authors regarding this issue. Notwithstanding, the instance set used in this experimentation has been generated using the same

graph generator proposed by the best previous work (Lee et al., 2017). Specifically, graphs are generated using the Erdös Rényi model (Erdös &

Rényi, 1960), in which each new inserted node has the same probability of being connected to any existent node in the graph. A set of

50 instances (25 with 100 vertices and 25 with 200 vertices) with different density (from 200 to 500 edges) has been generated. Each instance

has been tested considering α = {0.2, 0.4, 0.6}. In order to facilitate future comparisons, the instances can be requested by email to the authors.

Experimentation is divided into two different parts: preliminary experimentation and final experimentation. The former is designed to adjust

the parameters for the algorithms and select the best version of them, while the latter has the aim of confirming the quality of the proposal by

comparing it with the best previous method found in the state of the art. It is worth mentioning that the preliminary experimentation will consider

a representative subset of 20 of 50 instances to avoid overfitting.

All the experiments report the following metrics: Avg., the average objective function value; Time (s), the average computing time measured in

seconds; Dev. (%), the average deviation with respect to the best solution found in the experiment; and #Best, the number of times the algorithm

reaches that best solution.

The first preliminary experiment is designed for analysing the performance of the proposed constructive procedures and selecting the best

variant. In particular, this experiment analyses the effect of the β parameter in both constructive procedures presented in Section 2.1. The behav-

iour of the constructive procedure isolated is not a faithful representation of its adequacy to the problem. This is mainly because certain variants

may produce worse quality solutions that are a better starting point for the local improvement method. Therefore, the experiments designed to

select the best constructive procedure consists of generating 10 different solutions, improving them with the local search presented in

Section 2.3. Considering the value for the β parameter, we have tested β = {0.25, 0.50, 0.75, RND}, where RND indicates that a random value is

selected in each independent construction. Table 1 shows the results obtained by the GreedyRandom constructive procedure.

As it can be derived from these results, increasing the value of β worsens the quality of the solutions obtained, which is reflected in all the

considered metrics. This result suggests that the best solutions are reached when reducing the randomness in the constructive procedure.

TABLE 1 Results for the constructive
procedure GreedyRandom when coupled
with the local search method

Algorithm Avg. Time (s) Dev. (%) #Best

GreedyRandom (0.25) 68.35 16.69 1.16 11

GreedyRandom (0.50) 68.95 16.92 2.33 7

GreedyRandom (0.75) 71.35 18.30 6.69 1

GreedyRandom (RND) 68.70 17.61 2.10 10

Note: The number between parenthesis indicates the value of β.
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Therefore, we select β = 0.25 for the GreedyRandom procedure. Analysing the computing time, we can clearly see that the differences among the

considered variants are negligible.

We perform an equivalent experiment for the second proposed constructive method. Specifically, Table 2 shows the corresponding results

when considering the RandomGreedy procedure.

These results confirm the hypothesis, suggesting that the lower the randomness of the constructive procedure, the better the results. Again,

selecting β = 0.25 leads the constructive procedure to obtain the best solutions in all the considered metrics: a larger number of best solutions

found while maintaining the smallest deviation with respect to the best solution when it is not reached. Therefore, we again select β = 0.25 for

the RandomGreedy variant. Once again, the computing time required by each algorithm is rather similar.

To conclude with the constructive procedure selection, we directly compare the results obtained with the best GreedyRandom variant with those

obtained by the best RandomGreedy variant. Table 3 shows the comparison between GreedyRandom and RandomGreedywhen considering α = 0.25.

Analysing the results obtained, the RandomGreedy variant is clearly better than the GreedyRandom procedure. In particular, it is able to reach a

larger number of best solutions (13 versus 15), with a deviation of just 0.77%, while GreedyRandom obtains 3.27%. These results suggest that

RandomGreedy is able to reach most of the best solutions, and in those cases in which it does not reach the best solution, it remains close to the

best solution in terms of quality. In this case, the computing time required by the RandomGreedy variant is also smaller as it does the evaluation of

all the candidate nodes to be included in the solution under construction is not precise.

Furthermore, we can confirm the hypothesis stated in Section 2.1, which indicates that RandomGreedy should be faster than GreedyRandom

as it does not require the complete evaluation of the CL. Analysing the results presented in Tables 1, 2 and 3, we can clearly see that

RandomGreedy is consistently faster than GreedyRandom in all their variants. As a result, we select RandomGreedy with β = 0.25 as the constructive

procedure for the remainder of the paper.

The next experiment aims to analyse the behaviour of the local search when varying the portion of the search space explored. It is well known

that an exhaustive search is rather time consuming, thus affecting the efficiency of the complete algorithm. In order to avoid this, we will now

analyse two factors, objective function value and computing time, when considering a reduction of the search space explored by the local search

method. In order to do so, we test the efficacy and efficiency when exploring a percentage δ of the available movements inside local search. Spe-

cifically, we test δ = {0.10, 0.20, …, 0.90}, with delta being the percentage of nodes considered to be evaluated with the Move2x1 operator,

defined in Section 2.3. It is expected that small values of δ will result in shorter computing times, but it might deteriorate the quality of the solu-

tions found. Figure 3 shows the comparison between quality and computing time when considering different values for the δ parameter.

As can be derived from the results, the search is consistently improving the results without considerably increasing the computing time until

reaching δ = 0.6. At that point, the deviation decreases rather slowly (from approximately 4% until reaching 0.5%), while the computing time is

rather larger (from about 150 seconds to more than 500 seconds). Hence, considering values larger than δ = 0.6 is not recommended for the local

search method. The remaining experiment will then consider δ = 0.6.

Once the best constructive and local search methods have been identified, the next step consists of selecting the best PR variant to be con-

sidered. In particular, we propose four different variants: GPR, RPR, GRPR and EPR. Among all the variants, GRPR is the only one with a parame-

ter, σ, that must be adjusted, controlling the balance between intensification and diversification in the combination. Therefore, the next

preliminary experiment is devoted to selecting the best value for the σ parameter. In particular, we have tested σ = {0.25, 0.50, 0.75, RND} as in

the previous experiments. We have generated and improved 10 different solutions with the selected constructive and local search methods and

then combined each pair of solutions with the corresponding combination method. Table 4 shows the results derived from this experiment.

Although there are no significant differences in the obtained results, selecting a random value of σ in each iteration reaches slightly better

solutions, and the computing time is not drastically affected. Therefore, we select σ = RND for the remaining experiments. Having selected the

TABLE 2 Results for the constructive
procedure RandomGreedy when coupled
with the local search method

Algorithm Avg. Time (s) Dev. (%) #Best

RandomGreedy (0.25) 67.65 14.75 1.24 11

RandomGreedy (0.50) 67.90 15.46 2.10 8

RandomGreedy (0.75) 68.15 14.82 2.54 3

RandomGreedy (RND) 67.85 14.84 2.25 6

Note: The number between parenthesis indicates the value of β.

TABLE 3 Comparison between best GreedyRandom and RandomGreedy constructive procedures

Algorithm Avg. Time (s) Dev. (%) #Best

GreedyRandom (α = 0.25) 68.35 16.69 3.27 13

RandomGreedy (α = 0.25) 67.65 14.75 0.77 15

8 of 12 PÉREZ-PELÓ ET AL.



best GRPR variant, we now perform a comparison among all the PR variants with the aim of selecting the best one for the final experiment.

Table 5 shows the comparison among RPR, GPR, GRPR and EPR.

As can be derived from the presented results, the values obtained by the different variants are rather similar. In particular, each variant is able

to obtain 13 of 20 best solutions in similar computing times. We then select EPR as the best variant as it presents the smallest deviation (0.85%),

although it is closely followed by GRPR (0.89%). The superiority of EPR can be partially justified as it is totally focused on the diversification of

the search. If we analyse the constructive and local search methods, we can clearly see that they are mainly focused on the intensification part of

the search, so the combination with EPR generates an adequate balance between diversification and intensification. Regarding the computing

time, although EPR presents a slightly larger computing time, the quality of the solutions obtained makes up for it. Then, we select EPR as the best

PR variant for the α-SP.

The final experiment selects the best variant and compares it with the best previous method found in the state of the art. In particular, the

proposed GRASP with PR (GRASP+PR) algorithm considers the following components:

• Constructive Procedure: RandomGreedy(0.25)

• Local Search: δ = 0.6

• PR: EPR

F IGURE 3 Analysis of the average deviation and computing time of each variant of the local search procedure

TABLE 4 Adjustment of the σ

parameter in the Greedy Randomized
Path Relinking algorithm

Algorithm Avg. Time (s) Dev. (%) #Best

GRPR (0.25) 61.40 825.10 0.53 16

GRPR (0.50) 61.45 837.83 0.59 15

GRPR (0.75) 61.45 833.52 0.59 15

GRPR (RND) 61.25 835.42 0.49 16

Note: The number between parenthesis indicates the value of σ.

Abbreviations: GRPR, Greedy Randomized Path Relinking.

TABLE 5 Comparison among the
proposed Path Relinking variants

Algorithm Avg. Time (s) Dev. (%) #best

GRPR (RND) 61.25 835.42 0.89 13

RPR 61.25 838.58 0.91 13

GPR 61.25 839.07 0.96 13

EPR 61.20 845.52 0.85 13

Abbreviations: EPR, Exterior Path Relinking; GPR, Greedy Path Relinking; GRPR, Greedy Randomized

Path Relinking; RPR, Random Path Relinking.
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As far as we know, the best previous algorithm for the α-SP is a Random Walk algorithm (RW) based on a Metropolis chain (Lee et al., 2017).

Unfortunately, neither the original source code nor the original instances are available, so we have carefully re-implemented the original algorithm

following the detailed descriptions given in the original work. It is important to remark that this experiment considers the complete set of

50 instances. In addition to GRASP+PR, we have also included in this final comparison the results obtained by GRASP (without applying the PR

algorithm) as, in some scenarios, it is more important to provide a fast solution of average quality than to spend several seconds trying to refine

the best solution found. Table 6 shows the results obtained in the comparison.

Regarding these results, the proposed algorithm, GRASP+PR, is able to reach a larger number of best solutions than RW (34 vs 18). Further-

more, the average deviation with respect to the best solution found is considerably small in GRASP+PR, indicating that, in those cases in which it

is not able to reach the best solution, it remains rather close to it. On the contrary, the deviation of RW is 18.26%, which means that it is not close

to the best solution found by GRASP+PR. Analysing the computing time, we can see that GRASP+PR is 1.30 times faster than RW, being more

adequate for real scenarios. Finally, RW is able to disconnect the network by removing, on average, 71.78 nodes, while GRASP+PR can disconnect

it by removing just 62.00 nodes on average, which also confirms the quality of the proposal.

In order to confirm that there are statistically significant differences between the compared algorithms, thus confirming the superiority of the

proposal, we perform the pairwise Wilcoxon Signed Rank Test. The resulting p-value of .001 indicates that there are statistically significant differ-

ences between GRASP+PR and RW with a significance level of 95%. Therefore, GRASP+PR emerges as the best algorithm in the state of the art

for the α-SP.

As has been mentioned throughout the manuscript, computing time is a key factor in the context of α-SP. In order to analyse this relevant

issue, we conducted an additional experiment to compare the computing time required by both, the proposed algorithm, GRASP+PR, and the best

method identified in the literature, RW. Figure 4 shows the computing time required by each algorithm in every single instance considered in the

experimentation. As we can see, GRASP+PR is clearly faster than RW. However, an average computing time of approximately 800 seconds may

not be enough in some real-case scenarios.

In view of the results obtained, we can conclude that GRASP+PR and RW require equivalent computing times when facing large instances

(n ≥ 200), although GRASP+PR is considerably faster in small and medium instances (n < 200). Therefore, if a fast solution is needed in special

applications, we do recommend considering GRASP without applying PR, which is able to obtain a slightly larger deviation than GRASP+PR (5.90

TABLE 6 Final comparison between
GRASP, GRASP + PR and the best
previous method found in the state of
the art

Algorithm Avg. Time (s) Dev. (%) #best

GRASP 63.18 137.41 5.90 14

GRASP + PR 62.00 822.29 3.68 34

RW 71.78 1070.36 18.26 18

Abbreviations: GRASP, Greedy Randomized Adaptive Search Procedure; PR, Path Relinking; RW,

Random Walk algorithm.

F IGURE 4 Comparison of computing time for each one of the considered instances
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vs 3.68%) but requires an eighth of the time (137.41 s) needed by GRASP+PR or RW (822.29 s and 1070.36 s, respectively). Furthermore, ana-

lysing the graph, we can see that GRASP scales better with the size of the instance.

5 | CONCLUSIONS

In this work, an algorithm based on GRASP has been presented for the detection of critical points in networks, particularly a constructive proce-

dure that leverages features derived from SNA, coupled with an improvement strategy for reaching local optima. In addition, the generated solu-

tions are combined by using PR to improve their quality. We perform a thorough experimentation for adjusting the parameters of the algorithm

and show the merit of each proposed strategy. Finally, the best variant is compared with the best algorithm found in the state of the art. As can

be derived from the experiments, the proposed algorithm is able to solve the α-SP, being 1.30 faster than the previous method, obtaining clearly

better results, which are supported by non-parametric statistical tests. The proposed algorithm emerges as the best method in the state of the art,

being able to obtain high-quality solutions in short computing times with GRASP and improve them later with PR in those situations in which time

is not critical.
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Abstract: Community detection in social networks is becoming one of the key tasks in social network
analysis, since it helps with analyzing groups of users with similar interests. As a consequence,
it is possible to detect radicalism or even reduce the size of the data to be analyzed, among
other applications. This paper presents a metaheuristic approach based on Greedy Randomized
Adaptive Search Procedure (GRASP) methodology for detecting communities in social networks.
The community detection problem is modeled as an optimization problem, where the objective
function to be optimized is the modularity of the network, a well-known metric in this scientific field.
The results obtained outperform classical methods of community detection over a set of real-life
instances with respect to the quality of the communities detected.

Keywords: social network; community detection; metaheuristic; optimization; GRASP

1. Introduction

The evolution of social networks in the last few decades has aroused the interest of scientists
from different and diverse areas, from psychology to computer sciences. Millions of people constantly
share all their personal and professional information in several social networks [1]. Furthermore, social
networks have become one of the most used information sources, mainly due to their ability to provide
the user with real-time content. Social networks are not only a new way of communication, but also
a powerful tool that can be used to gather information related to relevant questions. For instance,
which is the favourite political party for the next elections?, what are the most commented on movies
in the last year?, which is the best rated restaurant in a certain area?, etc.

Extracting relevant information from social networks is a matter of interest mainly due to the
huge amount of potential data available. However, traditional network analysis techniques are
becoming obsolete because of the exponential growth of the social networks, in terms of the number of
active users.

The analysis of social networks has become one of the most popular and challenging tasks in data
science [2]. One of the most tackled problems in social networks is the analysis of the relevance of
the users in a given social network [3]. The relevance of a user is commonly related to the number of
followers or friends that the user has in a certain social network. However, this concept can be extended
since a user may be relevant not only if he/she is connected with a large number of users, but also with
users that are relevant too. Several metrics have been proposed for analyzing the relevance of a user in
a social network, with PageRank emerging as one of the most used [4]. Furthermore, it is interesting
to know in advance which users will be the most relevant ones before they become influential [5].
Finally, in the field of marketing analysis, there is special interest in generating the profile of a user
given a set of tweets written by that user [6].

Electronics 2019, 8, 23; doi:10.3390/electronics8010023 www.mdpi.com/journal/electronics
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Evaluating the relevance of a user has evolved into a more complex problem that consists
of detecting specific users (often named influencers) with certain personal attributes that can be
personal (credibility or enthusiasm) or related to their social networks (connectivity or centrality).
These attributes allow them to influence a large number of users either directly or indirectly [7].

Another important problem regarding the influence of people in other users is the analysis of
sentiments in social networks. It is focused on finding out what people think about a certain topic by
analyzing the information they post in social networks. We refer the reader to [8] to find a complete
survey on sentiment analysis techniques.

The previously described problems deal with only individual users. Nevertheless, some problems
also exist related to the structure of the network, devoted to finding specific attributes and properties
that can help to infer additional information of the whole social network. In this context, community
detection emerges as one of the most studied problems.

Most of the social networks present a common feature named community structure [9].
Networks with this property have the capacity to be divided into groups in such a way that the
connections among users in the same group are dense, while connections among users in different
groups are sparse. Connections among users can represent different features depending on the social
network and the user profile, i.e., from professional relationships to friendships or hobbies in common.
Community detection tasks are devoted to finding and analyzing these groups in order to better
understand and visualize the structure of network and the relationships among their users.

Performing community detection algorithms over current social networks requires a huge
computational effort mainly due to their continuous growth. Furthermore, since these networks
are constantly changing (new friendships, mentions to users, viral information, etc.), it is interesting
to perform the community detection in the shortest possible computing time, producing real-time
information. These features make traditional exact methods not suitable for the current size of social
networks, requiring heuristic algorithms in order to accelerate the process without losing quality.
Recent works have tackled the community detection problem from a non-exact perspective in order to
generate high quality solutions in short computing time [10]. Several studies are devoted to reducing
the computational effort for detecting communities in social networks [11,12]. When comparing
traditional algorithms over modern large social networks, it can be seen that some of the algorithms
require more than 40,000 s for networks with approximately 10,000 nodes, and they are not able to
provide a solution after 24 h computing for networks with more than 50,000 nodes.

The growth of social networks complicates their representation and understanding. The communities
of a social network usually summarize the whole network but reduce its size and, therefore, makes it
easier to analyze. In addition, detecting communities in social networks has several practical applications.
Recommendation systems leverage the data of similar users in order to suggest content that can be
interesting for them. In order to find similar users in a network, we can simply perform a community
detection over the network [13], improving the results of the recommendation system. Communities in
social networks also identify people with similar interests, allowing us to evaluate the popularity of
a political party [14], or even to detect radicalism in social networks [15].

Although several community detection algorithms exist that have been proposed with the aim
of identifying similar users in networks, most of the available algorithms have been designed for
optimizing a specific objective function, it being hard to be adapted to a different one (see Section 3
for a detailed description of the considered algorithms). However, the continuous evolution of this
area results in a continuous proposal of new metrics that better evaluates the community structure of
a given network. This work presents an efficient and versatile algorithm that can be easily adapted
to different optimization metrics. To the best of our knowledge, this is the first algorithm based on
classical metaheuristics for detecting communities in social networks. The success of this proposal
opens a new research line for modeling social network problems as optimization problems, with the
aim of applying metaheuristics for solving them.
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The main contributions of this work are itemized as follows:

• A new solution representation for the community detection problem is presented.
• A new constructive procedure for generating partitions based on the Greedy Randomized

Adaptive Search Procedure (GRASP) is introduced.
• The local search proposed is able to handle not only the change of community of certain

nodes, but also the creation and elimination of communities, increasing the portion of search
space explored.

• A classical metaheuristic algorithm, GRASP, is adapted to be competitive in social network analysis.
• The proposed algorithm is highly scalable, being easily adapted to be executed in distributed systems.
• A thorough comparison with the most used methods in community detection is provided,

analyzing the advantages and disadvantages of each one of them.
• A comparison between two of the most extended metrics is presented, one of them for

optimization and the other for evaluation. Furthermore, the evaluation of the metric used for
optimization is also performed, with the aim of testing its suitability for the networks considered.

The remainder of the paper is structured as follows: Section 2 formally defines the problem
considered as well as the metrics proposed for the evaluation of solutions; Section 3 presents
a thorough description of the classical algorithms proposed for detecting communities in social
networks; Section 4 presents the new procedure proposed for detecting communities; Section 5
introduces the computational experiments performed to test the quality of the proposal; and finally
Section 6 draws some conclusions on the research.

2. Problem Statement

A social network is represented as a graph G = V, E, where the set of vertices V, with |V| = n,
represents the users of the network and the set of edges E, with |E| = m, represents relations between
users belonging to the network. An edge (v1, v2) ∈ E, with v1, v2 ∈ V can represent different types of
relations depending on the social network under consideration. For example, on Twitter, a relation
represents that a user follows/is followed by another user, or if there has been some interaction
(comment, like, share, etc.) between users, while, on LinkedIn, it represents a professional relationship.

This work is focused on the Community Detection Problem (CDP), which involves grouping users
of a social network into communities. A desirable community in a social network is densely connected
to the nodes in the same community and sparsely connected (or even unconnected) to nodes in other
communities. Therefore, the main objective is to obtain groups or communities of users that are similar
and, at the same time, different to the users in other communities with respect to a certain criterion.

A solution for the CDP is represented by a set of decision variables S, with |S| = n, where Sv = j
indicates that vertex v is assigned to community j in solution S. Therefore, the community for each
vertex v ∈ V is represented by the corresponding decision variable Sv. It is worth mentioning that the
number of communities is not predefined in advance. Therefore, a solution where all users are assigned
to the same community is feasible. Similarly, a solution where each user is assigned to a different
community is also valid.

Figure 1a shows an example graph with 19 vertices and 31 edges derived from a social network.
In this example, an edge represents a friendship relationship between two users; for instance, users
A and B are friends, while users A and C are not friends, but they have a friend in common, which
is vertex D.
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Figure 1. (a) example of a graph derived from a social network and (b) a possible solution for the
community detection (each community is represented with a different color).

Figure 1b shows a possible solution S for the community detection problem, where each
community is represented with a different color. Notice that, in this example, the number of
communities is 4. For the sake of completeness, we report in Table 1 the community to which
each vertex has been assigned. For example, vertex A belongs to community 1 (SA = 1), vertex C to
community 2 (SC = 2), and so on).

Table 1. Community assigned to each vertex in the solution depicted in Figure 1b.

A B C D E F G H I J K L M N O P Q R S

1 1 2 1 1 1 1 2 3 3 3 3 4 3 3 3 4 2 4

The CDP then consists in finding a solution S? that maximizes a certain objective function value,
denoted as f . In mathematical terms,

S? ← arg max
S∈S

f (S),

where S is the set of all possible solutions for a given social network.
There exists a large variety of quality metrics that can be used as objective functions for finding

high quality solutions. Most of the metrics are focused on maximizing the density of intra-community
edges (those connecting vertices of the same community) while minimizing inter-community edges
(those connecting vertices in different communities).

Notice that the metric considered for optimization is not required from the ground truth since we
are dealing with an unsupervised clustering problem [16]. However, some metrics used for evaluating
the quality of an algorithm assume that the optimal partition (ground truth) is known beforehand,
considering that an algorithm is better if it minimizes the distance from the generated partition to the
optimal one. One example of such a metric is the Omega-Index (see [10] for further details). In this
work, we consider an alternative approach where the optimal partition is not known.

In this research, we evaluate two metrics that have traditionally been used for optimizing the
quality of a solution for the CDP: conductance and modularity [17]. The conductance metric is
normalized in the range 0–1, while modularity can take on negative values, ranging from −1/2 to
1. For both metrics, the largest value indicates the value of the optimal partition, while random
assignment of users to communities is expected to produce values close to the smallest value.
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Notice that, in some cases, it is not possible to reach the optimal score due to the internal structure of
the network.

The first metric considered in this paper is known as conductance [18]. Given a network G,
a solution S = {S1, S2, . . . , Sn}, and a specific community k, its conductance, Cn(k, S, G), is defined as
the number of edges that connect vertices of different communities divided by the minimum between
the number of edges with, at least, an endpoint in the community and the number of edges without an
endpoint in the community. More formally,

Cn(k, S, G) =
|(v, u) ∈ E : Sv = k ∧ Su 6= k|

min{|(v, u) ∈ E : Sv = k ∨ Su = k|, |(v, u) ∈ E : Sv 6= k ∧ Su 6= k|} .

Then, the conductance of a complete solution Cn(S, G) is evaluated as the average conductance
for all the communities in the graph. In mathematical terms,

Cn(S, G) =
kmax

∑
k=1

Cn(k, S, G),

where kmax is the number of communities in the incumbent solution S, i.e., kmax = max{S1, S2, . . . , Sn}.
Let us illustrate the computation of this metric with the example depicted in Figure 1b.

The conductance of community 2 is evaluated as follows:

Cn(k, S, G) =
|(C, D), (H, G), (H, I)|

min{|(C, D), (C, H), (H, G), (H, I), (R, H)|, |E\(C, D), (C, H), (H, G), (H, I), (R, H)|}

=
3

min{5, 26} =
3
5
= 0.6.

Similarly, the conductance of the remaining communities (1, 3, and 4) are Cn(1, S, G) = 0.15,
Cn(3, S, G) = 0.21, and Cn(4, S, G) = 0.5, respectively. Therefore, Cn(S, G) = 0.22.

In order to have a direct comparison with other metrics, it is usually reported the opposite of
the conductance evaluated as Cn(G) = 1− Cn(G). In the aforementioned example, this value is then
Cn(G) = 0.78. Then, the objective is to maximize this value to produce high quality solutions.

The second metric is the modularity [19] that evaluates, for each edge connecting vertices in the
same community, the probability of the existence of that edge in a random graph. The modularity of
a community k over a solution S for a network G is defined as follows:

Md(k, S, G) = (ejj − a2
j ),

ekk =
|{(v, u) ∈ E : Sv = Su = k}|

|E| ,

ak =
|{(v, u) ∈ E : Sv = k}|

|E| ,

where kmax is the number of communities in the solution, ekk is the percentage of intra-community
edges (with respect to the whole set of edges) in the community k, and ak is the percentage of edges
with at least one endpoint in k. Then, the modularity of the complete solution S is formally defined as:

Md(S, G) =
kmax

∑
k=1

Md(k, S, G).
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Let us illustrate how we can compute this metric for the example depicted in Figure 1b.
Specifically, the modularity of community 2 is evaluated as:

e22 =
|(C, H), (H, R)|

|E| =
2
31

,

a2 =
|(C, D), (H, G), (H, I)|

|E| =
3

31
,

Md(2, S, G) = e22 − a2
2 =

2
31
−
(

3
31

)2
= 0.06.

Similarly, the modularity of the remaining communities (1, 3, and 4) are Md(1, S, G) = 0.35,
Md(3, S, G) = 0.34, and Md(4, S, G) = 0.06, respectively. Then, the modularity of the complete solution
depicted in Figure 1b is Md(S, G) = 0.75.

The main disadvantage of modularity metric is its resolution metric. As stated in [20], optimizing
modularity may lead the algorithm to miss substructures of the network, thus ignoring the detection
of some sub-communities. This behavior does not depend on a particular network structure, but on
the ratio between intra-community relations versus the total number of relations in the network.

The majority of the traditional algorithms for community detection considers this metric as the
one to be optimized in order to find high-quality partitions in communities, since it does not fall in
trivial solutions (i.e., those with a single community for all the network, or those with a different
community for each node of the network), being a robust metric to be considered for optimization.

3. Algorithms for Community Detection

Several algorithms have been proposed for detecting communities in social networks
(see, for instance, [9,21,22]). Community detection algorithms can be classified into two different
classes: agglomerative or divisive. On the one hand, agglomerative methods start from a solution
where each vertex is located in a different community and try to optimize a given objective function
by joining two or more communities at each step. On the other hand, divisive methods start from
a solution with all the vertices located in a single community, and the objective function is optimized
by dividing one or more communities in each step.

Most of the algorithms are not exact procedures, since in most of the networks it is not feasible to
find the optimal solution in a reasonable time, mainly due to the number of users in the network [19,23].
This section is devoted to describing the most used algorithms in the state of the art for the CDP,
in order to have a framework of comparison for the algorithm presented in this work.

3.1. Edge-Betwenness (EB)

The idea of the Edge-Betweenness algorithm [9] relies on identifying those vertices that appear
in the majority of the paths in the graph. Specifically, authors define the betweenness of an edge as
the number of shortest paths between pairs of vertices that contains the edge under evaluation.
Therefore, groups or communities are generated by removing the edge with the largest edge
betweenness value in each step. This algorithm has a computational complexity of O(m2n).

