
TESIS DOCTORAL

A new methodology for the automated

generation of reproducible metaheuristic

configurations: a practical application to

combinatorial optimization problems

Autor:

D. Raúl Mart́ın Santamaŕıa

Directores:

Dr. D. José Manuel Colmenar Verdugo

Dr. D. Abraham Duarte Muñoz

Programa de doctorado en Tecnoloǵıas de la Información y

las Comunicaciones

Escuela Internacional de Doctorado

2023





This doctoral thesis has been supported by the following projects and grants:

• Project “NUEVA METODOLOGIA HOLISTICA PARA LA CONFIGURACION,
COMPARACION Y EVALUACION DE METAHEURISTICAS”, grant ref PID2021-
126605NB-I00 funded by MCIN/AEI/10.13039/501100011033, and ERDF A way
of making Europe.

• Comunidad de Madrid y Fondos Estructurales de la Unión Europea with grant
ref. P2018/TCS-4566.

• Project “EFFICIENT METAHEURISTICS IN GRAPH OPTIMIZATION”, funded
by Spanish Ministerio de Ciencia, Innovación y Universidades under grant ref.
PGC2018-095322-B-C22.

iii





FIRMADO POR FECHA FIRMA

COLMENAR VERDUGO JOSE MANUEL 28-03-2023 09:27:27

DUARTE MUÑOZ ABRAHAM  - DIRECTOR DE LA ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA 28-03-2023 14:31:38
Documento firmado digitalmente - Universidad Rey Juan Carlos - C/Tulipan, s/n - 28933 Mostoles

Universidad Rey Juan Carlos Página: 1 / 1

El Dr. D. Abraham Duarte Muñoz, Profesor Catedrático de Universidad del Depar-
tamento de Informática y Estad́ıstica de la Universidad Rey Juan Carlos, y el Dr. D.
José Manuel Colmenar Verdugo, Profesor Titular de Universidad del Departamento de
Informática y Estad́ıstica de la Universidad Rey Juan Carlos, directores de la Tesis titu-
lada: “A new methodology for the automated generation of reproducible metaheuristic
configurations: a practical application to combinatorial optimization problems” real-
izada por el doctorando D. Raúl Mart́ın Santamaŕıa,

HACEN CONSTAR:

que esta Tesis Doctoral reúne los requisitos necesarios para su defensa y aprobación.

En Móstoles, a fecha de la firma electrónica,

Dr. D. Abraham Duarte Muñoz Dr. D. José Manuel Colmenar Verdugo

I
D
 
D
O
C
U
M
E
N
T
O
:
 
7
t
w
F
J
X
Z
U
2
4

V
er

ifi
ca

ci
ón

 c
ód

ig
o:

 h
ttp

s:
//s

ed
e.

ur
jc

.e
s/

ve
rif

ic
a





Acknowledgements

Aqúı estamos. Hemos llegado. Hab́ıa luz al final del túnel. Años de trabajo culminan
con el presente manuscrito.

Gracias a mi familia, por su apoyo incondicional. Sin ellos, no tendŕıa la moti-
vación ni la confianza para perseguir mis objetivos. Sus ánimos y confianza en mı́ ha
sido una de las mayores fuerzas a lo largo de todo el doctorado.

A todos mis compañeros, por el tiempo compartido tanto en el departamental
como fuera de él. Es incalculable el valor que tiene haber tenido la oportunidad de
trabajar con un grupo de personas con tanto talento y motivación. Gracias por es-
cucharme, mis dudas, mis miedos, y aguantar alguna que otra chapa.

A mis directores de tesis, por introducirme al campo de la optimización. Gracias
por la confianza depositada en el incréıble proyecto en el que nos hemos embarcado.
Sin su apoyo desinteresado y el tiempo que han invertido en mi formación no hubiera
llegado hasta aqúı.

A Thomas, por acogernos a Sergio y a mı́ en Bruselas durante el verano. Gracias
por todo el apoyo prestado durante la estancia en la Université Libre de Bruxelles.
Gracias también a todos los miembros de Iridia, que nos acogieron alĺı como si nos
conocieran de toda la vida. Conoćı una ciudad incréıble, y a mucha gente que no
olvidaré.

A todos los compañeros del departamental, por vuestra experiencia y consejos.
He aprendido un montón de todos vosotros, especialmente de los puntos de vista más
antagónicos, que me han forzado a ver las cosas de una manera diferente.

Gracias por supuesto a todos los docentes que he tenido a lo largo de mi educación,
especialmente en el instituto, por alentar mi pasión por la tecnoloǵıa y las matemáticas.
Sin ellos dudo que hubiera elegido la trayectoria que he realizado.

Por último, pero no por ello menos importante, gracias a todas las personas que
han compartido mi camino, y han contribuido su granito de arena. No podŕıa haber
llegado a donde estoy sin todos vosotros, y por eso, os estaré eternamente agradecido.

A todos vosotros, gracias.

vii





The Weight of Knowledge

In the world of academia,
Where knowledge is the currency,

There are those who toil and grind,
For their PhDs, a one-of-a-kind.

They work hard, day and night,
To earn their place in the ivory tower,

But their struggles are not small,
For they have little money to empower.

They toil away, without rest,
For their research, their passion, their quest,

But the funds are scarce, the bills are high,
And the weight of it all can make them sigh.

They sacrifice so much for their dreams,
But the path to success is not what it seems,

For even with a PhD in hand,
Their future is not always grand.

They struggle to find a job,
To make ends meet, to afford their own sod,

But they persevere, they fight on,
For their love of learning, their thirst for knowledge, their passion.

So let us not forget the sacrifice,
Of those who seek to enlighten and advise,

For they are the future of our world,
And their struggles should not go unfurled.

ChatGPT, 2023

ix





Contents

List of Figures xv

List of Tables xvii

List of Acronyms xx

Abstract xxi

I PhD Dissertation 1

1 Introduction 5
1.1 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Algorithm tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hypothesis and objectives . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Memory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Proposed automated methodology 11
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Instance selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Component driven design . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Automated algorithm generation . . . . . . . . . . . . . . . . . . . . . 21
2.5 Artifact generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Optimization problems under study 25
3.1 Heuristic and metaheuristic methods . . . . . . . . . . . . . . . . . . . 25
3.2 Balanced Minimum Sum-of-Squares Clustering problem . . . . . . . . . 26
3.3 Vehicle Routing Problem with Occasional Drivers . . . . . . . . . . . . 28
3.4 Double-Row Facility Layout problem . . . . . . . . . . . . . . . . . . . 31

4 Joint discussion of results 35
4.1 Results for the Balanced Minimum Sum-of-Squares Clustering problem 35
4.2 Results for the Vehicle Routing Problem with Occasional Drivers . . . . 39
4.3 Results for the Double-Row Facility Layout Problem . . . . . . . . . . 44
4.4 Results for AutoConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



5 Conclusions and future work 53
5.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Contributions summary and future work . . . . . . . . . . . . . . . . . 54

II Publications: published, accepted, and submitted pa-
pers 57

6 Strategic oscillation for the balanced minimum sum-of-squares clus-
tering problem 61

7 An Efficient Algorithm for Crowd Logistics Optimization 77

8 A practical methodology for reproducible experimentation: an appli-
cation to the Double-row Facility Layout Problem 99

9 On the automatic generation of metaheuristic algorithms for opti-
mization problems 139

III Additional Publications during thesis development 173

10 Journal articles indexed in JCR & SJR 177
10.1 On the analysis of the influence of the evaluation metric in community

detection over social networks . . . . . . . . . . . . . . . . . . . . . . . 177
10.2 Solving the regenerator location problem with an Iterated Greedy approach178
10.3 WebGE: An Open-Source Tool for Symbolic Regression Using Gram-

matical Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.4 A Scatter Search Approach for the Parallel Row Ordering Problem . . 179

11 Research presented in international and national conferences 181
11.1 A meta-heuristic approach for the Vehicle Routing Problem with occa-

sional drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.2 Using the Optaplanner solver . . . . . . . . . . . . . . . . . . . . . . . 182
11.3 A Variable Neighborhood Search approach for the Maximum Quasi-

clique Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.4 Un algoritmo eficiente para el problema de disposición de instalaciones

en dos filas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.5 MORK: Metaheuristic Optimization framewoRK . . . . . . . . . . . . 183
11.6 A Scatter Search approach for the Parallel Row Ordering Problem . . . 183
11.7 A VNS approach for the combined cell layout problem . . . . . . . . . 184

IV Appendix 185

A Resumen en castellano 187
A.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



A.2 Hipótesis y objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.3 Propuesta metodológica . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.4 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.5 Conclusiones y trabajos futuros . . . . . . . . . . . . . . . . . . . . . . 192

Bibliography 193





List of Figures

2.1 Proposed methodology to favor reproducibility. . . . . . . . . . . . . . 12

2.2 Proposed methodology to favor reproducibility, detailed first step. . . . 13

2.3 Example of distortion scores for k ∈ [2, 14]. The black dash line repre-
sents the elbow point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Example algorithms A and E , and their dependency on B and B′ respec-
tively, and common dependency on C. Empty arrows represent inheri-
tance, while the filled diamond mean that the component at the side of
the diamond is composed by or depends on the component at the other
side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Algorithmic component hierarchy provided by the framework. Diamond
arrows mean that the component at the side of the diamond is composed
by or depends on the component at the other side, while the unfilled
triangle represents that a given component implements or is of the type
pointed by the triangle. Colors are used to more easily differentiate
relationships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Example metadata provided in the constructor method of a VND im-
prover implemented in Java. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Examples of automatically generated algorithms. Each component and
parameter is represented as a box, which may recursively contain compo-
nents. Provided components in the framework are yellow; integer, real,
categorical and numerical parameters are green, and blue components
are the ones provided by the user. . . . . . . . . . . . . . . . . . . . . . 20

2.8 Proposed methodology to favor reproducibility, detailed second step. . . 22

3.1 Two clustering examples for the same points. Each point has the color
of the cluster it is assigned to, whose area is delimited by an oval. The
red cross represents the centroid of each cluster. . . . . . . . . . . . . 28

3.2 Example solutions for the TSP, on the left, and the VRP on the right,
given the same set of destinations, represented by colored circles, and
origin, represented by the icon. Icons source: Flaticon . . . . . . . . . . 29

3.3 Example solution representation including “dummy facilities”, with dot-
ted lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Complete scheme of the proposed algorithm. . . . . . . . . . . . . . . . 36

xv



4.2 Box and whiskers plot using the sum-of-squares metric of 30 independent
executions of the proposal. . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 TTTPlot of the SO proposal using preliminary experiment instances. . 40
4.4 Proposed parallel cooperative scheme for the ILS. . . . . . . . . . . . . 41
4.5 Implemented neighborhoods for the VRPOD. . . . . . . . . . . . . . . 42
4.6 Proposed algorithm for the DRFLP. . . . . . . . . . . . . . . . . . . . 45
4.7 Proposed merging constructive method, showing all different ways that

two facilities groups can be merged. a and b are the original groups,
while c, d e and f are all valid combinations. . . . . . . . . . . . . . . . 46

4.8 Implemented neighborhoods for the DRFLP. . . . . . . . . . . . . . . . 47
4.9 Proposed destructive method, based on piece splitting. a, b and c are

the resulting pieces after the split. . . . . . . . . . . . . . . . . . . . . . 48

A.1 Propuesta metodológica, representando con diferentes colores los tres
aspectos claves de la propuesta: la selección automática de instancias,
la configuración automática de algoritmos y la generación de artefactos. 189



List of Tables

4.1 Friedman test for both MSE (Mean Squared Error) and DB (Davies–Bouldin)
metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Sensitivity analysis for numeric parameters α and β. . . . . . . . . . . 39
4.3 Summary performance comparison for the proposed ILS approach and

its variants against the state of the art for the VRPOD. . . . . . . . . . 44
4.4 Comparison between the four heuristic methods proposed in [1] against

our ig proposal. Instance set formed by 38 instances. . . . . . . . . . . 49
4.5 Comparison between the reimplementation of the four heuristic meth-

ods proposed in [1] against our ig proposal. Instance set formed by 15
instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Comparison between the automatically generated configurations for each
of the proposed problems and the adapted code. bkv are the initials of
best known value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 References to all published artifacts related to this thesis development. 54

A.1 Comparación entre las configuraciones generadas automáticamente para
cada uno de los problemas y las aproximaciones originales. bkv son las
iniciales en inglés de best known value, es decir, mejor valor conocido. . 191

xvii





List of Acronyms

AAC Automatic Algorithm Configuration.

ACO Ant Colony Optimization.

ALNS Adaptive Large Neighborhood Search.

API Application Programming Interface.

AUC Area Under Curve.

BMSSC Balanced Minimum Sum-of-Squares Clustering.

BVNS Basic Variable Neighborhood Search.

CAP Corridor Allocation Problem.

CL Candidate List.

CVRP Capacitated Vehicle Routing Problem.

DBI Davies-Bouldin index.

DRFLP Double Row Facility Layout problem.

FIFO First In First Out.

FLP Facility Layout Problem.

FMS Flexible Manufacturing Systems.

GA Genetic Algorithm.

GRASP Greedy Randomized Adaptive Search Procedure.

GVNS General Variable Neighborhood Search.

HCOT Hierarchical Clustering with Optimal Transport.

IG Iterated Greedy.

xix



ILS Iterated Local Search.

JCR Journal Citation Reports.

KPROP K-Parallel Row Ordering Problem.

LIFO Last In First Out.

LNCS Lecture Notes in Computer Science.

MIP Mixed-Integer Programming.

ML Machine Learning.

MRFLP Multi-Row Facility Layout Problem.

MSE Mean Squared Error.

MSSC Minimum Sum-of-Squares Clustering.

PCA Principal Component Analysis.

PR Path Relinking.

PSO Particle Swarm Optimization.

RCL Restricted Candidate List.

SF-DRFLP Space-Free Double Row Facility Layout Problem.

SJR Scimago Journal & Country Rank.

SO Strategic Oscillation.

SRFLP Single Row Facility Layout Problem.

TS Tabu Search.

TSP Traveling Salesman Problem.

TTTPlot Time-to-target Plot.

VND Variable Neighborhood Descent.

VNS Variable Neighborhood Search.

VRP Vehicle Routing Problem.

VRPOD Vehicle Routing Problem with Ocassional Drivers.

VRPTW Vehicle Routing Problem with Time Windows.



Abstract

“You cannot make progress without making decisions”. - Jim Rohn

Every day, we are bombarded with decisions: how to travel to a specific destina-
tion; which foods will make our meal; how to best organize our closets. Optimization
problems are everywhere: engineering, logistics, biology, economy... and of course, in
our day-to-day lives. All optimization problems have something in common: we want
to reach a certain set of objectives, according to a set of restrictions.

Optimization problems can be commonly solved using two distinct techniques:
exact methods, and approximate methods. Exact methods are able to find the best
existing solutions, but when applied to most real-life optimization problems, they scale
poorly, and require enormous computing resources and large execution time with mod-
est problem sizes. On the other hand, approximate methods, such as heuristic and
metaheuristic algorithms, can find good quality solutions using few resources, but they
cannot know if there are better solutions to the solutions they find, or if on the contrary
any generated solution is optimal.

While metaheuristic algorithms have become one of the most popular methods
for solving optimization problems, some issues have been highlighted in the litera-
ture. Specifically, two of the most common issues are lack of both reproducibility and
reusability of the approaches; and adhoc decisions, based on the researcher’s experience,
that may be difficult to justify from a purely scientific point of view.

To this end, in this doctoral thesis, a new methodology for the automated gen-
eration of reproducible metaheuristic configurations is presented. The proposal will
not only be theoretical, a reference implementation, called Mork (Metaheuristic Opti-
mization framewoRK) will be provided and tested. The benefits of the methodology
and its corresponding implementation will be demonstrated against three completely
different optimization problems, belonging to unrelated problem families: a facility
layout problem, a vehicle routing problem and a clustering problem.

xxi





Part I

PhD Dissertation





Contents

1 Introduction 5
1.1 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Algorithm tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hypothesis and objectives . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Memory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Proposed automated methodology 11
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Instance selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Component driven design . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Automated algorithm generation . . . . . . . . . . . . . . . . . . . . . 21
2.5 Artifact generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Optimization problems under study 25
3.1 Heuristic and metaheuristic methods . . . . . . . . . . . . . . . . . . . 25
3.2 Balanced Minimum Sum-of-Squares Clustering problem . . . . . . . . . 26
3.3 Vehicle Routing Problem with Occasional Drivers . . . . . . . . . . . . 28
3.4 Double-Row Facility Layout problem . . . . . . . . . . . . . . . . . . . 31

4 Joint discussion of results 35
4.1 Results for the Balanced Minimum Sum-of-Squares Clustering problem 35
4.2 Results for the Vehicle Routing Problem with Occasional Drivers . . . . 39
4.3 Results for the Double-Row Facility Layout Problem . . . . . . . . . . 44
4.4 Results for AutoConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusions and future work 53
5.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Contributions summary and future work . . . . . . . . . . . . . . . . . 54

3





Chapter 1

Introduction

There is a growing concern over the lack of methodological frameworks to compare
stochastic algorithms in the research community. Instance selection, experimental de-
sign and artifacts availability are some examples of the most common problems [2, 3].
In this chapter, we will introduce and detail their importance, summarizing relevant
terminology and existing proposals.