3.2. Fast-Greedy (FG)

The Fast-Greedy algorithm [21] is focused on optimizing the modularity of the solutions generated.
This agglomerative method starts from a solution where each vertex is located in a different community
and iteratively joins the two communities that produce the solution with maximum modularity value.
The optimization and data structures presented in the original work reduces the computational
complexity of the algorithm to O(n ·m · log n).
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3.3. Infomap (IM)

The Infomap algorithm [22] proposed a fast stochastic and recursive search method which is
based on joining neighbor vertices into the same community. The method starts with each vertex
located in a different community. Then, it randomly selects a vertex and assigns it to the community
that minimizes the map equation, presented in the original work [22], which is an efficient estimation
of the optimality of a certain partition. Then, the method creates a new network where the new
vertices are the communities detected until now. The algorithm stops when no changes are produced
in the communities.

3.4. Label Propagation (LP)

The Label Propagation algorithm [24] initially assigns a different label to each vertex of the graph.
Then, in each iteration, the algorithm modifies the label of each vertex depending on the label assigned
to its adjacent vertices. Specifically, a vertex receives the most common label in all its neighbors,
stopping when no changes are produced in the labels of the graph. At the end of the process, the label
of a vertex identifies the community to which that vertex belongs to. It is worth mentioning that this
algorithm does not consider any quality metric, since the optimization is performed with respect to
the labels of the neighbors of each vertex. The main advantage of this algorithm is its computational
complexity of O(n + m).

3.5. Multi-Level (ML)

The Multi-Level algorithm [11] is designed for detecting communities in large networks focused
on optimizing the modularity of the solution. The algorithm consists of two well-differenced phases.
The first phase starts by assigning each vertex to a different community. In each step, the method
evaluates, for each vertex v, the profit of merging it in the community of each adjacent vertex in terms
of modularity. Then, vertex v is inserted in the community that produces the maximum profit, only if
the profit is positive, stopping when no improvement can be found. The second phase is based on
creating a new network where each node represents a community, where the weights of the edges
identifies the sum of the weights of the edges between nodes in the corresponding communities.
Then, the first phase is applied again to this new network. The two phases are iteratively applied until
no changes are performed in the communities detected. The main advantage of this algorithm relies
on the efficient evaluation of the profit in terms of modularity, resulting in a linear complexity when
the number of vertices is similar to the number of edges. However, if the graph is fully connected,
the algorithm presents a complexity of O(n2).

3.6. Spinglass (SG)

The Spinglass algorithm [25] is inspired by statistical physics, in particular in the Potts model.
The algorithm simulates that each vertex of the graph is a particle that can have any of the spin states.
Additionally, the edges represent the interactions between particles, which influence the vertices
in changing their spin state or not. Then, the method simulates the model a predefined number
of iterations. Finally, the spin state of each particle identifies the community of each vertex. It is
a computationally demanding algorithm mainly due to the simulation and it is not deterministic.

3.7. Walktrap (WT)

The Walktrap algorithm [12] relies on the idea that random walks over a graph usually get caught
in the most densely connected parts, which are often the communities of the graph. Then, authors
define a distance that can be evaluated efficiently. This distance is then used in a hierarchical clustering
algorithm that iteratively merges vertices into communities, creating a dendogram of the community
structure of the graph. The complexity of the method is O(mnH), H being the height of the dendogram.
The worst case corresponds to a dendogram of height n, resulting in a complexity of O(mn2), which
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corresponds to very dense graphs. However, real-life social networks are usually sparse, and when H
is small and the dendogram is balanced, the complexity is reduced to O(n2 log n).

3.8. Louvain (CL)

The Louvain algorithm [11] proposed a method divided into two phases: the first phase considers
that each node is initially a community in a network. Then, it joins communities looking for the
modularity metric optimization, and stops when a local maximum of modularity is reached. In the
second phase, the algorithm builds a new graph with the communities obtained from the first phase,
restarting with the first phase. According to [11], this method has a complexity of O(n).

3.9. Evaluation of the Previous Methods

This section is devoted to evaluating the results obtained by the previously described methods
over an example graph that presents community structure [26] to provide an illustrative example.
Figure 2 depicts the graphical results over the community detection in the graph, where each
community is represented with a different color.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2. Comparison of the community detection of the described algorithms over a example graph
with 50 nodes that presents community structure. (a) edge-betweenness; (b) fast-greedy; (c) label
propagation; (d) Multi-Level; (e) Spinglass; (f) Walktrap; (g) Infomap; (h) Louvain.
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As can be seen, the results are different for each algorithm. Additionally, Table 2 presents the
results obtained by each considered algorithm over the example graph depicted in Figure 2, considering
the two metrics described in Section 2 and the number of communities found.

Table 2. Evaluation of the solution generated by each algorithm over the example graph using the
three considered metrics.

Algorithm Modularity Conductance Number of Communities

EB 0.5245 0.5248 6
FG 0.5284 0.5306 6
LP 0.3596 0.4571 4
ML 0.5158 0.5191 6
SG 0.5257 0.5009 7
WT 0.4927 0.5260 6
IM 0.5231 0.4732 8
CL 0.5158 0.5191 6

First of all, we will analyze the modularity metric, since it is the most used metric in community
detection optimization and, furthermore, it is the metric to be optimized in the current research.
The best modularity value is obtained with the Fast-Greedy algorithm (0.5284), closely followed by
Spinglass (0.5257), Edge Betweenness (0.5245) and Infomap (0.5231).

Analyzing the conductance value, the three considered algorithms present the same behavior as
with modularity: Fast-Greedy is the best approach (0.5306), but now followed by Walktrap (0.5260)
and then Edge Betweenness (0.5248). Notice that the differences among algorithms considering
conductance are larger.

Finally, analyzing the number of communities detected, five out of the eight algorithms detect
six communities, which seem to be the actual number of communities in the social network. The largest
number of communities, 8, is found with the Infomap algorithm. These results suggests that artificially
increasing the number of communities does not lead to better results.

4. Greedy Randomized Adaptive Search Procedure

Metaheuristics comprehend a set of approximate algorithms designed for solving hard
combinatorial optimization problems for which traditional heuristic methods are not effective.
These algorithms provide a general framework for creating new hybrid algorithms with concepts
derived from artificial intelligence, biological evolution and statistical mechanisms [27].

Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic originally presented
in [28] and formally defined in [29]. We refer the reader to [30] for a recent survey on this methodology.
This metaheuristic can be divided into two main phases: solution construction and local improvement.

The first phase iteratively adds elements to an initially empty solution until it becomes feasible.
The first element is usually selected at random, acting as a seed for the procedure. The algorithm then
constructs a candidate list (CL) with all the elements that must be included in the solution. After that,
a Restricted Candidate List (RCL) is created with the most promising elements of the CL according to
a predefined greedy function. Then, in each iteration, an element is selected at random from the RCL
and added to the solution under construction, updating the CL and RCL in each step until reaching
a feasible solution.

The construction phase of the GRASP algorithm presents a random part devoted to increasing the
diversity of the solutions generated. In particular, in the previous description, the random part relies
on the random selection of the next element from the RCL. Therefore, most of the obtained solutions
are not local optimum and can be improved by means of a local optimizer. The second phase of the
GRASP algorithm is intended to find a local optimum of the solution generated, usually applying
a local search method, although it can be replaced with a more complex optimizer, like Tabu Search or
Variable Neighborhood Search, for instance [31–33].
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The algorithm presented in this section is able to optimize any of the metrics defined in Section 1.
However, heavily optimizing conductance usually leads to the trivial partition where all the vertices
are in the same community. Therefore, the proposed algorithm is focused on optimizing the modularity,
which has been traditionally considered as a good optimization metric.

Analyzing the related literature, most of the algorithms are designed for optimizing a specific
objective function value. However, the versatility of the proposed algorithm allows it to be easily
adapted to optimize either a new or a traditional metric, which converts it into a generic algorithm for
finding community structures for any optimization metric.

Furthermore, the algorithm is proposed as a framework for detecting communities. It is easy
to replace the constructive method or local search procedure proposed with a different one, or even
embed a more complex local optimizer, such as Tabu Search [34], or Variable Neighborhood Search [35],
among others.

4.1. Constructive Procedure

The constructive procedure designed for the community detection problem, named GRASPAGG
follows an agglomerative approach, where each element is initially located in a different
community. Then, GRASPAGG iteratively joins two of the most promising communities with the
objective of maximizing the modularity. Algorithm 1 shows the pseudocode of the GRASPAGG
constructive method.

Algorithm 1 GRASPAGG(G, α).

1: Sv ← v ∀v ∈ V
2: CL← {1, 2, . . . n}
3: while CL 6= ∅ do
4: gmin ← minj∈CL Md(S, G, j)
5: gmax ← maxj∈CL Md(S, G, j)
6: µ← gmin + α · (gmax − gmin)
7: RCL← {j ∈ CL : Md(S, G, j) ≥ µ}
8: j1 ← Random(RCL)
9: j2 ← IdentifyBestJoin(S, j1)

10: S′ ← Join(S, j1, j2)
11: if f (S′) > f (S) then
12: S← S′
13: CL← CL \ {j2}
14: else
15: CL← CL \ {j1}
16: end if
17: end while
18: return S

The method starts by assigning a different community to each node in the graph G (step 1),
creating the CL with every community in the solution S under construction (step 2). In other words,
at the beginning of the construction, there will be n nodes assigned to n different communities.
Then, the minimum (gmin) and maximum (gmax) values for the greedy function under evaluation are
calculated (steps 4 and 5). We propose as a greedy function the modularity value of each community
j. A threshold µ is evaluated (step 6) to construct the RCL with the most promising candidates in
CL (step 7). The next steps select the two communities that will be joined in the current iteration.
The first one, j1, is selected at random from the RCL (step 8). The second community j2 is the one that
maximizes the modularity of the resulting solution after joining communities j1 and j2 (step 9). If the
method has found an improvement in the modularity after joining both communities, a new iteration
is performed, updating the incumbent solution (step 12) and the candidate list (step 13); otherwise,
the community j1 is removed from the candidate list since any join involving j1 produces a worse
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solution. Finally, GRASPAGG stops when it is not possible to join two communities improving the
modularity, returning the best solution found.

4.2. Local Optimization

This section presents a local search procedure designed to find a local optimum for every solution
constructed in the previous phase. In order to define a local search method, we firstly need to define the
neighborhood in which the local optimum will be found. For this problem, we consider all the solutions
that can be reached from a given solution S by removing one node from its current community and
inserting it in a different one. Specifically, after performing the move Move(S, v, j), the vertex v will be
located at community j (i.e., Sv = j).The neighborhood N(S) is defined as:

N(S)← {Move(S, v, j) ∀v ∈ S : j 6= Sv}.

It is worth mentioning that the number of communities is not a priori defined for the problem.
Therefore, if v is the last vertex in the community j′, then community j′ will disappear after performing
the corresponding move. In the same line, the method also considers creating a new community for
vertex v if it improves the modularity. Thus, after performing the local search method, the number of
communities may have varied either increasing or decreasing.

The next step for defining the local search method is the selection of the vertex to be moved
to another community. For this purpose, we define a heuristic criteria based on the number of
intra-community edges of the vertex under evaluation with respect to the total number of edges in
the graph. Specifically, the local search method selects the vertex v with the smallest ratio r between
number of edges in the same community and the total number of incident edges to v. More formally,

r(v, S)← |(v, u) ∈ E : Sv = Su|
|E| ∀u, w ∈ V.

The local search method traverses all the nodes in the solution following an ascending order with
respect to the previously defined criterion. Each node is moved from its current community to the one
that maximizes the modularity among all the existing communities in the incumbent solution.

The proposed local search procedure follows a first improvement approach. In particular, given
a solution S, this strategy scans its neighborhood N(S) in search for the first solution S′ ∈ N(S)
such that f (S′) > f (S). The method stops when no improvement is found after exploring the
whole neighborhood.

4.3. Complexity Analysis

The complexity analysis of the proposed algorithm can be split into two different stages:
constructive and local improvement. Firstly, the complexity of the constructive procedure is analyzed.

The constructive procedure iterates until the candidate list is empty. One candidate is removed in
each iteration, either due to the joining of two communities or because the candidate cannot be joined.
Following a straightforward implementation, this method requires traversing all the nodes and all
the edges, resulting in a complexity of O(n ·m). However, we cache the degree of each node and its
adjacents in efficient data structures when reading the social network (since the degree of a node will
not change during the execution). Therefore, we reduce the complexity of generating the candidate
list to O(n). The method then iterates until no improvement in the modularity is found when joining
two clusters. In the worst case, it requires performing n− 1 iterations, resulting in a total complexity
of O(n2). However, we select in each iteration the community with the smallest modularity value,
finding improvements in the first iterations. Therefore, the complexity of this stage is O(log n), mainly
due to the cost of maintaining the communities sorted by modularity. Finally, the complexity of the
complete constructive procedure is O(n log n).
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The second stage corresponds to the local search procedure, where each node is considered to
be inserted in each community. Therefore, it presents a complexity of O(n · k), k being the number
of communities. However, it is worth mentioning that notation O() refers to the worst case, and it
is possible to optimize the search with the aim of avoiding the worst case. In particular, the local
search method evaluates each node v ∈ S following an ascending order (worst nodes first) with respect
to the ratio r(v, S) defined in Section 4.2. This ordering is a heuristic that minimizes the number of
movements performed before finding an improvement, since it is presumed that nodes with a small
ratio value are not located in the best community. Therefore, on average, the algorithm complexity
linearly grows with the problem size.

Analyzing the complexity of both stages, the resulting GRASP algorithm presents a global
complexity of O(n log n) plus the complexity of the local search, which is linear (in the average case)
with respect to the problem size, resulting in a final complexity of O(n log n) per iteration.

5. Computational Results

This section is devoted to analyzing the quality of the proposed algorithm when compared with
the most popular community detection algorithms presented in Section 3. Since most of the algorithms
are focused on optimizing the modularity, the evaluation of the quality must be performed over
a different metric. In this work, we consider the conductance with the aim of testing the robustness of
the methods when including one additional metric. We also consider the modularity value obtained
with each algorithm, although it should not be taken into account in the evaluation of the quality of
the community detection. However, we consider that it is interesting to analyze how far an algorithm
is able to optimize the detection considering the modularity value. The proposed algorithm has
been implemented in Java 8 and the experiments have been conducted in an Intel Core 2 Duo E7300
2.66 GHz with 4 GB RAM.

The instances used for the experiment have been extracted from the Twitter SNAP dataset [36] and
from Network repository [37]. Specifically, we have selected 100 instances with vertices ranging from
50 to 400 that represent the ego-network of several Twitter users (data is anonymized in the dataset,
and the ego user is not included in it) and other interactions between users from other networks.

The first experiment is devoted to tuning the α parameter of the GRASPAGG procedure.
This parameter controls the degree of randomness of the method: on the one hand, α = 0 results
in a totally random method, while α = 1 considers a completely greedy method. Therefore, it is
interesting to test values distributed in the range 0–1 to analyze whether the best results for the CDP
are obtained with a small or large percentage of randomness/greediness in the construction. In this
experiment, we have considered α = {0.25, 0.50, 0.75, RND}, where RND indicates that a random
value of α is selected for each construction. This experiment has been conducted over a subset of 20
representative instances in order to avoid overfitting.

Table 3 reports the results obtained with the different values of α. Specifically, two statistics are
considered: Avg., the average of the best modularity value obtained for each instance, and #Best,
the number of times that an algorithm matches that best solution. Notice that conductance is not
included in this preliminary experiment since it is performed for tuning the algorithm, and conductance
should be used only for evaluating its quality.

Table 3. Results obtained by the GRASPAGG algorithm considering different values for α parameter.

α Avg. Modularity #Best

0.25 0.31961 6
0.50 0.32019 5
0.75 0.32063 4

RND 0.32080 9
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Analyzing the results presented in Table 3, we can clearly see that α = RND is able to obtain the
largest number of best solutions (9 out of 20). However, the quality of the solutions provided when
it does not match the best solution is considerably worse than the other α values. If we now analyze
the average modularity value and the number of times that the algorithms reach the best solution,
we can conclude that a random value for α in each iteration obtains the best results, closely followed
by α = 0.75. Therefore, the final version of the algorithm is configured with α = RND.

Once the best α parameter for the proposed algorithm has been adjusted, it is necessary to
compare its performance with the most used community detection algorithms found in the literature.
Specifically, we have included in the comparison the algorithms described in Section 3: Edge
Betweenness (EB), Fast-Greedy (FG), Label Propagation (LP), Multi-level (ML), Walktrap(WT), InfoMap
(IM) and Louvain (CL). Table 4 shows the aforementioned comparison.

Table 4. Comparison of the considered metrics over all the algorithms presented in Section 3 and the
proposed GRASPAGG method.

Algorithm
Modularity Conductance

Avg. #Best Avg. #Best

EB 0.20176 0 0.03363 7
FG 0.29441 3 0.44062 17
LP 0.15170 2 0.43734 6
ML 0.28843 2 0.43433 19
WT 0.26663 2 0.25224 7
IM 0.20611 2 0.37829 16
CL 0.31181 33 0.48002 9

GRASPAGG 0.31331 78 0.49483 37

Firstly, the analysis will be focused on the modularity value. In particular, GRASPAGG is able to
obtain a slightly better result than Louvain (0.31331 vs. 0.31181), which is the second best approach.
However, regarding the number of best solutions found, we can clearly see the superiority of our
proposal, doubling the number of best solutions found with the Louvain method. Then, the next best
algorithm is Fast-Greedy, achieving a total of three best solutions found. It is worth mentioning that
the remaining algorithms are far from the results with respect to modularity. This can be partially
explained since not all the algorithms are focused on optimizing modularity. Therefore, we need to
consider an additional metric to have a fair comparison.

The conductance metric should be the one considered for evaluating the performance of each
algorithm, since it is an objective metric that has not been used for any of the compared methods.
The results show that the trend continues but with more significant differences among methods.
Again, the best average conductance value is obtained by GRASPAGG (0.49483), and the second best
value is reached with the Louvain method (0.48002). However, the differences between both results
are larger, confirming the superiority of our proposal. Additionally, the GRASPAGG method is able
to reach 37 out of 100 instances, while Louvain only obtains nine. The third best algorithm is again
Fast-Greedy, with a conductance of 0.44062. Notice that, although the conductance of Louvain is better
than the one of Fast-Greedy, the latter is able to achieve a larger number of best solutions found (17 vs.
9). The same conclusions can be derived when analyzing Multi-level and Infomap algorithms.

Finally, we have conducted different statistical tests to validate the results reported in Table 4.
In particular, we have performed the Friedman non-parametric statistical test with all the individual
values obtained in the previous experiment to confirm whether there exist statistically significant
differences among the compared algorithms or not. The Friedman test ranks each algorithm according
to the conductance value obtained, giving rank 1 to the best algorithm, 2 to the second one, and so on.
The larger the differences in the average, the smaller the p-value will be. The average ranks values
obtained with this test are GRASPAGG (1.70), CL (2.47), LP (2.73), FG (2.88), ML (3.30), IM (4.12), WT
(5.04), and EB (5.74), resulting in a p-value smaller than 0.00001. Additionally, we have performed
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the Wilcoxon signed rank test for the best two algorithms (i.e., GRASPAGG and CL). The resulting
p-value smaller than 0.00001 confirms that there are statistically significant differences between both
algorithms, then supporting the quality of the proposed GRASP method.

6. Conclusions

This paper has proposed a new metaheuristic method for community detection in a social network
based on Greedy Randomized Adaptive Search Procedure methodology. The problem is addressed
by optimizing the modularity metric, which is a robust metric to evaluate the quality of a partition in
a social network.

The proposed algorithm is composed of two heuristic strategies. On the one hand, a constructive
procedure based on an agglomerative scheme is proposed, which tries to balance the randomness and
greediness of the search. On the other hand, an improvement procedure based on a problem-dependent
neighborhood definition is presented. The main advantage of this local search is not only to find the
best community for each node, but also to create and destroy communities in the incumbent solution.

The experiments firstly select the best value for the algorithm parameters and then compare
its results with the most used algorithms for community detection found in the literature.
The computational results show how GRASPAGG is able to obtain better results in both metrics
than the previous methods. Additionally, the statistical tests performed over the evaluation metric
support the quality of the proposed algorithm, emerging as a competitive algorithm for detecting
communities in social networks.
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33. Sánchez-Oro, J.; Mladenović, N.; Duarte, A. General Variable Neighborhood Search for computing graph
separators. Optim. Lett. 2017, 11, 1069–1089. [CrossRef]

34. Glover, F.; Laguna, M. Tabu Search; Kluwer Academic Publishers: Norwell, MA, USA, 1997.
35. Hansen, P.; Mladenović, N.; Todosijević, R.; Hanafi, S. Variable neighborhood search: Basics and variants.

EURO J. Comput. Optim. 2017, 5, 423–454. [CrossRef]



Electronics 2019, 8, 23 16 of 16

36. Yang, J.; Leskovec, J. Patterns of temporal variation in online media. In Proceedings of the Fourth
ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011;
pp. 177–186.

37. Rossi R.A.; Ahmed, N.K. An Interactive Data Repository with Visual Analytics. SIGKDD Explor. 2016,
17, 37–41.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).





Chapter 9. A fast variable neighborhood search approach for multi-objective
community detection 113

Chapter 9

A fast variable neighborhood
search approach for
multi-objective community
detection

The journal paper associated to this part is:
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a b s t r a c t

Community detection in social networks is becoming one of the key tasks in social network analysis,
since it helps analyzing groups of users with similar interests. This task is also useful in different areas,
such as biology (interactions of genes and proteins), psychology (diagnostic criteria), or criminology
(fraud detection). This paper presents a metaheuristic approach based on Variable Neighborhood
Search (VNS) which leverages the combination of quality and diversity of a constructive procedure
inspired in Greedy Randomized Adaptative Search Procedure (GRASP) for detecting communities
in social networks. In this work, the community detection problem is modeled as a bi-objective
optimization problem, where the two objective functions to be optimized are the Negative Ratio
Association (NRA) and Ratio Cut (RC), two objectives that have already been proven to be in conflict.
To evaluate the quality of the obtained solutions, we use the Normalized Mutual Information (NMI)
metric for the instances under evaluation whose optimal solution is known, and modularity for
those in which the optimal solution is unknown. Furthermore, we use metrics widely used in multi-
objective optimization community to evaluate solutions, such as coverage, ϵ-indicator, hypervolume,
and inverted generational distance. The obtained results outperform the state-of-the-art method for
community detection over a set of real-life instances in both, quality and computing time.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the growth and development of social net-
works has caused scientists from different areas of knowledge to
be interested in the study of their structure and its implications.
Users of social networks are increasing every day, which has
made them a very common source of data. Analyzing how the
users are related between them, or how the information that they
are sharing is intertwined, we can potentially obtain additional
information that can be useful for other interests. For example,
we can estimate the potential impact of a marketing campaign,
what the general opinion about a certain topic is, what the users
think about a company, a person or a service, etc.

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
∗ Corresponding author.

E-mail addresses: sergio.perez.pelo@urjc.es (S. Pérez-Peló),
jesus.sanchezoro@urjc.es (J. Sánchez-Oro), antonio.gpardo@urjc.es
(A. Gonzalez-Pardo), abraham.duarte@urjc.es (A. Duarte).

In addition, the growth of big data techniques and concepts
such as smart cities have led to the need for real-time analysis
of large amounts of information quickly and efficiently. However,
most of the traditional techniques are not adapted to deal with
vast amounts of data, becoming unsuitable for most of the current
challenges in social network analysis [1]. An efficient and effective
analysis of social networks can report a high amount of benefits,
so it is interesting to have a set of powerful algorithms that allow
us to perform that analysis.

Most of the networks represent complex models with a large
amount of data and interactions. The analysis of social networks
are able to evaluate properties such as small world [2] or scale
free [3], easing the understanding of those real-world networks.
There is a special property that attracts the gaze of the scientific
community, which is the community structure [4]. This property
is able to shed light over several problems of different research
areas: from social science to biological science, among others.
See [5] for a thorough survey on community detection.

This work proposes a Variable Neighborhood Search (VNS)
algorithm [6] for solving the Community Detection Problem (CDP)
from a multi-objective perspective, resulting in the Multi-
Objective Community Detection Problem (MOCDP). Every tradi-
tional objective function considered for the single-objective CDP
presents one or more drawbacks for modeling the community
structure of a given solution. In order to deal with this problem,
the model of CDP as a multi-objective optimization problem is

https://doi.org/10.1016/j.asoc.2021.107838
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becoming more relevant for the scientific community. Notice that
considering more than one objective at the same time, which may
complement among them, allows us to model the community
structure of a network more precisely.

Although VNS has been traditionally considered for single-
objective optimization, recent works have adapted the original
VNS framework for tackling multi-objective optimization prob-
lems, resulting in robust algorithms which are competitive with
the best methods in the literature [7,8].

The main contributions of this work are the following:

• An adaptation of the well-known VNS metaheuristic is pro-
posed for dealing with multi-objective optimization prob-
lems. It considers that a solution in the VNS framework is
the complete set of non-dominated solutions.
• The initial set of non-dominated solutions for the VNS is

generated using the constructive phase of Greedy Random-
ized Adaptive Search Procedure (GRASP). This feature allows
VNS to start the search from a set of diverse and high-quality
solutions.
• A new greedy function that can be efficiently computed

is proposed for the constructive procedure and for the lo-
cal search method, with the aim of guiding the search for
promising regions of the search space without requiring
large computing times.
• Two local search methods are presented: the first one,

Combined Search Procedure, follows the traditional multi-
objective local optimization methods. However, the Inde-
pendent Search Procedure is a new proposal which tries
to further improve the set of non-dominated solutions by
independently improving each considered objective.
• The quality of the proposal is analyzed through multi-

objective optimization perspective. As far as we know, pre-
vious works only consider the metrics related with so-
cial network analysis, but it is interesting to evaluate the
set of non-dominated solutions under multi-objective op-
timization metrics which are specifically designed to that
end.

The paper is structured as follows: Section 2 formally defines
the considered problem, as well as the metrics proposed for
the evaluation of solutions; Section 3 briefly reviews the most
relevant papers related with our research; Section 4 presents the
new Variable Neighborhood Search-based procedure proposed
for detecting communities and exposes how the initial solution
set is generated with a constructive procedure, as well as the
neighborhood structures considered within Variable Neighbor-
hood Search; Section 5 introduces the computational experiments
performed to test the quality of the proposal; and finally Section 6
draws some conclusions on the research.

2. Problem definition

A social network, conformed with a set of users and a set of
relations among them, can be modeled as a graph G = (V , E).
Users are represented by the set of nodes V , with |V | = n,
while relations among users are represented by the set of edges
E, with |E| = m. Notice that an edge (u, v) ∈ E indicates that
users u, v ∈ V are related in the social network. The kind of
relation between the users strictly depends on the purpose of
the social network (friendship, work, etc.). This paper considers
bidirectional relationships. Thus, if there is a relation (u, v), then
the relation (v, u) is also contemplated (i.e., G is an undirected
graph).

The aim of this work is to deal with the Community De-
tection Problem (CDP) following a multi-objective approach. A
community Ci ⊆ V inside a network G is defined as a set of

users and the relations that connect those users. In other words,
the community Ci is represented by the induced subgraph Gi =

(Ci, Ei), where Ei = {(u, v) ∈ E : u, v ∈ Ci}. The CDP then consists
in separating the complete social network into communities or
groups. Although there is not a formal definition for community
in the literature, the most widely accepted definition considers
that a community is a group of users that are closely related
to each other (i.e., share some properties/interests in the social
network).

In terms of graphs, a well-detected community is the one
whose nodes are densely connected among them and sparsely
connected to nodes which do not belong to the community.
Given a community Ci, the edges that connect nodes in the
same community are usually known as intra-community edges,
E◀(Ci), while those connecting nodes in different communities are
named as inter-community edges, E▶(Ci). In mathematical terms,

E◀(Ci) = {(u, v) ∈ E : u, v ∈ Ci}

E▶(Ci) = {(u, v) ∈ E : u ∈ Ci ∧ v /∈ Ci}

Following this definition, a community Ci in a social net-
work is well defined if it presents a large number of intra-
community edges E◀(Ci) and, at the same time, a small number
of inter-community ones E▶(Ci).

Given a social network, the CDP consists in assigning each user
to a single community. Each community is labeled with an integer
number i, with 1 ≤ i ≤ c ≤ n, being c the number of communities
detected. Depending on the problem under consideration, the
number of communities may be fixed or not [9]. In the CDP
variant tackled in this paper the number of communities is not
fixed a priori.

A solution C for the CDP is modeled as the set of communities
C = {C1, C2, . . . , Cc} of the network. Then, a solution for the CDP
is feasible when all the nodes have been assigned to a single
community, i.e.,

∑c
i=1 |Ci| = n and Ci ∩ Cj = ∅ for 1 ≤ i, j ≤ j

with i ≠ j.
Fig. 1(a) shows an example of a network with 12 nodes and

17 edges. Figs. 1(b) and 1(c) shows two feasible solutions C and
C′, respectively, for the CDP, where each node is colored with a
different color that corresponds to its community (1-green, 2-
red, 3-yellow, 4-blue). The first solution is represented as C =
{C1, C2, C3, C4}, where C1 = {A, B, D, F, G, K, L}, C2 = {J, I}, C3 =

{H}, C4 = {C, E}. Similarly, the second solution is defined as
C′ = {C ′1, C

′

2, C
′

3}, where C ′1 = {A, B, C, D, E}, C
′

2 = {J, K, L}, C
′

3 =

{F, G, H, I}.
Although solution depicted in Fig. 1(c) is clearly more visually

appearing than the one presented in Fig. 1(b), there is not a
common criterion to decide whether a solution presents a good
community detection or not. There are several widely accepted
metrics to evaluate the community structure of a solution. In
particular, modularity [10] is one of the most extended metrics,
and it has been used by several bioinspired algorithms [5,11] to
find high quality solutions. However, it has some disadvantages.
On the one hand, maximizing modularity is an NP-hard prob-
lem [12]. On the other hand, a large value of modularity does
not necessarily indicates that the communities detected are real-
istic since, in some cases, random networks without community
structure can present large modularity values [13]. Last but not
least, modularity has the well-known problem of resolution limi-
tation [14]. This problem refers to the fact that the maximization
of modularity is not able to reveal communities which are smaller
than a certain scale, depending on the network size and on the
degree of connections among real communities.

Most of the previous works are focused on the single-objective
variant of the CDP (see for instance [15,16]). However, it may be
interesting to consider more than one objective at the same time
since it could lead us to find new and more reliable communities
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Fig. 1. Example of two different solutions for the CDP over an example network.

in the networks. In a multi-objective optimization problem, two
or more objectives are in conflict with each other, which means
that improving one of the objectives usually leads to deteriorate
the other objectives. Therefore, there is not a single solution with
the optimal value in all the considered objectives. The main goal
in multi-objective programming is to find a set of non-dominated
solutions.

This work tackles the CDP from a multi-objective perspective,
resulting in the Multi-Objective Community Detection Problem
(MOCDP). In particular, two conflicting objectives are considered:
Negative Ratio Association (NRA) and Ratio Cut (RC). The former
measures the percentage of intra-community edges that exists
with respect to the size of the community, while the latter eval-
uates the percentage of inter-community edges in a community
with respect to its size. In mathematical terms, NRA and RC of a
cluster i are defined as:

NRA(Ci) = −
E◀(Ci)
|Ci|

RC(Ci) =
E▶(Ci)
|Ci|

Similarly, the NRA and RC of a complete solution C are defined
as:

NRA(C) =
∑
Ci∈C

NRA(Ci) RC(C) =
∑
Ci∈C

RC(Ci)

being c the number of communities in the corresponding solu-
tion.

Following these definitions, a solution with small NRA and RC
values presents a good community structure. These two metrics
were proven to be in conflict in [17]. Analyzing the objective
functions independently, optimizing only NRA usually results in
solutions with small communities which are densely connected,
while focusing only in RC leads us to obtain solutions with large
communities. Notice that, dealing with both metrics simultane-
ously, allows us to overcome the drawbacks of each metric when
considered independently. The MOCDP is focused on minimizing
both objectives, NRA and RC.

Let us illustrate how we can evaluate these two metrics by
considering the example introduced in Fig. 1. Specifically, for
solution C, we have:

NRA(C) = −
4
7
−

0
2
−

0
1
−

1
2
= −1.07

RC(C) =
11
7
+

6
2
+

2
1
+

5
2
= 9.07

Similarly, for solution C′:

NRA(C′) = −
7
5
−

3
3
−

4
4
= −3.4

RC(C′) =
2
5
+

2
3
+

2
4
= 1.57

As it can be derived from the equations, the best solution
with respect to both NRA and RC is C′, since it presents the
minimum values in both objective functions. Therefore, we can
also conclude that C′ dominates C.

3. Literature review

Community detection problems (CDP) have attracted the in-
terest of the scientific community in the last years, mainly due to
the relevance of the results derived from this research. It is possi-
ble to find relevant research works in the literature that describe
how community detection can be applied in real-world environ-
ments, thus finding an interesting utility for this area of research.
For example, some works use Community Detection techniques in
the area of cybersecurity, where the goal is to reduce the threats
over a certain cluster of actives using these techniques. As an
example, in [18] authors propose a modularity-based adaptive
algorithm applied to social-aware message forwarding strategy
in MANETs (Mobile Ad Hoc Networks) and worm propagation
containment in Online Social Networks. A different field in which
these algorithms could be useful is Business Intelligence and
Business Science, where certain topics can be modeled as a net-
work. For instance, in [19], we can find an application in business
science in terms of topological features and nodal attributes.

Other research field that focus the attention of the research
community is politics. In the last years there has been a huge
increase in the use of social networks for political purposes. In
this domain, there are two main problems that can be solved:
topic opinion and political polarization. The former refers to those
works whose goal is to understand what users think about a spe-
cific topic. The latter contains the works that try to align SN users
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with the different political parties. An example of topic opinion
is [20] where authors tried to classify citizen’s voting intention
based on the tweets published during the Scottish Independence
Referendum in 2014.

An example about political polarization, is the work published
by Borge-Holthoefer et al. [21]. In this work, authors analyzed the
social structure and the content of the tweets published by the
users to understand the opinion evolution in Egypt during the
summer of 2013. In this summer, there was a military takeover
that resulted in an increase of polarized tweets but authors did
not observe an ideological shift in the users.

In addition to the application domains, it is necessary to know
which algorithms, or techniques, are the most popular for detect-
ing the communities. In this sense, it is important to highlight
that community detection it is a complex problem that it is
difficult to solve by using classical algorithms. For this reason, it is
really common to find researchers that use heuristics algorithms,
and more precisely, bioinspired techniques [22].

In the literature, exact methods devoted to solve the com-
munity detection problem can be found, although they are not
very efficient in solving the problem when the networks to be
analyzed are too large. However, recent works have been fo-
cused on proposing new exact algorithms for dealing with large
networks. Srinivas and Rajendran [23] propose a mathematical
model for finding community structure on influential nodes, test-
ing it in large scale networks. Although the performance is close
to the state of the art, it is not able to reach a solution for
networks with 115 nodes in a time limit of six hours, high-
lighting the relevance of using heuristic approaches. In the same
way, Alinezhad et al. [24] propose a mathematical formulation
for solving the community detection problem in attributed net-
works, considering both topological and node attributes. They
limit the computing time to 7200 s for the exact procedure, since
it is not able to converge in a reasonable computing time. The
computational requirements of the exact procedures confirms the
necessity of considering heuristic approaches for obtaining high
quality solutions in small computing times.

In the area of bioinspired computation, evolutionary
approaches are the most popular. It is important to highlight the
review performed by Pizzuti in [25] about Evolutionary Com-
putation (EC) techniques to detect communities in networks.
An interesting work about EC is the work published by Said
et al. [26], where authors designed a clustering coefficient-based
genetic algorithm able to detect cohesive groups from dense
graphs and also, communities in sparse networks. Other rele-
vant work is [27] that presents a genetic algorithm that uses a
multi-individual ensemble learning-based crossover function. The
algorithm is improved with a local search strategy to speed up the
convergence.

Other well-known bioinspired algorithms are the ones belong-
ing to swarm intelligence. In this new group, the most popular
algorithms are Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO). These two algorithms are inspired by the
social behavior of birds within a flock, and the behavior of ants
seeking a path from the nest to the source of food, respectively.
PSO has been successfully used for CDP in [28], where a discrete
PSO algorithm is used to extract the communities in large-scale
social networks by optimizing the modularity. Regarding ACO
algorithm, this algorithm has been used to extract high-quality
communities in Ego Networks [16].

All these works face the CDP from a single-objective per-
spective, usually considering modularity as optimization criterion
(see [29] for a recent and complete survey on CDP). As far as we
know, the most recent approach for solving the single objective
CDP considering a metaheuristic framework is presented in [15].
In particular, the authors propose a Greedy Randomized Adaptive

Search Procedure devoted to maximize the modularity of the
communities detected.

Nevertheless, there are other works that try to solve the
CDP by optimizing a multi-objective function (MOCDP). Multi-
objective optimization has evolved in the last years with novel
approaches for generating robust approximations of the Pareto
front. For instance, [30] proposes a novel interactive preference-
based multi-objective evolutionary algorithm for designing a
bolt supporting network, while [31] presents a dynamic ro-
bust multi-objective optimization method for solving problems
where the time is a key factor. The rationale behind following a
multi-objective approach in CDP is that the optimization metrics,
traditionally considered isolatedly, always have one or more
handicaps, resulting in the loss of information related to the
community structure. The MOCDP emerges as a possible solution
for this problem, considering two or more metrics simultaneously
for improving the community detection in a social network.
The goal in this case is to find the different communities of
a network by considering different conflicting objectives to be
optimized [32]. Most of the works are focused on adapting well-
known evolutionary algorithms such as NSGA-II to solve different
multi-objective community detection problems. An evolutionary
algorithm based on decomposition [33] is designed for maximiz-
ing the density of internal degrees while minimizing the density
of external degrees. Another evolutionary algorithm for solving
MOCDP is presented in [34], considering as objective functions
the maximization of the intra-link strength of the communities
and the minimization of the inter-link strength, which are very
similar to those considered in [33]. Finally, another bioinspired
algorithm, based on enhanced firefly methodology is presented
in [35], which maximizes the in-degree of the nodes in each com-
munity while minimizing their out-degree. Notice that, although
each previous work considers different objective functions, they
are very similar among them, focusing on locating in the same
community the most connected nodes. As far as we know, [17]
presents the most recent multi-objective approach for solving the
MOCDP, considering the NRA and RC metrics previously defined.

4. Algorithmic approach

Heuristic algorithms are designed for reaching a local opti-
mum in short computing times. However, they usually stagnate
in those local optima, reducing the portion of the search space
explored. Metaheuristic algorithms emerge as a solution to over-
come this situation by guiding the search of the heuristic method,
thus reaching further regions of the search space [36].

This paper presents a metaheuristic algorithm based on the
Variable Neighborhood Search (VNS) [6] framework. VNS
methodology was originally designed to escape from local optima
by performing systematic changes of neighborhood. It is worth
mentioning that, as a metaheuristic approach, it cannot guarantee
the optimality of the obtained solutions.

The effectiveness of VNS methodology has lead the scientific
community to develop several variants, which can be classified
according to the balance between diversification and intensifica-
tion. On the one hand, Reduced VNS (RVNS) [37,38] is focused in
diversification, considering stochastic changes of neighborhoods.
On the other hand, Variable Neighborhood Descent (VND) [39,40]
is devoted to intensification by performing deterministic changes
of neighborhoods. Finally, Basic VNS (BVNS) [41] arises as a com-
promise between intensification and diversification by combining
stochastic and deterministic changes of neighborhoods. As a re-
sult of the success of the methodology, several new variants have
been proposed: General VNS (GVNS) [42], Variable Neighborhood
Decomposition Search (VNDS) [43], Skewed VNS (SVNS) [44], or
Variable Formulation Search (VFS) [45], among others.
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VNS methodology was originally designed for tackling sin-
gle objective optimization problems. Recently, the VNS frame-
work has been also adapted for dealing with multiobjective prob-
lems [7]. Multi-objective VNS has lead to several recent successful
research, emerging as one of the most robust methodologies in
the area [8,46]. In this work, we adapt the multi-objective VNS
presented in [7] for solving the multi-objective community detec-
tion problem, focusing in the BVNS variant (MOBVNS). Algorithm
1 presents the general framework of MOBVNS.

Algorithm 1 MOBVNS (S, kmax)
1: k← 1
2: while k ≤ kmax do
3: S ′ ← Shake(S, k)
4: S ′′ ← Improve(S ′)
5: k← NeighborhoodChange(S, S ′′, k)
6: end while
7: return S

The algorithm starts from an initial set of non-dominated
solutions denoted with S. In the context of VNS, the initial front
can be generated either at random, or using a more elaborated
constructive procedure. In our case, this initial set is generated
with the Greedy Randomized Adaptive Search Procedure (GRASP)
described in Section 4.1. The second input parameter of the
MOBVNS algorithm is the maximum neighborhood to be explored
during the search, kmax. As stated in previous works [47], the
maximum neighborhood to be considered in the VNS algorithm
is usually small, to avoid exploring completely different solutions
in each iteration, which will eventually lead to a multi-start
approach.

The algorithm starts by considering the neighborhood k = 1
(step 1). Then, MOBVNS iterates until reaching the maximum
neighborhood kmax (steps 2–6). In each iteration, a perturbed set
of solutions S ′ is generated with the shake method presented in
Section 4.2. Then, S ′′ is created as the set of non-dominated solu-
tions derived from applying the local search method introduced
in Section 4.3 to each solution contained in S ′ to reach a local
optimum of each perturbed solution. Finally, the neighborhood
change procedure (Section 4.4) is responsible for selecting the
next neighborhood to be explored.

The traditional neighborhood change method inside single-
objective VNS restarts the search from the first neighborhood
(k = 1) every time an improvement is found. Otherwise, the
search continues in the next neighborhood (k = k + 1). In
the context of multi-objective optimization, the definition of im-
provement is slightly modified. Specifically, neighborhood change
method considers that an improvement is found if a solution has
been able to enter in the set of non-dominated ones.

The algorithm ends when no improvement for the set of
non-dominated solutions is found in any of the neighborhoods
(i.e., the algorithm has not been able to insert a new solution in
it), returning the resulting set of non-dominated solutions.

4.1. Generation of the initial set of non-dominated solutions

The main objective of a good constructive method in a multi-
objective problem is to generate a front with high quality solu-
tions (i.e, those that are non-dominated) while maintaining the
diversity among them. With this aim, we propose a constructive
procedure based on the Greedy Randomized Adaptive Search Pro-
cedure (GRASP). This metaheuristic is originally presented in [48]
and formally defined in [49] which consists of two different
phases: construction and local search. We refer the reader to [50]

for a recent survey on this methodology and some extensions
recently studied.

In this paper, we only consider the first stage (i.e., the con-
struction phase) of the GRASP to populate an initial set of non-
dominated solutions. Algorithm 2 shows the associated pseudo-
code. This procedure starts by creating one community for each
node in the network (step 1) and initializing the set of non-
dominated solutions S with it (step 2). The next step corresponds
to compute all the possible new communities that can be created
by merging two of the existing ones, creating a Candidate List (CL)
with them (step 3).

Algorithm 2 Construction (G = (V , E), α).
1: C← {C1, C2, . . . , Cn : Ci = {vi}, vi ∈ V ∧ 1 ≤ i ≤ n}
2: S← {C}
3: CL← {

⟨
Ci, Cj

⟩
,∀Ci, Cj ∈ C, 1 ≤ i < j ≤ n}

4: while |CL |> 1 do
5: gmin ← min⟨Ci,Cj⟩∈CL g(Ci, Cj)
6: gmax ← max⟨Ci,Cj⟩∈CL g(Ci, Cj)
7: µ← gmax − α · (gmax − gmin)
8: RCL← {

⟨
Ci, Cj

⟩
∈ CL : g(⟨Ci, Cj⟩) ≥ µ}

9: ⟨Ci, Cj⟩ ← Random(RCL)
10: C←

(
C \ {Ci, Cj}

)
∪ (Ci ∪ Cj)

11: CL← {
⟨
Ci, Cj

⟩
,∀Ci, Cj ∈ S, 1 ≤ i < j ≤ n}

12: updateNDS(S, C)
13: end while
14: return S

Next steps are repeated until the CL contains a single candidate
(i.e., there are only two communities in the solution). In each
iteration, all the candidates are evaluated under a certain greedy
criterion g (steps 5 and 6). Then, these two values are used to
define the threshold µ (Line 7) that depends on the parameter
α ∈ [0, 1], which controls the randomness/greediness of the
method. On the one hand, when α = 0, µ = gmax and only
those communities with maximum value of the greedy function
are included in the Restricted Candidate List (RCL). On the other
hand, if α = 1, µ = gmin, all the communities are included in the
RCL and then the algorithm becomes totally random. Therefore,
the threshold defines the size of the RCL because only the most
promising candidates of CL will belong to RCL (step 8). Once
the RCL is constructed, an entry is randomly selected (step 9),
specifying the two communities that will be merged (step 10).

Then, the algorithm updates the CL (step 11), by removing all
the pairs in which the two communities that have been merged,
Ci and Cj, were involved, and including a new candidate to merge
the new community created Ci ∪ Cj with every other community
in the solution (step 11). Finally, the resulting community is
evaluated to be considered in the set of non-dominated solutions
(step 12).

In order to define whether two given communities (i.e. Ci
and Cj) should be merged, the algorithm uses a greedy function
denoted as g(Ci, Cj). This function takes into account the number
of edges that starts and ends in nodes belonging to Ci and Cj, and
the size of the resulting community (Eq. (1)).

g(Ci, Cj) =
|{(u, v) ∈ E ∀u, v ∈ Ci ∪ Cj}|

|Ci ∪ Cj|
(1)

Although the construction phase is based on the greedy algo-
rithm, the multi-objective optimization is used when the built
solution has to be included in the reference front. Not all con-
structed solutions are finally included in the approximation of
the pareto front but only those that are non-dominated solutions
according to Negative Ratio Association (NRA) and Ratio Cut (RC).
It is worth mentioning that a solution is non-dominated if it is
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better than other solution already in the front in any of the two
objectives. When a non-dominated solution is included in the
front, all those solutions that are dominated by the new one are
removed.

4.2. Perturbing solutions for the CDP

The Shake procedure is responsible for escaping from local
optima within the VNS framework. In order to do so, the method
resorts to a random solution in the neighborhood of the solution
under exploration. In order to properly adapt this method to the
context of multi-objective optimization, it is needed to previously
define a basic movement of MOCDP, which consists in removing
a vertex v from its current community, say for instance Cj, and
inserting it in a different community, for example Ci, with i ≠ j.
More formally, given a solution C = {C1, C2, . . . , Cc}, a vertex
v ∈ Cj ⊂ V , and a community Ci, with i ≠ j:

Move(C, v, Ci) =
{
Ci ← Ci ∪ {v}

Cj ← Cj \ {v}

The neighborhood of a solution is defined as the set of so-
lutions that can be reached by performing the aforementioned
move. Specifically,

N(C) = {C← Move(C, v, Ci) : ∀v ∈ V \ Ci ∧ 1 ≤ i ≤ c}

We rely on this definition to introduce the neighborhood
Nk(C). In particular, Nk(C) is conformed with the set of solutions
that can be obtained when performing exactly k consecutive basic
moves to C.

Notice that solution C′ obtained in the neighborhood Nk of
solution C is usually worse than C (in terms of objective functions
value). However, the main objective of the Shake method is to es-
cape from local optima, continuing the search from a completely
different region of the search space. Additionally, all the solutions
explored in the Shake methods are guaranteed to be feasible,
being unnecessary to check the constraint of the problem, which
is one of the most time consuming parts of the algorithm.

The output solution obtained in a Shake procedure is not
necessarily a local optimum with respect to the defined neighbor-
hood and, therefore, the local search method is applied to locally
optimize the newly generated solution.

4.3. Local optimization

Population-based metaheuristics (i.e., Genetic Algorithms, Par-
ticle Swarm Optimization, Differential Evolution, etc.), are ex-
tended in the multi-objective context since they consider a set
of solutions, which can be easily identified with the efficient
set. Symmetrically, trajectory-based metaheuristics (VNS, Tabu
Search, Simulated Annealing, etc.), use only one solution. It is
possible to overcome this situation by considering the whole
set of non-dominated solutions as the incumbent solution to a
multi-objective problem [7].

We propose in this paper an improvement procedure (see step
4 in Algorithm 1) that receives the perturbed set of solutions,
obtained with the Shake method, and returns a locally optimal
set. Specifically, this method randomly scans each solution and
then improves it with a local search algorithm. We consider two
different strategies that follow the first improvement approach,
which means that the search will restart when an improvement
in the current solution under evaluation has been found.

Both strategies try to optimize NRA and RC of each solution,
but they differ in the way that these two objectives are con-
sidered. The first strategy, named Independent Search Procedure
(ISP), independently improves each objective starting from the
very same solution (in the reference front). The second strategy is

called Combined Search Procedure (CSP) since both metrics (NRA
and RC) are alternatively considered in the procedure.

Algorithm 3 shows a general scheme of the improvement
method that needs to be particularized for each strategy. Specifi-
cally, this method considers a generic objective function denoted
with f . On the one hand, the first local search strategy takes into
account f (C) = NRA(C) and then f (C) = RC(C). On the other hand,
the second strategy alternatively takes in each iteration of the
while-loop either f (C) = NRA(C) or f (C) = RC(C). After finishing
any of the two local search strategies, non-dominated solutions
found are tested to be admitted (or not) in the reference set.

Algorithm 3 Improve (C = {C1, C2, . . . , Cc}, S)
1: Improve← True
2: while Improve do
3: Improve← False
4: for Ci ∈ C do
5: for v ∈ V \ Ci do
6: S ′ ← Move(C, v, Ci)
7: updateNDS(S, C′)
8: if f (C′) < f (C) then
9: C← C′

10: Improve← True
11: Restart the search at step 3
12: end if
13: end for
14: end for
15: end while

Algorithm 3 receives as input parameter a solution. For the
sake of brevity, we omit the inclusion of either NRA and RC as
input parameter since they are generalized by the function f . The
method iterates over all the communities and vertices (steps 4–
14). In each iteration, we evaluate the impact of moving v from
its current community to a different one in the solution under
evaluation. In order to do so, we use the defined Move(C, v, Ci),
see step 6. The procedure tries to include the neighbor solution in
the reference front by using the procedure updateNDS (step 7). It
basically tests whether C′ is dominated by other solution belong-
ing to S. If so, the efficient front remains unaltered; otherwise,
C′ is included in S, removing those solutions in S that become
dominated.

After that, if an improvement is found with respect to the
criteria under evaluation (either NRA and RC), the incumbent
solution is updated and the search restarts again. The method
ends when no improvement is found. It is worth mentioning
that no return is needed since step 7 already includes all the
non-dominated solutions found during the search.

The local optimization process in a multi-objective optimiza-
tion problem is usually designed to simultaneously optimize all
the considered objectives. In the context of MOCDP, we pro-
pose two different local optimization strategies: Combined Search
Procedure (CSP) and Independent Search Procedure (ISP).

The first one, CSP, follows the traditional approach, where
the two considered objectives are optimized at the same time.
Specifically, each iteration of the local search method, presented
in Algorithm 3, is focused on optimizing either NRA or RC. In par-
ticular, the even iterations finds a local optimum with respect to
NRA, while the odd iterations focuses on finding a local optimum
with respect to RC.

The second method, ISP, follows a different criterion with the
aim of finding better solutions for each objective. In particu-
lar, each solution is optimized with each considered objective,
i.e., NRA and RC, as in a single-objective optimization problem.
In other words, given a certain solution, the ISP finds a local

6



S. Pérez-Peló, J. Sánchez-Oro, A. Gonzalez-Pardo et al. Applied Soft Computing 112 (2021) 107838

optimum with respect to NRA and then with respect to RC,
starting from the same initial solution. All the solutions found
during the optimization process are evaluated to be included in
the set of non-dominated solutions.

The termination criterion for both, ISP and CSP, is the same:
the search stops when no new non-dominated solutions have
been found after a complete execution of the local optimization
method.

4.4. Neighborhood change

The main objective of the Neighborhood Change method
within VNS is the selection of the next neighborhood to be
explored. In the context of single objective optimization, the
Neighborhood Change method usually receives three input pa-
rameters: the best solution found so far, the candidate solution
to be evaluated, and the current neighborhood being explored (k).
Then, it verifies whether the incumbent solution outperforms the
best one. If so, the search is restarted from the first neighborhood,
updating the best solution found so far. Otherwise, the search
continues in the next neighborhood.

The Neighborhood Change method has been adapted to the
multi-objective nature of the problem considered in this work.
The most significant modification affects to the concept of im-
provement. In particular, we introduce the method isNotDomi-
nated in charge of comparing two non-dominated set of solutions.
Algorithm 4 illustrates the pseudo-code of this procedure. It tests
whether points in S ′ are dominated, or not, by any point in S. If
there is at least one non-dominated point in S, then the method
returns True; otherwise (i.e., all points in S are dominated), it
returns False.

Algorithm 4 isNotDominated (S ′, S)

1: for all C ∈ S ′ do
2: if (C /∈ S ∧ ¬Dominated(C, S ′) then
3: return True
4: end if
5: end for
6: return False

The pseudo-code of the Neighborhood Change method is
shown in Algorithm 5. The input parameters are now the current
best non-dominated set S ′, the reference front under evalua-
tion S, and the neighborhood under exploration (k). As it was
aforementioned, the most significant modification affects to step
1. The second relevant modification consists in updating the
non-dominated set of solutions by merging S ′ and S with the pro-
cedure updateNDS (step 2). See Section 4.3 for further details. As
it is customary in this method, if we do not find an improvement,
the search continues in the next neighborhood (step 5).

Algorithm 5 NeighborhoodChange (E⋆, E, k)

1: if isNotDominated(E⋆, E) then
2: updateNDS(E⋆, E)
3: k← 1
4: else
5: k← k+ 1
6: end if
7: return k

4.5. Computational complexity

In this section, the computational complexity of each com-
ponent is analyzed and, then, the complete complexity of the
proposed algorithm is computed. First of all, it is necessary to
evaluate the cost of generating the initial non-dominated set of
solutions with the constructive procedure. Analyzing the pseu-
docode presented in Algorithm 2, the complexity of constructing
the candidate list CL is O(n2), since it requires to traverse the
complete set of communities (initially one community per node)
and, then, to create a candidate community to be merged with ev-
ery other community. Notice that when the construction evolves,
the number of available communities is reduced since it merges
two communities in each iteration. Also, as this construction is
included in a while loop until the CL contains a single community,
the computational complexity is bounded O(n3).

We now compute the complexity of the local optimization
method presented in Algorithm 3. In each iteration of the local
search procedure, the method needs to traverse all the nodes,
resulting in a complexity of O(n). Each node is evaluated to enter
in every other community, resulting in a complexity of O(n) (in
the worst case, there is a community for each node). A naive
implementation of the move operator would result in a com-
plexity of O(m), since updating the inter and intra-community
edges requires to evaluate every edge after performing the move.
However, the proposed algorithm leverages the data structure
called UnionFind, which basically assigns a representative node
for each community in such a way that the evaluation of the mod-
ifications in inter and intra-community edges can be performed
in O(1). Therefore, the computational complexity of each iteration
of local search procedure is bounded by O(n2) instead of O(n2

·m)
which would be obtained by the naive implementation. Since the
local search is executed while an improvement is found, it is not
possible to determine the complexity of the complete method
since it highly depends on how close to a local optimum is the
input solution.

The perturbation method presented in Section 4.2 again lever-
ages the UnionFind structure to reduce complexity, which is
bounded by O(k), since k moves are performed, being the com-
plexity of each move O(1).