1.1 Optimization problems

In our everyday lives, we are continuously making decisions. We decide how much gas
to put in our car each time we refuel; which items to pick from the menu when eating
out; in which order our daily tasks are going to be solved; and so on.

In the Mathematics and Computer Science fields, these problems are known as
optimization problems. Given an objective, or a set of objectives, where we usually
have to maximize benefits, or minimize costs, and under a set of problem specific
restrictions, our goal is to find good solutions from all possible combinations.

Optimization problems can be classified into continuous and combinatorial, ac-
cording to their type of variables. Deciding how much fuel to put in your car would be
a continuous problem, as the fuel quantity is an arbitrary number, only restricted by
the car capacity. However, deciding which car to buy is combinatorial, as the number
of values that we can choose from is a discrete number, the number of available options.

According to the complexity of the optimization problem, they can be classified
into different complexity classes. If the optimal solution can be found in polynomial
time, it is said that the problem belongs to class P . Likewise, if no such algorithm
exists, we say that the problem is NP [4]. Although it is currently unknown if P = NP ,
it is widely believed that it is not the case [5,6], and we will work under the assumption
that P ̸= NP , or in other words, there are problems for which the optimal solution
can not be found in polynomial time.

There are mainly two types of techniques to solve optimization problems, exact

5



6

methods and approximate methods. Exact methods guarantee the optimality of the
solution if found, but usually fail or are extremely slow as the problem size increases
on NP problems. Examples of classical exact approaches are the Simplex method [7],
and branch and cut approaches [8]. On the other hand, approximate methods do
not guarantee the optimal solution, but are faster, and can tackle considerably larger
problems. Examples of approximate methods are heuristic and metaheuristic methods
[9, 10].

Although the ideas contained in this thesis may be applicable to more approaches
or techniques, in this thesis, we will focus exclusively on developing and validating
approaches in the context of stochastic algorithms, which includes metaheuristic ap-
proaches.

1.2 Algorithm tuning

Heuristic and metaheuristic approaches usually require a parameter tuning process in
order to make the proposed algorithm robust, but also flexible, and, in general, to
improve the effectiveness and efficiency of the method [11]. Finding the optimal com-
ponents and parameters for an algorithm can be considered itself as a hard continuous
optimization problem, where the performance of the method is the objective function,
and the rules that define invalid configurations are the restrictions. Due to its hardness
and importance, there are many different approaches used by researchers.

Algorithm configuration can be classified in two types according to their scope:
structural and parametric [11]. The first one is concerned with how algorithm compo-
nents are instantiated and their composition, while the second one decides the value
for the algorithm parameters.

The most extended parameter tuning strategy is manually setting parameter val-
ues [12]. This strategy can be summarized as follows: for each configurable parameter,
execute a preliminary experiment, in which all parameters are configured using values
selected according to the researcher experience, changing only the value of the param-
eter being tested. The value for which the parameter being tested obtains the best
value is fixed, and the next experiments use this previous value for that parameter.
This strategy is then repeated iteratively for all parameters.

Variants of this strategy can also be applied in an additive fashion. For instance,
constructive methods could be tested first in one experiment, and then execute an-
other experiment in which the best constructive found is executed with all local search
methods. One component at a time is added and tuned in each successive experiment
until the algorithm proposal is considered complete.

Although manual testing may be effective when adjusting only a few parameters,
and obtains better results than no parameter tuning at all, it has several important
drawbacks. First, due to the dependence on the researcher’s experience and intu-
ition, experiments are biased, and their conclusions are not always reproducible by
other researchers. Second, it is a highly time-consuming task, and due to the high



7

human intervention required, prone to errors. Third, parameter interactions are rarely
tested [13]. For example, in a simple algorithm formed by a constructive method and
a local search, a suboptimal constructive configuration may obtain better results when
followed by a certain local search than the best constructive found during the prelimi-
nary experimentation. If cross effects between parameters are not measured, promising
configurations will be discarded due to bad performance in a particular experiment,
whereas they may perform well under a different experiment.

Conversely, Automatic Algorithm Configuration (AAC) strategies try to find
good algorithm parameter configurations with little human intervention, observing
the results obtained using a training or preliminary set of instances [11]. AAC tools
are powerful optimizers for mixed-integer stochastic black-box problems. The AAC
problem is mixed-integer because algorithmic parameters are often categorical and nu-
merical, black-box because there is no explicit mathematical model of the behavior of
the algorithm being configured (target algorithm) and the only way to evaluate the
quality of a potential algorithmic configuration is to execute it on a particular problem
instance, and stochastic because the target algorithm is often stochastic, as in the case
of most metaheuristics. Some of the best known techniques are based on fractional ex-
periment designs [14], racing approaches [15], heuristic searches [16,17], and statistical
modeling [18].

One of the most successful AAC strategies applied to parametric tuning is based
on racing and Friedman’s analysis of variance by ranks [19]. This proposal, usually
denoted as F-Race, was later improved by sampling configurations from the parame-
ter space and refining the sampling distribution by means of repeated applications of
F-Race. The resulting automatic configuration approach, called iterated F-race (I/F-
Race), is thoroughly described in [20]. More recently, a new strategy called irace was
introduced [21], where I/F-Race is a special case. It also includes advanced strategies
such us the use of the paired test instead of Friedman’s test, sampling from truncated
normal distribution, parallel implementation, a restart strategy that avoids prema-
ture convergence, and an elitist racing procedure to ensure that the best parameter
configurations found are also evaluated on the highest number of instances.

While in depth studies of parametric algorithm tuning have been conducted,
structural tuning has received less attention. See Chapter 9 for a more detailed algo-
rithm tuning state of the art.

Regarding instance selection for algorithm tuning, there are problematic decisions
that researchers may take when choosing a preliminary experimentation set. Two
strategies that researchers may be tempted to make, but should be avoided are: using
the full instance dataset when tuning an approach, and cherry-picking certain instances
due to their properties. If the tuning or preliminary instance set has been chosen
by either strategy, the generated algorithm configurations may behave poorly against
previously unseen datasets [22]. This phenomena is akin to overfitting in a ML context.



8

1.3 Hypothesis and objectives

As previously introduced in Section 1.2, there is a knowledge gap in the research com-
munity about benchmark instance selection and automatic configuration of algorithms,
specially when taking reproducibility factors into account. Therefore, our main hypoth-
esis is that by proposing a holistic methodology that allows researchers to automat-
ically generate metaheuristic approaches, the robustness, quality and reproducibility
of metaheuristic approaches can be improved, whilst minimizing the effort to develop
them.

Therefore, the main objective of this PhD work is to develop and validate a new
methodology based on scientific support for the application of metaheuristic methods
in optimization problems. In particular, the specific objectives are the following:

1. Propose a methodological approach to increase the reproducibility of empirical
results. We will specifically focus on two key points: automatic selection of
test instances, according to their characteristics, and automated generation and
validation of algorithms.

2. Develop and publish a set of open-source software tools publicly accessible to the
whole scientific community, implementing and automating the proposed method-
ology.

3. Validate the proposed methodology with well-known combinatorial optimization
problems of different unrelated families. This objective includes publishing all
artifacts (source code, instances, executable artifacts, and processed results) in
publicly available repositories.

4. Publish all results in relevant journals and both national and international con-
ferences.

1.4 Memory structure

In this first chapter, the context in which this thesis is developed has been introduced,
and the starting hypothesis and concrete objectives have been defined.

In Chapter 2, the methodological framework is presented. Specifically, both gen-
eral guidelines, as well as an example framework implementation, will be provided,
tackling the concerns presented in Chapter 1.

Next, in Chapter 3, an introduction to heuristic and metaheuristic methods is
presented. Then, three relevant optimization problems from completely different fami-
lies, including their context, practical applications, mathematical formulation and state
of the art are summarized.

Subsequently, in Chapter 4, the proposed methodological framework and its im-
plementation is demonstrated against the problems presented in Chapter 3 along with
the artifacts generated and their respective references.



9

Finally, conclusions and future lines of research are drawn in Chapter 5. Imme-
diately after, all achieved contributions during the thesis development will be listed,
including journal articles and both international and national conferences presenta-
tions. In addition, a short summary of the thesis in Spanish is provided.





Chapter 2

Proposed automated methodology

The goal of this chapter is to detail the methodological framework to promote re-
producibility efforts in optimization problems being approached with stochastic al-
gorithms. To do so, an empirical methodology based on minimizing the number of
decisions taken by researchers (i.e., automating the majority of them) is presented.
The proposed methodology is agnostic to both the concrete metaheuristic algorithms
and the programming languages used to implement them.

2.1 Overview

In this section, the main parts of the proposed methodology are summarized. Our main
objective is encouraging and favoring reproducibility efforts for optimization problems
being solved with stochastic methods, and, to do so, we propose reducing the number
of decisions taken by researchers, by automating most of them.

The diagram presented in Figure 2.1 schematically summarizes the proposed
methodology. Three main steps can be observed: benchmark instance selection, au-
tomatic algorithm generation, and artifact generation. In short, the inputs for the
process are the instance data, the implemented algorithmic components (source code),
and the optional configuration for the different steps. As for the output, we have all
the artifacts that implement the automatically generated algorithms produced during
the steps described next, ready to be used by the research community.

In the first step of the methodology, instances are classified according to their
structural features, returning a number of representative instances which are selected
as benchmark instances. In the second step, benchmark instances are used to combine
and configure all available algorithmic components, most of them implemented by the
researcher, generating several algorithm proposals. Finally, the last step is responsible
for taking the best algorithm configuration, or those selected by the researcher, and
generating the final publishable artifacts.

The proposed methodology is in line with the one described in [23]. As principal
outcomes, it allows researchers to conduct studies about repeatability, reproducibil-

11



12

Instance
Selection

Benchmark
Instances

Instance
Data

Automated
Algorithm
Generation

       Proposed
         Algorithms

       Source
       Code

         Selection
         Config

Artifact
Generation

Figure 2.1: Proposed methodology to favor reproducibility.

ity, replicability, and generalizability. Next, the three phases of the methodology are
described.

2.2 Instance selection

The most common strategy when dealing with instance data is splitting it into two
different subsets, using two different criterion strategies. The first one, commonly used
by the ML community, consists on dividing the dataset on a preliminary or “training
set”, used for training a model, and a “testing set”, used for testing its performance
with previously unseen data. The second strategy is similar, but, in contrast to the
first, the “test set” contains the “training set”, or in other words, the full instance
data is used when testing the approach performance. As this is the most common
strategy used in the heuristic optimization community, we will follow this design in our
methodology.

The benchmark instance set size is commonly arbitrarily chosen, but usual cri-
teria include, among others, the total number of instances of the problem, the time
required for performing the preliminary experimentation, or characteristics intrinsic to
the instances. We will not attempt to determine the correct value for the preliminary
set, although a default value of 15% is used in the implementation, leaving it to the
researcher to adjust if necessary. Nevertheless, what will be done is automating the
whole process given the desired “training set” size.

An automatic benchmark selection pipeline is proposed based on the four afore-
mentioned principles: repeatability, reproducibility, replicability, and generalizability.
To this end, the number of decisions based on the researcher’s experience is kept to
a minimum, by favoring those based on rational criteria. In particular, some tech-
niques commonly used with great success in the ML field are adapted. The idea to
apply existing approaches in the ML domain to metaheuristic is an emergent field of



13

research [24–26]. Specifically, we will apply Principal Component Analysis (PCA) and
k -means clustering algorithms in the automated instance selection step.

Benchmark Instance Selection

Principal
Component

Analysis

Feature
Extraction

Instance
Clustering

Instance
Ranking

         Selection
         Config

Benchmark
Instances

Instance
Data

Figure 2.2: Proposed methodology to favor reproducibility, detailed first step.

As seen in Figure 2.2, the benchmark instance selection process receives as input
the whole set of available instances of the problem and a user-defined configuration
that includes the number of instances to be selected, and, optionally, parameters for
the initialization of the PCA and k -means algorithms (seed, confidence level, number
of repetitions, etc.). Then, four steps are sequentially executed: Feature extraction,
Principal Component Analysis, Instance Clustering, and Instance Ranking.

Feature extraction: instances are parsed and processed to obtain, for each
one of them, the set of metrics or features. This step needs the intervention of the
researcher, since it requires identifying and describing the features that are relevant
for a given problem. Commonly used metrics, such as those applicable to graphs
(cardinality, density, etc.) are available, but the researcher must decide which ones to
use. In most cases, a deep understanding of the problem domain helps to detect which
features can be useful. In case of doubt, it is better to include as many metrics as
possible, as redundancies will be removed in the next step.

Principal Component Analysis. In this step, we take the output matrix
from the first step, and, after properly scaling the data, to make different properties
comparable, we propose to reduce its dimensionality while minimizing the information
loss, in order to simplify the subsequent steps. To do so, the usage of two well-known
techniques is proposed: standardization of the data and PCA. Thanks to the PCA
procedure, the existing properties are replaced by a new set, denoted as the principal
components set, that retains most of the information from the original set, with a
smaller number of variables [27].

To determine the number of principal components, we use the explained variance
ratio, i.e., the percentage of variance that is attributed to each one of the selected
components. Generally, we would like to select a number of principal components that



14

explain around the 90% of the data [28]. This parameter can be optionally customized
by the researcher if necessarily.

Instance Clustering. In the third step, the k -means algorithm is used to classify
the instances in clusters, according to the principal components set generated in the
last step. The k -means algorithm is one of the most widely used clustering methods. It
aims to partition a set of observations into a predefined number of k clusters, classifying
similar elements in the same cluster [29].

A simple and popular solution to automatically determining the recommended
number of clusters is the elbow method, which, in short, executes the k -means algorithm
for a determined range of k values. Then, for each generated partition in each k
executions, the average distortion score (accumulated sum of the squared distances
from each point to its assigned cluster centroid) is computed.

Finally, the optimal value of k is determined automatically using the method
proposed by [30]. Intuitively, the elbow point is defined as the point where the slope of
the curve has a significant change. See Figure 2.3 for an example, where the “elbow”
is located at k = 5 when plotting the obtained scores, as marked by the dashed line.

2 4 6 8 10 12 14
Number of clusters

0

50

100

150

200

250

300

350

400

D
is

to
rti

on
 S

co
re

elbow at k = 5, score = 95.993

Figure 2.3: Example of distortion scores for k ∈ [2, 14]. The black dash line represents
the elbow point.

Instances Ranking. The fourth and final step of the automated instance selec-
tion aims to determine what instances will be part of the test or benchmark set. For
this purpose, the k clusters generated in the previous step are sorted in descending
order according to their size, i.e., the number of instances they contain. Afterward,
they are traversed in order, selecting from each of them the instance with the minimum
distance to the current cluster centroid. The process is repeated automatically until



15

the benchmark set has the desired number of instances. Thanks to this strategy, it is
guaranteed that the preliminary set will contain diverse instances according to their
structural features.

2.3 Component driven design

Before explaining the Automated Algorithm Generation step of the methodology, we
need to precisely define what is exactly an algorithmic component, and how they may
be implemented and described so the next step can properly work with them.

An algorithmic component is defined as any procedure or method used in the
context of any heuristic or metaheuristic element and any of their required internal
components. In other words, any piece composing an algorithm could be considered
as an algorithmic component. Constructive methods, stopping conditions, neighbor-
hoods, local search methods, and all their respective parameters, are all considered
algorithmic components. Note that all heuristics and metaheuristics are considered
algorithmic components themselves, as they are always methods that could be used by
other metaheuristics, for example by a multistart method.

This component based design is heavily inspired by both the SOLID design prin-
ciples and the proposals in [31]. In the later, the authors argue that automated design
frameworks should be “truly extensible algorithm templates that support reuse with-
out modification”. Specifically, algorithmic components are by definition replaceable
by any other component that matches the same behavior specification (Liskov substitu-
tion principle [32]), for instance, in the case of constructive methods, any constructive
implementation should be replaceable by any other constructive; and algorithms may
be extended, but they cannot be modified (Open-closed principle [33]). The impor-
tance of following this design is highlighted in [34], where it stipulates the requirements
for reusing algorithmic components and automated assembly of algorithms.