Finally, the complexity of the complete VNS algorithm is com-
puted. As it was aforementioned, the complexity of generating the
initial front is bounded by the maximum between the construc-
tive, O(n3), and the local search procedure, O(n2) in each iteration.
This results in a complexity O(n3) for generating the initial front.
Then, k iterations are performed, where it is executed a shake
procedure, with a complexity of O(k), a local improvement, with
a complexity of O(n2) in each iteration, and the neighborhood
change method which presents a complexity of O(1) since it
only requires to select the next neighborhood to be explored.
Therefore, the complexity of the complete algorithm is O(k) ·
max{O(n3),O(n2),O(1)} = O(k · n3).

5. Experiments and results

In this section we will expose the experiments performed
to test the effectiveness and efficiency of the proposed algo-
rithm and to compare it with the best method found in the re-
lated literature [17]. All algorithms are executed over two differ-
ent datasets: synthetic and real-world networks. For the former,
we have used the network generator developed by Lancichinetti
et al. [51] to construct synthetic instances,1 where the node
degree distribution and the community size follow a power-law
highly configurable. The main advantage of these instances is

1 Lancichinetti, Fortunato, and Radicchi (LFR) networks.
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that the optimal ground truth for the community structure is
known by construction. We have considered different configura-
tions for the network generator and we have generated different
network instances for each configuration (totalizing 52 different
networks). In particular, we have considered networks with a
range from 500 to 7500 nodes, and the edge probability p is
defined as p ∈ [0.1, 0.8] with an interval of 0.1 for instances with
500, 1000 and 5000 nodes, and as p ∈ [0.1, 0.3] with an interval
of 0.1 for instances with 5500 to 7500 nodes.

To complement these instances, we additionally consider 12
real-world networks: Zacharys karate club [52] (32 nodes and 78
edges), dolphin social network [53] (64 nodes and 159 edges),
American college football [54] (115 nodes and 613 edges), jazz
[55] (with 198 nodes and 2742 edges), and netscience [56,57]
(1589 nodes and 2742 edges), facebook large page-page net-
work [58] (22570 nodes and 171002 edges), and the set of Twitch
Social Networks [58] (with number of nodes in range from 1912
to 9498 and edges in range from 31299 to 153138). Notice that
the ground truth for karate, dolphin, and football networks are
known beforehand.

The computational experiment is divided into two different
phases: on the one hand, we carry out a set of preliminary
experiments to tune the parameters of our algorithms. In these
experiments a subset of all instances will be used (18 out of
62), with the aim to avoid the overfitting of the algorithm. On
the other hand, we run the final experiments over the whole
benchmark to compare our best identified method with those
presented in the state of the art. We additionally compare the
proposed MOBVNS with the most extended algorithms for solving
the CDP following a single-objective approach, with the aim of
evaluating the relevance of modeling the CDP as a multi-objective
optimization problem.

For sake of fairness, we have executed both algorithms with
a time limit of 1800 s. Both algorithms have been executed in a
computer with an AMD Ryzen 5 3600 AM4 core (3.6 GHz) with
16GB RAM. All algorithms were implemented using Java 9. With
the aim of facilitating further comparisons, the dataset and the
source code of the proposed algorithm are publicly available at
http://grafo.etsii.urjc.es/mocdp.

5.1. Multi-objective metrics

In this paper, we deal with the variant of the Community
Detection Problem, where the Negative Ratio Association (NRA)
and Ratio Cut (RC) are optimized simultaneously. Notice that
these two objectives have been already proven that are in conflict.
Then, in order to compare the performance of the proposed
algorithms we use metrics that evaluate the quality of an approx-
imation of the Pareto front. Specifically, we have considered four
of the most extended multi-objective metrics [59]: coverage, hy-
pervolume, ϵ-indicator, and inverted generational distance. Given
two non-dominated set of solutions (S and S ′), the coverage
metric, CV (S, S ′), evaluates the number of solutions within the ap-
proximation front S that are dominated by solutions in S ′. In our
experiments, we evaluate the quality of S derived from an specific
algorithm with respect to a reference set constructed with all
non-dominated solutions found with all algorithms tested in the
corresponding experiment. Given this definition, the smaller the
value, the better. For the sake of brevity, we denote CV (S, S ′) as
CV , being S the set of non-dominated solutions under evaluation
and S ′ the reference set (as indicated above).

The hypervolume metric, HV , measures the size of the space
covered by the set of non-dominated solutions. In other words, it
computes the hypervolume of the portion of the objective space
that is weakly dominated by an approximation front. Then, large
values of HV implies that the set of non-dominated solutions
obtained with the algorithm is better.

The ϵ-indicator, EPS(S, S ′), evaluates the smallest distance
needed to transform every point of the approximation front under
evaluation (S) in the closest point of the reference set S ′ (equiv-
alent to the coverage metric). Therefore, if we obtain low values
of ϵ-indicator, it indicates that the reference front generated by
the algorithm under evaluation is better than others. As indicated
above, we denote EPS(S, S ′) as EPS.

Finally, the inverted generational distance, IGD+(S, S ′), is an
inversion of the well-known generational distance metric with
the aim of measuring the distance from the incumbent set of
non-dominated solutions (S) to the reference set obtained during
the experiment (S ′). Therefore, small values of IGD+ indicate a
high proximity to the reference front, which is better. Finally,
the computing time of all the algorithms is also presented, with
the aim of evaluating the efficiency of the procedures. As it was
aforementioned, we simplify the notation of IGD+(S, S ′) as IGD+.

5.2. Context-based metrics

In social network analysis, there exists two popular perfor-
mance metrics usually referred to as normalized mutual infor-
mation (NMI) [60] and the modularity (Q) [10]. NMI requires
for a ground truth since it evaluates the difference between the
community structure detected for the incumbent algorithm and
the true one. It is worth mentioning that the ground truth is
known by construction for all LFR instances. Additionally, it is also
available for karate, dolphin, and football instances.

The modularity can be evaluated in any network since it does
not depend on the ground truth. This metric compares the struc-
ture of the communities against a random graph. More precisely,
this metric measures how likely the communities are created at
random. For this reason, modularity metric is particularly useful
for real-world instances such as jazz or netscience, where the
ground truth is unknown.

Notice that we are dealing with a multi-objective optimiza-
tion problem. Therefore, instead of having a single solution, we
have a set of non-dominated solutions. In order to provide a
value of either NMI or Q, we follow the methodology proposed
in [17]; i.e., to traverse the complete front finding the solution
that presents the largest value in each metric. It implies that
the solution that reaches the best Q value is not necessarily the
one that provides the best result in terms of Normalized Mutual
Information (NMI).

5.3. Preliminary experimentation

The first experiment is oriented to determine the best value
of the α parameter (see Section 4.1). In particular, we test α =

{0.25, 0.50, 0.75, RND}, where RND indicates that the value is
selected randomly in the range [0, 1] for each construction. These
values cover from an almost greedy constructive method to a
semi-random one. For each instance used in this experiment,
we execute the constructive algorithm for 100 independent it-
erations, returning the best solution found. Table 1 shows the
associated results, where we report average values across the
subset of preliminary instances for the CV , HV , EPS, and IGD+.
We additionally include the average computing time required by
the algorithms (column T (s)).

In view of these results, the best configuration of the con-
structive method is the one that uses α = 0.25. In particular,
based on the results obtained for the coverage metric, we can
affirm that most of the points in the reference front also belong
to the constructive method executed with a α = 0.25. Also,
the hypervolume metric (HV ) is larger than the one attained
with the other approaches, though it is closely followed by the
constructive method configured with RND. The same occurs with
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Table 1
Comparison of the reference front built by the constructive procedure with
different values for the α parameter. Best results are highlighted with bold
font.
α CV HV EPS IGD+ T (s)

0.25 0.38 0.73 0.05 0.01 119.04
0.50 0.81 0.68 0.09 0.04 123.04
0.75 0.81 0.59 0.18 0.13 170.30
RND 0.65 0.71 0.05 0.02 117.06

Table 2
Comparison of the reference front obtained with the local search procedures
designed in this work. Best results are highlighted with bold font.
Algorithm CV HV EPS IGD+ T (s)

C(0.25)+ISP 0.14 0.70 0.03 0.00 117.99
C(0.25)+CSP 0.81 0.45 0.43 0.23 116.86

Table 3
Comparison of the reference front obtained with different values of k for the
MOBVNS method. Best results are highlighted with bold font.
kmax CV HV EPS IGD+ T (s)

0.1 0.71 0.71 0.07 0.03 118.76
0.2 0.67 0.72 0.06 0.02 118.43
0.3 0.66 0.72 0.05 0.02 119.14
0.4 0.67 0.72 0.07 0.02 122.75
0.5 0.68 0.72 0.06 0.01 123.80

the ϵ-indicator, with α = 0.25 the solutions provides the smallest
value in the comparison, and the RND value is the second best
approach. Regarding the inverted generational distance, α = 0.25
again obtains the best results, closely followed by RND. Analyz-
ing the computing time, we can clearly see that there are no
differences among all considered variants, as expected.

Once we know what the best configuration for our construc-
tive method is, we conduct an additional experiment to deter-
mine the performance of the proposed local search algorithms.
From now one, we will refer to constructive algorithm with α =

0.25 simply as C(0.25). The results of the metrics obtained with
both local search approaches (described in Section 4.3) are shown
in Table 2.

As we can clearly see, the ISP performs better in this problem.
Specifically, with respect to IGD+, coupling the ISP with the best
version of our constructive method lead the algorithm to find
an efficient set of solutions which is much closer to the refer-
ence front than CSP. Attending to hypervolume, we can see that
ISP obtains a considerably larger value than the second variant.
Analogously, the ϵ-indicator is also the smallest one in the com-
parison, being heavily smaller than its competitor. Although the
computational time required by CSP is smaller than ISP, there
is not significant differences between these two procedures, and
the great results obtained by ISP with the other metrics clearly
justifies the choice of ISP.

In the next experiment, we test the best k value for the
MOBVNS algorithm. Table 3 shows the obtained results for each
configuration of the algorithm.

Analyzing these results, we can see that all of them are quite
similar, becoming difficult to choose the best value for kmax pa-
rameter. In particular, the hypervolume metric is not determinis-
tic since almost all the variants report the same value. However,
the coverage and ϵ-indicator metrics suggest that the best value
is kmax = 0.3. Additionally, we can clearly see that the larger the
value of kmax, the more computationally demanding. Therefore,
we select kmax = 0.3 as the best value for the MOBVNS algorithm.

For the sake of brevity, we refer with MOBVNS as the multi-
objective VNS variant that uses C(0.25), ISP, and kmax = 0.3.

Table 4
Comparison of the reference fronts obtained when applying the constructive
method and when coupling it with the local search procedure ISP. Best results
are highlighted with bold font.
Algorithm CV HV EPS IGD+

C(0.25)+ISP 0.03 0.67 0.00 0.00
C(0.25) 0.89 0.31 0.61 0.39

Table 5
Comparison of the reference front obtained with full MOBVNS framework and
MOBVNS framework without Local Search Procedure. Best results are highlighted
with bold font.
Algorithm CV HV EPS IGD+

MOBVNS 0.28 0.63 0.17 0.10
MOBVNS (without ISP) 0.29 0.48 0.42 0.11

5.4. Analysis of the effect of each component of the proposed algo-
rithm

This section is devoted to clarify the contribution of each
component of the algorithm in the final configuration. The algo-
rithm is conformed with three main components: constructive
procedure, local improvement method, and the combination of
both of them in the VNS framework.

The first experiment is designed to evaluate the effect of the
local search procedure over the results obtained by the construc-
tive procedure isolatedly. Table 4 shows the results obtained in
this experiment.

As it can be seen, the use of a local search procedure af-
ter constructing an initial non-dominated front with construc-
tive method significantly improves the quality of the final non-
dominated front obtained. In particular, the coverage of 0.03
obtained when coupling the constructive procedure with the local
search method indicates that almost all the initial solutions are
improved, while the value of 0.89 obtained by the constructive
procedure indicates that almost all the initial solutions are dom-
inated by the ones obtained with the local search procedure.
The hypervolume, ϵ-indicator, and inverted generational distance
values supports these results.

The second experiment is intended to study the influence of
the local search procedure within the VNS framework. Table 5
shows the obtained results in this comparison.

In this case, the coverage metric is not determinant since both
algorithms present similar values, although considering the local
search obtains better results, as well as when considering the
inverted generational distance. However, analyzing the hypervol-
ume and the ϵ-indicator metrics, the relevance of the local search
inside the VNS framework is confirmed, being the variant with
local search twice better than the one without local improvement
phase. Therefore, adding an improvement method result in more
robust non-dominated sets of solutions.

Finally, having shown the relevance of the constructive and
local search procedure, it is interesting to evaluate the effect of
the initial front generated by GRASP algorithm in the final MOB-
VNS. In order to do so, the algorithm with GRASP for generating
the initial front is compared with the same VNS algorithm but
considering an initial random population of the reference front.
Table 6 show the results obtained in this comparison.

The results clearly show that the contribution of starting from
a good initial front to the final algorithm is justified. In particular,
the coverage is reduced to 0.00 when considering a GRASP gen-
eration of the initial front, and the hypervolume of the random
initial front is close to 0.00. Additionally, the ϵ-indicator also
confirms the superiority of the GRASP initialization. If we analyze
the inverted generational distance, we can see that considering a
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Table 6
Comparison of the reference front obtained by the final proposed algorithm
when considering an initial population generated with GRASP and Random
constructions. Best results are highlighted with bold font.
Algorithm CV HV EPS IGD+

GRASP initial front 0.00 0.32 0.58 0.39
Random initial front 0.11 0.01 0.99 0.32

Table 7
Comparison of the reference front obtained with the best configuration for
MOBVNS and the LMOEA proposed by [17]. Best results are highlighted with
bold font.
Algorithm CV HV EPS IGD+ T (s)

MOBVNS 0.07 0.14 0.86 0.22 214.64
LMOEA 0.36 0.02 0.27 0.21 1800.00

random initial front provides more diversity, resulting in slightly
better results when considering this metric.

Therefore, the contribution of each component of the main
algorithm (constructive procedure, local search method, and com-
plete VNS framework) is confirmed.

5.5. Final experiments

Having made the necessary adjustment in the proposed algo-
rithm and having chosen the best parameters for each config-
uration of the procedure, we proceed to make the comparison
with the best previous method found in the literature, denoted
as LMOEA [17]. To do this, we will execute both algorithms over
the full set of 62 instances. We first compare the obtained results
with those metrics employed in preliminary experiments.

The parameter setting of LMOEA considers a population of 100
individuals, 100 generations, a crossover probability of 0.9, a mu-
tation probability of 0.1 and a neighborhood size of 40 (see [17]
for further details). Considering that we are comparing heuristics
algorithms, we include an additional termination criterion based
on the maximum allowed computing time. Specifically, we fix
1800 s as the maximum time spent in a single instance. If this
additional termination condition is met, we halt the correspond-
ing algorithm, returning the best solution found during that time
horizon.

Table 7 shows the results obtained for the considered multi-
objective metrics CV , HV , EPS, and IGD+ as well as the average
computational time required for each algorithm under evalua-
tion. Notice that the results of each metric is the average value
obtained across the complete set of 62 instances. Due to the
different sizes of the considered instances, all the metrics are
normalized in the range [0, 1] in the comparison.

As we can see, the proposed MOBVNS provides the best re-
sults in all four measures but IGD+, where the results are rather
similar. Analyzing the computational time, there is a significant
difference between the performance of both algorithms. Whereas
LMOEA spends the budget time of 1800 s for every instance under
evaluation, MOBVNS needs, in average, only 214.64 s, obtaining
higher quality solutions in considerably smaller computing times.

Once we have compared both methods using the classical
multi-objective metrics, we further analyze the quality of their
solution by considering the experimental framework described
in [17]. In particular, we first graphically depict the NMI for each
LFR instance.

In order to have more robust conclusions, both algorithms
were executed for 20 independent executions, reporting the aver-
age results. Fig. 2 shows these results for n = 500 and n = 1000,
where p varies from 0.1 to 0.8 in steps of 0.1. As we can observe in
this figure, MOBVNS presents high quality solutions for p < 0.5

with values of NMI close to 1.0. As expected, for larger values
of p the behavior gets worse since these networks are harder to
be solved. LMOEA seems to be more stable in these instances,
ranging the NMI values from 0.55 to 0.7. Indeed, LMOEA is able
to outperform MOBVNS in p = 0.8 and n = 1000.

The value of p in the LFR generator indicates the average ratio
between inter-community edges and the total edges in the op-
timal community detection provided by construction. Therefore,
a large value of p results in communities with several edges to
nodes in other communities when comparing it with the total
number of edges of the considered community. This value leads
to networks which do not accurately represent real-world net-
works since, in them, the number of edges to nodes in other
communities is usually small.

For that reason, in the instances in which p ≥ 0.5, the number
of edges to other communities is considerably larger than the
number of edges in the same community, resulting in networks
where the community structure is not necessarily preserved.
Since the MOBVNS is designed for detecting communities in
networks that present community structure, the main ideas of
its design are not useful for these special instances, presenting
similar or even worse performance than LMOEA.

Notice that there exists a considerable performance difference
between the results of LMOEA that we present in these figures
and those reported in [17]. This discrepancy might come from the
fact that we have considered an additional termination condition
(i.e., 1800 s of CPU time), not allowing the algorithm to reach
the maximum number of generations. Indeed, in our computer,
LMOEA is able to evolve the population for less than 50 gen-
erations (on average) in 1800 s, which is half of number used
in [17].

In the next experiment, we compare both algorithms over the
set of real-world instances. As it was aforementioned, the results
obtained in this benchmark must be separated into two groups.
On the one hand, those where the ground truth is known and,
on the other hand, those where the ground truth is unknown.
Therefore, for karate, dolphin, and football, we report NMI and Q.
Whereas for jazz and netscience, we only show the Modularity.

We report in Table 8 the average NMI of 20 independent exe-
cutions (and the associated standard deviation) for both, MOBVNS
and LMOEA, over each instance. We additionally include the CPU
time (notice that both algorithms were executed in the same
computer). To facilitate the comparison, we additionally include
the NMI values published in [17], where the LMOEA is executed
for 100 generations (without time limit). As we can see in this
experiment, MOBVNS obtains competitive results in all networks
by spending few seconds of computing time. It consistently finds
better results than LMOEA (executed for 1800 s) and it is rela-
tively close to LMOEA executed without time limit. The standard
deviation smaller than 0.01 on average reached by MOBVNS
confirms the robustness of the method, reaching the best values
or close to best in most of the executions.

We now show in Table 9 the modularity obtained with MOB-
VNS and LMOEA when considering the whole set of real-world
networks. As was aforementioned, the maximum CPU time is
limited to 1800 s. As before, we also include the results of LMOEA
reported in [17] where the authors did not consider any time
limit. We report for each network the average Q value of 20
executions. Notice that, in the case of LMOEA, no solutions are
generated after 1800 s for two instances, which is indicated with
an asterisk in the corresponding cell of the table. The dashes in
the LMOEA [17] indicates that these are new instances which
were not tested in the original work and, therefore, there are
not results for them. This experiment again confirms the good
performance of the proposed algorithm. As can be observed, our
method consistently produces better outcomes. The proposed
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Fig. 2. NMI for n = 500 and n = 1000 instances.

Table 8
Summary of the results of NMI metric obtained by the proposed MOBVNS and LMOEA when solving the real world
instances.
Instance LMOEA MOBVNS

Avg. NMI Avg. Time (s) Best NMI Best Time (s) Avg. NMI Avg. Time (s) Best NMI Best Time (s)

dolphin 0.050 1800.00 0.069 1800.00 0.751 0.41 0.770 0.11
football 0.020 1800.00 0.033 1800.00 0.864 1.80 0.877 0.27
karate 0.100 1800.00 0.100 1800.00 0.439 0.07 0.439 0.03

Table 9
Summary of the results of modularity metric obtained by the proposed MOBVNS and LMOEA when solving the real world
instances.
Instance LMOEA MOBVNS

Avg. Q Avg. Time (s) Best Q Best Time (s) Avg. Q Avg. Time (s) Best Q Best Time (s)

dolphin 0.059 1800.00 0.067 1800.00 0.728 0.41 0.736 0.11
football 0.029 1800.00 0.067 1800.00 0.789 1.80 0.827 0.27
karate 0.061 1800.00 0.069 1800.00 0.500 0.07 0.508 0.03
jazz 0.027 1800.00 0.027 1800.00 0.899 11.99 0.899 10.87
netscience 0.058 1800.00 0.058 1800.00 0.972 1800.00 0.972 1800.00
musae_DE 0.001 1800.00 0.012 1800.00 0.032 1800.00 0.043 1800.00
musae_ENGB – 1800.00 – 1800.00 0.095 1800.00 0.108 1800.00
musae_ES 0.001 1800.00 0.003 1800.00 0.067 1800.00 0.069 1800.00
musae_FR 0.001 1800.00 0.001 1800.00 0.030 1800.00 0.030 1800.00
musae_RU – 1800.00 – 1800.00 0.201 1800.00 0.201 1800.00

Table 10
Summary of the results obtained by the proposed MOBVNS and LMOEA when
solving the 62 instances considered in this work.
Algorithm #Best Q #Best NMI #Avg. Q Avg. NMI

MOBVNS 62 41 0.27 0.77
LMOEA 0 14 0.01 0.66

MOBVNS method reaches the best values of Modularity in the
5 considered networks. Indeed, only in netscience network, our
method spends the whole budget of CPU time. Again, the stan-
dard deviation is smaller than 0.01, confirming the robustness
of the proposal, which is able to reach the best value in most
executions and stay close to it in those cases in which the best
value is not found.

We summarize the results over the whole set of instances
in Table 10. Specifically, we report in this table, the number of
instances in which each algorithm shows the best results using
the metrics just mentioned, as well as the average value of these
two metrics.

As it can be seen in this table, taking into account Modularity
the proposed algorithm (MOBVNS) provides the best solution in
all the instances compared with LMOEA executed with a time
limit of 1800 s. Regarding the NMI, MOBVNS obtains the best
results in 41 out of 62 networks (66% of the instances). Analyzing
the average modularity and average NMI, MOBVNS provides again
better results as these mean values are higher.

In order to validate these results, we have conducted the
well-known non-parametric Wilcoxon statistical test for pairwise
comparisons, which answers the question: do the solutions gen-
erated by both algorithms represent two different populations?
We consider a typical level of significance of 1%. The result-
ing value is smaller than 0.0005 when comparing MOVNS with
LMOEA, confirming the superiority of the proposed algorithm.
Therefore, MOVNS emerges as one of the most competitive algo-
rithms for the MOCDP, being able to reach high quality solutions
in reduced computing times.

Finally, we have performed an additional experiment to val-
idate the results obtained by MOBVNS. In particular, we have
included in the comparison the most extended algorithms for
community detection in social networks, which are focused in
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Table 11
Comparative of MOBVNS Algorithm against other classical heuristic methods found in literature.

EB FG LP LE ML WT IM CL MOBVNS

1000_0.1_prev 0.011 0.014 0.011 0.021 0.012 0.011 0.011 0.012 0.450
1000_0.1network 0.433 0.428 0.433 0.273 0.433 0.433 0.433 0.433 0.454
1000_0.2_prev 0.009 0.018 0.009 0.025 0.009 0.009 0.009 0.009 0.435
1000_0.2network 0.385 0.367 0.385 0.221 0.386 0.385 0.385 0.386 0.428
1000_0.3_prev 0.007 0.024 0.007 0.054 0.008 0.007 0.007 0.008 0.396
1000_0.3network 0.339 0.319 0.339 0.220 0.340 0.339 0.339 0.340 0.414
1000_0.4_prev 0.008 0.035 0.008 0.019 0.009 0.008 0.008 0.009 0.369
1000_0.4network 0.285 0.277 0.290 0.186 0.293 0.290 0.290 0.293 0.407
1000_0.5_prev 0.006 0.041 0.009 0.038 0.009 0.006 0.006 0.009 0.391
1000_0.5network 0.176 0.230 0.241 0.141 0.246 0.240 0.241 0.246 0.411
1000_0.6_prev 0.004 0.048 0.019 0.027 0.011 0.010 0.007 0.011 0.357
1000_0.6network 0.086 0.203 0.197 0.154 0.204 0.188 0.193 0.204 0.386
1000_0.7_prev 0.004 0.054 0.249 0.068 0.017 0.032 0.249 0.017 0.311
1000_0.7network 0.040 0.169 0.249 0.144 0.150 0.126 0.249 0.150 0.317
1000_0.8_prev 0.047 0.054 0.249 0.065 0.023 0.039 0.249 0.023 0.275
1000_0.8network 0.057 0.158 0.249 0.142 0.125 0.089 0.249 0.125 0.272
500_0.1_prev 0.023 0.023 0.023 0.020 0.023 0.023 0.023 0.023 0.446
500_0.1network 0.419 0.414 0.419 0.325 0.419 0.419 0.419 0.419 0.424
500_0.2_prev 0.020 0.026 0.020 0.039 0.020 0.020 0.020 0.020 0.411
500_0.2network 0.376 0.367 0.376 0.235 0.376 0.376 0.376 0.376 0.432
500_0.3_prev 0.017 0.028 0.020 0.061 0.017 0.017 0.017 0.017 0.378
500_0.3network 0.330 0.323 0.329 0.219 0.330 0.330 0.330 0.330 0.382
500_0.4_prev 0.015 0.032 0.015 0.053 0.016 0.015 0.015 0.016 0.390
500_0.4network 0.264 0.265 0.279 0.206 0.280 0.279 0.279 0.280 0.362
500_0.5_prev 0.013 0.041 0.025 0.027 0.017 0.015 0.015 0.017 0.383
500_0.5network 0.162 0.222 0.239 0.168 0.239 0.232 0.233 0.239 0.374
500_0.6_prev 0.008 0.054 0.249 0.036 0.016 0.015 0.015 0.016 0.365
500_0.6network 0.044 0.180 0.248 0.135 0.187 0.174 0.248 0.187 0.342
500_0.7_prev 0.056 0.051 0.249 0.068 0.022 0.019 0.249 0.022 0.317
500_0.7network 0.066 0.175 0.249 0.133 0.145 0.127 0.249 0.145 0.329
500_0.8_prev 0.004 0.047 0.249 0.043 0.026 0.049 0.249 0.026 0.323
500_0.8network 0.066 0.151 0.249 0.116 0.124 0.151 0.249 0.124 0.310
dolphins 0.513 0.484 0.471 0.487 0.507 0.477 0.512 0.507 0.727
football 0.587 0.540 0.591 0.481 0.592 0.591 0.588 0.592 0.788
karate 0.318 0.286 0.307 0.306 0.342 0.289 0.307 0.342 0.500

single-objective optimization. Specifically, we have tested: Edge-
Betweenness (EB) [61], Fast-Greedy (FG) [62], Label Propagation
(LP) [63], Leading Eigenvector (LE) [57], MultiLevel (ML) [64],
Walktrap (WT) [65], InfoMap (IM) [66], Cluster Louvain (CL) [64].
These algorithms are included in every community detection
framework due to their popularity. This comparison allows us
to evaluate the relevance of dealing with the CDP following a
multi-objective approach. Table 11 shows the individual results
obtained for each considered instance in terms of modularity.

It is worth mentioning that most of the algorithms included
in the comparison are directly focused on optimizing modu-
larity, although some of them such as the Label Propagation
uses a different criterion as optimization metric. As it can be
seen in the table, MOBVNS consistently obtains the best re-
sults in terms of modularity. Although in some instances, such
as 1000_0.1network, the improvement obtained is negligible,
in most of the instances the multi-objective modeling of the
problem allows the algorithm to reach considerably better mod-
ularity values. These results support the interest of tackling the
community detection as a multi-objective optimization problem.

6. Conclusions and future work

In this paper, we have proposed a new metaheuristic method
for community detection in social network based on Variable
Neighborhood Search (VNS), where the set of initial set of non-
dominated solutions is generated with a constructive proce-
dure based on Greedy Randomized Adaptive Search Procedure
methodologies (GRASP). The use of GRASP for the initial set of
non-dominated solutions allows VNS to start the search from
a promising region of the search space. The problem is ad-
dressed by optimizing the Radio Cut (RC) and the Negative Ratio

Table A.12
Information about the number of nodes, edges, and density of the instances
derived from the LFR dataset.
Instances Nodes Edges Density

500_0.1 500 10674 0.08
500_0.1_prev 500 10 386 0.08
500_0.2 500 9940 0.07
500_0.2_prev 500 9444 0.07
500_0.3 500 9684 0.07
500_0.3_prev 500 9870 0.07
500_0.4 500 10 338 0.08
500_0.4_prev 500 10 326 0.08
500_0.5 500 10 310 0.08
500_0.5_prev 500 9894 0.07
500_0.6 500 10312 0.08
500_0.6_prev 500 10258 0.08
500_0.7 500 10232 0.08
500_0.7_prev 500 9442 0.07
500_0.8 500 10194 0.08
500_0.8_prev 500 9798 0.07
1000_0.1 1000 20868 0.04
1000_0.1_prev 1000 19330 0.03
1000_0.2 1000 20142 0.04
1000_0.2_prev 1000 20032 0.04
1000_0.3 1000 19432 0.03
1000_0.3_prev 1000 19218 0.03
1000_0.4 1000 20014 0.04
1000_0.4_prev 1000 19668 0.03
1000_0.5 1000 20770 0.04
1000_0.5_prev 1000 19122 0.03
1000_0.6 1000 20084 0.04
1000_0.6_prev 1000 19940 0.03
1000_0.7 1000 20150 0.04
1000_0.7_prev 1000 19900 0.03
1000_0.8 1000 20640 0.04
1000_0.8_prev 1000 19072 0.03

12



S. Pérez-Peló, J. Sánchez-Oro, A. Gonzalez-Pardo et al. Applied Soft Computing 112 (2021) 107838

Table A.13
Information about the number of nodes, edges, and density of the instances
derived from the LFR dataset.
Instances Nodes Edges Density

5000_0.1 5000 100430 0.01
5000_0.2 5000 1011070 0.08
5000_0.3 5000 103662 0.01
5000_0.4 5000 101732 0.01
5000_0.5 5000 99770 0.01
5500_0.1 5500 112858 0.01
5500_0.2 5500 111868 0.01
5500_0.3 5500 111592 0.01
6000_0.1 6000 121486 0.01
6000_0.2 6000 121692 0.01
6000_0.3 6000 119742 0.01
6500_0.1 6500 134384 0.01
6500_0.2 6500 132336 0.01
6500_0.3 6500 133520 0.01
7000_0.1 7000 142156 0.01
7000_0.2 7000 141552 0.01
7000_0.3 7000 142424 0.01
7500_0.1 7500 151060 0.01
7500_0.2 7500 152778 0.01
7500_0.3 7500 152972 0.01

Table A.14
Information about the number of nodes, edges, and density of the instances
derived from the real-world instances dataset.
Instances Nodes Edges Density

dolphins 62 159 0.08
football 115 613 0.09
karate 34 78 0.13
netscience 1589 2742 0.01
jazz 198 2742 0.14
musae_DE_edgesnetwork 9498 153138 0.01
musae_ENGB_edgesnetwork 7126 35324 0.01
musae_ES_edgesnetwork 4648 59382 0.01
musae_FR_edgesnetwork 6549 112666 0.01
musae_RU_edgesnetwork 4385 37304 0.01

Association (NRA) metrics simultaneously as a bi-objective opti-
mization problem. The quality of the solutions are evaluated by
considering classic multi-objective metrics (Coverage, Hypervol-
ume, ϵ-indicator, and Inverted Generational Distance) and two
well-known metrics in the context of social network analysis
(Normalized Mutual Information and Modularity).

The performed experiments show that the combination of
GRASP with VNS in a multiobjective optimization framework is
able to produce high quality solutions for the Multi-Objective
Community Detection Problem (MOCDP), outperforming the best
method found in the literature, which is based on a multiobjective
evolutionary algorithm (LMOEA, Local Multi-Objective Evolution-
ary Algorithm). Additionally, the efficient implementation of the
proposed algorithm is almost ten times faster than the original
LMOEA, becoming more suitable for large scale networks.

In future works, it would be interesting to analyze the per-
formance of a multi-objective variant when compared with the
best single-objective methods found in the state of the art, even
including different conflicting objectives to be compared. Addi-
tionally, the VNS approach presented in this work will be tested
in new variants of the Community Detection Problem, such as
Dynamic Community Detection or Overlapping Community De-
tection, to validate the potential of this framework for dealing
with Community Detection Problems.
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Abstract

In recent years, obtaining information from different social networks, their users

and their structure, has become a common practice among different research

areas, such as marketing, data science, business analytics, biology, etc. This

interest is mainly generated by the massive information that can be extracted

from them. Several hard combinatorial optimization problems can be derived

from social networks (user influence, topic popularity, polarization, etc.) and

all of them belong to the well-known Social Network Analysis (SNA) research

field. In this work, we focus on Community Detection Problem (CDP), that

tries to group users in different clusters / communities based on their similar-

ity, that can be denoted by different aspects such as their relations, preferences

or membership of different groups. We will focus on a specific kind of CDP:

Overlapping CDP, where one user could be part of more than one community

simultaneously. The problem is tackled from a heuristic perspective, applying

a Greedy Randomized Adaptive Search Procedure (GRASP) hybridized with

an Iterated Greedy technique to obtain communities in different networks. The

performance of this algorithm is compared against the best previous method

found in the literature, which consists of a Density Peaks algorithm. To eval-

uate the performance of both algorithms, we have employed real-world and
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synthetic instances that allow us to test their efficiency in different scenarios.

Experimental phase reveals that the proposed algorithm outperforms the state

of the art in terms of overlapped modularity, an evaluation metric that has been

adapted from modularity metric to overlapping scenario.

Keywords: GRASP, Iterated Greedy, Overlapping Community Detection,

Heuristics, Optimization

1. Introduction

Nowadays, social networks (SN) have become one of the most used kind of

applications in our society. Its capability to connect people around all the globe

is one of the main reasons why they are so extended in a broad spectrum of the

population. This characteristic makes social networks one of the largest sources

of data that can be analyzed, allowing us to extract relevant information about

virtually all groups of the world’s population (different ages, genders, ethnicity,

cultures, etc.). These characteristics have attracted the attention of researchers

in different fields, such as sociology, business, or computer science.

However, one of the most interesting aspects to analyze is the relationship

that is established among different groups of users, and how these relationships

inherently form a community. In some social networks, the assignment of an

user to a community is not obvious. For example, Twitter users can not be di-

rectly assigned to a certain community without analyzing their friends/followers

network. In others Social Networks these relationships are evident, such as on

Facebook, where users can explicitly join different groups depending on their

interests.

In a real-life scenario, users usually belong to more than one group at a time.

For example, someone that is interested in jazz music, can be also interested in

football or other topics not necessarily related with the first one. These groups

are commonly known as communities, and the task of determining the different

communities in a social network is referred to as Community Detection Problem

(CDP) that belongs to the Social Network Analysis (SNA) research field.
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Usually, research works focusing on CDP identify different communities by

trying to ensure that each user belongs to only one community at the same

time. In this work, we tackle the problem from the perspective in which a user

can be grouped in more than one community, which is usually referred to as

Overlapping Community Detection Problem (OCDP).

In order to solve this problem, our proposal consists of a hybrid approach

that applies Greedy Randomized Adaptive Search Procedure (GRASP) [11]

and Iterated Greedy (IG) [43], two well-known metaheuristics that has been

successfully applied for solving a wide variety of NP-hard problems.

The rest of the paper is organized as follows: Section 2 formally states the

problem tackled in this work and the metric used to evaluate solutions. In

Section 3, we summarize the literature review performed as knowledge base

for this paper. In Section 4, we present a hybrid approach that uses GRASP

and IG metaheuristics to reach high-quality solutions to the studied problem.

Section 5 describes the experiments performed in order to evaluate the quality

of our proposal, showing a high performance that overcome the state of the art.

Finally, Section 6 sets out the conclusions drawn from the work carried out in

this research.

2. Problem Description

A social network can be modeled as a graph G = (V,E) where the set of

vertices V , with |V | = n, corresponds to its users, while the set of edges E, with

|E| = m, is conformed with 2-tuples (u, v) ∈ E, with u, v ∈ V , representing that

there exists a relation between users u and v. The specific relationship type is

defined by the context of the social network itself. For example, it can indicate

a friendship relationship (Facebook), a co-workers relationship (LinkedIn), or

a follower-followed connection (Twitter). It is important to remark that these

relations can be bidirectional or one-way connections, depending on the basal

characteristics of the social network itself. In this work, we only consider bidi-

rectional relations, i.e., if there is a connection between user A and user B (node
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A and node B in the graph model), then there is also a connection between B

and A.

In this paper, we try to solve the Overlapping Community Detection Prob-

lem (OCDP) which is a variant of the classical Community Detection Problem

(CDP). The main characteristic of the OCDP is that each user may belong to

more than one community at the same time. This version of the problem is more

realistic because, for example, there might be certain users that are related to

a scientific community and to a musicians community at the same time.

At this point, it is important to define the concept of community, which is

a subset of users and the relations among them. More formally, a community

Ci is defined as the subgraph Ci = (Vi, Ei), where Vi ⊆ V contains all the users

belonging to the community and Ei is conformed with all the relations between

users in Vi, i.e., Ei = {(u, v) ∈ E : u, v ∈ Vi}.
The main objective of CDP and, in particular, OCDP, is to provide an as-

signment of users to communities that fulfills the community structure found

along the network under evaluation. Translated to graph terminology, the main

objective is to find subgraphs highly connected, i.e., nodes of the same sub-

graph are densely connected among them, but sparsely connected to the other

subgraphs. In other words, we try to maximize the number of edges between

nodes belonging to the same subgraph while minimizing the number of edges

connecting nodes in different subgraphs.

A solution S for the OCDP is composed by a set of k communities (i.e.,

S = {C1, C2, ..., Ck}) where k (with 1 ≤ k ≤ n) indicates the number of detected

communities. Thus, k = 1 means that there is only one community that contains

all nodes, while k = n represents the case where there are n communities with

a node in each one. It is worth mentioning that the value of k is not known a

priori, and it must be determined by the algorithm.

The overlapping nature of the OCDP allows an user to belong to more than

one community, so one node can appear more than once in a different Ci ∈ S.

Then, a solution for the OCDP is feasible if and only if all nodes in the network

have been associated to, at least, one community.
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Once we know when a solution is feasible for the OCDP, we define the metric

used to evaluate and compare different solutions. In Social Network Analysis,

there are several metrics that have been accepted and applied to evaluate the

quality of a solution. Perhaps, the most extended one is modularity [34], that

has been successfully adapted to different approaches and applications of the

context of CDP [18, 21, 26, 38, 48]. In this paper, we use the adaptation of

the traditional modularity for the overlapping scenario described in [27]. It

takes into account the possibility for a node to belong to several communities.

The corresponding equation basically modifies the classical definition by adding

a factor that represents the number of different communities to which a node

belongs to. The evaluation is performed by independently calculating the mod-

ularity of each community and, then, averaging the results for all communities.

Mathematically,

MO(S) =

∑
Ci∈S

MO(Ci)

|S| (1)

where |S| is the number of detected communities in the incumbent solution.

Given a community Ci = (Vi, Ei) its overlapping modularity MO(Ci) is evalu-

ated as:

MO(Ci) =
1

|Vi|
∑

u∈Vi

|E←(u,Ci)| − |E→(u,Ci)|
du · su

· |Ei|
|Vi|·(|Vi|−1)

2

(2)

where du indicates the degree of node u, and su represents the total number

of communities that contains node u. Terms E←(u,Ci) and E→(u,Ci) repre-

sent the set of intra-community and inter-community edges, respectively. More

formally:

E←(u,Ci) = |{v ∈ (Vi \ {u}) : (u, v) ∈ E}|
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E→(u,Ci) = |{w /∈ Vi : (u,w) ∈ E}|

Finally, in order to normalize the result, since the size of each community could

be rather different, this difference between intra and inter-community edges is

multiplied by the ratio between the number of edges that actually exists in the

community (|Ei|), and the number of edges that an ideal community would have

( |Vi|·(|Vi|−1)
2 ).

Let us illustrate with an example how we evaluate the aforementioned equa-

tions. Figure 1(a) shows a network with 9 nodes and 11 edges. Figure 1(b)

depicts a solution S conformed with two communities, C1 = (V1, E1) and

C2 = (V2, E2). These two communities, highlighted in blue and red, respectively,

are then defined as V1 = {0, 1, 2, 3, 4}, E1 = {(0, 1), (1, 2), (1, 3), (2, 3), (3, 4)};
and V2 = {3, 4, 5, 6, 7, 8}, E2 = {(3, 4), (4, 5), (4, 6), (4, 7), (6, 7), (7, 8)}. Simi-

larly, we show in Figure 1(c) the solution S′, composed of four communities,

C ′1 = (V ′1 , E
′
1), C ′2 = (V ′2 , E

′
2), C ′3 = (V ′3 , E

′
3), and C ′4 = (V ′4 , E

′
4). These four

communities, highlighted in yellow, blue, red and green, respectively, are then

defined as V ′1 = {0}, E′1 = ∅; V ′2 = {0, 1, 2, 3}, E′2 = {(0, 1), (1, 2), (1, 3), (2, 3)};
V ′3 = {4, 5, 6, 7, 8}, E′3 = {(4, 5), (4, 6), (4, 7), (6, 7), (7, 8)}; and V ′4 = {5}, E′4 =

∅. Notice that, in S, nodes 3 and 4 belongs to communities C1 and C2 simulta-

neously, while in S′, node 0 belong to communities C ′1 and C ′2, and node 5 to

C ′3 and C ′4 at the same time, emerging the overlapping nature of the OCDP.

The next step is to evaluate and compare the different solutions using the

modularity metric previously described. On the one hand, following Equa-

tion 2, MO(C1) = 0.335, and MO(C2) = 0.347, resulting in a total modular-

ity (Equation 1) of MO(S) = 0.336. If we now evaluate the solution S′, the

modularity of each community is evaluated as MO(C ′1) = 0, MO(C ′2) = 0.472,

MO(C ′3) = 0.480, and MO(C ′4) = 0, resulting in MO(S′) = 0.238. Notice that

the modularity of C ′1 and C ′4 is equal to zero since, following the suggestions

in [54], those communities with a single node have a modularity equal to zero.

Analyzing these results, we can conclude that S is better than S′ in terms of
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(a) Example network (b) Solution S (c) Solution S′

Figure 1: Example network with 9 nodes and 11 edges and two different feasible solutions for
the OCDP. Figure 1(a) shows a network with 9 nodes and 11 edges. Figure 1(b) depicts a
solution S conformed with two communities and two overlapping nodes. Figure 1(c) exposes
a different solution S consisting of four communities and two overlapping nodes.

modularity.

Having defined the objective function of the OCDP, the goal then is to find

a solution S? with the maximum MO(S?) value. In mathematical terms,

S? ← arg max
S∈S

MO(S) (3)

where S is the set of all possible community assignments that can be performed.

3. State-of-the-art

Nowadays, the relevance of social networks in society is undeniable. This is

produced by several reasons: firstly, it is because of the high number of users

connecting every day to social networks. Secondly, it is because of the services

that these networks provide to the users. As a result, there is a huge amount

of data generated by the users’ actions that can be analyzed to extract some

valuable knowledge.

The research area in charge of extracting this knowledge from social network

is called Social Network Analysis (SNA) [3]. Its popularity has made that re-

searchers from different research fields (such as Data Mining [1], Big Data [52],

Machine Learning [4], or Complex Systems [36]) have applied SNA methods to
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different application domains, like healthcare [18, 23, 45], marketing [19, 20, 48],

cybersecurity [6, 12, 26], or politics [7, 21, 32]. These research fields that con-

tribute to the SNA research is because of the wide variety of information that

can be extracted from the networks. For example, it is possible to identify

the most relevant users in the SN [29], measure any personality-based metric

[26], analyze the speech used by the users [32], study how the misinformation is

spread [49], or detect the groups of users with similar characteristics [14, 44].

Our revision of the relevant literature is focused on the extraction of the

different groups, or communities, of users. This task is commonly known as

Community Detection Problems (CDP) [22, 9, 47] and its main goal is to group

users in different communities, or clusters, in such a way that users belonging to

the same community are similar with each other, whereas they differ from users

of other communities. To determine what kind of information is used to measure

the similarity between two users, it is possible to use information provided in

the users’ profile, but the most common approach is to use the relationship in

the network [14].

As it has been described in the previous section, there are two different types

of CDP and differ in the number of communities to which an user can belong.

The most extended method consist in determining that each user belongs only to

one specific community at the same time, which is called non-overlapping CPD,

or disjoint community detection. Classical algorithms for CDP were initially de-

signed using the non-overlapping approach, some examples are Girvan-Newman

[13] or the greedy approach proposed by Clauset et al. [5]. Nevertheless, the

main problem is the high computational costs of solving CDP when the number

of users increases. Thus, it is really common to use other approaches based on

an iterated greedy algorithm [44], or bio-inspired algorithms [14], which provides

good solutions in a reasonable amount of time.

The second type of CDP is called overlapping CDP, and it is the problem

faced in this work. Overlapping CDP [53] describes problems in which users

have to be grouped in different communities, but each user may belong to more

than one community at the same time. This is done by including a belonging
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factor or a soft membership vector in each node [15].

There are several approaches that allow the detection of overlapping com-

munities. The most commonly known algorithms are CONGA and CONGO.

CONGA stands from Cluster-Overlap Newman Girvan Algorithm, and it was

proposed in [15]. This algorithm is based on the traditional Girvan-Newman

algorithm [13] but CONGA incorporates a different vertex splitting procedure.

The main problem with CONGA is that it has the same computational com-

plexity that Girvan-Newman, which is O(m3) (being m the number of edges of

the graph). In order to solve this problem, the same author proposed in 2008

the algorithm CONGA Optimized, known as CONGO [16], whose complexity is

reduced to O(n · log n) where n represents the number of nodes. Some examples

of classical algorithms that have been adapted to the overlapping version are

the Clique-Percolation-Method (CPM) [24] or Label Propagation [17]. There

are other approaches based on greedy methods [51] or non-negative matrix fac-

torization [55].

All these algorithms applied to Overlapping CDP suffer from the same draw-

backs as the non-overlapping algorithms: the computational cost required to

evaluate solutions. In order to alleviate this problem, it is quite common the

usage of heuristics or metaheuristics approaches. In this paper, the Greedy

Randomized Adaptive Search Procedure (GRASP) has been selected to solve

the Overlapping CDP. One of the reasons about this decision is because this

algorithm has been widely applied to solve a high range of application domains,

providing good solutions in a reasonable amount of time [21, 39, 46]. One of

these application domains is the Overlapping CDP and one of the latest research

papers published that uses GRASP for this purpose is the one authored by Xu

et al. [54].

In the just mentioned paper, the authors proposed an extended adaptive

version of the density peak algorithm [41] for overlapping CDP, named EADP.

This algorithm is in charge of detecting the overlapping communities, taking

into account the distance between any pair of nodes. Given any two nodes, the

distance between these nodes will depend on the number of nodes connected
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to them. Once this distance is computed to any pair of nodes, the algorithm

selects the centre for the different communities and allocates to those centres

the nodes of the network according to the density peak algorithm. Although

the algorithm provides promising results, its complexity is O(v̄ · n2), where n

is the number of nodes in the graph, and v̄ is the average number of common

nodes.

4. Algorithmic approach

There are two different ways for dealing with hard optimization problems:

exact and heuristic approaches. The former are devoted to find the optimal

value for the problem under consideration, without taking into account the

required computing time to achieve that value. The latter, on the contrary, are

designed for providing high quality solutions in reasonable computing times,

without guaranteeing optimality.

In the context of CDP, the difficulty inherent to this family of problems,

together with the need of reducing the computing times due to the continuous

evolution of the social networks, make exact approaches not suitable for real-

life networks, mainly due to the vast size of the solution space. Therefore,

heuristic algorithms are a good option to be considered, given that they do

not explore the entire search space, but certain promising regions of it. This

behavior has the disadvantage that optimality cannot be guaranteed, but it is

possible to achieve high quality solutions in reduced computing times. Another

disadvantage of heuristic approaches is that a heuristic algorithm can eventually

get trapped in a local optimum of the region under exploration. In this point

is where metaheuristic algorithms come into play, been able to guide heuristics

through the search space in a more intelligent way, allowing them to escape

from local optima, thus exploring further regions of the search space. In this

paper, we adapt the Iterated Greedy (IG) metaheuristic [43] to deal with the

OCDP. IG is able to escape from local optima by partially destroying a solution

and reconstructing it iteratively, allowing to explore a wider region of the search
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space. This metaheuristic has been successfully applied in different optimization

problems, such as [37, 40, 44].

The Iterated Greedy metaheuristic requires from an initial feasible solution

to start the search. To perform this initial construction, several options are

usually considered: from a random construction, to a greedy approach, through

methodologies that hybridize both approaches. In this work, we apply a Greedy

Randomized Adaptive Search Procedure (GRASP), originally presented in [10]

and formally defined in [11] to generate the initial solution. GRASP consists of

a multi-start procedure that tries to escape from local optima by restarting the

search from a completely new point.

4.1. Initial solution

As it was aforementioned, the initial solution for the Iterated Greedy is gen-

erated using GRASP, which consists of two differentiated phases: construction

and improvement. In the construction phase, we try to generate from scratch

a high quality solution, while the improvement phase is responsible for reach-

ing a local optimum with respect to certain neighborhood starting from the

constructed solution.

4.1.1. Constructive procedure

To construct an initial solution for OCDP, we must define a criterion that al-

lows us to select the most appropriate communities for each node in the network.

Algorithm 1 shows a pseudocode of the proposed constructive procedure.

The algorithm starts with an empty solution S (step 1), where the nodes are

not assigned to any community. Then, the candidate list CL is constructed with

all the nodes in the graph G (step 2). The method iterates until every node has

been assigned to, at least, a single community, i.e., CL is empty (steps 3-13).

In each iteration, the constructive method selects the next node to start a

new community. In order to do so, every node v is evaluated following a greedy

function g(v) which determines the suitability of starting the community from v.

The greedy function selected in this work is PageRank [35], originally proposed
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Algorithm 1 Construction(G = (V,E), α).

1: S ← ∅
2: CL← V
3: while CL 6= ∅ do
4: gmin ← minv∈CL g(v)
5: gmax ← maxv∈CL g(v)
6: µ← gmax − α · (gmax − gmin)
7: RCL← {v ∈ CL : g(v) ≥ µ}
8: v ← Random(RCL)
9: L← DMF (v,G)

10: CL← CL \ L
11: C ← InducedSubgraph(L,G)
12: S← S ∪ {C}
13: end while
14: return S

to rank the importance of a web page on the Internet, based on their incoming

links (i.e., the number of web pages that reference the one under evaluation).

Following this idea, the PageRank of every node in the CL is evaluated to decide

which node has more relevance in the network, and therefore it should occupy a

prior position in the CL, since this metric must be maximized. The PageRank

provides a precise idea of which nodes have a central position in the potential

communities, given that a node with a high PageRank will commonly have a

high degree and several connections with other nodes that will usually be part

of the same community. Given that in this work the networks analyzed have

an invariant structure, the PageRank value for a node is only needed to be

calculated once, reducing the computational effort.

The minimum (gmin) and maximum (gmax) value of this greedy function are

computed (steps 4-5), with the aim of calculating a threshold µ (step 6) that

limits the minimum value of PageRank that a node must have in order to be

considered in the restricted candidate list RCL. The elements allowed to enter

in the RCL are conditioned by an α parameter, resulting in a subset of the

candidate nodes that are currently in the CL. The α value ranges from 0 to 1.

On the one hand, the closer the value to 0, the more random the algorithm is,

given that a larger number of elements that belongs to CL are able to enter
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in the RCL. On the other hand, the closer the value to 1, the more greedy

algorithm is, since only the nodes with the largest PageRank value are included

in the RCL.

Once the RCL is defined, a node v is randomly selected from it (step 8), con-

sidering v as the origin of a new community. To build this community, we apply

the DMF algorithm [30]. This algorithm applies a dynamic membership func-

tion to locally decide which node belongs to the community under construction.

In particular, a breadth-first search is applied, starting from v, and includes in

the community under construction those nodes that improve the ratio between

intra-community and inter-community edges of the community under construc-

tion. The breadth-first search stops when no nodes found in the traversal are

suitable to be included in the community. A more detailed explanation of its

implementation can be found in [30]. Notice that this method is suitable for the

overlapping nature of the OCDP, since a node that has already been included

in a certain community, can be later included in a different one if it satisfies

the criterion used during the breadth-first search when starting from a different

node. The DMF method returns a set of nodes L, which is used to update the

CL by avoiding that the nodes involved in the new community are considered

as starting nodes for any new communities (step 10). Then, in step 11 it is

constructed a community as the induced subgraph C = G[L] formed with the

vertices in L and all of the edges connecting pairs of vertices in L. After that,

the new community C is included in the solution under construction S (step 12).

The method finally returns the constructed solution S (step 14).

Notice that the randomness included in the selection of the next node from

the RCL allows the algorithm to generate diverse solutions, which will eventually

lead the method to find more promising regions of the search space.

4.1.2. Improvement phase

Once an initial solution is generated using the constructive procedure, the

improvement phase is responsible for finding a local optimum with respect to a

certain neighborhood by applying a local search procedure. It is conformed by
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four main elements: the move operator considered in the search, the neighbor-

hood to be explored, the strategy used to traverse the neighborhood, and the

order in which the neighborhood is explored (if necessary).

First of all, the operator considered in this work consists in assigning a given

vertex u to a new community Cj , evaluating, at the same time, whether the

removal from one of its current communities Ci is positive or not. Specifically,

the removal from its original community is performed if and only if the percent-

age of inter-community edges minus the percentage of intra-community edges

of node u in the current community is greater than a given threshold τ , which

is a parameter of the local search (see Section 5 for a detailed analysis of the

effect of this parameter in the procedure). Otherwise, u stays in the current

community Ci but it is also incorporated in Cj . The rationale behind this idea

is that if a node has more edges to other communities than to nodes in the

same community, then it should not belong to that community, since it is more

related to nodes in other communities.

Notice that the node u can eventually belong to additional communities, but

the move only affects to one of those communities, Ci, in order to maintain the

overlapping structure of the OCDP. Given a node u, assigned to a community

Ci, that is being moved to a community Cj , and the threshold τ , the move

operator is formally defined as:

Move(u,Ci, Cj , τ) =





Ci ← Ci \ {u}
Cj ← Cj ∪ {u}

if E→(u,Ci)
du

− E←(u,Ci)
du

> τ

Cj ← Cj ∪ {u} otherwise

(4)

The objective of this move is to evaluate if a node could be part of a better

community than the one in which it is located. To this end, the ratio between

intra-community and inter-community edges is computed, since the local search

is based in the aforementioned idea that a good community structure is con-
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formed by this situation: all nodes belonging to a community should be highly

interconnected among them and sparsely connected to nodes in other commu-

nities.

The second element to be defined in a local search is the neighborhood to

explore. In this case, the neighborhood of a given solution S is conformed with

all solutions that can be reached by making a single move. Mathematically,

N(S) = {S′ ← Move(u,Ci, Cj , τ) ∀u ∈ V, ∀Ci, Cj ∈ S : u ∈ Ci ∧ u /∈ Cj}
(5)

It is worth mentioning that the exploration of this neighborhood maintains

the overlapping nature of the problem, considering that a single node can belong

to more than one community.

The third element required to define a local search is the strategy followed to

explore the neighborhood. Two main strategies have been traditionally consid-

ered: first and best improvement. On the one hand, first improvement performs

the first move that leads to a better solution than the incumbent one. On the

other hand, the best improvement explores the complete neighborhood, per-

forming the move that leads to the best solution in the neighborhood under ex-

ploration. Best improvement is considerably more computationally demanding

than first improvement, since it requires to explore the complete neighborhood.