Any algorithmic component can declare a dependency on any other component
type. This dependency will be automatically resolved to any available component which
fulfills the required functionality. In this regard, if a componentA requires a component
B in order to work, this dependency can be satisfied either by B or any other component
that matches the same specification as B, by means of inheritance, composition or any
other available mechanism of the programming language. In grammar notation, this
would be described as in Grammar 2.1. The first rule of the grammar is always the
list of available algorithms in the current context, represented by S with each found
algorithm as a derivation. The second rule, specifies that algorithm A depends on
component, represented in the grammar as component B. B can be subsequently
replaced with any component that matches the specification of B, defined as b1, b2 . . .
bn.

In Grammar 2.2, we can see a more complex example, generated from the compo-
nents in Figure 2.4. In this example, we have two algorithms, A and E . Both algorithms
depend on a component of type C, which may be for example the constructive method.



16

S ::= A | Other Algorithms
A ::= B
B ::= b1 | b2 | ... | bn

Grammar 2.1: Example grammar rules generated for replacing A dependency on com-
ponent B with any available implementation that matches the specification.

This constructive behavior is implemented by two components, c1 and c2, and any of
them could be provided to the algorithms. Moreover, A requires a component of type
B, which can be substituted by b1, b2 or b3; while E requires a component of type B′,
which can only be either b2 or b3. One of our main contributions is generating the
grammar from the set of automatically detected components and their relationships
when the tuning procedure is run, and therefore it does not need to be written by the
user.

A

E

Algorithm

B

C

c1

c2

b1

B'

b2

b3

Figure 2.4: Example algorithms A and E , and their dependency on B and B′ respec-
tively, and common dependency on C. Empty arrows represent inheritance, while the
filled diamond mean that the component at the side of the diamond is composed by or
depends on the component at the other side.

Note that recursivity is implicitly allowed, and may occur in cases such as com-
ponent A depending on any component of its very same type (direct or tree recursion)
or, indirectly if, for example, a component A depends on type B which depends on
component C, which requires a component of type A, thus creating a loop.

Figure 2.5 shows a subset of the proposed algorithmic components hierarchy based
on the usual classification of algorithms, constructive methods, improving methods,



17

S ::= A | D
A ::= BC
D ::= B′C
B ::= b1 | B′

B′ ::= b2 | b3
C ::= c1 | c2

Grammar 2.2: A more complex grammar generated or algorithms A and D, and their
dependencies. S represents the start rule.

perturbation methods and neighborhoods. Empty triangle arrows represent the type
hierarchy, or in other words, where may a given component may be used. For example,
both MultiStart and Simple are of type Algorithm, and may be used anywhere where
an algorithm is requested. Furthermore, diamond arrows mean that the component at
the side of the diamond is composed by or depends on the component at the other side,
that is, a MultiStart element is composed by an Algorithm component; and Simple,
IteratedGreedy, VNS and SimAnnealing algorithms need a Constructive component.
The blue elements represent components developed by the user of this methodology.
This components may be added anywhere in the hierarchy, extending it to match the
needs of the researcher.

In this figure, components are ordered in three columns to facilitate the expla-
nation. The first column, represents the Algorithm component type, which is the only
mandatory component that must be used, either by extending it and adding a custom
implementation, or by using any of the already implemented algorithms. In the second
column, the most common component types used in the literature, namely Construc-
tive, Improver and Shake or perturbation components, are presented. Finally, in the
third column, any specific components required depended on by any other component,
problem specific components, or additional component implementations from the sec-
ond column may be found. Users may chose to ignore the existing hierarchy, opting to
create their own, and that would be perfectly valid for the methodology.

Note that several examples of recursivity can be seen in Figure 2.5, for instance
the MultiStart algorithm requires an algorithm over which it will iterate; and the
VND requires several Improver methods, where one could be a SequentialImpr, and
inside this SequentialImpr another VND with a different configuration may be used. If
recursion is not desirable for a given component, it can be specified in the component
metadata, for example in case a VND does not want any of its internal Improver
components to be a VND.

In order to provide this metadata, the usage of annotations 1 is proposed. An-
notations are part of a program but do not have a direct effect on the behavior of the
code where they are used. For example, in a GRASP constructive method, the α value
cannot take an arbitrary number, and it is usually limited to the range [0, 1]. While
it can be automatically detected that the α parameter must be a real number, the

1Also known as decorators or attributes, depending on the programming language used.



18

Algorithm

Simple

MultiStart

IteratedGreedy

GVNS / ILS

SimAnnealing

UserAlgorithm

Constructive

UserConst

Reconstructive

Random

GRASP

UserReconst

Improver

Shake

SequentialImpr

VND

LocalSearch

BestImprLS

FirstImprLS

UserLS
UserImprover

DestroyRebuild

RndMoveShake

StratOscillation

UserShake

Neighborhood

ConcatNeigh

InterleaveNeigh

RndNeigh

UserRndNeigh

UserNeigh

Destroy

UserDestructive

CandidateList

Figure 2.5: Algorithmic component hierarchy provided by the framework. Diamond
arrows mean that the component at the side of the diamond is composed by or depends
on the component at the other side, while the unfilled triangle represents that a given
component implements or is of the type pointed by the triangle. Colors are used to
more easily differentiate relationships.



19

framework cannot infer that its values must be in range [0, 1], or in general, any appli-
cable restriction. Therefore, we propose the following annotations to provide optional
metadata for the component dependencies:

• Algorithmic component parameters : represents any algorithmic component type.
A component may use it to restrict the components that may be used, reducing
the number of possibilities available by default.

• Context parameters : represents any parameter type whose value is either fixed
or calculated at run time by a user provided function. Examples can be the
direction of the objective function, or the algorithm name.

• Integer and real parameters : represents either an integer or a real value, respec-
tively, allowing the user to define a range of valid values.

• Categorical and ordinal parameters : represents a value to be chosen between a
predefined set of values. An example of a categorical parameter could be the
acceptance criterion used in Simulated Annealing. In contrast to categorical
parameters, ordinal parameters imply an order between the predefined values.
One example of its application could be if we wanted to restrict the values for
the α constructive to any of {0, 0.25, 0.5, 0.75}, which is a category, but has an
explicit ordering.

Figure 2.6: Example metadata provided in the constructor method of a VND improver
implemented in Java.

In Figure 2.6, an example annotated constructor of a possible VND Java imple-
mentation is shown. The fmode parameter represents the objective function direction,
either maximize or minimize, and therefore is not a parameter that should be con-
sidered for the tuning step. The second parameter, improvers, receives a sequence of
Improver methods, and uses the ComponentParam annotation to specify that none of the
received improvers should be of type VND, even if VND is a valid improver method.
Finally, the maxIterations parameter uses the IntegerParam annotation to specify
that the VND should be always executed a minimum of two times and a maximum of
one million.

Finally, two examples of generated algorithms are presented in Figure 2.7, where
the notation of yellow and blue colors is also used for framework provided and user



20

MultiStart ⇾Algorithm

Simple ⇾Algorithm

GRASP ⇾ Constructive

InsertCL ⇾ CandidateList

Alpha  ⇾ Double

FirstImpLS ⇾ Improver

SwapNeighborhood ⇾ Neighborhood

Iterations ⇾ Integer

(a) Generated multi-start GRASP algo-
rithm.

MemeticAlg ⇾Algorithm

PopulationSize ⇾ Integer

CrossoverOp ⇾ Category

MutationOp ⇾ Category

GRASP ⇾ Constructive

InsertCL ⇾ CandidateList

Alpha  ⇾ Double

FirstImpLS ⇾ Improver

SwapNeighborhood ⇾ Neighborhood

(b) Generated hybrid evolutionary ap-
proach, using a memetic algorithm defined
by the user.

Figure 2.7: Examples of automatically generated algorithms. Each component and
parameter is represented as a box, which may recursively contain components. Pro-
vided components in the framework are yellow; integer, real, categorical and numerical
parameters are green, and blue components are the ones provided by the user.



21

provided components, respectively. Specifically, in Figure 2.7a, an automatically gen-
erated GRASP algorithm can be observed. Note that standard parameters, shown in
green background, such as the GRASP α value, or the number of iterations for the
MultiStart, are also considered as dependencies that must be fulfilled. In Figure 2.7b,
a more complex example built from a user implemented algorithm is provided. Even
though the algorithm is originally unknown to the framework, it will be detected, and
its dependencies analyzed at run time. This behavior is the key to the lack of re-
strictions for the interactions between user components and components provided by
the framework, as they are all components, without any differentiation between high
level and low level components, or between framework provided and user provided
components.

2.4 Automated algorithm generation

Once the preliminary instances are selected, the next step in the methodology is au-
tomatically generating algorithmic components configurations, tuning the algorithm
components and deciding which combination of them will be used in the final pro-
posal.

Previous works, such as [13], were taken into account in order to design this
proposal. There, the authors discuss the problem and propose metaheuristic specific
automated design guidelines, noting the lack of a general framework in the literature.
Existing structural tuning proposals, such as [35], are usually restricted to applying a
limited set of metaheuristic methods in a single problem family. This imposes a rather
inflexible algorithmic structure. In order to overcome this inflexibility, recent works,
such as Emili [36] propose classifying components into low-level components, which are
problem dependent, and high-level reusable components, provided by the framework.
Moreover, the usage of a grammar is proposed to model component relationships and
the design space [37]. This approach, while functional, requires a lot of user work and
is error prone: the grammar must be manually defined, and each available component
must be manually integrated in the framework. Another well known framework, Par-
adisEO, recently added an automated configuration module [38], but, unfortunately,
suffers from the same limitations as Emili.

Therefore, one of the main contributions in this step of the methodology, if not
the most important, is proposing an strategy for automating the grammar generation
and the subsequent design space exploration. In Figure 2.8, the main pieces of the
automated algorithm generation are presented. The figure is divided in two main
processes: the component discovery and grammar generation (on the left, in yellow
background), and the main automatic algorithm design loop (on the right, in orange
bakground).

First, both the code written by the user and the framework itself is analyzed,
looking for all available algorithmic components, which are cataloged according to the
roles they may perform. Due to the fact that this step runs each time a new experi-
ment starts, the user needs neither to enumerate algorithm components nor make any



22

     Scanner

Runnable
Algorithm

    Grammar,
    Inventory

     Recursive
     Grammar

    Walk

Execution
Metrics

Algorithm
Score

Chosen
Params

        Config,
        Params

      Proposed
      Algorithms

    Executor

    Algorithm
    Builder

    Parameter
    Optimizer

    Results
    Analyzer

       Source
       Code

Bench.
Inst.

Figure 2.8: Proposed methodology to favor reproducibility, detailed second step.

modification for the new components to be detected. The grammar is generated simul-
taneously: for each discovered algorithmic component, its dependencies are analyzed
and the corresponding grammar rules generated.

Once the grammar has been built, and the inventory of algorithmic components
is completed, the next step consists on recursively walking the grammar to explore all
available combinations, or in other words, building the derivation tree. As recursivity
is allowed, exploration is limited by a maximum depth parameter. If any algorithm
component does not generate a valid component at the given maximum depth, the
affected derivation tree branches are pruned.

After the derivation tree is complete, a parametric description [39] is built. This
description will use categorical parameters to represent a choice among components,
and conditional parameters will control which other components (and their parameters)
are activated when certain components are selected earlier in the derivation tree. The
usage of a parametric description will allow us to use already existing powerful AAC
methods, such as irace [21], as long as they support parameter spaces with the required
characteristics (categorical, numerical and conditional).

Although irace is used as the default parameter optimizer in the implementation
of the methodology due to its advantages (widely used, best benchmark results [40] in
multiple scenarios, open source and well documented), any other parameter optimizer
that implements the required functionality can easily replace it, for example, Optuna
[41].

The remaining components of the main automated design loop are the Algorithm
Builder, the Executor and the Results Analyzer. The Algorithm Builder is responsible
for transforming the list of parameters and their assigned values, coming from the
AAC tool, into an intermediate language representation, which will then be used to



23

instantiate the runnable algorithm. The usage of an intermediate language provides
an abstraction layer over the parameter optimizer, making it easy to have multiple
parameter optimizer implementations and greatly aiding both debugging and report
generation. The runnable algorithm is then submitted to an executor, which will run
the algorithm in a reproducible environment with a maximum time limit, reporting the
execution metrics, such as how the objective function evolves during the whole run, to
the next step. Finally, the results analyzer is responsible for transforming the metrics
generated during the algorithm execution into a numeric score that is returned to the
parameter optimizer. For a more detailed description, see Chapter 9.

2.5 Artifact generation

According to the definitions from the literature, an artifact is a digital object that
was part of the research process, either created or being an external tool used in this
process [42]. By this definition, instances, result files and scripts used to analyze results
are all considered artifacts.

To implement our proposal, existing technical solutions will be reused. Specifi-
cally, tools like Docker, and platforms like the Open Science Foundation or Code Ocean,
allow the portability of software to different environments such as virtual machines and
containers [43]. By properly using these technical solutions, everything needed to repli-
cate an experiment is included and published. Not only is this useful for validation, as
the preservation of code and data may be more useful in the long-term than the avail-
ability of a reproducible experimental environment. This is due to the rapid obsolesce
of both software and hardware. Even if the original study becomes non-reproducible
due to the obsolescence of its original artifacts, studying their code and data could help
future replication and generalization efforts.

Therefore, taking into account the previously mentioned four different types of
reproducible studies according to [23], our methodology proposes the generation of a
number of mandatory artifacts, which are listed below:

• Problem instances and results files. Not only the raw instance files to be used
in an experiment, but also, explanatory text files regarding technical questions,
that may for instance answer questions about the file format used. In addition,
plain text files (or spreadsheet files) with the obtained results as used in the
publication, along with raw or non-aggregated results should be made available.

• Source code of the proposed methods. Additionally to the code of the
algorithm components, these files should include any utilities developed, such as
those related to instance generation or processing (if needed), or any automated
processing of the results.

• Analysis artifacts. Generated diagrams, R scripts or any tool used to generate
them, with the raw results used to generate any related figure or summary table.

• Executable artifacts. Binary or executable versions on a portable environment



24

for all the elements described in the previous item. The usage of the platforms
described at the start of this section is strongly encouraged.

Giving access to these artifacts allows the development of any kind of reproducibil-
ity study. As it will be later demonstrated, most of these artifacts are automatically
generated by the implementation of the proposed methodology.



Chapter 3

Optimization problems under study

In this chapter, first, a short introduction to metaheuristics methods and common
components used to solve optimization problems is provided. Then, in next sections,
the specific optimization problems that will be analyzed, solved and compared against
the state-of-the-art will be introduced. All chosen problems belong to different prob-
lem families, with radically different characteristics, in order to properly validate the
methodology and its implementation. For each optimization problem, an introduction
is provided, briefly explaining the approached problem, the context in which it appears,
followed by its practical applications and mathematical formulation. Finally, the state
of the art, taking into account both exact and heuristic methods, is summarized.

3.1 Heuristic and metaheuristic methods

Metaheuristics are one of the most prominent and successful techniques used to solve
a large and varied set of complex and computationally hard optimization problems
that arise in almost every context, such as economics (e.g., portfolio selection, risk
management), industry (e.g., scheduling, logistics) and engineering (e.g., materials
optimization, routing). Metaheuristics can be seen as general algorithmic frameworks
that with few modifications are able to tackle a variety of optimization problems.
Unlike exact algorithms, metaheuristics can neither guarantee the optimality of the
obtained solutions, nor, unlike approximation algorithms, define how close the obtained
solutions are from the optimal ones. However, they do provide good quality solutions
in reasonable computing times for hard and complex optimization problems.

Fred Glover coined the term metaheuristic in 1986 [44], defining it as “a mas-
ter process that guides and modifies other subordinate heuristics to explore solutions
beyond simple local optimality”. Metaheuristics constitute a very diverse family of op-
timization algorithms including methods such as Tabu Search, Greedy Randomized
Adaptive Search Procedures, Scatter Search, Variable Neighborhood Search, Iterated
Local Search and Multi-start Methods. In addition, bio-inspired metaheuristics began
with Genetic Algorithms, and, among others, include different methods such as Sim-
ulated Annealing, Genetic Programming, Memetic Algorithms, Ant Colony Optimiza-

25



26

tion, and Grammatical Evolution. See [45] for a detailed survey about metaheuristic
methods.