Furthermore, the evaluation of a solution for the OCDP after performing a move

is rather time-consuming. Therefore, we select first improvement strategy with

the aim of reducing the computing time required by the local search procedure.

In the first improvement strategy the order in which the neighborhood is

explored might be relevant since it could leads the search to explore some solu-

tions before others, thus biasing the search to certain regions of the search space.

In order to reduce this bias, the local search procedure randomly explores the

corresponding neighborhood.

Once we have defined the four main elements of the proposed local search
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for the OCDP, we propose a classical acceptance criterion to move to a new

solution. Specifically, in each iteration, the current solution is replaced by the

current one if a neighbor improves upon the objective function. The search

ends when all neighbor solutions are worse in therms of the objective function,

meaning that a local optimum is found.

4.2. Iterated Greedy

Iterated Greedy (IG) is a metaheuristic framework originally proposed in [43]

in the context of job scheduling problem which has been used for a wide variety of

problems. We refer the reader to [8, 28, 37] for recent successful research related

to IG for different applications, even in a multi-objective optimization problem.

The main idea of IG consists in balancing diversification and intensification by

randomly destructing a feasible solution and, then, reconstructing it in a greedy

manner to eventually reach new regions of the search space, thus leading to

better solutions.

The traditional IG framework is based on two well-differentiated stages: de-

struction phase and reconstruction phase. Although canonical IG implementa-

tions do not consider any further improvement of the reconstructed solution, the

use of a local improvement method is extended to find a local optimum starting

from the reconstructed solution. With the aim of finding high quality solutions,

we follow this approach in this work. Algorithm 2 shows the pseudocode of the

proposed IG.

Algorithm 2 IG(S, β, γ).

1: for i ∈ 1 . . . γ do
2: S′ ← Destruct(S, β)
3: S′′ ← Reconstruct(S′)
4: S′′′ ← LocalImprove(S′′)
5: if MO(S′′′) > MO(S) then
6: S ← S′′′

7: end if
8: end for

The method requires from three input parameters: S, the initial solution,

β, the percentage of elements that are removed in the destruction phase, and γ,
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the number of iterations to be performed. The initial solution in the traditional

scheme of IG can be generated at random or following a more intelligent ap-

proach that leverages the information that can be extracted from the problem

definition. In the context of OCDP, the initial solution is generated by consid-

ering the method described in Section 4.1. Therefore, the input solution S is a

local optimum with respect to the neighborhood N(S) defined in Section 4.1.2.

The use of GRASP to generate an initial solution allows IG to start the search

from a promising region of the search space.

The method iteratively destructs and reconstructs a given solution until

reaching a stopping criterion (steps 1-8). In the context of IG, two of the most

extended stopping criteria are the computing time and the number of iterations.

With the aim of providing a highly scalable approach, we decide to use the

number of iterations (γ) as stopping criterion since the computing time highly

depends on the complexity of the network analyzed.

Each iteration is conformed with two different stages: destruction and re-

construction. First, a percentage of the solution under exploration is destructed

(step 2) generating an unfeasible solution S′, then, it is reconstructed (step 3)

to recover again feasibility. After this perturbation, the resulting solution S′′

is not necessarily a local optimum with respect to any neighborhood, so apply-

ing a local optimization method may lead to an improved solution. Following

this idea, we apply the local search method described in Section 4.1.2 (step 4).

After each complete iteration (destruction, reconstruction, improvement) of the

for-loop it is tested whether the new local optimum S′′′ is better than S′ or not

when considering the overlapped modularity. If so, the incumbent solution is

updated (step 6), starting the next iteration from the new solution; otherwise,

IG discards S′′′, continuing the search from the previous solution.

In the traditional scheme of IG, the destruction stage is focused on diversifi-

cation, since the removal of elements is usually performed at random, allowing

the algorithm to reach different regions of solution space, thus escaping from

local optima. Then, the reconstruction phase is intended to increase intensi-

fication by adding elements to the solution explored in a greedy manner until
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recovering a feasible solution. In order to evaluate the influence of intensifica-

tion and diversification in the complete IG algorithm, we propose two different

destruction approaches and two reconstruction methods, each one of them fo-

cused on a different goal. In the experimental phase (Section 5), we analyze all

these possibilities, and their performances in this concrete problem.

4.2.1. Destruction phase

As it was aforementioned, the destruction phase consists in removing a cer-

tain number of elements of a given solution, with the aim of exploring further

regions of the search space. In the context of OCDP, this perturbation consists

in removing a node from all communities that it belongs to. More formally,

given a node u ∈ V , let C the subset of communities of a feasible solution

where the node u belongs to. Then, for each Ci ∈ C with Ci = (Vi, Ei) the

removing operation updates each community as follows: Vi ← Vi \ {u} and

Ei ← Ei \ {(u, v) ∈ Ei : v ∈ Vi} for 1 ≤ i ≤ C.
Having defined the method to remove elements from a solution in the de-

struction phase, it is necessary to define how many elements are being removed

in this stage. The search parameter β, which is analyzed in Section 5, is respon-

sible for this task. In particular, in each destruction stage, β · n elements are

removed from the solution. The definition of β as a parameter of the network

size increases the scalability of the proposal, since the final number of elements

removed depends on the network size. Otherwise, a large value of β may result

in the removal of many nodes in small networks and a negligible number of

elements in large-scale networks.

Finally, it is necessary to define which elements are removed during the

destruction phase. Traditional IG implementations consider the random removal

of elements since it leads to increase diversification. Apart from this traditional

implementation, we propose the use of a greedy destruction strategy, which

removes those nodes that have a large ratio of inter-community edges with

respect to its degree, i.e., E→(u)/du, for each community to which it belongs

to. Therefore, when considering the random destruction, β · n elements are
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randomly selected from the network, removing them from every community in

which they participate, while in the greedy approach, the selected β ·n elements

are those with the maximum ratio of inter-community edges.

4.2.2. Reconstruction phase

Contrary to the destruction phase, the reconstruction phase is designed to

recover a feasible solution from a destructed one. In order to do so, we must

reassign the previously removed nodes to a new community, which can be the

original or a completely different one. Notice that, in order to recover feasibility,

each one of the β · n elements needs to be reassigned to a community.

It is worth mentioning that this stage assigns exactly a single community

to each unassigned node. Although this approach could be opposite to the

OCDP fundamentals, the local search applied after the reconstruction phase

is responsible for assigning more than one community to the nodes that are

suitable for it. This idea allows the algorithm to find the most appropriate

community for each removed node.

In this case, the traditional IG scheme recommends adding the new ele-

ments to the solution following a greedy strategy, increasing the intensification

to counter the diversification included in the destruction phase. Again, we pro-

pose both strategies to add a node to the solution. On the one hand, the random

reconstruction proposed basically adds each removed node to a random commu-

nity among the available ones. On the other hand, the greedy approach selects,

for each node, the most appropriate community by selecting the one with the

largest ratio of intra-community edges with respect to the degree of the node,

i.e., E←(u)/du.

5. Experiments and results

This section shows the experiments carried out to test the effectiveness and

efficiency of the proposed approach and perform the comparison between the

most recent algorithm found in the literature [54]. Both algorithms have been

executed in the same computer: an AMD Ryzen 5 3600 AM4 core (3.6 GHz)
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with 16 GB RAM. The proposed algorithm is implemented using Java 9 while

the source code of the previous method1 is implemented in Matlab.

The dataset for these experiments is conformed with two kinds of instances:

synthetic and real-world networks. For the former, we have used the network

generator developed in [25] to construct synthetic instances2. In these networks

the community size and node degree distribution follow a power-law highly con-

figurable. We have considered different configurations for the network generator,

and we have generated different network instances for each configuration (to-

talizing 57 different networks). In particular, we have considered networks with

a range between 100 and 10000 nodes, and the edge probability p is defined as

p ∈ [0.1, 0.3] with an interval of 0.1 to simulate real-life instances.

In order to test the behavior of our algorithm over real-world networks, we

have selected a set of 11 well-known instances widely used in Social Network

Analysis problems:

• Astro-ph [33], with 16706 nodes and 121251 edges

• Cond-math [33], with 16726 nodes and 47594 edges

• Dolphin social network [31], with 64 nodes and 159 edges

• American college football [13], with 115 nodes and 613 edges

• Hep-th [33], with 8361 nodes and 15751 edges

• Zacharys karate club [56], with 32 nodes and 78 edges

• Netscience [34, 42], with 1589 nodes and 2742 edges

• Polbooks [42], with 105 nodes and 441 edges

• Power [50], with 4941 nodes and 6594 edges

• School1 (sp-data-school-day-1) [2], with 236 nodes and 5899 edges

1We really thank Xu et al. [54] for kindly sent us the source code of EADP.
2Lancichinetti, Fortunato, and Radicchi (LFR) networks.
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• School2 (sp-data-school-day-2) [2], with 238 nodes and 5539 edges

With the aim of facilitating further comparisons, all instances and the source

code of the proposed algorithms can be downloaded from https://grafo.

etsii.urjc.es/ocdp

The experimentation is divided into two different steps. On the one hand,

we perform several preliminary experiments to evaluate the best configuration

for our algorithms. On the other hand, we compare our best proposal with the

most recent algorithm found in the state of the art. All the experiments report

the following metrics: Avg., the average overlapped modularity obtained with

the algorithm in the experiment; Dev. (%), the average deviation with respect

to the best solution found in the experiment; Time (s), the total computing

time required by each algorithm measured in seconds; and #Best, the number

of times that an algorithm matches the best solution in the experiment.

5.1. Preliminary experimentation

The preliminary experiments were performed to set the values of the key

search parameters of our method as well as to show the merit of the proposed

strategies. As it is customary, we select a subset of all instances (40 out of 68)

with the aim of avoiding the overfitting of the algorithm.

The first experiment is performed with the aim to establish the best value

of the α parameter in GRASP algorithm (see Section 4.1). Concretely, we test

α = {0.25, 0.50, 0.75,RND}, where RND indicates that the value is selected

randomly in the range [0, 1] for each constructed solution. By using these values,

we cover the full range: from a mostly greedy to a mostly random approach.

We execute the constructive algorithm for 100 independent iterations, returning

the best solution found for each instance under evaluation. Table 1 shows the

obtained results for each α value under consideration.

As it can be seen, the best results are obtained when the α parameter has a

value of 0.25. Even though the average of the objective function is quite similar

for all approaches, looking at the computing times that one configuration reaches

the best solution, it can be clearly seen that the more greedy approach is superior
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α Avg. Dev. (%) Time(s) #Best
0.25 0.3282 1.58 33.25 31
0.50 0.3258 1.84 33.79 8
0.75 0.3147 5.20 34.70 11

RND 0.3241 2.82 34.14 10

Table 1: Comparison of the average results obtained by the constructive procedure with
different values for the α parameter. Best results are highlighted with bold font.

to the others. In addition, the minimum computation time also corresponds to

this strategy, followed by the configuration for α = 0.50. Regarding at the

average of deviation, these two settings are too close again, obtaining a low

value of deviation in those instances where they can not reach the best solution.

Therefore, it can be concluded that the best configuration of GRASP algorithm

is the one that has α = 0.25, so we use this setting to the constructive method.

The second experiment is designed to test the best τ parameter in the local

search procedure described in Section 4.1.2. Once again, we execute 100 in-

dependent iterations of the algorithm with the best constructive configuration

found in previous experiment and testing different values for the τ parameter.

The best solution found for each instance under evaluation is saved. In Table 2

the obtained metrics are exposed.

τ Avg. Dev. (%) Time (s) #Best
0.2 0.3328 0.43% 33.60 38
0.3 0.3327 0.45% 33.70 34
0.4 0.3326 0.85% 34.90 28
0.5 0.3321 1.10% 35.04 28

Table 2: Comparison of the average results obtained by the local search procedure with
different values for the τ parameter. Best results are highlighted with bold font.

Looking at these results, it can be concluded that τ = 0.2 is the best con-

figuration for the local search procedure. This means that the smaller the per-

centage difference between inter-community and intra-community edges in a

community that is established when producing overlaps, the better results in

terms of evaluation metric will be obtained. In particular, with this configura-

tion the algorithm reaches the best solution for 38 out of 40 instances, and it
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is only at 0.43% difference on average with respect to the best solution found

when it is not capable to reach it. Furthermore, using this configuration the

computational time is lower.

The next experiment is devoted to test which configuration of Iterated

Greedy algorithm works better in this problem. As it is described in Section 4.2,

we can follow four different approaches in Iterated Greedy: Greedy Greedy (GG),

which is designed with the phases of destruction and reconstruction following

a greedy paradigm; Random Random (RR), following a random approach in

both destruction and reconstruction phases; Greedy Random (GR), with greedy

destruction and random reconstruction; and finally, Random Greedy (RG), with

random destruction and greedy reconstruction. Table 3 shows the number of

times in which certain algorithm reaches the best result, with different β values,

for each instance.

Algorithm
β value

0.1 0.2 0.3 0.4 0.5

Iterated Greedy GG 8 8 9 10 9
Iterated Greedy GR 6 8 6 7 8
Iterated Greedy RG 7 9 10 10 14
Iterated Greedy RR 8 7 9 7 8

Table 3: Number of times that best solution is reached by the Iterated Greedy procedure with
different approaches and different values for the β parameter. Best results are highlighted
with bold font.

As it can be seen, the best results are reached with a RG approach and

β = 0.5 value, reaching the best value in 14 of total instances used in the

preliminary experiments. Additional experiments were performed in order to

study if the results when a higher β value is chosen, but the results show that

the extra computing time it is not worth using values higher than 0.5, since the

results do not are improved.

Summarizing, the best variant is composed of a constructive algorithm with

α = 0.25, the local search configured with τ = 0.2, the IG algorithm that follows

the RG paradigm, and the destruction/reconstruction parameter β = 0.5 · n.
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5.2. Final experiments

In this final experimentation, the proposed algorithm is compared with the

best method found in the literature [54]. In particular, the authors propose an

Extended Adaptive Density Peaks (EADP) algorithm for detecting overlapped

communities. As it has been previously stated, the experiments have been

performed over the complete set of 68 instances. Firstly, by comparing over

the set of LFR instances (57) and then over the real-world networks (11). For

sake of fairness, we have executed EADP with the parameters suggested by the

authors, adapting the number of iterations of our approach (γ parameter) to

fulfill, as much as possible, its CPU time.

In Table 4, we report the results for the synthetic LFR networks grouped by

the number of nodes in each network considered. As it can be derived from the

table, IG consistently produces better results than EADP. In particular, it is

able to reach the best solution in all instances but 2, which belong to the set of

small instances (those with a number of nodes ranging from 0 to 2500). Indeed,

in the instances in which the best value is not found, the average percentage

deviation is close to 3%, indicating that even in those networks IG generates

a solution whose quality remains really close to the best value achieved with

EADP. On the contrary, the average percentage deviation of EADP is close to

37%, indicating that, in those instances in which it does not reach the best value,

it is not necessarily close to it, being IG a more robust approach. Regarding

the computing times, we can see that both methods are highly scalable with

the increase in the number of nodes in the network, being IG slightly slower

than EADP but in the same order of magnitude. Nevertheless, the remarkable

increase in the quality of the solutions could justifies the increase in the com-

puting time. The average objective function value obtained by IG on average

(0.364) indicates that it is able to find solutions with more community structure

than those found by EADP, which provides a smaller average objective function

value (0.231).

Finally, both IG and EADP are tested over the dataset conformed with 11

real-life networks described at the beginning of this section. The results are
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Iterated Greedy EADP
Avg. Dev (%) Time (s) #Best Avg. Dev (%) Time (s) #Best

0 ≤ n < 2500 0.319 3.399 5.501 13 0.216 34.855 0.507 2
2500 ≤ n < 5000 0.383 0.000 27.736 15 0.238 37.061 3.243 0
5000 ≤ n < 7500 0.377 0.000 48.293 18 0.236 37.102 10.781 0
7500 ≤ n ≤ 10000 0.377 0.000 87.124 9 0.234 37.171 36.943 0

Average 0.364 0.850 42.164 55 0.231 36.547 12.869 2

Table 4: Comparison of Iterated Greedy (IG) and EADP configured as stated in [54] for the
synthetic LFR networks.

shown in table 5. In order to facilitate the comparison, we report the same

information as [54], i.e., the overlapped modularity, MO, and the associated

computing time in seconds, Time (s).

Iterated Greedy EADP
MO Time (s) #Best MO Time (s) #Best

astro-ph 0.320 404.900 1 0.001 176.380 0
cond-mat 0.408 91.727 1 0.004 226.380 0
dolphins 0.082 0.102 0 0.154 0.505 1
football 0.246 0.701 0 0.261 0.988 1
hep-th 0.356 28.637 1 0.019 30.316 0
karate 0.099 0.060 1 0.000 0.437 0

netscience 0.584 1.763 1 0.053 0.891 0
polbooks 0.101 0.178 0 0.141 0.527 1

power 0.230 13.573 1 0.001 6.647 0
School1 0.213 3.086 0 0.236 0.814 1
School2 0.196 3.058 0 0.234 0.408 1
Average 0.258 49.799 6 0.100 40.390 5

Table 5: Comparison of IG with EADP configured as stated in [54] for the real world networks.

In this case, the results obtained with both algorithms are more similar, but

IG still emerges as the best option when dealing with more complex networks.

In particular, for the largest instances IG is able to reach the best value while

EADP obtains slightly better values for the smallest instances. It is worth

mentioning that IG is really close to the best value in those instances in which

it does not reach it, while EADP is still far from the best value in the analogous

case. Both algorithms require less than 50 seconds on average to finish, but the

comparison of the average objective function value obtained by IG (0.258) and

EADP (0.100) suggest that IG is able to find better community structures than
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EADP in these real-life instances

6. Conclusions

In this paper, we have proposed a new meta-heuristic method for overlapping

community detection in social network based on hybridizing Greedy Random-

ized Adaptive Search Procedure (GRASP) and Iterated Greedy (IG). We use as

evaluation metric the modularity, a well-known social network analysis metric,

adapted to the context of overlapping communities.

The performed experiments show that the proposed algorithm is able to

produce high quality solutions in terms of Overlapping Community Detection

Problem (OCDP), outperforming the best method found in the literature, which

is based on an adaptation of Density Peaks Clustering algorithm (EADP, Ex-

tended Adaptive Density Peaks). Even the computing time in the proposed

algorithm is slightly higher than the obtained with EADP, the quality in terms

of objective function justifies the contribution of the proposal.

In future works, it would be interesting to analyze the performance of the

approach in other similar problems, like Community Detection without possi-

bility of overlapping, or even adapt it to a multi-objective scenario or dynamic

social networks.
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(2019b). On the analysis of the influence of the evaluation metric in commu-

nity detection over social networks. Electronics, 8(1):23.

[39] Queiroga, E., Subramanian, A., and dos Anjos F. Cabral, L. (2018). Con-

tinuous greedy randomized adaptive search procedure for data clustering.

Applied Soft Computing, 72:43–55.

30



[40] Ribas, I., Companys, R., and Tort-Martorell, X. (2019). An iterated greedy

algorithm for solving the total tardiness parallel blocking flow shop scheduling

problem. Expert Systems with Applications, 121:347–361.

[41] Rodriguez, A. and Laio, A. (2014). Clustering by fast search and find of

density peaks. Science, 344(6191):1492–1496.

[42] Rossi, R. and Ahmed, N. (2015). The network data repository with interac-

tive graph analytics and visualization. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 29.
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Appendix A

Resumen en castellano

En una sociedad donde la instantaneidad está cada vez más establecida, existe una
necesidad de obtener soluciones a problemas del mundo real de una forma rápida
y precisa. Con respecto a la precisión, o más espećıficamente la optimalidad, la
disciplina cient́ıfica que lidia con este problema es la optimización. Este área del
conocimiento puede verse como un punto de encuentro entre varias disciplinas,
como la investigación operativa, la estad́ıstica, la informática o la inteligencia
artificial. Existe una gran cantidad de problemas interesantes de la vida real que
pueden ser abordados desde el punto de vista de la optimización: calcular la ruta
más corta para ir de casa al trabajo, encontrar la mejor manera para colocar el
máximo número de contenedores en un barco para enviar productos alrededor
del mundo o saber cuáles son los puntos más débiles de una red de ordenadores
para dedicar más recursos en su protección. Todos estos problemas pueden ser
resueltos de dos maneras princpales: a través de algoritmos exactos o de algoritmos
aproximados.

El principal problema al que se enfrentan los algoritmos exactos es que,
cuando el espacio de soluciones a explorar es muy amplio, el tiempo de cómputo
requerido para proporcionar una solución óptima al problema es inasumible. En
este contexto, los algoritmos aproximados emergen como una alternativa, con la
principal desventaja de que no garantizan alcanzar una solución óptima global.
Sin embargo, si se selecciona la técnica adecuada, una solución de alta calidad
puede garantizarse. Este es el caso de los algoritmos heuŕısticos.

El Problema de Detección de Comunidades (CDP) es un problemaNP-dif́ıcil
que pertenece a la familia de problemas del Análisis de Redes Sociales (SNA).
El principal objetivo en el CDP es agrupar usuarios dentro de una red social
dependiendo de sus caracteŕısticas, sus relaciones y otras propiedades de la red en



śı misma. Se dice que una buena solución para el CDP se caracteriza por una buena
estructura de comunidad. La estructura de comunidad se considera buena cuando
los grupos resultantes contienen nodos altamente conectados entre śı y escasamente
conectados hacia nodos pertenecientes a otros grupos. Existen diferentes variantes
del mismo problema en los que se consideran diferentes restricciones. Por ejemplo,
el número de comunidades que contiene una solución es fijada a priori, o los nodos
pueden ser asignados a diferentes grupos simultáneamente. El problema también
se puede afrontar optimizando diferentes funciones objetivo, y teniendo en cuenta
un único o múltiples objetivos. A pesar de todo lo anterior, el objetivo último
siempre es el mismo: obtener soluciones que presentan una buena estructura de
comunidad.

En esta Tesis Doctoral se proponen diferentes algoritmos heuŕısticos para
resolver diferentes variantes del CDP. Se aplican diferentes metodoloǵıas, como la
búsqueda de vecindad variable (VNS), Iterated Greedy (IG), o la búsqueda dispersa
(SS). Cada propuesta se ha evaluado tanto contra redes sintéticas como del mundo
real, para comprobar su utilidad y aplicación en estos contextos. Los resultados
obtenidos superan las propuestas del estado del arte en todas las variantes del
CDP estudiadas.

A.1 Antecedentes

La evolución de las redes sociales en las últimas décadas ha despertado el interés de
cient́ıficos de diferentes campos, desde la psicoloǵıa hasta la informática. Millones
de personas comparten constantemente toda su información personal y profesional
en diferentes redes sociales [27]. Además, las redes sociales se han convertido en
una de las fuentes de información más utilizadas, sobre todo por su capacidad
de ofrecer al usuario contenidos en tiempo real. Las redes sociales no sólo son
una nueva forma de comunicación, sino también una poderosa herramienta que
puede utilizarse para recopilar información relacionada con cuestiones relevantes,
como por ejemplo: cuál es el partido poĺıtico favorito para las próximas elecciones,
cuáles son las peĺıculas más comentadas del último año, cuál es el restaurante mejor
valorado en una zona determinada, etc. La extracción de información relevante de
las redes sociales es un tema de interés, principalmente debido a la enorme cantidad
de datos potencialmente disponibles. Sin embargo, las técnicas tradicionales de
análisis de redes se están quedando obsoletas debido al crecimiento exponencial de
las redes sociales, en términos de número de usuarios activos y de relaciones entre
ellos. El Análisis de Redes Sociales (SNA por sus siglas en inglés, Social Network
Analysis) se ha convertido en una de las tareas más populares y desafiantes en la
ciencia de datos [28]. Uno de los problemas más abordados en las redes sociales



es el análisis de la relevancia de los usuarios en una determinada red social [29].
La relevancia de un usuario se relaciona comúnmente con el número de seguidores
o amigos que tiene el usuario en una determinada red social. Sin embargo, este
concepto puede ampliarse, ya que un usuario puede ser relevante no sólo si está
conectado a un gran número de usuarios, sino también si está conectado a usuarios
relevantes. Se han propuesto varias métricas para analizar la relevancia de un
usuario en una red social, siendo PageRank una de las más utilizadas [30]. Además,
es interesante saber qué usuarios serán los más relevantes antes de convertirse en
influyentes [31]. Por último, en el campo de la anaĺıtica de marketing, existe un
especial interés en generar el perfil de un usuario dado un conjunto de tuits escritos
por dicho usuario [32].

La evaluación de la relevancia de un usuario se ha convertido en un problema
más complejo que consiste en detectar usuarios espećıficos (a menudo denominados
influenciadores) con ciertos atributos que pueden ser personales (credibilidad o
entusiasmo) o relacionados con sus redes sociales (conectividad o centralidad).

Estos atributos les permiten influir en un gran número de usuarios, ya sea
directa o indirectamente [33]. Otro tema importante relacionado con la influencia
de las personas sobre otros usuarios es el análisis del sentimiento en las redes
sociales. Este análisis se centra en descubrir lo que la gente piensa sobre un
tema determinado mediante el análisis de la información que publican en las redes
sociales. Se puede encontrar un estudio completo sobre las técnicas de análisis de
sentimientos en [34].

Los problemas descritos anteriormente sólo se refieren a usuarios individuales.
Sin embargo también hay algunos problemas relacionados con la estructura de la
red, dedicados a encontrar atributos y propiedades espećıficas que pueden ayudar
a inferir información adicional de la red social en su conjunto. En este contexto, la
detección de comunidades surge como uno de los problemas más estudiados, que
es el tema principal que concierne a esta Tesis.

A.2 Hipótesis y objetivos

Una vez identificado el problema a resolver, el siguiente punto a tratar durante
el desarrollo de un proyecto de investigación es la formulación de una hipótesis
inicial. Esta hipótesis es una propuesta tentativa que busca formular una solución
al problema planteado. La hipótesis representará un elemento fundamental en el
proceso de investigación, ya que servirá de gúıa.

La hipótesis propuesta para el desarrollo de esta Tesis Doctoral se puede
resumir en los siguientes términos: el Problema de Detección de Comunidades en



redes sociales es una tarea con interés práctico en diferentes disciplinas cient́ıficas,
pero con un alto coste computacional. Por ello, es interesante desarrollar algo-
ritmos que sean capaces de resolverlo de forma eficiente, obteniendo soluciones
óptimas si es posible o, al menos, de alta calidad, en un tiempo razonable. Por
este motivo, los algoritmos heuŕısticos cobran relevancia para resolver este tipo de
problemas. En los últimos años se han propuesto heuŕısticas bioinspiradas para
evitar los requerimientos computacionales de las implementaciones exactas. En
el área de la computación bioinspirada, los enfoques evolutivos son los algoritmos
más populares. Es importante destacar la revisión realizada por Pizzuti en [35] so-
bre técnicas de Computación Evolutiva (CE) para detectar comunidades en redes.
Un trabajo interesante sobre CE es el publicado por Said et. al [36], donde los
autores diseñaron un algoritmo genético basado en coeficientes de clustering capaz
de detectar grupos cohesivos de grafos densos y también, comunidades en redes
dispersas. Otro trabajo relevante es [37] que presenta un algoritmo genético que
utiliza una función de cruce basada en el aprendizaje de conjuntos multiindivid-
uales. El algoritmo se mejora con una estrategia de búsqueda local para acelerar
su convergencia.

Otros algoritmos bioinspirados muy conocidos son los pertenecientes a la
inteligencia de enjambre. En este nuevo grupo, los algoritmos más populares son
la optimización por enjambre de part́ıculas (PSO) y la optimización por colonia
de hormigas (ACO). Estos dos algoritmos se inspiran en el comportamiento social
de los pájaros dentro de una bandada, y en el comportamiento de las hormigas
que buscan un camino desde el nido hasta la fuente de alimento, respectivamente.
PSO se ha utilizado con éxito para CDP en [38], donde se utiliza un algoritmo PSO
discreto para extraer las comunidades en redes sociales a gran escala mediante la
optimización de la modularidad. En cuanto al algoritmo ACO, este algoritmo se
ha utilizado para extraer comunidades de alta calidad en Ego Networks [39].