One metaheuristic algorithm that will be implemented for all problems presented
in this chapter is Greedy Randomized Adaptive Search Procedure (GRASP). GRASP
was originally introduced in the late 1980s [46] but it was not formally defined until
1994 [47]. GRASP uses an iterative strategy, dividing each iteration in two stages: first,
generate an initial solution and then, try to improve it. The first phase usually starts
from an empty solution, and a Candidate List (CL) of possible elements to be added to
the solution is built. There are two commonly implemented variants, GreedyRandom
and RandomGreedy. In the first variant, each candidate is evaluated using a problem
dependent function, and those whose value is no further from the best value by a
given margin, provided by parameter α, are added to the Restricted Candidate List
(RCL). Then, a random element from the RCL is chosen, adding it to the solution and
updating the CL. In the second variant, a subset of elements from the CL is chosen as
the RCL, and the best element from the RCL is chosen, adding it to the solution and
updating the CL. The number of chosen elements in the RCL depends on the α value:
choosing all elements would be equivalent to a greedy approach, while picking only
one is equivalent to a random method. This process is repeated until the CL is empty.
Thanks to the α parameter, the balance between intensification and exploration during
the construction phase is controlled, thus increasing the probability of globally finding
better solutions. Due to the fact that the solution generated during this constructive
phase is unlikely to be a local optimum, a local improvement method is usually applied
afterward.

Thanks to GRASP’s versatility, there are multiple different algorithms that we
can apply in this stage, varying from traditional local search methods to more com-
plex implementations such as hybridization with other metaheuristics that has lead to
successful research: Tabu Search [48], Path Relinking [49], Strategic Oscillation [50],
or Ejection Chains [51], among others.

3.2 Balanced Minimum Sum-of-Squares Clustering

problem

The first problem tackled is part of the clustering problem family. Clustering problems
consist in splitting data into set or groups, usually called clusters, so elements in the
same group share some specific characteristics or features. In other words, if two ele-
ments belong to the same cluster, it is because they are related to each other. Likewise,
elements are in different clusters are expected to be barely related. Therefore, in gen-
eral clustering algorithms try to split the given dataset into several subsets maximizing
the similarity of elements in the same subset, while minimizing the similarities between
elements in different subsets. Although the similarity metric used is problem specific,
one of the most commonly used metric is called sum-of-squares, which gives name to
the Minimum Sum-of-Squares Clustering (MSSC) problem family.



27

Unlike classification problems, where there is previous knowledge of the group to
which each element in a set belongs, and therefore data analysis techniques may be
applied to learn patterns in a supervised way, in clustering problems no such informa-
tion is available a priori [52]. Designing effective procedures for clustering problems is
harder, as the actual group each element actually pertains is not known [53]. Examples
of practical clustering applications are pattern recognition, image processing and data
mining, among others [54]. Most clustering problems are NP-hard [55], even when
considering only two clusters [56].

MSSC considers that the number of clusters k is known a priori. The objective
of MSSC is to assign a set of n points P = {p1, p2, . . . , pn} located in an s-dimensional
Euclidean space Rs to a cluster Ki ∈ {K1, K2, . . . , Kk}. MSSC then tries to find the
assignment S of points to clusters with the minimum sum-of-squares distances from
each point pj of the cluster Ki to its corresponding centroid p̄i. Given a cluster Ki,
its centroid is defined as the point whose distance to the other points of the cluster
is minimum. More formally, the quality of the partition S, denoted as f(S) can be
evaluated as:

f(S) =
n∑

j=1

k∑

i=1

xij||pj − p̄i||2

where xij is a binary variable (with 1 ≤ i ≤ k and 1 ≤ j ≤ n) that takes on the value 1
if point pj is assigned to cluster Ki; otherwise, xij = 0. Naturally, this variable satisfies

that
∑k

i=1 xij = 1 for 1 ≤ j ≤ n.

In this thesis, we will focus on the Balanced Minimum Sum-of-Squares Clustering
(BMSSC) problem, which includes an additional cardinality constraint to the MSSC.
Specifically, there will be n mod k clusters of size ⌈n/k⌉, and k − (n mod k) clusters of
size ⌊n/k⌋. BMSSC has also been proven to be NP-hard for n/k ≥ 3. See [57] for
further details.

Figure 3.1 shows an example of two possible clustering solutions for k = 2, where
we consider the same set of points. On the one hand, Figure 3.1a depicts a solution S1

conformed with K1 = {A, B, C} and K2 = {D, E, F}, resulting in tight clusters. On the
other hand, the solution S2 presented in Figure 3.1b contains clusters K1 = {A, B, D}
and K2 = {C, E, F}, with a higher objective function, since the sum of the distances
between the points and the cluster centroid are higher. In light of this figure, we can
conclude that S1 is a better partitioning than S2.

As most of the clustering problems have been proven to be NP-hard [58], the
majority of the algorithms found in the related literature are approximate procedures.
In general, existing approaches can be classified in partitional clustering [59], if the
data is divided into disjoint sets and each element is assigned to one set; hierarchi-
cal clustering [60], if clusters are created following either a top-down or a bottom-up
approach; density-based clustering [61], where elements are grouped following a den-
sity function; or grid-based clustering [62], if data is divided into grids with different



28

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

x

A B

C

D

E F

(a) Optimal cluster assignment

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

x

A B

C

D

E F

(b) Random cluster assignment

Figure 3.1: Two clustering examples for the same points. Each point has the color of
the cluster it is assigned to, whose area is delimited by an oval. The red cross represents
the centroid of each cluster.

granularity level. See [63] for a detailed taxonomy of basic and advanced clustering
techniques.

First attempts to solve the Balanced Minimum Sum-of-Squares Clustering (BMSSC)
problem consider the well-known k-means procedure [64]. This algorithm is a classi-
cal clustering method that consists of two main steps: it firstly selects the elements
that will become the centroids of the clusters, and then assigns each one of the re-
maining elements to their nearest centroid. We refer the reader to [65] for an efficient
implementation of the method. In orther to minimize the dependency on the initial
centroid selection, a new method called k-means++ [66] proposes to mitigate this
behavior by choosing diverse centroids. Other k-means variants include the power k-
means, which proposes to avoid poor local minima by annealing through a family of
smoother surfaces [67]. This algorithm is further improved in [68] when dealing with
high dimensions.

Four recent well performing approaches have been identified in the recent litera-
ture: a variable neighborhood approach, using the LIMA methodology [69]; a k-means
implementation [66] complemented by the Hungarian algorithm [70] in order to sat-
isfy the clusters size constraint; and two adaptations of existing approaches [59,60] for
the MSSC problem to which a repair method is appended in order to guarantee the
balance constraint by repairing oversized clusters by reassigning their elements to the
best available cluster.

3.3 Vehicle Routing Problem with Occasional Drivers

The Vehicle Routing Problem (VRP) problem family consists on, given a fleet of ve-
hicles, satisfy the demand of a given set of customers, by designing routes limited by



29

the fleet resources, so no customer is left unattended. As can be seen in Figure 3.2,
it can be considered a generalization of the TSP, where the depot or origin point can
be visited multiple times. In other words, because a vehicle does not need to visit
all destinations in a single run, several smaller routes can be created, as long as all
customers are covered at least by one route.

A

C

F

G

IH

B

D

E

A

C

F

G

IH

B

D

E

Figure 3.2: Example solutions for the TSP, on the left, and the VRP on the right, given
the same set of destinations, represented by colored circles, and origin, represented by
the icon. Icons source: Flaticon

Depending on the particular set of restrictions applied, multiple variants of the
VRP appear. If, for example, the dimensions or weight of every package are known,
and the capacity of each vehicle is considered, the problem is known as Capacitated
Vehicle Routing Problem (CVRP). Another variant, the Vehicle Routing Problem with
Time Windows (VRPTW), considers that the delivery destinations are only available
in a restricted set of hours, for instance during business hours, or when residents are
home. See [71] for a taxonomic review of the most common problems in the VRP
family and existing metaheuristic approaches.

The explosion in usage of e-commerce platforms in recent years to buy and sell a
variety of goods, products and services has lead to an increase in the usage of services
provided by logistic companies, specially for the last-mile operations [72]. Last-mile
operations, as the name implies, refer to the last step in the logistic process of delivering
a product to the consumer, usually from an intermediate warehouse near the final
destination. It is estimated that the last-mile cost with respect to the total cost ranges
between 13% and 75% [73], and due to this, a heavy focus has been put on trying
to minimize its cost. Moreover, the motivation is not limited to a simple cost saving
measure. Pressure to increase sustainability has increased in recent years, and as last-
mile operations are the least efficient of all logistic steps [74], they are a lot of research



30

is flourishing in the area. We refer the reader to [75] for a review of different urban
last-mile distribution strategies in both mature and emerging e-commerce markets.

Two examples of common implemented strategies are using self-service collection
and delivery points, also called lockers, where the usage of PIN can provide secure access
to goods, and offloading certain costly deliveries to ordinary citizens, also known as
crowd shipping, or crowd logistics. The idea behind crowd logistics can be summarized
as favoring the participation of ordinary citizens in the logistic process, and while this
idea is not new, it has been recently gaining relevance [76–78]. Four different types of
crowd logistics are identified by the authors in [77]: crowd storage, crowd local delivery,
crowd freight shipping and crowd freight forwarding.

We will only concentrate on crowd local delivery, also known by crowd shipping
by other authors [79], which consists on either using other customers to deliver products
or hire locals near the delivery route to periodically make deliveries on behalf of the
logistics operator. As crowd shipping will minimize the operator logistics network [77],
the logistic costs [80], and, eventually, the amount of urban traffic, putting this idea
into practice will improve the sustainability of the company. Additionally, the crowd
shippers, or occasional couriers, benefit from the approach as it can be an opportunity
to earn additional money. Note that even though in the literature crowd shipping
dispatchers are usually called vehicles, the transport method is not restricted, examples
of it being carpooling, walking, using public transport, etc [81].

The VRPOD can be formally stated as follows. Let G = (V,A) be a complete
directed graph, where V = {0, K, C} is the set of vertices, with vertex 0 as the depot,
K = {1, . . . , k} the set of vertices representing the location of the occasional drivers
and C = {1, . . . , n} the set of vertices corresponding to the location of customers
(|V | = 1 + k + n). Each node i ∈ C has an associated positive demand qi > 0.
Furthermore, A = {(i, j) : i, j ∈ V, i ̸= j} is the arc set, where (i, j) represents a path
between vertices i and j. For each pair (i, j) ∈ A, let dij ≥ 0 be the length of the
shortest path that connects i and j. The cost of a route is the sum of the distances
between consecutive nodes, including the depot.

Customers can be served by regular drivers on routes starting and ending at the
depot. We consider their vehicles to have a limited capacity Q. This variant of the
problem allows hiring occasional drivers to make a single delivery to a customer if
the following condition is satisfied. An occasional driver k ∈ K can serve customer
i ∈ C if d0i + dik ≤ ζd0k with ζ ≥ 1. In other words, if the extra distance to get
the occasional driver from the depot through the customer i is less than or equal to
(ζ−1) times the direct distance from the depot to the occasional destination’s location;
d0i + dik − d0k ≤ (ζ − 1)d0k. Therefore, ζ is referred as the flexibility of the occasional
drivers. For example, in Figure 3.2, the route that serves customer D may be replaced
by any occasional driver, since it serves only one customer, as long as there is at
least one occasional driver whose destination is near customer D. It is important to
emphasize that a trip of an occasional driver is measured as the distance traveled from
the depot to the customer and from the customer to the occasional driver location.
Furthermore, it is assumed that the capacity of any occasional driver is enough to



31

satisfy the demand of any single customer, but each occasional driver may only serve
a maximum of one customer.

The objective of the VRPOD is to minimize the aggregated cost incurred by using
a combination of both regular and occasional drivers. Note that an occasional driver
is paid only if they serve a customer. The occasional driver payment can be calculated
taking into account the compensation rate, denoted by ρ, and the the compensation
scheme used. Two compensation schemes are presented in [82]. In the first one, the
compensation does not depend on the occasional drivers’ destination. Thus, every
occasional driver receives ρd0i as compensation for making a delivery to a customer i.
In this scheme, the compensation rate is limited to 0 < ρ < 1. Therefore, this scheme
only requires knowing the location of the customers, which means that occasional
drivers serving customers far from their locations are not compensated for the extra
mileage incurred. In the second compensation scheme, each occasional driver k receives
a compensation of ρ(d0i + dik − d0k) for the extra mileage incurred for serving the
customer i, with ρ ≥ 1. This variant is more difficult to put into practice since the
company needs to know the destination of the occasional drivers. For further details,
see [82] and [83].

Previous approaches to this problem include both an exact model and an hybrid
matheuristic [82]. The exact method, implemented using CPlex, is able to solve to
optimality instances with sizes up to 25 in under an hour. The matheuristic method
proposes assigning occasional drivers to customers using a relaxed integer programming
model, while building traditional routes using a combination of variable neighborhood
search and tabu search. This is repeated in a multi-start fashion up to a configured
number of maximum iterations. Using the matheuristic approach, the authors are able
to solve instances up to size 100 in a few seconds.

3.4 Double-Row Facility Layout problem

The Facility Layout Problem (FLP) family encompass a great variety of optimization
problems whose main objective is determining how to distribute a predefined set of
facilities given a layout restriction. This problem family is of special interest in the
context of Flexible Manufacturing Systems (FMS), where an automaton transports
material or performs certain manufacturing operation between different facilities posi-
tions [84]. Among the layouts found in the related literature, the SRFLP stands out as
one of the simplest layouts, due to the fact that facilities are located all next to each
other forming a line [85, 86]; and the Multi-Row Facility Layout Problem (MRFLP),
where facilities can be organized in multiple lanes [87]. Other variants, in no particular
order, are the circular layout [88] and the T-row layout [89]. For an in-depth survey of
facility layouts, see [90].

In this problem family, we will focus on the Double Row Facility Layout problem
(DRFLP), which is a variant of the MRFLP where only two rows can be used. The
DRFLP is an NP-hard optimization problem. A variant of this problem, that will
be studied in Section 4.4, is the Space-Free Double Row Facility Layout Problem (SF-



32

DRFLP), where, as the name indicates, no empty spaces are allowed between facilities.

The problem can be formally defined as follows: let F be the set of facilities (with
n = |F |), where each facility i ∈ F has an associated length li, and wij is the amount
of flow between two facilities i, j ∈ F . Then, an instance I of the DRFLP is defined
by a triplet I = (F,L,W ), where L is a vector (of size n) containing all the facility
lengths and W is a squared matrix (of size n × n) of pairwise flows. All the facilities
in F must be placed at some position xi but with no overlapping between consecutive
facilities in each row of the layout.

A solution to this optimization problem is to find an optimal mapping π that
assigns the set of facilities F to the corresponding layout with two rows, together with
the exact horizontal location of the center of each facility i in the layout (abscissa xi).
Specifically, given a facility i ∈ F , πk(p) = i indicates that i is located at position p of
the permutation corresponding to row k in the layout π. Hence, the complete layout
is defined by two permutations of facilities, one for each row, π = {π1, π2}. It trivially
holds that the number of facilities of a feasible solution is |π| = |π1| + |π2| = n. In
addition to the permutation, the location of centers xi must be provided since free
space can be found in a solution.

Then, given an instance I and a solution defined by a permutation π together
with the centers xi of each facility i ∈ F , the objective function of the DRFLP, denoted
as F(I, π), is computed as the total weighted sum of the center-to-center distances
between each pair of facilities. This cost, usually known as the material handling cost,
can be formulated in mathematical terms as it is shown in Equation (3.1).

F(I, π) =
∑

1≤i<j≤n

wij · |xi − xj| (3.1)

The optimization problem then consists in finding the permutation π together
with the centers xi of each facility i ∈ F that minimizes the aforementioned objec-
tive function subjected to the following constraints to avoid the overlapping between
consecutive facilities in each row:

xπk(p) ≥ xπk(p−1) +
lπk(p−1)

2
+

lπk(p)

2
(3.2)

In Figure 3.3, an example solution for the DRFLP is presented. If the length of
each facility guaranteed to be an integer greater or equal to 1, it can be demonstrated
that the allowed free spaces between consecutive facilities in the optimal solution (if
they exist) is a multiple of 0.5 units. This is due to the fact that facilities center
position increase by 0.5 for each unit of length, making 0.5 the smallest gap possible
between two facilities. Hence, the solution may be represented using a permutation of
facilities, as long as enough dummy facilities are present, removing the centers xi as
decision variables, and therefore vastly simplifying the optimization problem.



33

F1 F2 F4

F6

F5F3

F7 F8 F9 F10 F12F11

Figure 3.3: Example solution representation including “dummy facilities”, with dotted
lines.

The DRFLP was firstly tackled from a heuristic point of view in [91]. In this
work, five heuristics were compared with a branch & cut algorithm solving a MIP
model. One of the heuristics was finally used to generate an initial solution for the
exact algorithm, and its behavior was compared in a set of 16 instances from 6 to 36
facilities. The DRFLP was later studied in [92], proposing a new mathematical model
simpler and more performant than the existing one. Some years later, the mathematical
model was further enhanced [93], improving the results in instances up to 16 facilities.
In [94], the authors propose another mathematical model obtaining competitive results
for instances up to 16 facilities. Following his work on this problem, Amaral recently
published a work improving the mathematical model once again [95] reporting better
results than [94] and, finally, a different work proposing a two-phase algorithm which
merges a heuristic method with a linear programming routine [1]. This is the paper
with the highest number of instances and, in addition, with the largest number of
facilities in the state of the art.

While multiple previous works have proposed both exact methods and heuristic
approximations for this problem, reproducibility has been largely ignored at multiple
levels. The small size of most instances makes tuning algorithms hard, as most ap-
proaches will reach the optimal value relatively easy. Moreover, no effort has been
made to group and publish all instances, and no implementation has been published
for the proposed heuristic methods. for this problem, and some of them have included
heuristic methods.





Chapter 4

Joint discussion of results

In this chapter, the usage of the methodological framework proposed in Chapter 2 is
demonstrated against the optimization problems presented in Chapter 3, which belong
to completely unrelated families. First, for each problem, the concrete metaheuristic
approaches and components implemented are listed, as introduced in 2.3. Then, the
results obtained are compared against the state of the art. Lastly, the best previous
built approach is compared against the automatically generated proposal. Following
the guidelines in Section 2.1, all artifacts are made freely available, and their complete
list is provided.

4.1 Results for the Balanced Minimum Sum-of-Squares

Clustering problem

For the BMSSC, we propose a Greedy Randomized Adaptive Search Procedure (GRASP)
[47] combined with Strategic Oscillation (SO) [96]. Figure 4.1 shows the complete
scheme of the proposed algorithm, where we can identify two main phases: GRASP
and SO. The first one performs a predefined number of constructions followed by a local
search method. Then, the best solution found is further improved in the SO block by
alternatively considering feasible and unfeasible solutions. The SO block finally returns
the best solution found during the search.

For this problem, three neighborhoods are implemented: adding a point to a
cluster, swapping two points of different clusters, and moving a point from one cluster
to another. The first move is used during the constructive phase by the GRASP
proposal, where points are sequentially added by means of the candidate list until
the solution becomes feasible. One remarkable thing is that instead of performing a
random cluster initialization, as it is commonly done in the existing literature, we have
implemented a new initialization criterion which assigns only one random point to the
first cluster, and then computes the minimum distance for every unassigned points to
all clusters, choosing the maximum value. This is repeated until all clusters contain
exactly one point. This partially built solution is then fed to the GRASP constructive

35



36

GRASP

SO

Construct Local Search

Reassigment Repair

Local Search

Max
Iter

Yes

No

StopC?

END

Yes

No

Figure 4.1: Complete scheme of the proposed algorithm.



37

method.

The second move is used by the local search component, which allows us to
improve the solution without breaking the problem constraints. Two different variants
are tested, a first improvement approach, where the first swap move that improves the
score is applied, and a best improvement approach, where all possible swaps are tested
first, and the most favorable one is executed.

Finally, the third movement reassigns one point from its cluster to a different
one. According to the problem definition, all clusters have a fixed size, so this move
could only be applied in some edge cases by default, such as when the number of
points is not divisible by the number of clusters and therefore a limited number of
clusters are allowed to have a single extra point assigned. Due to problem limitation,
we propose to expand the search space explored, by considering unfeasible solutions,
which may eventually lead us to better feasible solutions, which is the main idea behind
the Strategic Oscillation (SO) methodology, originally proposed in [96]. Specifically, we
will relax the cluster size constraint, by a percentage defined by the β parameter, with
range [0, 1]. After the move neighborhood is exhausted, i.e, there are no valid moves
that improve the current solution, a repair method is required to make the solution
feasible again, by reducing the number of elements in all oversized clusters. To do so,
we calculate the cost of moving each point from any of the oversized clusters to an
undersized one, and execute the move with the minimum cost, until all clusters are
correctly sized. As the repaired method returns solutions that are feasible, but may
not be local optima, the local search procedure is executed immediately afterward. For
a completely detailed algorithm description, see Chapter 6.

In order to perform a fair comparison, the same 16 instances previously used
in the literature are considered, which are publicly available in the machine learning
repository of the University of California1. Additionally, as the instance set is relatively
small, 9 new instances from the same repository are considered, for a total of 25 in-
stances. Instance data comes from real world scenarios, such as breast cancer patients,
phone sensors, water treatment and accelerometers, plus the metadata required for this
problem, such as the cluster size. See [69] for a more detailed description and deep
analysis of the instance data.

In this work, we focused on statistically analyzing the performance and stability
of the proposal and its parameters. The algorithm is manually built after an in-depth
preliminary experimentation, deciding in each step a subset of the required parameters,
requiring a lot of manual work. Once all parameters have been fixed, we execute the
algorithm 30 times using different seeds, and plot the objective function variation. We
depict in Figure 4.2 the associated box and whisker plot, reporting for each instance
quartiles, median, minimum, and maximum values.

Our proposal, designed from scratch, is compared against four previous algorithms
from the state of the art, named HCOT [60], CGRASP [59], KMH [97] and VNS-
LIMA [69]. Table 4.1 summarizes the results for all instances using the Friedman

1http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html


38

Figure 4.2: Box and whiskers plot using the sum-of-squares metric of 30 independent
executions of the proposal.

test, applying the same run time limit value for all the proposals. Additionally to
the target objective function for the problem, namely Mean Squared Error (MSE),
another commonly used metric not using during the preliminary experimentation, the
well-known Davies-Bouldin index (DBI) [98], is reported. The SO proposal obtains
the best ranks in both metrics, and according to the p-value, smaller than 0.0001, the
results are statistically significant, which confirms the superiority of the proposal.

Metric HCOT CGRASP KMH VNS OS p < 0.01

MSE 4.38 3.62 3.50 2.10 1.40 YES
DBI 4.34 3.62 3.30 2.10 1.64 YES

Table 4.1: Friedman test for both MSE (Mean Squared Error) and DB
(Davies–Bouldin) metrics.

Moreover, a sensitivity analysis is conducted. For each parameter of the SO
algorithm, namely α (the balance between greediness/randomness of the constructive
method) and β (the percentage of cluster size increment inside Strategic Oscillation),
different values combinations are tested, fixing the remaining parameters to the best
values found in the preliminary experimentation. In order to ensure the analysis is
robust, 30 independent iterations of each algorithm were executed. In Table 4.2 the
resulting values are presented. The Wilcoxon signed rank test is used to determine
the existence of significant statistical differences between variants, in terms of the MSE
metric. p values are reported, and are interpreted as follows: a high p value means that
there are not statistical differences, while values smaller than 0.05 mean that there is a



39

statistically significant difference. Therefore, according to these results, while the rest
of parameters are fixed, we can conclude that changing the α parameter does not have
a significant impact on the results, while varying the β parameter does.

α 0.25 0.50 0.75

0.50 0.686
0.75 0.181 0.581

RND 0.196 0.123 0.742

β 0.10 0.25 0.50

0.25 0.012
0.50 0.002 0.000
0.75 0.133 0.019 0.002

Table 4.2: Sensitivity analysis for numeric parameters α and β.

Finally, to further investigate the performance of the proposed SO procedure, a
convergence analysis using Time-to-target Plot (TTTPlot) is performed, proposed by
[99]. By using 30 independent runs changing the seed for each iteration, and recording
how the objective function evolves in each iteration, we can plot a graph where each
value in the abscissa axis represents a running time, while each value in the ordinate
axis, reports the probability of obtaining the best-known value. Additionally, the
theoretical exponential distribution is also plotted as a continuous line. In Figure 4.3,
we can observe that the SO follows the expected exponential run-time distribution for
all tested instances. Moreover, in only a few seconds, we have a very high probability
of finding the best known value.

4.2 Results for the Vehicle Routing Problem with

Occasional Drivers

For the VRPOD, introduced in Section 3.3, an Iterated Local Search (ILS) algorithm
is proposed [100]. The ILS proposes coupling a local search method with a shake or
perturbation procedure, in order to allow the local search to escape from local optima.
This approach is easily parallelizable, and we propose the application of a cooperative
scheme, using a multi-start approach. This idea is not new, and has been previously
used with great success, for example in [101].

Figure 4.4 summarizes the cooperative scheme. The workload is divided into n
workers, named ILS1 to ILSN . Each worker uses different parameter configurations
for each component, and may even use different component types. Specifically, each
worker builds an initial solution, and executes the ILS loop, which consists of iteratively
applying a perturbation method followed by a local search method, until a termination
criterion is met. Afterward, each worker pushes its working solution to an outgoing
FIFO queue and polls the next solution, forming a ring topology. We define round as
the journey taken by a solution visiting each worker exactly once, and use it as the
global stopping criterion. For example, a value of 3 rounds means that each solution
will visit each worker three times.

In order to generate both varied solutions and good-quality ones, the GRASP
methodology, already introduced in 3.1, is used. GRASP has two important advantages



40

Image Segmentation

Vehicles Yeast

Multiple Features

Figure 4.3: TTTPlot of the SO proposal using preliminary experiment instances.



41

ILS1

ILS Loop1

ILS Loop1

ILS Loop1

Construct1

S1

S1

Sn

Sn

ILS2

ILS Loop2

ILS Loop2

ILS Loop2

Construct2

S2

S1

S1

Sn

ILSN

ILS LoopN

ILS LoopN

ILS LoopN

ConstructN

Sn

Sn

S2

S2

ILS Loopi

LocalSearchi

Perturbationi

...

...

...

Where

S2

S2 S1

⏳

⌛

Figure 4.4: Proposed parallel cooperative scheme for the ILS.

when used with the ILS proposal: by tuning the α parameter, we are able to balance
the greediness and randomness of the initial solutions, and its simple design makes
possible to obtain large number of feasible solutions using short computing times. Due
to the fact that the ILS procedure executes a local search procedure during its main
loop, after the perturbation, only the randomized construction phase of the GRASP
methodology is used.

We have implemented five different neighborhoods that may be used during the
local search step, represented in Figure 4.5. Three neighborhoods are classical in route
problems: moving one client from one route to another, or changing its position in the
same route (Figure 4.5a); swapping the position of two elements, either in the same or
different routes (Figure 4.5b) and reversing a route fragment, usually known as 2-Opt
(Figure 4.5c). Additionally, two neighborhoods are specific for the occasional drivers
variant [82]: removing a client from a route and assigning it to an occasional driver
(Figure 4.5d) and the reverse operation, removing and occasional driver and assigning
it to a route in any position (Figure 4.5e). The neighborhoods may be combined
sequentially, or by joining them to form unique neighborhoods combinations. Moreover,
the local search can run using different strategies, such as first improvement, or best
improvement. Multiple alternatives are considered in the preliminary experimentation,
see Chapter 7 for a full detail of all preliminary experiments conducted.

The last component type implemented for this problem is the perturbation pro-
cedure. All three perturbation methods have an input parameter which controls the
strength of the perturbation, named β. Due to the fact that depending on the per-



42

A

B

C

D

E

A

B

C

D

E

(a) Reassign one client from one route to
another. Includes changing position in
same route.

A

B

C

D

E

A

B

C

D

E

(b) Swap two clients, both between routes
and in same route.

A

C

D

E

A

C

D

E

B B

(c) 2Opt : Reverse a route fragment. In
this example, the fragment E-B-D be-
comes D-B-E.

A

B

C

A

B

C

(d) Remove a client from a route
and assign it to an occasional
driver.

A

B

C

A

B

C

(e) Remove an occasional driver
and assign to route.

Figure 4.5: Implemented neighborhoods for the VRPOD.



43

turbation method, the parameter has a different meaning, we have to carefully select
its values during the tuning step. We have considered three different strategies, taking
into account all the components already implemented:

• RandomMove: Selects and executes β random moves from any of the five previ-
ously defined neighborhoods, ignoring the performance impact over the objective
function.

• RouteCost : Sorts all routes by their cost per customer, and destroys β random
routes, removing all its customers, using a weighted random distribution, i.e, the
more costly a route per customer is, the more likely it will be destroyed. This
destructive is inspired by existing approaches, such as [102] and [103]. Afterward,
the solution is repaired using a reconstructive method, in order to reassign all
removed customers and make the solution feasible.

• RandomDeassign : Randomly selects and removes β customers according to a
uniform distribution. Afterward, the removed customers are reassigned using a
reconstructive component, to make the solution feasible again.

For both the preliminary and the final comparison against the state of the art,
the complete instance set from [82] is used. All components configurations are chosen
according to a sequential experiment design. For a full detailed description of the pre-
liminary experiments, see Chapter 7. The best results obtained during the sequential
experimentation are obtained by using 100 iterations of ILS, using the RandomMove
perturbation method, with β = 50, a GRASP constructive method biased towards
greediness, and a best improvement local search method using an extended neighbor-
hood formed by the five proposed neighborhoods.

Table 4.3 compares the results obtained by the proposed ILS algorithm, using
the traditional approach (ILS), a simple parallelization approach (ILSP ) and the
cooperative scheme (ILSM). The state-of-the-art results are represented as SOTA.
Results are summarized by instance size using parameter K, which represents the
total number of occasional drivers available. For each algorithm, the following metrics
are reported: averaged cost, sum of best values (#B.) and average execution time in
seconds (T(s)). The execution time is not reported for the SOTA algorithm, as it has
not been made available. Best result per property is highlighted in bold. As expected,
the simple parallelized version is the fastest for all instances. For sizes 13 and 25, the
three ILS versions find all best known values. For sizes 50 and 100, the cooperative
scheme obtains the best results in reasonable computing times. The state-of-the-art
falls behind with a total of 158 best values, against the 267 obtained by the cooperative
proposal.

In this problem, the key parts of the implemented methodology are the repro-
ducible parallelization and the component driven design. Thanks to the design of a
customized and fast performance random manager, we can guarantee exact results re-
producibility, in this and all future tackled problems. No matter which thread executes
which part of the algorithm, consistence is guaranteed as long as the proposed Ran-
domManager API in the framework is used. Moreover, a reusable set of components



44

ILS ILSP ILSM SOTA
|K| Cost #B. T(s) Cost #B. T(s) Cost #B. T(s) Cost #B.

13 231.46 30 8.03 231.46 30 2.69 231.46 30 21.26 232.01 16
25 222.70 30 13.04 222.70 30 3.51 222.70 30 5.29 222.83 27
50 549.75 52 451.99 549.54 64 138.81 548.54 74 248.95 552.63 50
100 451.48 95 540.63 451.50 97 106.59 449.67 133 294.29 451.19 65

Table 4.3: Summary performance comparison for the proposed ILS approach and its
variants against the state of the art for the VRPOD.

developed, using the specification presented in Section 2.3.

4.3 Results for the Double-Row Facility Layout Prob-

lem

As seen in Section 3.4, previous works in the literature have applied heuristic methods
[1] with great success. Our proposal goes one step further, by applying the Iterated
Greedy (IG) metaheuristic [104], which has been successfully applied to a great variety
of optimization problems [105–108], by combining it with the GRASP methodology,
previously introduced in Section 3.1.

Figure 4.6 summarizes the proposal. The IG metaheuristic is represented by the
blue box on the right, executing a constructive method first, and a loop of destruction,
reconstruction and local search afterward. Note the existence of the Dummy Manager
component on the left, which will be responsible for adding the necessary dummy
facilities to the instance data before the algorithm runs. Initially, the instance will be
solved as is, but for each fully completed iteration of the IG metaheuristic, the number
of dummy facilities inserted into the facility data is incremented, until the configured
termination criteria is met. This way, multiple strategies for using the dummy facilities,
such as linearly incrementing them in each iteration, or using an exponential function
such as Fibonacci, can be easily tested.

Three different constructive methods are proposed for the DRFLP. The first
one generates a random permutation of the facilities, and its main utility is serving
as a baseline for comparing more complex approaches, as it is extremely fast. The
second and third one are based on the GRASP constructive methodology, introduced
in Section 3.1, using different strategies for the CL. Specifically, the second one will
consider adding each facility in any position in any row, sorting elements by the cost
increase of the insert operation. On the other hand, the third constructive method
will consider facilities as pieces to be merged, and in each step will try to merge two
facilities groups. Therefore, the CL is formed by all the merge possibilities of the
current available pieces or groups, and sorted according to the cost increase of merging
them. Figure 4.7 shows all implemented ways to merge two facilities groups. Both the
second and third constructive can either run in a GreedyRandom or RandomGreedy
configuration, depending on the parameter configuration.