Sin embargo, esta familia de algoritmos tiene la desventaja de que no sacan
partido de la información espećıfica obtenida de la red. En esta Tesis, el desarrollo
de algoritmos basados en metaheuŕısticas tradicionales, realizando un estudio en
profundidad de las redes evaluadas, abre una nueva perspectiva de investigación
futura para los problemas de detección de comunidades.

Los algoritmos heuŕısticos propuestos harán uso de técnicas metaheuŕısticas,
que han demostrado ser procedimientos eficaces cuando se trata de problemas
de optimización. En particular, las metaheuŕısticas basadas en poblaciones con-
stituyen un subconjunto de este tipo de técnicas, que se caracterizan por tomar
en consideración más de una solución simultáneamente y proporcionar mecan-
ismos de combinación entre ellas. Técnicas como la búsqueda dispersa son un
claro ejemplo de este tipo de metaheuŕısticas. Por otro lado, las llamadas meta-



heuŕısticas basadas en la trayectoria parten de una solución inicial y son capaces
de generar una trayectoria en el espacio de soluciones. Ejemplos de este tipo de
metaheuŕısticas son GRASP (Greedy Randomized Adaptive Search Procedure) o
Path Relinking. El objetivo principal de la Tesis Doctoral es desarrollar algoritmos
que resuelvan diversos problemas de optimización relacionados con el análisis de
redes sociales y la detección de comunidades en las mismas, abordándolos desde
un punto de vista heuŕıstico, tanto desde la perspectiva monoobjetivo como mul-
tiobjetivo.

Para lograr el objetivo principal descrito anteriormente, es necesario cubrir
los siguientes objetivos parciales:

• Estudiar el estado del arte del problema. Se debe realizar una revisión
exhaustiva de la literatura para analizar tanto los algoritmos propuestos
como las instancias a evaluar.

• Diseñar y desarrollar un algoritmo metaheuŕıstico para resolver
el problema. En este punto se desarrollan uno o varios algoritmos meta-
heuŕısticos, modelando el procedimiento constructivo inicial (normalmente
una heuŕıstica), el método de mejora (normalmente una búsqueda local) y
el marco metaheuŕıstico que gúıa a la heuŕıstica.

• Para validar el algoritmo heuŕıstico. Una vez diseñado el algoritmo
propuesto, hay que implementarlo y validarlo. Este proceso de validación
incluye comprobar si está generando soluciones factibles y, en caso de hacerlo,
analizar la relevancia de cada etapa del algoritmo y su contribución a la
solución final.

• Comparar experimentalmente el algoritmo propuesto con los algo-
ritmos del estado del arte. En esta etapa, la propuesta se compara con
los métodos del estado del arte utilizando un conjunto de datos de referen-
cia. A través de esta experimentación se pueden estudiar los puntos fuertes
y débiles del algoritmo desarrollado y su aportación a la literatura. En esta
comparación, será necesario utilizar pruebas estad́ısticas para confirmar que
el algoritmo propuesto es una contribución cient́ıfica relevante para el área.

• Someter los resultados parciales del trabajo de investigación a pro-
cesos de revisión por instituciones independientes. Los resultados
obtenidos durante todo el proceso se env́ıan a congresos y revistas de alto
impacto en el área de investigación para su posible publicación.



A.3 Resultados

En esta sección se presenta una discusión de los resultados obtenidos para todos los
problemas de optimización abordados en esta tesis. También se expone un breve
resumen de las diferentes propuestas. Para cada problema resuelto, los resultados
resumen el valor medio de la función objetivo que se tiene en cuenta cuando se
aborda un problema de un solo objetivo y el promedio de las métricas multiobjetivo
más utilizadas cuando se trata un problema multiobjetivo. También se presentan
otras métricas que justifican la calidad de la propuesta (como el tiempo de CPU
requerido por el algoritmo). En todas las tablas, los mejores resultados encontrados
se destacan en negrita. En la sección A.3.1, se exponen los resultados de una
primera aproximación a la detección de comunidades. La sección A.3.2 resume
los resultados obtenidos al resolver el CDP clásico. Los resultados para el CDP
multiobjetivo se muestran en la Sección A.3.3, mientras que los resultados para el
CDP con solape se ilustran en la Sección A.3.4. Por último, en la sección A.3.5 se
presentan los resultados obtenidos para el Problema de Detección de Comunidades
Dinámicas multiobjetivo. Estos resultados se extraen de las publicaciones que se
pueden encontrar en la Parte II de esta Tesis.

A.3.1 Resultados en el problema del separador alfa

Como ya se ha dicho, un buen punto de partida para resolver los problemas de
detección de comunidades es encontrar cliques en la red bajo estudio [46, 47, 48].
Otra buena aproximación es detectar cuáles son los nodos cŕıticos cuya eliminación
produce la división de la red en diferentes componentes conectados, generando
comunidades iniciales. Este problema es NP-dif́ıcil por śı mismo, denominado
problema α-separador, y se aborda en [134]. La función objetivo de este problema
es encontrar el mı́nimo separador que divide la red dada en componentes conexas
con un tamaño inferior a ⌈·n⌉ nodos, donde n es el número total de nodos en la red.
Los resultados sobre el problema del separador α se han publicado en una revista
del JCR; concretamente, se ha publicado en Expert Systems, una revista con un
factor de impacto de 2.587 y situada en el Q2 del JCR. Se pueden encontrar más
detalles sobre la revista en el caṕıtulo 7 de la parte II. En este trabajo se propone
un algoritmo basado en Greedy Randomized Adaptive Search Procedure (GRASP)
combinado con la metaheuŕıstica Path Relinking. En esta propuesta, se utiliza
GRASP como metaheuŕıstica constructiva siguiendo dos enfoques diferentes: por
un lado, un enfoque Greedy Random, donde el primer elemento que forma parte de
una solución se selecciona al azar y la lista restringida de candidatos se construye
siguiendo un criterio greedy. Por otro lado, un enfoque Random Greedy, donde
el primer elemento que forma parte de la solución se selecciona de forma greedy,



mientras que la lista restringida de candidatos se construye de forma aleatoria. El
criterio greedy utilizado es una métrica bien conocida y ampliamente utilizada en
el contexto del Análisis de Redes Sociales: la cercańıa o closeness. En la versión
Greedy Random, el primer nodo añadido al separador se selecciona al azar, con el
objetivo de diversificar el procedimiento de búsqueda. La lista de candidatos se
construye utilizando la métrica de closeness para cada nodo, y la lista restringida
de candidatos se construye con los nodos que tienen asociado un valor grande
de esta función. A continuación, el siguiente vértice que se añade al separador se
selecciona aleatoriamente de la lista restringida de candidatos. El enfoque Random
Greedy funciona de forma similar, pero la fase greedy y la aleatoria se intercambian:
el RCL se construye con un conjunto de elementos seleccionados aleatoriamente de
la lista de candidatos y, a continuación, el siguiente elemento incluido en la solución
se selecciona de forma greedy. En cuanto al tiempo de cálculo requerido por cada
algoritmo, la versión Random Greedy es más rápida que la Greedy Random, ya que
no requiere una evaluación de toda la lista de candidatos. Además, como se ha
demostrado experimentalmente, proporciona mejores resultados en promedio que
el enfoque Greedy Random.

En la fase de mejora, se define un procedimiento de búsqueda local para en-
contrar un óptimo local con respecto a una vecindad predefinida. La vecindad para
esta búsqueda local es la definida por todas las soluciones que se pueden generar
aplicando un movimiento en el que se eliminan dos vértices de la solución y se
añade uno nuevo. Con respecto al orden en el que se explora la vecindad, se aplica
un método primera mejora. Hay dos razones principales para esta decisión: la
primera es que, normalmente, un enfoque Primera Mejora consume mucho menos
tiempo que el Mejor Mejora, dado que el primero no recorre todo el vecindario,
sino que sólo realiza el primer movimiento de mejora encontrado. La segunda es
que, cuando se realiza un movimiento exitoso, implica necesariamente una mejora
en la función objetivo, dado que se está resolviendo un problema de minimización,
y la búsqueda local realiza movimientos en los que se eliminan dos nodos presentes
en la solución y se sustituyen por uno solo. El método de búsqueda local propuesto
explora aleatoriamente la vecindad, aumentando la diversificación de la búsqueda.
Esta fase se detiene cuando no se encuentra ninguna mejora después de explorar
toda la vecindad.

El procedimiento GRASP genera un conjunto de soluciones diversas y de
alta calidad, y se construye un Conjunto de Élite con las más prometedoras. Una
vez generado el Conjunto de Élite, se aplica el Path Relinking con el objetivo
de explorar las trayectorias entre cada par de soluciones incluidas en él. Esto
se conoce como diseño estático. En un diseño dinámico, el Conjunto de Élite se
actualiza cada vez que se explora una trayectoria. En este problema, la trayectoria



entre dos soluciones se genera realizando un movimiento Swap. Este movimiento
elimina un nodo que está presente en la solución inicial pero que no está incluido
en la solución gúıa, y lo sustituye por uno presente en la solución gúıa y que aún
no se ha añadido al separador inicial. Mediante estos intercambios, la solución
inicial se aproxima a la solución gúıa, hasta que las dos soluciones acaban siendo
exactamente iguales. En cada iteración, se genera una nueva solución intermedia.
Esta solución intermedia será inviable con una alta probabilidad, por lo que debe
ser reparada para que vuelva a ser factible. En este trabajo se realiza un proceso de
reparación añadiendo aleatoriamente nodos al separador hasta alcanzar de nuevo
la viabilidad, aumentando la diversificación de la búsqueda. Una vez realizada la
reparación, el separador podŕıa contener nodos redundantes (es decir, nodos que
ya no son necesarios para tener una solución factible), por lo que se recorre la
solución buscando los nodos redundantes que se eliminan.

Normalmente, para seleccionar el siguiente nodo que se elimina del sepa-
rador, existen dos estrategias diferentes de Path Relinking. Por un lado, Random
Path Relinking (RPR) genera la siguiente solución en la trayectoria seleccionando
aleatoriamente uno de los movimientos Swap en la trayectoria. Por otro lado,
Greedy Path Relinking (GPR) selecciona el mejor movimiento Swap disponible.
En este trabajo se propone una tercera variante: Greedy Randomized Path Relink-
ing (GRPR). En esta estrategia se mezclan las estrategias RPR y GPR, de forma
que se generan todas las posibles soluciones intermedias (como ocurre en GPR),
pero se selecciona una de las mejores soluciones en lugar de la mejor, de forma
similar a como lo hace GRASP. Por último, se presenta una nueva estrategia de
PR, denominada Exterior Path Relinking (EPR). Esta versión, propuesta original-
mente en [135], trata de reducir la generación de trayectorias cortas generadas por
el enfoque clásico, eliminando de la solución inicial elementos que están presentes
en la solución gúıa. De esta forma, la solución inicial se va alejando de la gúıa en
cada iteración. Esta estrategia termina cuando la solución inicial no tiene ningún
componente común con la solución gúıa. Es importante destacar que las soluciones
obtenidas por cualquiera de estos métodos no son necesariamente un óptimo local
con respecto a la vecindad que se explora, por lo que a las soluciones obtenidas se
les aplica el procedimiento de búsqueda local antes mencionado.

Los experimentos computacionales se han realizado sobre un conjunto de 50
instancias extráıdas del modelo de Erdös-Renyi. Estos grafos están construidos
de forma que cada nuevo nodo insertado tiene la misma probabilidad de estar
conectado a cualquier nodo existente en el grafo. La experimentación preliminar se
encarga de analizar el rendimiento de los procedimientos GRASP propuestos y de
seleccionar la mejor variante, y de hacer lo mismo con los diferentes procedimientos
de búsqueda local y las versiones Path Relinking propuestas. La experimentación



final analiza la contribución de la propuesta comparándola con el método más
avanzado encontrado en la literatura, un algoritmo basado en Random Walks
(RW). La tabla A.1 muestra los resultados comparando la media del valor de
la función objetivo, el tiempo de cálculo requerido, el porcentaje de desviación
cuando no se alcanza la mejor solución y las veces que el algoritmo encuentra la
mejor solución.

Algoritmo Avg. Tiempo (s) Dev. (%) #Mejores

GRASP 63.18 137.41 5.90 14
GRASP+PR 62.00 822.29 3.68 34

RW 71.78 1070.36 18.26 18

Table A.1: Comparación final entre GRASP, GRASP+PR, y el mejor método
encontrado en el estado del arte.

La principal conclusión que se obtiene de estos resultados es que el enfoque
seguido, basado en la alta diversificación, permite encontrar soluciones de alta cal-
idad en un tiempo de computación bajo. En este trabajo, la mejor versión del
algoritmo propuesto es la que combina el Exterior Path Relinking con la versión
Random Greedy de GRASP con un valor α de 0,25. Este enfoque se compara con
el algoritmo basado en Random Walks, mostrando claramente una superioridad
en cuanto a los valores de la función objetivo y los tiempos de cálculo requeridos.
Estos resultados están respaldados por una prueba estad́ıstica no paramétrica. En
concreto, se ha realizado la prueba de rangos con signo de Wilcoxon por pares,
con un valor p resultante inferior a 0,001, lo que indica que existen diferencias
estad́ısticamente significativas entre la propuesta y el algoritmo de última gen-
eración, con un nivel de significación del 95%. Más concretamente, la propuesta es
capaz de alcanzar 34 veces las mejores soluciones para el conjunto de 50 instancias,
teniendo un bajo valor de desviación respecto al mejor valor encontrado cuando
no es capaz de encontrarlo (3,68% de desviación en promedio).

A.3.2 Resultados del problema clásico de detección de co-
munidades

El clásico Problema de Detección de Comunidades (CDP) se estudia en [136]
(Caṕıtulo 3.3, Parte II) utilizando un enfoque GRASP. El algoritmo propuesto
explota la versatilidad de diversificación que proporciona el GRASP para alcan-
zar soluciones de alta calidad. Para ello, en la fase constructiva de comprensión,
se sigue un enfoque aglomerativo. El algoritmo comienza localizando cada nodo
en una única comunidad conformada por él mismo. A continuación, se genera la



lista de candidatos con todas las comunidades presentes en la red. La RCL se
construye utilizando la modularidad como función objetivo, y se ordena de forma
decreciente respecto a este valor. Una vez construidas la lista de candidatos y la
lista restringida de candidatos, se selecciona una comunidad al azar de la RCL. A
continuación, el algoritmo busca la mejor comunidad para unirla con la primera.
Para decidir cuál es la mejor comunidad para ser conjunta, se realiza una simu-
lación de la fusión de la comunidad candidata con todas las demás. A continuación,
se fusionan la comunidad candidata y la mejor encontrada. Si este movimiento
da lugar a una mejora de la modularidad, la nueva comunidad se convierte en un
nuevo candidato y se actualiza la solución actual. En caso contrario, la comunidad
candidata se elimina de la lista de candidatos, dado que no puede fusionarse con
otra comunidad sin empeorar la función objetivo. Cuando no hay más movimientos
de fusión posibles, la fase de construcción termina.

En la fase de mejora local del algoritmo, se propone un procedimiento de
búsqueda local. En este procedimiento, el vecindario que se explora está confor-
mado por todas las soluciones que se pueden alcanzar realizando un movimiento
que remueva un nodo de su comunidad actual y lo inserte en una nueva. Es im-
portante destacar que este movimiento puede llevar a que una comunidad quede
vaćıa si se eliminan todos sus nodos. Del mismo modo, podŕıa generarse una
nueva comunidad si este movimiento mejora la modularidad de la solución gen-
eral. Esta situación hace que, tras la búsqueda local, una solución pueda contener
un número diferente de comunidades (mayor o menor). Para decidir qué nodo
va a ser eliminado de su correspondiente solución, se aplica un criterio heuŕıstico.
Concretamente, se evalúa el porcentaje de aristas intracomunitarias con respecto
al número total de aristas del grafo para cada vértice. A continuación, el algo-
ritmo selecciona el vértice con un valor más bajo de esta métrica, y lo traslada a la
comunidad que maximiza la modularidad. La búsqueda local propuesta sigue un
enfoque de primera mejora, reiniciando la búsqueda cuando se encuentra la primera
mejora del vecindario bajo exploración, y deteniéndola cuando se encuentra una
mejora.

Los experimentos computacionales se han realizado sobre un conjunto de
100 instancias extráıdas del conjunto de datos SNAP de Twitter y del repositorio
Network. La fase experimental se divide en dos fases diferentes. La primera
está dedicada a afinar el valor α para el procedimiento GRASP. Este experimento
se realiza sobre un subconjunto de 20 instancias e indica que la selección de un
valor aleatorio de alfa en cada iteración del algoritmo da como resultado la mejor
configuración para el algoritmo.

La experimentación final se ha llevado a cabo para comparar la propuesta
con un conjunto de algoritmos clásicos bien conocidos en el ámbito de la detección



de comunidades. Concretamente, se ha comparado con los algoritmos Edge Be-
tweenness (EB), Fast-Greedy (FG), Label Propagation (LB), Multi-level (ML),
Walktrap (WT), InfoMap (IM) y Louvain (CL). La tabla A.2 muestra los valores
medios de modularidad y conductancia de cada algoritmo en todo el conjunto de
instancias. Es importante destacar que, en este trabajo, el valor reportado es el
opuesto a la conductancia, evaluado como 1 − Co(S,G), con el objetivo de tener
una comparación directa con la métrica de modularidad.

Modularidad Conductancia

Avg. #Best Avg. #Best

EB 0.20176 0 0.03363 7
FG 0.29441 3 0.44062 17
LP 0.15170 2 0.43734 6
ML 0.28843 2 0.43433 19
WT 0.26663 2 0.25224 7
IM 0.20611 2 0.37829 16
CL 0.31181 33 0.48002 9
GRASPAGG 0.31331 78 0.49483 37

Table A.2: Comparación de las métricas consideradas sobre los algoritmos clásicos
y la propuesta.

La primera conclusión que se extrae es que la propuesta, a pesar de ser
la combinación de dos heuŕısticas sencillas, su potente diversificación y rápido
cálculo permite obtener soluciones de alta calidad y muy competentes respecto a
los algoritmos clásicos de detección de comunidades. Además, el equilibrio entre
avaricia y aleatoriedad en el procedimiento constructivo, permite al procedimiento
de búsqueda local realizar la fase de intensificación en una amplia región del espacio
de soluciones, obteniendo buenos resultados gracias a la definición de vecindades
basada en el problema.

Los resultados se apoyan en pruebas estad́ısticas no paramétricas. En partic-
ular, se realizaron el test de Friedman y el test de Wilcoxon. El test de Friedman
clasificó los algoritmos comparados desde 1 (mejor algoritmo) hasta n. Los algo-
ritmos de la propuesta y de Lovaina obtuvieron las dos primeras posiciones del
ranking. Ambas pruebas estad́ısticas dieron como resultado un valor p inferior
a 0,00001, lo que confirma que existen diferencias estad́ısticamente significativas
entre los algoritmos. Estos resultados se han publicado en la revista Electronics
JCR, situada en el tercer cuartil (Q3) con un factor de impacto de 1.764.



A.3.3 Resultados del problema de detección de
comunidades multiobjetivo

En [137] se aborda el problema de detección de comunidades desde un punto de
vista multiobjetivo. El texto completo se puede encontrar en el caṕıtulo 9, parte II.
En este trabajo se ha utilizado una metodoloǵıa de Búsqueda de Vecinos Variables.
En concreto, se ha implementado un algoritmo VNS básico (BVNS). Dado que el
marco VNS fue diseñado originalmente para resolver problemas de optimización
de un solo objetivo, debe ser adaptado para el escenario multiobjetivo [138]. En
este trabajo, esta adaptación se realiza considerando el frente no dominado de
soluciones en lugar de uno solo como la solución que debe devolver el algoritmo.
El algoritmo BVNS se ejecuta hasta que se explora la vecindad máxima establecida
como parámetro. En cada iteración se ejecutan los procedimientos de shake, mejora
y cambio de vecindad, actualizando el conjunto no dominado de soluciones.

Dado que BVNS requiere de una solución inicial para funcionar (es decir, un
frente poblado de soluciones no dominadas), debe ser construido de alguna manera.
Para este problema, este conjunto inicial se construye siguiendo un procedimiento
GRASP. En este trabajo, sólo se tiene en cuenta la fase constructiva del GRASP.
En esta fase, la solución inicial está conformada por n comunidades, donde n es el
número de nodos del grafo. La lista de candidatos se construye asignando un valor
de la función greedy a cada comunidad presente en la solución. A continuación,
las comunidades se fusionan por parejas, seleccionando aleatoriamente un elemento
de la RCL y fusionándolo con la mejor comunidad existente en la solución actual.
Para seleccionar la mejor comunidad con la que unirse, la función codiciosa selec-
cionada corresponde a la relación entre las aristas intracomunitarias y las aristas
comunitarias (intraclúster e interclúster) que habŕıa si se fusionaran dos comu-
nidades. Esta metodoloǵıa permite generar un conjunto poblado de soluciones
no dominadas. Es importante señalar que no todas las soluciones construidas se
incluyen en el frente de referencia, sino sólo las que no están dominadas.

En cuanto al procedimiento de shake, en la propuesta consiste en un movimiento
en el que se retira un único nodo de su comunidad actual, insertándolo en otra
seleccionada al azar. Siguiendo este procedimiento, las soluciones obtenidas serán
probablemente peores que la solución original en términos de calidad, pero es
importante destacar que el objetivo principal en los procedimientos de shake es
escapar de los óptimos locales. En esta fase del algoritmo, lo que se busca es la
diversificación sobre la intensificación. Dada la naturaleza del problema, no es
necesario comprobar la viabilidad de la solución resultante, ya que está garanti-
zado que un único nodo será asignado a al menos y sólo una comunidad cuando el
procedimiento de shake finalice.



Con el objetivo de mejorar la calidad de las soluciones perturbadas y, por
tanto, centrándose en la intensificación de las soluciones (es decir, intentando al-
canzar un óptimo local), se aplica un procedimiento de búsqueda local a cualquier
solución perturbada. En este trabajo, el procedimiento de mejora toma como en-
trada un conjunto de soluciones perturbadas y devuelve un frente no dominado
con todos los óptimos locales alcanzados a partir del conjunto perturbado. En este
trabajo se estudian dos métodos de mejora local diferentes, ambos siguiendo un
enfoque de primera mejora. Por un lado, el primer método propuesto mejora cada
función objetivo evaluada de forma independiente. Por otro lado, el segundo trata
de optimizar ambas estrategias simultáneamente, considerando alternativamente
una de ellas en cada iteración del procedimiento. De nuevo, cualquier solución
mejorada se intenta incluir en el frente no dominado. El movimiento que define
ambos procedimientos de búsqueda local es el mismo: se intenta incluir un nodo
perteneciente a una comunidad en otra diferente. A continuación, se intenta añadir
la nueva solución al frente de referencia. Si se puede incluir, significa que domina
al menos una solución que está presente en el frente, por lo que se ha encontrado
una mejora. El procedimiento finaliza cuando el frente de referencia no se actualiza
tras una ejecución completa de la búsqueda local.

Una vez generado un conjunto no dominado de alta calidad, se ejecuta el
método de cambio de vecindad. En este trabajo se ha adaptado este procedimiento
para adecuarlo al escenario multiobjetivo. La principal adaptación realizada es la
modificación del concepto de mejora. En este contexto, se considera una mejora
cuando se actualiza el frente de soluciones no dominadas. Esta actualización indica
que se ha encontrado una solución que domina a una presente en el frente. Por lo
tanto, el algoritmo reinicia la búsqueda desde el vecindario inicial si se ha realizado
una mejora. En caso contrario, se explora el siguiente vecindario, hasta que se
alcanza el vecindario máximo, establecido como parámetro de entrada.

En cuanto a los experimentos computacionales, se ha utilizado un conjunto
de 52 redes sintéticas y 12 redes del mundo real. En este trabajo se han evaluado
dos tipos diferentes de métricas para comprobar la robustez del algoritmo. Por
un lado, se han estudiado métricas multiobjetivo bien conocidas. Por otro lado,
se ha tenido en cuenta la información mutua normalizada (NMI) y las métricas
basadas en el contexto de modularidad. La experimentación se ha dividido en
una fase preliminar y otra final. La primera se dedica a ajustar los parámetros
del algoritmo GRASP, la mejor configuración del método de mejora local y el
parámetro kmax para el BVNS. La segunda se realiza para comparar la propuesta
con el mejor algoritmo encontrado en el estado del arte. La tabla A.3 muestra la
comparación respecto a la métrica multiobjetivo. En esta tabla se puede observar
que la calidad y el tiempo de cálculo de la propuesta supera al mejor método



encontrado en la literatura. En la Tabla A.4 se muestran los resultados respecto
a las métricas basadas en el contexto.

Algorithm CV HV EPS IGD+ T (s)
MOBVNS 0.07 0.14 0.86 0.22 214.64
LMOEA 0.36 0.02 0.27 0.21 1800.00

Table A.3: Comparación del frente de referencia obtenido con la mejor configu-
ración para MOBVNS y el LMOEA propuesto por [1]. Los mejores resultados
están resaltados en negrita.

LMOEA
Instancia Avg. NMI Avg. Tiempo (s) Mejor NMI Mejor Tiempo (s)
dolphin 0.05 1800 0.069 1800
footbal 0.02 1800 0.033 1800
karate 0.1 1800 0.1 1800

MOBVNS
Instancia Avg. NMI Avg. Tiempo (s) Mejor NMI Mejor Tiempo (s)
dolphin 0.751 0.41 0.77 0.11
footbal 0.864 1.8 0.877 0.27
karate 0.439 0.07 0.439 0.03

Table A.4: Resumen de los resultados de la métrica NMI obtenidos por el MOB-
VNS y el LMOEA propuestos al resolver las instancias del mundo real.

Se puede concluir que la combinación del procedimiento constructivo GRASP
con el marco VNS es un mecanismo potente para resolver problemas multiobjetivo.
Es importante señalar que el marco VNS requiere ser adaptado para gestionar
con éxito el escenario multiobjetivo. Más concretamente, respecto a las métricas
multiobjetivo clásicas, se observa que la propuesta MOBVNS es mejor en todas
ellas, excepto en IGD+, donde es ligeramente superior a LMOEA. En cuanto al
tiempo medio de cálculo, la propuesta tarda aproximadamente nueve veces menos
que el algoritmo anterior. En cuanto al rendimiento en tiempo real, la propuesta
es capaz de alcanzar valores más altos de NMI en cuatro órdenes de magnitud
menos de tiempo. Estos resultados se han publicado en Applied Soft Computing,
una revista Q1 en JCR con un factor de impacto de 6.725.

A.3.4 Resultados del problema de detección de comunidades
con solape

Este trabajo está actualmente en revisión en Journal of Heuristics. Aunque los
resultados están todav́ıa en proceso de publicación, es interesante discutir los re-



sultados obtenidos en la investigación, aśı como las conclusiones extráıdas. En este
trabajo se propone una metaheuŕıstica Iterated Greedy para resolver el CDP en su
variante de solapamiento. Para generar la solución inicial del marco, se ha aplicado
una metaheuŕıstica GRASP. Para la fase de construcción, se genera una solución
inicial sin comunidades. A continuación, se construye la lista de candidatos in-
cluyendo todos los nodos de la red, y el algoritmo se ejecuta hasta que todos los
nodos hayan sido asignados a, al menos, una comunidad, es decir, hasta que la
CL quede vaćıa. Para dar una puntuación a los candidatos y construir la lista
restringida de candidatos, se utiliza una función codiciosa. Más concretamente, se
utiliza la métrica PageRank. Esta métrica se propuso originalmente con el obje-
tivo de evaluar la importancia de una página web en Internet, basándose en los
enlaces que hacen referencia a ella en toda la red. Esta idea puede aplicarse en el
CDP, dado que un nodo que está conectado a muchos otros es un nodo relevante
en la red y, previsiblemente, será un buen candidato para empezar a construir una
comunidad. A continuación, se selecciona un candidato al azar de la RCL y se
añade a la comunidad en construcción. Para decidir qué nodos se van a añadir a
la misma comunidad, se aplica un algoritmo de función de pertenencia dinámica
[139]. Este método es un buen enfoque para el OCDP, dado que un nodo puede
ser incluido en diferentes comunidades si satisface el siguiente criterio de pertenen-
cia: un nodo es incluido en una comunidad si mejora la relación entre las aristas
intracomunitarias e intercomunitarias de la comunidad titular. Los nodos que se
incluyen en la comunidad en construcción se eliminan de la CL para evitar que se
consideren puntos de partida de una nueva comunidad.