45

Constructive

Local Search

Destructive

Reconstructive

MaxIter?

No

Dummy
Manager

Yes

Instance
Iterated Greedy

Figure 4.6: Proposed algorithm for the DRFLP.

As shown in Figure 4.6, the IG proposal includes a local search procedure to
improve the rebuilt solution. Specifically, we have implemented the neighborhoods for
the local search depicted in Figure 4.8, namely moving a facility from one position
to any other (4.8a), swapping the position of two facilities (4.8b), either of the same
or different rows, and reversing a fragment of a row, which may resemble the 2Opt
operator usually found in routing related problems (4.8c). Additionally, a variant of
the swap neighborhood, using the efficient formulation available in [87] is provided.
The local search method may use any combination of neighborhoods using either a
first improvement or best improvement strategy.

Moreover, we have implemented two destructive methods. The first one, D1
consists in randomly removing a number of facilities, determined by the β parameter,
while the second one, D2, tries to split the layout into several pieces. In order to
do so, first, a random facility is selected from any of the rows, and then, any of the
vertically overlapping facilities with the first selected one is randomly chosen. Each
operation splits the solution into three pieces. For example, in Figure 4.9, where F2

is first randomly chosen, and then the overlapping F9 in the other row is selected.
After executing the split, the group is split in three: facilities located on the left of the
selection (4.9.a); both selected facilities (4.9.b); and facilities located at the right of the
selection (4.9.c).

As for the reconstructive methods, we can reuse any configuration of the already
proposed constructive methods. Specifically, the second constructor based on facility
insertions works best when paired with the D1 destructive method, while the third
constructor based on facility groups is a great match for the D2 destructive.



46

F1 F2 F4

F6

F5F3

F7 F8 F9 F10 F12F11

a) b)

c) d)

F1 F2 F4

F6

F5F3

F7 F8 F9 F10 F12F11

F1 F2F4

F6

F5 F3

F7 F8 F9 F10F12F11

Π1

Π2

Π1

Π2

Π1

Π2

Π1

Π2

e) f)

F1 F2

F4F6 F5

F3

F7 F8 F9 F10

F12F11 F1 F2

F4 F6F5

F3

F7 F8 F9 F10

F12F11Π1

Π2

Π1

Π2

Figure 4.7: Proposed merging constructive method, showing all different ways that two
facilities groups can be merged. a and b are the original groups, while c, d e and f are
all valid combinations.



47

F1 F2 F4

F6

F5F3

F7 F8 F9 F10 F12F11

F1 F2 F4

F6

F5

F3F7 F8 F9 F10 F12F11

Π1

Π2

Π1

Π2

(a) Move one facility between any position
in any row.

F1 F2 F4

F6

F5F3

F7 F8 F9 F10 F12F11

F1 F2 F4

F6

F5

F3F7 F8 F9 F10 F12

F11

Π1

Π2

Π1

Π2

(b) Swap two facilities between any rows.

F1 F2 F4

F6

F5F3

F7 F8 F9 F10 F12F11

F1 F2 F4

F6

F5F3

F7F8F9F10 F12F11

Π1

Π2

Π1

Π2

(c) 2Opt : Reverse a fragment of a row.

Figure 4.8: Implemented neighborhoods for the DRFLP.



48

F1 F2 F4

F6

F5F3

F7 F8 F9 F10 F12F11

F1 F2 F4

F6

F5F3

F7 F8 F9 F10 F12F11

a) b) c)

Figure 4.9: Proposed destructive method, based on piece splitting. a, b and c are the
resulting pieces after the split.

After an in-depth tuning phase using irace, the IG proposal will apply the sec-
ond constructive to generate the initial solutions, based on inserting facilities in any
position, with α = 0.73; the splitting destructive with the agglomerating constructive
method as reconstructive, with α = 0.3; a best improvement local search formed by
the swap neighborhood; and finally, and a linear increment strategy for adding dummy
facilities in each iteration. For a full detail of the preliminary experiments, the reim-
plementation of the state of the art and full algorithmic detail of the components, see
Chapter 8.

The final comparison against the four existing heuristic algorithms proposed in [1]
uses the exact same set of 38 instances. Results are summarized in Table 4.4, where the
following metrics are reported for each algorithm: average execution time in seconds
T(s), average deviation to best known value (% Dev.) and number of best known
values found (# Best). The IG proposal obtains 38 best values, while the previous
heuristic methods obtain between 27 and 31. However, due to the small gaps, we can
infer that most results are near the optimal value, and therefore bigger instances may
be required in order to clearly differentiate the performance of the proposals.

Table 4.5 shows the summarized results using 15 new instances. In this case, the
IG proposal clearly outperforms all state of the art heuristic methods, obtaining all
known best values in a fraction of the time required by the heuristics.



49

H1 H2 H3 H4 IG

T (s) 8575.2 7456.2 9335.7 9246.0 27.2
% Dev. 0.01 0.01 0.01 0.01 0.00
# Best 31 31 26 27 38

Table 4.4: Comparison between the four heuristic methods proposed in [1] against our
ig proposal. Instance set formed by 38 instances.

H1’ H2’ H3’ H4’ IG

Time (s) 3600.8 3600.8 3600.8 3600.6 429.4
% Dev 0.37 0.47 0.28 0.25 0.00
# Best 0 0 0 0 15

Table 4.5: Comparison between the reimplementation of the four heuristic methods
proposed in [1] against our ig proposal. Instance set formed by 15 instances.

4.4 Results for AutoConfig

To wrap up the results chapter, we will use the automatic configuration methodology
presented in Section 2.4 to compare the performance of the algorithms presented in
the previous sections against an automatically generated configuration, with no prior
knowledge or baselines. In order to make a fair comparison, the existing approaches are
slightly modified: all existing parallelization code is disabled, and all parameters are
standardized and exposed using a unified API. In order to make the experimentation
robust, we re-executed the adapted code 30 times.

Moreover, we will use a variant of the DRFLP problem, the SF-DRFLP. The
objective is to demonstrate the effectiveness of the approach using at least one imple-
mentation not written by the author, and how it can easily be generalized and applied
to different problems. As the original code for the SF-DRFLP is written in C++,
the code will be rewritten in Java. In order to demonstrate that the rewritten code
performs similarly to the original one, we run a preliminary experiment in which we
execute both approaches 30 times for all instances. An average difference of 0.02%
is obtained between both implementations, which shows minimal behavior differences
between both implementations.

The automatic configuration experiment will be run as follows. For each pair of
instance and candidate configuration, a runtime limit of 60 seconds is imposed. The
objective function to optimize for all problems will be the Area Under Curve (AUC)
given by the evolution of the objective function during the algorithm execution. Using
this function has multiple advantages: first, it works as is for both maximization and
minimization problems, as we want to minimize the area when we are solving a mini-
mization problem and maximize it if not. Moreover, it simplifies comparisons between
different algorithm configurations, specially when each algorithm has a different exe-



50

cution time. For more information about anytime optimization and its relationship to
algorithm tuning, see [109].

The chosen parameter optimizer is irace [21], with a budget of 10.000 executions
per 50 parameters. This way, the experiment scales appropriately as the parameter
space increases. In order to perform a fair comparison, the best configuration found
will be executed 30 times using as time limit the average execution time of the adapted
code.

In Table 4.6, we present the summarized results for the three problems detailed
previously. For every problem, the following metrics are reported: number of times
that the generated configuration reaches the best known value for all instances (#Times
reaches bkv); number of instances for which the algorithm obtains the best known value
at least once (#Instances finds bkv); averaged percentage deviation of the best value
found by the configuration to the best known value (%Dev Min); and lastly, averaged
percentage deviation of all iterations to the best known value (%Dev Avg).

SF-DRFLP AutoConfig Reimplementation

#Times reaches bkv 485 (19.96%) 895 (36.83%)
#Instances finds bkv 78 (96.30%) 42 (51.85%)
%Dev Min 0.00 0.01
%Dev Avg 0.45 0.03

BMSSC

#Times reaches bkv 221 (29.47%) 206 (27.47%)
#Instances finds bkv 18 (72.00%) 17 (68.00%)
%Dev Min 0.03 0.20
%Dev Avg 0.46 0.46

VRPOD

#Times reaches bkv 3816 (30.29%) 2373 (18.83%)
#Instances finds bkv 372 (88.57%) 132 (31.43%)
%Dev Min 1.55 0.68
%Dev Avg 5.06 1.91

Table 4.6: Comparison between the automatically generated configurations for each of
the proposed problems and the adapted code. bkv are the initials of best known value.

We can observe that the automatically generated algorithm finds the best known
value for most instances, improving the results of the existing proposal, for the three
problems. Moreover, it reaches the best value more times for both the VRPOD (30%
vs 19%) and the BMSSC (72% vs 68%), while having a lower value of 20% for the SF-
DRFLP. The explanation for the vast difference in this problem between both metrics
can be easily explained by analyzing the detailed results for the SF-DRFLP. In most
instances, the original code either finds the best value in all iterations, or none of them.
The deviations for the SF-DRFLP displays the same behavior.



51

Analyzing the minimum and average deviations, we can extract additional infor-
mation from Table 4.6. First, for the SF-DRFLP, both minimum deviations are very
low, while the average deviation is slightly higher for the AutoConfig proposal (0.45%).
In the case of the BMSSC, the AutoConfig proposal obtains a lower deviation minimum
deviation (0.03%) to the best known values, and an equal average of 0.46%.

Lastly, for the VRPOD, the AutoConfig reaches the best known value around
30% of the time, having the best value for 89% of instances, while the reimplemen-
tation obtains 19% and 31% respectively. However, both deviations are worse for the
AutoConfig . This can be explained due to the fact that for about 1% percentage of the
VRPOD instances, the minimum deviation is greater than 10%, and around 6% for the
average deviation. The root cause is probably that this uncommon instance type, or
any instance with similar characteristics, was not seen enough during the AutoConfig
tuning step. Moreover, the big difference in performance according to the number of
best values reached, may be explained by the instance types. Instances in the VR-
POD can be divided according to the compensation scheme used to pay the occasional
drivers. Analyzing the detailed results, we have observed that the AutoConfig proposal
obtains good results for both compensation scheme types available in the state of the
art, while the reimplementation performs well for the first compensation scheme but
falls behind in the second type. Due to this, we may conclude that the AutoConfig
generalizes better the instances properties, and therefore it is much more likely to win
under new instance sets.

To sum up, the automatic configuration methodology is able to find algorithms
with equal or greater performance than traditional manual tuning, in an automatic
and reproducible way.





Chapter 5

Conclusions and future work

In this chapter, the contributions made during the thesis development are summarized,
along their impact, and the conclusions that may be extracted from them. Moreover,
future liens of work and possible further improvements to the presented ideas are
presented.

5.1 General conclusions

In Section 1.3, we defined the initial hypothesis and the main objective of the thesis
as developing and validating a new methodology that ensures consistent reproducibil-
ity during the whole research lifecycle, facilitating, among others, three key aspects:
automatic instance selection, automatic generation and configuration of proposals and
artifact generation. As demonstrated in the results presented in Chapter 4, the initial
hypothesis has been verified, validating that an automatic experiment design, named
AutoConfig , can match and improve manually tuned proposals. To do so, we have
used three problems from different families with different solution structures: a rout-
ing problem (VRPOD), a clustering problem (BMSSC) and lastly a facility layout
problem (SF-DRFLP).

One limitation of the methodology is that it cannot guarantee the optimality of
the generated algorithms, or in other words, there may exist different combinations of
parameter values which obtain better results than the proposed algorithm configura-
tions. However, our objective is not guaranteeing the optimality of the automatically
generated proposals, but ensuring that we can procedurally test, build and validate
their performance, ensuring their reproducibility, while improving the results obtained
if compared against a manual tuning approach.

All artifacts, full tables, generated figures and the scripts used to generate them,
complete source code, and executable artifacts for each problem are available at the
repositories specified in Table 5.1. Specifically, as proposed in the methodology, we
provide public containers to ease the execution of the artifacts, a live version of the
source code available at the GitHub repositories and a permanently archived version in

53



54

Zenodo at the date of this thesis. Moreover, all instance data and results analysis are
classified in packages according to the problem they belong and archived in Zenodo.

Problem Live Code Archived Artifacts DOI

BMSSC rmartinsanta/ac-BMSSC 10.5281/zenodo.7774638
VRPOD rmartinsanta/ac-VRPOD 10.5281/zenodo.7774831
SF-DRFLP rmartinsanta/ac-SFDRFLP 10.5281/zenodo.7774833

Table 5.1: References to all published artifacts related to this thesis development.

5.2 Contributions summary and future work

In this thesis, we propose a new methodology to tackle two hot topics in metaheuristic
research, research reproducibility and robust decision automation, specially applica-
ble to the instance selection and the algorithm tuning phases of research. We do not
limit ourselves to a theoretical proposal, and a reference open source implementation
under a permissive license is provided, called Mork , which stands for Metaheuristic
Optimization FramewoRK. Its latest version is available at 1. This reference imple-
mentation is used in Section 4.4 to automatically build and benchmark the different
provided algorithmic components, improving the results obtained by using a manual
tuning approach. The methodology implementation has been iteratively implemented
and improved for the proposed problems, and thanks to it, we have improved the
reproducibility of the proposals, while simultaneously reducing the workload of the
researcher. Thanks to the decision automation, experiments can be generated by the
framework, simplifying the experimentation workflow, using a consistent and easy-to-
understand approach.

Moreover, the state of the art for the three problems tackled during the thesis has
been improved applying the methodology. All relevant findings and results have been
published in journals of the area. During the thesis development, we have achieved
5 JCR publications, four of them in journals ranked Q1, and the remaining one in a
journal ranked Q2. Additionally, we have published 2 LNCS ranked Q2 in SJR, a book
chapter about metaheuristics, and presented 8 works in top national and international
congresses of the area, such as ICVNS, MIC and CAEPIA.

One indirect contribution that we have seen emerge is that, by proposing a ref-
erence implementation, with common interfaces and detailed examples, multiple re-
searchers have started sharing components and algorithm implementations between
different research projects. Thanks to the ease of component reuse, and their flexibil-
ity, the total work required for creating new strategies is further reduced. Not only
that, there are currently multiple research works published or in process of being pub-
lished using Mork , examples of published works are [110] and [111]. As such, we expect
the list of related works to increase over time.

1https://github.com/mork-optimization/mork

https://github.com/rmartinsanta/ac-BMSSC
https://doi.org/10.5281/zenodo.7774638
https://github.com/rmartinsanta/ac-VRPOD
https://doi.org/10.5281/zenodo.7774831
https://github.com/rmartinsanta/ac-SFDRFLP
https://doi.org/10.5281/zenodo.7774833
https://github.com/mork-optimization/mork


55

Lastly, there are several areas that require further research. Depending on the
problem, and the instance data available in previous works, the number of instances
ranges from single digit to thousands. Currently, all instances are passed to irace
during the parameter optimization phase. It would be interesting to measure the
influence of the different instance selection strategies, to see how it affects both the
runtime of the AutoConfig experiment and the results obtained. Examples of strategies
to use are, doing an automatic previous selection of instances, to guarantee that irace
has seen at least once each type of instance; using all instances as it currently does
or allowing the user to select a preliminary experiment set. Automatically selecting
instances is not trivial, as defining a type of instances is very context dependent, and
usually requires specific data provided by the user.

Another idea that may be worth exploring is integrating other parameter tuning
engines, for example based on Bayesian optimization [112], or either random or grid
searches [113], and allow the user to select which one to use. As it is currently designed,
the parameter tuning engine is a black box component that may be easily replaced by
another implementation if needed.

Moreover, there is a limited number of components available. We will keep adding
generic components that can be used as is. For example, we are currently working
on adding population based methods. Additionally, we are currently modifying the
reference implementation to allow users to trivially distribute the experiment workload
to computing clusters of any size, without requiring any code change to the existing
components. Thanks to this, we mitigate the possible relatively long time required for
the tuning step in the proposed methodology, reducing the required total execution
time from days to hours.

Another aspect that may be improved is the explainability of the generated con-
figurations. We would like to generate a report after the automatic configuration that
details why some components are preferred to another, why some configurations are
discarded, and the best range of values found for parameters depending on the context.
This way, the user may manually create new approaches with the previous knowledge
of expected performance, saving experimentation time. Moreover, we are implementing
the inverse, that is, allowing the user to provide knowledge to the automatic experi-
mentation engine. Results may be improved if the users provide several existing well
performing configurations, so the automatic configuration engine does not start from
scratch for each experiment, and can discard poorly performing approaches sooner.

Finally, while the current design may work with small adaptations to multiob-
jective problems, its application has not been studied in depth. A future work will
explore multiobjective optimization problems from different families and document
any adaptation necessary or peculiarities found.





Part II

Publications: published, accepted,
and submitted papers





Contents

6 Strategic oscillation for the balanced minimum sum-of-squares clus-
tering problem 61

7 An Efficient Algorithm for Crowd Logistics Optimization 77

8 A practical methodology for reproducible experimentation: an appli-
cation to the Double-row Facility Layout Problem 99

9 On the automatic generation of metaheuristic algorithms for opti-
mization problems 139

59





Chapter 6

Strategic oscillation for the
balanced minimum sum-of-squares
clustering problem

Title Strategic oscillation for the balanced
minimum sum-of-squares clustering
problem

Authors Raúl Mart́ın-Santamaŕıa, Jesús Sánchez-
Oro, Sergio Pérez-Peló and Abraham
Duarte

Publication date 2021
Journal Information Sciences (Q1)
Publisher Science Direct
ISBN/ISSN 0020-0255
Impact Factor 8.233 (2021)
Rank by Impact Factor 16/164 (Q1, Computer Science, Informa-

tion Systems)
DOI https://doi.org/10.1016/j.ins.

2021.11.048

61

https://doi.org/10.1016/j.ins.2021.11.048
https://doi.org/10.1016/j.ins.2021.11.048


62



Strategic oscillation for the balanced minimum sum-of-squares
clustering problem

R. Martín-Santamaría a, J. Sánchez-Oro a,⇑, S. Pérez-Peló a, A. Duarte a

aDept. Computer Sciences, Universidad Rey Juan Carlos, Spain

a r t i c l e i n f o

Article history:
Received 6 March 2020
Received in revised form 1 June 2021
Accepted 14 November 2021
Available online 26 November 2021

Keywords:
Balanced clustering
Metaheuristics
Strategic oscillation
GRASP
Infeasibility

a b s t r a c t

In the age of connectivity, every person is constantly producing large amounts of data
every minute: social networks, information about trips, work connections, etc. These data
will only become useful information if we are able to analyze and extract the most relevant
features from it, which depends on the field of analysis. This task is usually performed by
clustering data into similar groups with the aim of finding similarities and differences
among them. However, the vast amount of data available makes traditional analysis obso-
lete for real-life datasets. This paper addresses the problem of dividing a set of elements
into a predefined number of equally-sized clusters. In order to do so, we propose a
Strategic Oscillation approach combined with a Greedy Randomized Adaptive Search
Procedure. The computational experiments section firstly tunes the parameters of the algo-
rithm and studies the influence of the proposed strategies. Then, the best variant is com-
pared with the current state-of-the-art method over the same set of instances. The
obtained results show the superiority of the proposal using two different clustering met-
rics: MSE (Mean Square Error) and Davies-Bouldin index.

� 2021 Elsevier Inc. All rights reserved.

1. Introduction

The large amount of data available in several fields of research like economics or biology has made traditional analysis
techniques impractical for real-life problems [35]. In fact, data used in most of these areas grows exponentially everyday.
Therefore, the design of high-quality and high-performance algorithms has become a research field of interest for data
analysts.

In order to get relevant information when using huge volume of data, two main approaches are typically followed: clas-
sification and clustering [20]. In the former, there is a complete previous knowledge of the available information (i.e., the
group to which each element belongs to is known beforehand). Then, data analysis techniques can take advantage of this
information in a supervised way. On the contrary, clustering techniques use this information in an unsupervised way, since
it is not available a priori. The design of effective procedures for clustering is harder as the actual group for each element is
not known [39].

Clustering problems consist in splitting data into groups (also known as clusters), which contain elements that share
some specific features. In other words, it is expected that if two elements belong to the same cluster, then it is because they

https://doi.org/10.1016/j.ins.2021.11.048
0020-0255/� 2021 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: raul.martin@urjc.es (R. Martín-Santamaría), jesus.sanchezoro@urjc.es (J. Sánchez-Oro), sergio.perez.pelo@urjc.es (S. Pérez-Peló),

abraham.duarte@urjc.es (A. Duarte).

Information Sciences 585 (2022) 529–542

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins



are related to each other by means of some specific features. Symmetrically, if two elements are in different clusters, it is
because they are barely related. Therefore, clustering algorithms are designed to split a given dataset into several subsets
maximizing the similarity of elements in the same subset, while minimizing the similarities between elements in different
subsets. It is important to remark that the similarity metric used totally depends on the dataset and the scope of the
clustering.

The minimum sum-of-squares clustering problem (MSSC) presents several practical applications in a wide variety of
areas (biology, biometry, psychology, marketing, etc.), and it is also a useful technique to improve the performance of other
techniques like pattern recognition, data mining, or image processing, among others [36]. This problem has been proven to
be NP-hard [24], even when considering only two clusters in the Euclidean space [2].

MSSC considers that the number of clusters k is known a priori. The objective of MSSC is to assign a set of npoints
P ¼ fp1; p2; . . . ; png located in an s-dimensional Euclidean space Rs to a cluster Ki 2 fK1;K2; . . . ;Kkg. MSSC then tries to find
the assignment S of points to clusters with the minimum sum-of-squares distances from each point pj of the cluster Ki to its
corresponding centroid �pi. Given a cluster Ki, its centroid is defined as the point whose distance to the other points of the
cluster is minimum. More formally, the quality of the partition S, denoted as f ðSÞ can be evaluated as:

f ðSÞ ¼
Xn

j¼1

Xk

i¼1
xijjjpj � �pijj2

where xij is a binary variable (with 1 6 i 6 k and 1 6 j 6 n) that takes on the value 1 if point pj is assigned to cluster Ki; other-

wise, xij ¼ 0. Naturally, this variable satisfies that
Pk

i¼1xij ¼ 1 for 1 6 j 6 n.
The evaluation of the objective function can be improved by leveraging the results derived from the Huygens’ theorem

[13], as stated in [9]. Specifically, evaluating the sum-of-squared distances from all points of a given cluster to its centroid
is equivalent to evaluating the sum-of-squared distances between each pair of points in the cluster divided by its cardinality.
It can be formally defined as:

f ðSÞ ¼
Xk

i¼1

Xn�1

j¼1

Xn

l¼jþ1
xijl
jjpj � pljj2
jKij

where xijl is a binary variable (with 1 6 i 6 k and 1 6 j < l 6 n) that takes on the value 1 if points pj; pl are assigned to cluster
Ki; otherwise, xijl ¼ 0.

It is worth mentioning that the use of the Huygens’ theorem [13] allows us to design considerably efficient algorithms.
Specifically, we compute the distances between each pair of elements only once (even before executing the algorithm) stor-
ing them in a matrix. Then, looking up the distance between two elements can be performed in Oð1Þ since it only requires an
access to the distance matrix. Additionally, this approach makes the algorithms independent of the instance dimensionality.
See [4,21] for further details about the issues related with the dimensionality course.

In this paper, we focus on the variant with the cardinality constraint, which is called Balanced MSSC (BMSSC) problem.
Specifically, there will be n mod k clusters of size dn=ke, and k� ðn mod kÞ clusters of size bn=kc. BMSSC has also been proven
to be NP-hard for n=k P 3. See [28] for further details.

Fig. 1 shows an example of two possible clustering solutions for k ¼ 2, where we consider the same set of points. On the
one hand, Fig. 1.a depicts a solution S1 conformed with K1 ¼ fA;B;C;F;Hg and K2 ¼ fD;G;E;Ig, resulting in an objective func-
tion value of f ðS1Þ ¼ 245. On the other hand, the solution S2 presented in Fig. 1.b contains clusters K1 ¼ fA;C;D;G;Ig and
K2 ¼ fB;E;F;Hg, with an objective function value of f ðS2Þ ¼ 353. Analyzing these values, we can conclude that S1 is better
than S2 since the elements contained in each cluster are more similar among them (regarding the computation of the objec-
tive function).

In this paper, we propose a Greedy Randomized Adaptive Search Procedure (GRASP) [15] combined with Strategic Oscil-
lation (SO) [16]. Fig. 2 shows the complete scheme of the proposed algorithm, where we can identify two main blocks:
GRASP and SO. The first one performs a predefined number of constructions followed by a local search method. Then, the
best solution found is further improved in the SO block by alternatively considering feasible and unfeasible solutions. The
SO block finally returns the best solution found during the search.

This procedure presents a remarkable performance in both, quality and computing time, as we will show in the compu-
tational experience. The remaining of the paper is organized as follows: Section 3 presents the metaheuristic algorithm
developed for the BMSSC, Section 4 describes a post-processing method in order to improve the quality of the obtained solu-
tions, Section 5 thoroughly describes the experiments performed to test our proposal and, finally, Section 7 draws some con-
clusions over the problem and the proposed algorithms.

2. Literature review

Most of the clustering problems have been proven to beNP-hard [17]. Therefore, the majority of the algorithms found in
the related literature are approximate procedures, where the main goal is to find a high quality partition in reasonable com-
puting times. However, these algorithms are not able to guarantee the optimality of the provided solution. Clustering algo-

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

530



rithms can be classified in: partitional clustering [29], in which data must be divided into disjoint sets and each element is
assigned to one set; hierarchical clustering [5], where clusters are created following a top-down or bottom-up approach;
density-based clustering [27], where elements are grouped following a density function; or grid-based clustering [19], in
which data is divided into grids with different granularity level. We refer the reader to [34] for a detailed taxonomy of basic
and advanced clustering techniques.

In this paper, we focus on partitional clustering whose objective is to generate non-overlapping subsets of elements
where each element is assigned to exactly one cluster. The concept of similarity can be defined in a large variety of criteria,
but usually they do not coincide. However, there is a common criterion when considering the clustering of elements that can
be located in an Euclidean space. Specifically, it is widely accepted that minimizing the sum of squares between elements in
the same cluster is a good criterion for clustering analysis. Furthermore, it is equivalent to maximizing the sum of squares
between elements in different clusters, resulting in a criterion for increasing both similarity in the same cluster and sepa-
ration among different clusters [36].

The k-means procedure has been widely used mainly due to its simplicity and its computational efficiency [31,37]. How-
ever, it totally relies on the initial random centroid selection. Therefore, if that selection results in a bad initial set of cen-
troids, the method will not be able to obtain a good partition. A new method, named k-means++ [3], was designed to
mitigate this behavior and perform a better initial centroid selection. Specifically, it consists in selecting the most diverse
centroid; that is, the one with the smallest similarity measure among them. This idea reduces the harmful effect that a ran-

Fig. 1. Two possible clustering solutions for a given set of points: (a) {A,B,C,F,H} and {D,G,E,I}, and (b) {A,C,D,G,I} and {B,E,F,H}.

Fig. 2. Complete scheme of the proposed algorithm.

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

531



dom centroid selection can produce in the performance of the traditional k-means algorithm. Recently, there have been
another approaches proposed to even reduce this effect. In particular, the power k-means algorithm is proposed to avoid
poor local minima by annealing through a family of smoother surfaces [38]. This algorithm is further improved in [6] when
dealing with high dimensions. Finally, in [8] is described a different approach, denoted as convex clustering, where a penalty
function is introduced to guarantee the convexity of the derived problem.

The classical Minimum Sum-of-Squares Clustering (MSSC) problem does not have any constraint about the number of
elements that can be assigned to each cluster. However, several problems require generating clusters of similar sizes. Des-
rosiers et al. [11] proposed a Variable Neighborhood Search algorithm for dividing students from school and universities in
teams, considering that each team must provide a good representation of the population. They propose two different func-
tions for evaluating the balance among teams and test the efficiency of the algorithm over actual data from an MBA program.
This problem also has applications in Very Large Scale Integration (VLSI) design. Specifically, Hagen et al. [18] indicates that
the second smallest eigenvalue of a matrix derived from the corresponding netlist provides a good approximation to the
optimal ratio cut partition cost. As is stated in this paper, balance clustering problems are equivalent to the second eigen-
vector computation. Consequently, an effective and efficient method for the former is useful for the later. Finally, Su et al.
[33] present an algorithm for balancing tenant placement in cloud computing, with the aim of improving the performance
and maximizing the resource utilization of complex multi-tenant architectures.

First attempts to solve the Balanced Minimum Sum-of-Squares Clustering (BMSSC) problem consider the well-known k-
means procedure [32]. This algorithm is a classical clustering method that consists of two main steps: it firstly selects the
elements that will become the centroids of the clusters and then assigns each one of the remaining elements to their nearest
centroid. We refer the reader to [22] for an efficient implementation of the method.

The best heuristic algorithm identified in the related literature is presented in [9]. The procedure is based on the Variable
Neighborhood Search methodology, which relies on the idea of combining stochastic and deterministic changes of neighbor-
hood to escape from local optimality. Therefore, we include this algorithm in the computational testing. In order to comple-
ment the experimentation, we include k-means [3] with the Hungarian algorithm [23] to satisfy the balance constraint
among clusters. Finally, we include two of the most performing procedures for the MSSC problem. Specifically, the hierar-
chical Clustering with Optimal Transport (HCOT) method [5] and the Continuous GRASP [29]. In both methods, a post-
processing method is executed to guarantee the balance constraint (i.e., oversized clusters are repaired by reassigning their
elements to the best available cluster).

3. Greedy randomized adaptive search procedure

The term Greedy Randomized Adaptive Search Procedure (GRASP) refers to a metaheuristic algorithm originally intro-
duced in the late 1980s [14] but it was not formally defined until 1994 [15]. GRASP is an iterative algorithm where each iter-
ation can be divided into two stages: generating an initial solution and then locally improving it. The first phase starts from
an empty solution building the Candidate List (CL) of elements to be added to the solution under construction. The first ele-
ment is usually selected at random from the CL. The remaining elements to be included in the solution are selected following
a greedy criterion. Specifically, a Restricted Candidate List (RCL) is conformed with those elements that surpass the greedy
criterion established. Then, the next element to be added is selected at random from the RCL. This random selection allows
GRASP methodology to explore diverse regions of the search space, thus increasing the possibility of finding better solutions.

The random part of the initial solution construction is able to generate diverse solutions, but it is not designed to find a
local optimumwith respect to the constructed solution. Therefore, a local improvement method is required in order to find a
local optimum with respect to the constructed solution. The versatility of the GRASP methodology allows us to use different
algorithms in this stage, from traditional local search methods to more complex implementations such as hybridizations
with other metaheuristics that has lead to successful research: Tabu Search [26], Path Relinking [12], Ejection Chains
[30], among others.

Finally, this two stages are iteratively repeated until a stopping criterion is reached, which is usually a maximum number
of generated solutions or a maximum allowed running time. The method returns the best solution found during the search.
The remaining of this section is devoted to presenting the specific design of the GRASP algorithm for the BMSSC.

3.1. Initialization

Classical GRASP algorithms usually select the first element to be added to the solution under construction at random.
However, as stated in Section 1, the random selection of the initial elements in a clustering problem can determine the qual-
ity of the obtained results. Therefore, we propose a new initialization criterion which tries to guide the initial solution to
promising regions of the search space by inserting a single vertex in each cluster. The method starts by selecting the first
element at random and inserting it in the first cluster. Then, the distance from the remaining elements to the one already
selected is evaluated, selecting the element that presents the largest one (i.e., the one that is furthest from the element
already clustered).

Once two elements have been assigned to two different clusters, the next element to be inserted should be far away from
both elements already assigned. For this purpose, we define the distance from an element p to a given cluster Ki as follows:

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

532



dðp;KiÞ ¼
X

pj2Ki

jjp� pjjj2

where Ki is the set of points pj 2 P that have been assigned to cluster i.
Then, the distance from an element pto a given solution S ¼ fK1;K2; . . . ;Kkg can be defined as:

dðp; SÞ ¼min
Ki2S

dðp;KiÞ

Then, the next element to be added, pI, will be the one with the largest distance to the already clustered elements. More
formally:

pI ¼ argmax
p2PnS

dðp; SÞ

This criterion allows us to insert, in each cluster, the furthest element with respect to the already clustered elements, thus
reducing the similarity of the elements in different clusters and, therefore, increasing the similarity between elements in the
same cluster.

The initialization stage ends when each cluster has exactly one element in it, using this partial solution as input for the
constructive method.