Una vez construida la solución, se aplica la fase de mejora de GRASP. En este
trabajo, el operador de movimiento que genera nuevas soluciones (que conforman
el vecindario en exploración) consiste en asignar un nodo a una nueva comunidad
o eliminarlo de su comunidad actualmente asignada. Un nodo se moverá depen-
diendo de si la resta entre el número de aristas hacia una comunidad distinta a
la suya dividido por su grado y el número de aristas hacia su comunidad dividido
por su grado es mayor que un umbral definido como parámetro del algoritmo. Si
es aśı, el nodo se retira de su comunidad actual y se traslada a la nueva. Si no, el
nodo se añade a la nueva comunidad, produciéndose la situación de solapamiento.
En esta propuesta, se sigue una primera estrategia de mejora con el objetivo de
reducir el tiempo de cálculo del algoritmo. El procedimiento de búsqueda local
termina cuando todas las soluciones pertenecientes a la vecindad actual son peores
que la actual en términos de la función objetivo, es decir, cuando se encuentra un
óptimo local.

Una vez que se ha construido una solución inicial mediante GRASP, se aplica
el marco metaheuŕıstico Iterated Greedy. En la fase de destrucción, un porcentaje



de nodos de la solución son desasignados de las comunidades a las que pertenecen.
Este porcentaje se define experimentalmente. Para decidir qué nodos deben ser
eliminados de la solución, se han seguido dos estrategias diferentes. Por un lado, se
realiza una destrucción aleatoria. En esta versión de la destrucción, los nodos que
se eliminarán de la solución actual se seleccionan aleatoriamente. Por otro lado,
se sigue una estrategia codiciosa. En concreto, se eliminan de sus comunidades
los nodos con una mayor proporción de aristas interclúster respecto a su grado.
Ambas resultan en una solución no factible, dado que algunos nodos no están
asignados a ninguna comunidad cuando el procedimiento termina.

Para recuperar la viabilidad de la solución destruida, se ejecuta la fase de
reconstrucción. Para ello, los nodos no asignados deben ser reasignados a, al
menos, una comunidad de la red. En esta fase del algoritmo, los nodos sólo se
asignarán a una única comunidad. La decisión de añadir un nodo a más de una
comunidad es responsabilidad del procedimiento de búsqueda local, que se aplicará
después de la reconstrucción. Para asignar los nodos a una comunidad, de nuevo,
se han seguido dos estrategias diferentes: reasignar los nodos a una comunidad
aleatoria y la estrategia opuesta a la seguida en la fase de destrucción, seleccionar
la comunidad que maximiza el ratio de aristas intra-clúster con respecto a su
grado como la comunidad más adecuada para un nodo. Por último, tras la fase
de reconstrucción se aplica el mismo procedimiento de búsqueda local aplicado en
la fase de mejora de GRASP, con el objetivo de encontrar un óptimo local en la
región del espacio de soluciones que se está explorando.

Se han realizado experimentos computacionales para evaluar la calidad de
la propuesta. Se ha utilizado un conjunto de 68 instancias. La experimentación
preliminar se dedica a ajustar todos los parámetros del algoritmo: el valor α
de GRASP y el porcentaje de destrucción para Iterated Greedy. Además, esta
experimentación sirve para seleccionar la mejor configuración de las estrategias
de construcción y destrucción. Como resultado de estos experimentos, se obtiene
la mejor configuración del algoritmo. En la experimentación final, el algoritmo
se compara con el mejor algoritmo encontrado en la literatura. Para evaluar la
calidad de las soluciones se ha utilizado una versión adaptada de la métrica de
modularidad al escenario de solapamiento. La tabla A.5 muestra la superioridad
de la propuesta en un conjunto de instancias de diferente tamaño (n representa el
número de nodos presentes en la red).

Estos resultados muestran que la propuesta es, en promedio, una mejor
opción para las redes evaluadas. Aunque el tiempo de cálculo requerido por el
algoritmo EADP es menor que el requerido por la propuesta, las soluciones en-
contradas por Iterated Greedy superan al algoritmo anterior. Además, cuando
Iterated Greedy no es capaz de encontrar las mejores soluciones, tiene un bajo



Iterated Greedy EADP
Avg. Dev (%) Tiempo (s) #Mejores Avg. Dev (%) Tiempo (s) #Mejores

0 ≤ n < 2500 0.319 3.399 5.501 13 0.216 34.855 0.507 2
2500 ≤ n < 5000 0.383 0.000 27.736 15 0.238 37.061 3.243 0
5000 ≤ n < 7500 0.377 0.000 48.293 18 0.236 37.102 10.781 0
7500 ≤ n ≤ 10000 0.377 0.000 87.124 9 0.234 37.171 36.943 0

Average 0.364 0.850 42.164 55 0.231 36.547 12.869 2

Table A.5: Comparación de Iterated Greedy (IG) y EADP configurado como se
indica en [2].

porcentaje de desviación en promedio (3,399% para el conjunto de instancias en
las que no es capaz de encontrar la mejor solución, 0,850% en promedio para todo
el conjunto de instancias). El algoritmo encuentra la mejor solución un total de
55 instancias, mientras que el método de vanguardia alcanza la mejor solución 2
veces. En cuanto a los tiempos de cálculo, Iterated Greedy sólo tarda una media
de 30 segundos más que EADP, por lo que la mejora en la calidad de las soluciones
justifica el interés de la propuesta.

Los resultados derivados de esta investigación se encuentran actualmente en
revisión en Journal of Heuristics, una revista del Q2 JCR con un factor de impacto
de 2.247.

A.3.5 Resultados sobre el problema de detección de comu-
nidades dinámicas multiobjetivo

El art́ıculo que resume la investigación relativa a este problema está en segunda
revisión en la revista Expert Systems With Applications. No obstante, es intere-
sante exponer las estrategias seguidas para resolverlo. En este trabajo se adapta
una metaheuŕıstica basada en poblaciones para resolver el problema multiobjetivo
de Detección Dinámica de Comunidades: la Búsqueda por Dispersión. Este marco
se ha modificado ligeramente con el fin de afrontar la naturaleza multiobjetivo del
problema que se resuelve. Las principales modificaciones se han realizado en el
método de mejora, el método de actualización RefSet, y el método de generación
de subconjuntos. En el método de mejora, se mejora una solución de dos formas
diferentes, cada una de ellas utilizando como función objetivo una de las métricas
de optimización del problema: ICS (Inverted Community Score) y AVG ODF. El
procedimiento de actualización del RefSet se modifica de forma que se mantienen
dos RefSets, uno considerando el objetivo ICS y el otro considerando AVG ODF.
El método de generación de subconjuntos se adapta para reducir el número de
pares que se combinan, dividiendo el RefSet en cuatro subconjuntos diferentes:
el que contiene soluciones de alta calidad con respecto al ICS, el que contiene
soluciones de alta calidad con respecto al AVG ODF, y los dos que contienen solu-



ciones diferentes con respecto a cada una de las funciones objetivo. Es importante
destacar que todas las soluciones generadas se intentan incluir en el conjunto de
soluciones no dominadas.

Con el objetivo de poblar el RefSet, se generan soluciones de alta calidad y
soluciones diversas que se incluyen en el conjunto. En el contexto de MODCDP,
la distancia entre dos soluciones se calcula como la suma de los nodos que se
encuentran en diferentes comunidades en las soluciones comparadas. Esta es la
métrica utilizada para generar los subconjuntos diversos RefSet.

En el método de generación diversa, se ha seguido un enfoque aleatorio cod-
icioso. Partiendo de la idea de que encontrar una buena estructura de comunidad
es una tarea computacionalmente exigente, se aplica un algoritmo basado en el tra-
bajo de McAllister [140]. Más concretamente, se aplica un algoritmo modificado
de búsqueda Breadth-First Search. La modificación tiene en cuenta el valor de la
función McAllister asociado a cada nodo para decidir cuándo debe detenerse la
construcción de la comunidad actual y construir una nueva. La función McAllister
se utiliza porque da prioridad para ser conjunta a la comunidad actual a aquel-
los nodos que tienen más vecinos etiquetados, es decir, más vecinos añadidos a la
comunidad en construcción. Este procedimiento termina cuando todos los nodos
han sido asignados a una comunidad.

Una vez que se ha construido un conjunto de soluciones diversas, se ejecuta
un procedimiento de mejora con el objetivo de encontrar un óptimo local con
respecto a una determinada vecindad. Para alcanzar este objetivo se define un
procedimiento de búsqueda local. El vecindario que se explorará está compuesto
por todas las posibles soluciones que se pueden alcanzar cambiando un nodo de
su comunidad original a otra diferente. Para decidir si un nodo es un candidato
prometedor para realizar el movimiento, se evalúa el número de aristas intracomu-
nitarias e intercomunitarias. Si un nodo tiene más aristas intercomunitarias que
intercomunitarias, significa que podŕıa ser asignado a una comunidad mejor. La co-
munidad de destino se selecciona evaluando el número de nodos adyacentes que los
nodos eliminados tienen en la comunidad evaluada. Realizando este movimiento,
se mejorará la calidad de la estructura de la comunidad, ya que un nodo siempre
será reasignado a una comunidad con más aristas intraclúster de las que teńıa en
su asignación original. Se ha seguido una estrategia de mejora de la calidad para
recorrer dicho vecindario, ya que la forma eficiente en que se ha implementado per-
mite una exploración completa del mismo sin requerir un tiempo computacional
elevado.

En el método de combinación, se aplica un enfoque de Path Relinking a
cada par de soluciones derivadas del RefSet. Más concretamente, una solución



perteneciente al subconjunto de alta calidad de RefSet para una función objetivo
se combina con otra que pertenece al subconjunto diverso de RefSet para la misma
función objetivo. Este proceso se aplica para ambas funciones objetivo. Para crear
un camino entre una solución inicial y una solución gúıa, se añaden a la solución
inicial elementos que están incluidos en la solución gúıa y que no están presentes
en la solución inicial. En este trabajo se sigue un enfoque de Reenlace Aleatorio de
Caminos, es decir, se selecciona aleatoriamente el nodo cuya comunidad asignada
será cambiada.

Es importante señalar que existen dos enfoques diferentes para resolver la
variante dinámica del CDP. Por un lado, cada solución puede generarse desde cero
para cada instantánea de la red. Por otro lado, la solución generada para una
instantánea puede utilizarse como punto de partida para la siguiente. En este
trabajo se han probado ambos enfoques, emergiendo la segunda estrategia como
la mejor.

En la experimentación computacional se han estudiado tanto las métricas
multiobjetivo clásicas como las basadas en el contexto. En concreto, se han selec-
cionado la Cobertura, el Hipervolumen y la Distancia Generacional Invertida +
como métricas multiobjetivo y la modularidad como métrica basada en el contexto
para evaluar la calidad de las soluciones. Se ha utilizado un conjunto de 69 in-
stancias sintéticas y del mundo real para probar el rendimiento de los algoritmos.
La fase experimental se ha dividido en dos conjuntos diferentes de experimentos.
El primero está dedicado a seleccionar la mejor estrategia (empezar de cero en
cada instantánea o aprovechar la solución generada para la instantánea anterior),
y estudiar la contribución de cada parte del algoritmo a la solución final. En los
experimentos finales, la propuesta se compara con el mejor método encontrado en
la literatura. Analizando los resultados, la propuesta demostró ser mejor tanto
en las redes sintéticas como en las del mundo real. La tabla A.6 muestra la com-
paración entre ambos algoritmos en cuanto a las métricas multiobjetivo en redes
sintéticas. Como se muestra, la propuesta Scatter Search demuestra una supe-
rioridad con respecto a estas métricas. Más concretamente, el algoritmo Scatter
Search es capaz de alcanzar los valores más bajos posibles para las métricas CV e
IGD+ en todas las instancias sintéticas. En cuanto a la VH, se alcanzan valores
más altos que los del algoritmo previo Immigrants para todas las instantáneas en
todas las instancias.

Lo mismo ocurre para las instancias del mundo real evaluadas (Tabla A.7).
Como se puede observar, la propuesta basada en Scatter Search obtiene los mejores
resultados en cuanto a la métrica CV y tiene una diferencia significativa en prome-
dio para las otras dos métricas multiobjetivo estudiadas.



Snapshot
Scatter Search Repairing Immigrants MOGA

AVG. CV AVG. HV AVG. IGD+ AVG. CV AVG. HV AVG. IGD+

Snapshot 0 0.00 0.62 0.00 1.00 0.08 1.60
Snapshot 1 0.00 0.54 0.00 1.00 0.14 1.17
Snapshot 2 0.00 0.63 0.00 1.00 0.11 0.23
Snapshot 3 0.00 0.63 0.00 1.00 0.11 0.25
Snapshot 4 0.00 0.61 0.00 1.00 0.12 0.28
Snapshot 5 0.00 0.59 0.00 1.00 0.18 0.29
Snapshot 6 0.00 0.53 0.00 1.00 0.14 1.13
Snapshot 7 0.00 0.55 0.00 1.00 0.14 8.65
Snapshot 8 0.00 0.49 0.00 1.00 0.17 0.39
Snapshot 9 0.00 0.49 0.00 1.00 0.17 3.23

Table A.6: Tabla comparativa de las métricas multiobjetivo obtenidas con los
algoritmos Scatter Search e Immigrants MOGA en redes sintéticas.

Dataset
Scatter Search Repairing Immigrants MOGA

AVG. CV AVG. HV AVG. IGD+ AVG. CV AVG. HV AVG. IGD+

Travian Market 0.00 0.70 0.11 0.84 0.15 0.61
Travian Messages 0.00 0.62 0.27 0.33 0.13 0.31

Table A.7: Tabla comparativa de las métricas multiobjetivo obtenidas con los
algoritmos Scatter Search e Immigrants MOGA en redes del mundo real.



En cuanto a las métricas basadas en el contexto, la superioridad de la prop-
uesta también se puede confirmar mirando los valores de modularidad reportados
en la Tabla A.8 y la Tabla A.9. Más concretamente, el algoritmo Scatter Search
obtiene una media de valor de modularidad un orden de magnitud superior a la
propuesta de MOGA en todas las instantáneas de instancias sintéticas. El mismo
comportamiento se observa en las instancias del mundo real que se han utilizado
en la fase experimental.

Snapshot
Scatter Search Repairing Immigrants MOGA

AVG. Mod AVG. Mod

Snapshot 0 0.3485 0.0242
Snapshot 1 0.4879 0.0177
Snapshot 2 0.5313 0.0167
Snapshot 3 0.5328 0.0191
Snapshot 4 0.5354 0.0168
Snapshot 5 0.5349 0.0136
Snapshot 6 0.5223 0.0116
Snapshot 7 0.5131 0.0045
Snapshot 8 0.4449 0.0090
Snapshot 9 0.3543 0.0678

Table A.8: Tabla que compara los valores medios de modularidad obtenidos con
los algoritmos Scatter Search e Immigrants MOGA en redes sintéticas.

Dataset
Scatter Search Repairing Immigrants MOGA

AVG. Mod AVG. Mod

Travian Market 0.0714 0.0065
Travian Messages 0.2179 0.0899

Table A.9: Tabla que compara los valores medios de modularidad obtenidos con
los algoritmos Scatter Search e Immigrants MOGA en redes del mundo real.

A.4 Conclusiones

En este caṕıtulo se presentan las conclusiones derivadas de la investigación real-
izada. Las conclusiones para cada variante de los problemas abordados se dividen
en secciones. Además, se incluye una sección de trabajos futuros.



A.4.1 Conclusiones sobre el problema del alpha-separator

Se ha estudiado el problema del alpha-separator como punto de partida para los
problemas de detección de comunidades. Se ha propuesto un algoritmo basado
en GRASP para encontrar nodos cŕıticos en redes, siendo nodos cŕıticos aquellos
cuya eliminación implica la división de la red en n componentes conexas con un
tamaño determinado (dado como parámetro de la instancia). En este trabajo se
ha demostrado el potencial de GRASP acoplado a una estrategia de combinación
de Path Relinking. Especialmente, en lo que se refiere al tiempo de cómputo
requerido por el algoritmo para alcanzar soluciones de alta calidad, la propuesta
emergió como el mejor método en el estado del arte.

En concreto, la principal aportación de este trabajo radica en la fase ex-
perimental. Se han propuesto dos variantes diferentes de GRASP que utilizan
la métrica de closeness como función voraz: RandomGreedy y GreedyRandom,
y el experimento mostró que la estrategia RandomGreedy es más adecuada para
este problema espećıfico. Además, se han propuesto cuatro variantes diferentes
de Path Relinking : Greedy Randomized Path Relinking, Random Path Relinking,
Greedy Path Relinking y Exterior Path Relinking. Este último es el enfoque más
novedoso, y también el mejor para resolver el problema del alpha-separator.

Un art́ıculo derivado de este trabajo ha sido publicado en una revista JCR
Q2, con un factor de impacto de 2.587 (JCR 2020): Finding weaknesses in net-
works using greedy randomized adaptive search procedure and path relinking [134],
incluido en el caṕıtulo 7 de la parte II.

A.4.2 Conclusiones sobre el problema clásico de detección
de comunidades

El objetivo principal del estudio del Problema de Detección de Comunidades
(CDP) era desarrollar un algoritmo rápido que demostrara un mejor rendimiento
que los algoritmos clásicos para la detección de comunidades en redes. Este obje-
tivo se logró con una metodoloǵıa GRASP, utilizando la conocida métrica de mod-
ularidad como función objetivo. Esta metaheuŕıstica ha demostrado ser un buen
punto de partida para la resolución de problemas de detección de comunidades,
dada su capacidad para equilibrar la diversificación en la fase de construcción y la
intensificación en la fase de mejora, proporcionando soluciones de alta calidad en
bajos tiempos de cómputo.

En este trabajo se han propuesto dos estrategias heuŕısticas: el proced-
imiento constructivo aglomerativo, que equilibra la voracidad y la aleatoriedad
de la búsqueda, y el procedimiento de mejora, en el que se ha explotado con éxito



una vecindad basada en el problema para alcanzar los óptimos locales.

La fase experimental permite ajustar correctamente el valor α de GRASP,
y evitar sobreajustar el algoritmo seleccionando un subconjunto del conjunto de
instancias. Además, la fase experimental final demuestra que el objetivo de la
investigación se ha cumplido, comparando la propuesta con siete conocidos algo-
ritmos de detección de comunidades.

La investigación sobre el CDP se presenta en el trabajo denominado On the
Analysis of the Influence of the Evaluation Metric in Community Detection over
Social Networks [136], incluido en el caṕıtulo 8 de la parte II. En concreto, este
trabajo está publicado en la revista Electronics, un JCR Q3 con un factor de
impacto de 1,764 (JCR 2018).

A.4.3 Conclusiones sobre el problema de detección de co-
munidades multiobjetivo

En este trabajo se presenta un nuevo método metaheuŕıstico basado en VNS para
la detección de comunidades. Para resolverlo, se ha adaptado el VNS al esce-
nario multiobjetivo, considerando un conjunto de soluciones no dominadas como
solución completa para el algoritmo. Para generar el conjunto inicial de soluciones
no dominadas, se ha aplicado una metodoloǵıa GRASP. Esta metodoloǵıa ha de-
mostrado ser una técnica fiable y rápida para producir soluciones iniciales en el
contexto del CDP. El uso de GRASP permite al algoritmo VNS iniciar la búsqueda
desde una región prometedora del espacio de soluciones.

En este trabajo se han definido como función objetivo el Ratio Cut y la
Negative Ratio Association, tratando de minimizar ambos simultáneamente. La
evaluación de los frentes obtenidos se ha realizado utilizando métricas multiobje-
tivo clásicas, como Cobertura, Hipervolumen, Indicador ϵ y Distancia Generacional
Invertida +.

La experimentación ha demostrado que la combinación de GRASP con VNS
da lugar a soluciones de alta calidad en un contexto multiobjetivo, y más concre-
tamente en el MOCDP. La eficiente implementación del algoritmo y la calidad de
la heuŕıstica aplicada permiten a la propuesta superar los trabajos anteriores.

La investigación sobre el MOCDP se expone en el trabajo denominado A
fast variable neighborhood search approach for multi-objective community detection
[137], incluido en el caṕıtulo 9 de la parte II. Más concretamente, se publica en
Applied Soft Computing, una revista del Q1 JCR con un factor de impacto de
8,623 (JCR 2021).



A.4.4 Conclusiones sobre el problema de detección de co-
munidades con solape

En este trabajo se propone un nuevo método metaheuŕıstico para el problema
de detección de comunidades con solape. En concreto, la propuesta hibridiza las
metaheuŕısticas GRASP e Iterated Greedy. El algoritmo hace uso de una versión
modificada de la clásica métrica de modularidad adaptada al escenario de sola-
pamiento. Una de las principales aportaciones de este trabajo es el uso de un
operador de movimiento inteligente definido para el procedimiento de búsqueda
local. Éste permite mejorar la calidad de las soluciones generadas por el proced-
imiento GRASP, que hace uso de la métrica PageRank como función voraz. Medi-
ante este procedimiento de búsqueda local se cubre el escenario de solapamiento,
generando soluciones que permiten tener nodos asignados a más de una comunidad
simultáneamente.

Otra contribución es el desarrollo de dos estrategias diferentes para las fases
de destrucción y construcción de Iterated Greedy, respectivamente, y su combi-
nación. Se ha propuesto una estrategia aleatoria y otra voraz para la fase de
construcción, aśı como para la fase de reconstrucción. La sección experimental
permitió seleccionar la mejor versión del procedimiento constructivo GRASP y la
mejor configuración para la búsqueda local. También se ha establecido la mejor
combinación de estrategias de las fases de construcción y destrucción. Los resul-
tados muestran que la propuesta proporciona soluciones de mayor calidad que el
método de vanguardia, aunque requiere un tiempo de cálculo ligeramente superior.

Este trabajo ha sido enviado para su revisión a Journal of Heuristics, revista
de impacto indexada en el JCR (Journal Citation Reports), situada en el Q2 con
un factor de impacto de 2,247.

A.4.5 Conclusiones sobre el problema multiobjetivo de de-
tección de comunidades dinámicas

En este trabajo se ha adaptado la metaheuŕıstica Scatter Search para que funcione
en el contexto multiobjetivo. Además, la heuŕıstica voraz aleatorizada desarrol-
lada permite generar soluciones iniciales para el marco de Scatter Search de forma
rápida, combinando el potencial del conocido algoritmo Breadth-First Search y el
cálculo rápido de la función voraz de McAllister. Utilizando esta combinación,
y modificando el esquema de Scatter Search de forma que el conjunto de refer-
encia tenga en cuenta todos los objetivos que se están optimizando, se alcanzan
soluciones de alta calidad en tiempos computacionales bajos. Además, el uso de
Path Relinking en su versión aleatoria para realizar el método de combinación
de la metaheuŕıstica Scatter Search proporciona una mayor diversificación. Este



mecanismo permite poblar el conjunto no dominado de soluciones, lo que deriva
en mejores resultados respecto a las métricas multiobjetivo clásicas y las métricas
basadas en el contexto estudiadas en este trabajo.

En la fase experimental se demuestra la contribución de cada parte del al-
goritmo. Además, la propuesta reporta mejores soluciones en términos de calidad
que los mejores trabajos anteriores encontrados en la literatura, dando la opor-
tunidad a investigadores y profesionales de diferentes áreas de conocimiento de
obtener soluciones con información útil y precisa, incluso cuando la red está en
constante evolución.

Este trabajo está en progreso y será enviado a una revista indexada en JCR.
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[23] N. Mladenović and P. Hansen, “Variable neighborhood search,” Computers
& operations research, vol. 24, no. 11, pp. 1097–1100, 1997.

[24] F. Glover, “Scatter search and path relinking,” New ideas in optimization,
vol. 138, 1999.



[25] F. Glover, M. Laguna, and R. Mart́ı, “Fundamentals of scatter search and
path relinking,” Control and cybernetics, vol. 29, no. 3, pp. 653–684, 2000.

[26] M. Laguna, R. Marti, and R. C. Mart́ı, Scatter search: methodology and
implementations in C. Springer Science & Business Media, 2003.

[27] S. P. Borgatti, M. G. Everett, and J. C. Johnson, Analyzing social networks.
Sage, 2018.

[28] S. N. Dorogovtsev and J. F. Mendes, Evolution of networks: From biological
nets to the Internet and WWW. OUP Oxford, 2013.

[29] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis in large-
scale networks,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 807–816, 2009.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.

[31] K. Almgren and J. Lee, “An empirical comparison of influence measurements
for social network analysis,” Social Network Analysis and Mining, vol. 6,
no. 1, pp. 1–18, 2016.

[32] K. Ikeda, G. Hattori, C. Ono, H. Asoh, and T. Higashino, “Twitter user pro-
filing based on text and community mining for market analysis,” Knowledge-
Based Systems, vol. 51, pp. 35–47, 2013.

[33] M. GLADWELL and T. Point, “How little things can make a big difference,”
2000.

[34] R. K. Bakshi, N. Kaur, R. Kaur, and G. Kaur, “Opinion mining and senti-
ment analysis,” in 2016 3rd international conference on computing for sus-
tainable global development (INDIACom), pp. 452–455, IEEE, 2016.

[35] C. Pizzuti, “Evolutionary computation for community detection in networks:
A review,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 464–483, 2018.

[36] A. Said, R. A. Abbasi, O. Maqbool, A. Daud, and N. R. Aljohani, “CC-GA:
A clustering coefficient based genetic algorithm for detecting communities
in social networks,” Applied Soft Computing, vol. 63, pp. 59–70, 2018.

[37] M. Moradi and S. Parsa, “An evolutionary method for community detection
using a novel local search strategy,” Physica A: Statistical Mechanics and its
Applications, vol. 523, pp. 457–475, 2019.



[38] Q. Cai, M. Gong, L. Ma, S. Ruan, F. Yuan, and L. Jiao, “Greedy discrete
particle swarm optimization for large-scale social network clustering,” Infor-
mation Sciences, vol. 316, pp. 503–516, 2015.

[39] A. Gonzalez-Pardo, J. J. Jung, and D. Camacho, “Aco-based clustering
for ego network analysis,” Future Generation Computer Systems, vol. 66,
pp. 160–170, 2017.

[40] M. Girvan and M. E. Newman, “Community structure in social and bio-
logical networks,” Proceedings of the national academy of sciences, vol. 99,
no. 12, pp. 7821–7826, 2002.

[41] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast un-
folding of communities in large networks,” Journal of statistical mechanics:
theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[42] P. Pons and M. Latapy, “Computing communities in large networks using
random walks,” in International symposium on computer and information
sciences, pp. 284–293, Springer, 2005.

[43] C. Cao, Q. Ni, and Y. Zhai, “An improved collaborative filtering recom-
mendation algorithm based on community detection in social networks,” in
Proceedings of the 2015 annual conference on genetic and evolutionary com-
putation, pp. 1–8, 2015.

[44] N. Zalmout and M. Ghanem, “Multidimensional community detection in
twitter,” in 8th International Conference for Internet Technology and Se-
cured Transactions (ICITST-2013), pp. 83–88, IEEE, 2013.
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