3.2. Constructive method

The constructive algorithm proposed in this work, named JoinClosest, follows a traditional GRASP approach where each
element is added to the cluster that minimizes the value of the objective function. JoinClosest, as a GRASP constructive
method, requires from a greedy function that evaluates the relevance of adding an element in a given step of the
construction.

The greedy function for each element is evaluated as the increase in the objective function value if the element is inserted
in the closest cluster. It is worth mentioning that only the clusters which are not completed yet are considered in this step, in
order to maintain the feasibility of the solution. More formally,

gðv ; SÞ ¼ min
16i6k

X

p2Ki

dðp; vÞ

Algorithm1 JoinClosestðP; S ¼ fK1;K2; . . .Kkg;aÞ
1: CL P n S
2: while CL –£ do
3: gmin  minc2CLgðc; SÞ
4: gmax  maxc2CLgðc; SÞ
5: l gmin þ a � ðgmax � gminÞ
6: RCL fc 2 CL : gðc; SÞ 6 lg
7: cI  RandomðRCLÞ
8: CL CL n fcIg
9: KI  argmin

Ki2S
dðcI;KiÞ

10: KI  KI [ fcIg
11: end while
12: return S

Algorithm1 depicts the pseudocode of the JoinClosest constructive procedure. The algorithm receives three input param-
eters: P, the set of points that needs to be clustered; S, the set of clusters created in the initialization step; and a, a parameter
that controls the greediness/randomness of the method (discussed later).

The method starts by creating the Candidate List (CL) with the set of elements in Pthat has not been assigned to any clus-
ter in the initialization phase (step 1). Then, it iterates until all the elements have been clustered (steps 2–11), adding a new
element to a cluster in each iteration.

Specifically, JoinClosest evaluates the minimum and maximum value for the greedy function previously defined (steps 3–
4) and then evaluates a threshold l (step 5) that depends on the value of the parameter a 2 ½0;1� whose function is to limit
the elements that are allowed to enter the Restricted Candidate List (RCL). On the one hand, a ¼ 0 indicates that only the
elements with the best greedy function value are selected, which results in a totally greedy algorithm. On the other hand,
a ¼ 1 considers all the elements in the CL to be added to the RCL, which results in a totally random algorithm. Therefore,
parameter a is able to control the greediness/randomness of the constructive procedure.

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

533



Once the RCL is created with the elements whose objective function value is smaller than the threshold (step 6), an ele-
ment cI is selected at random from the RCL (step 7). Then, the algorithm selects the closest cluster KI (step 9) and inserts the
element in the cluster (step 10). The method ends when all the elements have been assigned to a cluster, returning the solu-
tion created.

3.3. Local optimization

The solution created in the construction phase tries to find a balance between diversification and intensification in order
to explore a wider portion of the search space. However, this behavior complicates finding a local optimum in the construc-
tion stage. The second phase of a GRASP procedure consists of an improvement strategy that is able to find a local optimum
of the initial solution with respect to a given neighborhood.

In this work, we consider a neighborhood based on interchanging two elements of different clusters. More formally, given
a solution

S ¼ fK1; . . . ;Ka; . . . ;Ki; . . . ;Kkg

the interchange of elements pj 2 Ka and pl 2 Ki, produces a new solution S0 ¼ K1; . . . ;Ka n fpjg [ fplg; . . . ;Ki n fplg [ fpjg;
�

. . . ;Kkg. For the sake of clarity, we represent this move as S0  moveðS; pj;KiÞ.
We propose a local search method for the BMSSC based on this neighborhood. It evaluates the interchange of every pair of

elements in the solution, executing in each step the first interchange that results in a better solution (first improvement, FI).
We additionally propose a different approach in which the interchange performed is not the first element that leads to a bet-
ter solution but the one that leads to the best solution in the neighborhood (best improvement, BI). The performance of both
local search methods will be later discussed in Section 5.

4. Strategic oscillation

Reaching a better solution during the search might prove difficult in some cases, since the constraint on the size of each
cluster in the BMSSC problem limits the number of available movements that can be performed. Specifically, in order to
maintain the same size in each cluster it is only possible to perform symmetrical movements (mostly based on
interchanges).

With the aim of increasing the portion of the search space explored, we propose considering unfeasible solutions during
the search that can eventually lead the algorithm to better feasible solutions.

Strategic oscillation (SO) is a methodology originally proposed for being used in combination with Tabu Search [16]. It is
based on allowing the algorithm to surpass the boundaries of its search space, usually by consider the exploration of unfea-
sible solutions. When the search gets stuck in a deep basin of attraction, SO modifies the rules of the search, allowing the
algorithm to continue its exploration considering the set of unfeasible solutions. Every time a promising unfeasible solution
is reached, the algorithm must repair it in order to transform it into a feasible solution that would eventually be a high-
quality one.

The first step in SO is the definition of the boundary to be surpassed. In the context of BMSSC, we consider the increment
of the size of each cluster. This modification is performed by increasing each cluster size by a percentage defined by a param-
eter b 2 ½0;1� that controls how far the explored solutions are from being feasible. Specifically, given a cluster Ki, if the orig-
inal cluster size is jKij, considering the relaxation of the feasibility, the new cluster size is now limited by jKij � ð1þ bÞ. This
relaxation allows the algorithm to include more points in each cluster, which may lead the procedure to find better solutions
that can be later repaired. A search algorithm that considers small values of b will explore solutions that are almost feasible,
while considering larger values will explore rather unfeasible solutions.

SO allows us to define a new neighborhood to be explored, which consists in moving a given element from one
cluster to another. Notice that this movement cannot be considered in the feasible solution space since any move violates
the size constraint. Given a point pj that belongs to cluster Ka which is moved to cluster Ki in a certain solution
S ¼ fK1; . . . ;Ka; . . . ;Ki; . . . ;Kkg, the movement generates a new solution S0 ¼ K1; . . . ;Ka n fpjg; . . . ;Ki [ fpjg; . . . ;Kk

� �
.

The SO methodology can be divided into two phases: the first one is a local search devoted to exploring the unfeasible
region while the second one tries to repair every promising solution.

The local search phase considers themove neighborhood previously defined as follows. The method evaluates the move of
each element pj (with 1 6 j 6 n) of the solution S ¼ fK1;K2; . . . ;Kkg to every cluster Ki (with 1 6 i 6 k). Notice that, in the

context of SO, the size of each cluster Ki is now limited by jKij � ð1þ bÞ. The method then selects the cluster KI that minimizes
the objective function value f. More formally,

KI ¼ argmin
16i6k;16j6n

f moveðS;pj;KiÞ
� �

It is worth mentioning that the local search moves each element to the cluster that minimizes the value of the objective
function, resulting in a best improvement method.

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

534



The repair phase is applied to every unfeasible solution whose objective function value outperforms the best solution
found so far. This phase is intended to reduce the number of elements of each oversized cluster as follows. For each element
pj belonging to an oversized cluster, the method finds the cluster Ki that minimizes the value of the objective function of
those whose size satisfies the original size constraint. Then, it applies the operationmoveðS; pj;KiÞ in order to insert pj in clus-
ter Ki. The method ends when every cluster satisfies the original size constraint, returning the best solution found during the
search.

5. Computational experiments

This section is intended to evaluate the quality of the proposed algorithms and compare it with the best previous
approach. All algorithms have been implemented using Java 8 and the experiments were conducted in an Intel Core i5-
4210U 1.7 GHz and 8 GB RAM. The source code and the full experimental results are available at the following URL:
https://grafo.etsii.urjc.es/BMSSC.

In order to have a fair comparison, we have considered the set of 16 instances used in the best previous work found in the
literature. We have additionally incorporated 9 instances to have a larger benchmark. All these instances have been taken
from the machine learning repository of the University of California1. Table 1 shows, for each single instance, the number
of points (n), dimensions (s), and clusters (k). Notice that we first show the original instances and then the new instances, sep-
arated by an horizontal line. It is worth mentioning that all instances come from real data. In particular, benchmarks consider
information derived from different real world scenarios: breast cancer, phone sensors, water treatment, among others. We refer
the reader to [9] to find a deep analysis and description of these instances.

We divide the experiments performed into two different subsets: preliminary experimentation and final experimenta-
tion. The former refers to those experiments designed to find the best parameters for the proposed algorithms and to eval-
uate the relevance of the proposed strategies (constructive method, local search procedure, and Strategic Oscillation
algorithm), while the aim of the latter is to perform a comparison between the best algorithm designed and the best previous
method found in the state of the art. Notice that the proposed algorithm requires just one run to obtain the presented results.

All the experiments report the following metrics: Dev. (%), the average deviation with respect to the best solution found in
the experiment; #Best, the number of times that an algorithm reaches the best solution; and Time (s), the average computing
time in seconds.

5.1. Preliminary experimentation

This section is intended to find the best values for the input parameters of the proposed algorithms. Specifically, the algo-
rithms proposed require to find the best value for a and b parameters (constructive procedure and Strategic Oscillation,
respectively), as well as selecting the best local search method. We have selected a subset of 4 representative instances
(Vehicle, Yeast, Multiple Features, and Image Segmentation) for tuning the parameters of the algorithm in order to avoid
overfitting.

The first experiment is devoted to evaluating the performance of constructive method JoinClosest when varying the a
parameter value. In particular, we have considered a ¼ f0:25; 0:50;0:75;RNDg, where RND indicates that the value is selected
at random in the range 0–1 in each construction.

Table 2 shows the effect of the a parameter in the performance of JoinClosest when constructing 100 solutions. In partic-
ular, the best results are achieved with JoinClosest(0.25), which is the closest variant to a totally greedy algorithm. It is worth
mentioning that a pure greedy configuration of this constructive method produces worse results than the constructive pro-
cedure configured with a ¼ 0:25. We can then conclude from this experiment that the larger the randomness, the lower the
quality of the constructive procedure. Notice that these results are in line with those presented in [3], which indicates that a
random initialization in the well-known k-means algorithm usually produces worse quality solutions than those obtained
with the greedy initialization of the k-means++ version.

The main aim of the second experiment is to analyze the ability of each proposed improvement method for finding a local
optimum starting the search from each constructed solution. Specifically, we combine the best constructive method (i.e.,
a ¼ 0:25) with the two local search methods proposed in Section 3.3: First Improvement (FI) and Best Improvement (BI).

Table 3 compares the results obtained when combining the best variant of the constructive procedure coupled with both
local search algorithms, resulting into two GRASP variants: JoinClosest(0.25) + FI and JoinClosest(0.25) + BI. We also include
the results obtained with JoinClosest isolated, in order to analyze the contribution of the improvement strategies. Notice that
the results reported in Table 3 are averaged over the 4 instances used in the preliminary experiments. As can be seen in this
table, both local search approaches obtain similar results in terms of quality, which can be seen in the average deviation with
respect to best found value (0.24% and 0.07%, respectively) and number of best solutions found (both methods matches 2
best solutions). It is also important to remark that avoiding exploring the neighborhood exhaustively with the First Improve-
ment approach lead us to marginally increase the computing time with respect to the constructive method (10.57 versus
8.99 s on average). However, the Best Improvement approach requires almost twice the computing time (15.24 versus

1 http://www.ics.uci.edu/mlearn/MLRepository.html

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

535



8.99), without significantly improving the obtained results. Therefore, we select the First Improvement approach as the local
search procedure for the final algorithm.

The next preliminary experiment is intended to evaluate the contribution of using Strategic Oscillation to further improve
the best solution obtained with the GRASP procedure. As stated in Section 4, SO method requires only one parameter that
controls how far from feasibility are the solutions explored during the search. In this experiment we consider the values
b ¼ f0:1;0:25;0:50;0:75g. These values indicates the increase of each cluster size in a 10%, 25%, 50%, and 75% of the original
cluster size. We do not consider larger values of b since values that exceed 100% will evaluate clusters with more than twice
the original size, which is rather distant from feasibility. If so, it would be equivalent to start the search from a totally new
solution.

Table 4 presents the results obtained with the aforementioned different values of b. Additionally, we have included the
best GRASP variant for measuring the contribution of the Strategic Oscillation to the quality of the algorithm. As can be easily
seen, every variant of the Strategic Oscillation algorithm outperforms the GRASP procedure in all metrics, barely increasing
the computing time. Among SO variants, the one that increases the size of the cluster in a 75% obtains the best results. This
can be mainly due to its ability to explore further regions of the search space, most of them intractable for the remaining
variants. Therefore, we select b ¼ 0:75 as the best variant of the SO algorithm.

Table 1
Individual description of each instance considered in this
work. For each instance, the following parameters are
provided: n, total number of points; s, number of dimen-
sions; k, number of clusters to create.

Instance Name n s k

Body 507 5 2
Breast Cancer 569 30 2
Glass 214 9 7
Image Segmentation 2310 19 7
Ionosphere 351 34 2
Iris 150 4 3
Libra 360 90 15
Multiple Features Reduced 2000 240 7
Synthetic Control 600 60 6
Thyroid 215 5 3
User Knowledge 403 5 4
Vehicle 846 18 6
Vowel 871 3 3
Water 527 38 13
Wine 178 13 3
Yeast 1484 8 10

Cardiotopography 2126 24 10
MobileKSD 2855 71 56
Ozone 2536 73 21
Seismic Bumps 2584 15 19
Internet Ads 3279 1555 2
PhonesAcc 2000 3 4
PhonesGyro 2000 3 4
WatchAcc 2000 3 4
WatchGyro 2000 3 4

Table 2
Performance of the constructive method JoinClosest when varying the a parameter value.

Algorithm Dev. (%) #Best Time (s)

JoinClosest(0.25) 1.10 1 8.99
JoinClosest(0.50) 20.51 2 9.89
JoinClosest(0.75) 22.77 0 9.85
JoinClosest(RND) 13.94 1 9.26

Table 3
Comparison of the two local search procedures, Best Improvement (BI) and First Improvement (FI),

Algorithm Dev. (%) #Best Time (s)

JoinClosest(0.25) 31.41 0 8.99
JoinClosest(0.25) + BI 0.24 2 15.24
JoinClosest(0.25) + FI 0.07 2 10.57

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

536



5.2. Comparison with the state-of-the-art procedures

The next experiment is devoted to evaluating the contribution of our best proposal by comparing it with the best previous
method identified in the state of the art, which is VNS-LIMA [9]. This method is a Variable Neighborhood Search algorithm
that follows the ‘‘Less Is More Approach”. We additionally include a third algorithm in the comparison to verify the superi-
ority of the proposal. In particular, we have considered an adaptation of the traditional k-means for balanced clustering [25].
This work follows the well-known k-means clustering algorithm, which is one of the most successful algorithms for cluster-
ing. Instead of selecting the closest centroid, it considers a set of clusters in which a point can be assigned, in order to satisfy
the size constraint. This assignment is performed by following the Hungarian algorithm [23].

Additionally, we have executed two state-of-the-art algorithms for the classic clustering problem. Specifically, the Hier-
archical Clustering with Optimal Transport (HCOT) [5] and the Continuous Greedy Randomized Adaptive Search Procedure
(CGRASP) [29]. Notice that these methods do not consider the balance constraint. Therefore, once an algorithm obtains a
solution, a post processing method is applied in order to make it feasible. In order to do so, each point belonging to an over-
loaded cluster is moved to the best cluster not yet completed.

With the aim of facilitating the comparison among algorithms, we report in Table 5 the same information than the one
reported in [9]. Specifically, we show the Mean Squared Error of (MSE) of every single instance achieved with the proposed
Strategic Oscillation algorithm (SO), when comparing with those obtained with HCOT, CGRASP, k-means with Hungarian
algorithm (KMH), and VNS-LIMA. All the algorithms have been executed in the same computer and the same time per
instance to have a fair comparison (last column of Table 5). We additionally consider in these experiments the whole set
of 25 instances. Instances where a procedure is not able to produce a feasible solution are marked with an asterisk symbol
0 � 0.

As we can observe, instance dimensions are rather different so it is hard to compare directly the MSE value. Therefore, we
consider the average deviation with respect to the best known value since this metric is dimensionless. In particular, SO pre-
sents an average deviation of 0.38% with respect to the best known value, while the deviation of VNS-LIMA rises up to 4.84%.
Finally, the HCOT, CGRASP, and KMH algorithms have a deviation of 23.70%, 54.35%, and 23.20%, respectively. Summarizing,
SO is able to reach the best known solution in most of the instances (19 out of 25). Symmetrically, in the 6 instances in which
SO does not obtain the best value, the corresponding result remains very close to the best known.

With the aim of studying the adaptability of the algorithms to different metrics, we evaluate the five procedures when
considering an alternative metric not used during the optimization phase. In particular, the well-known Davies-Bouldin
[10] index (DB) is analyzed. This index was proposed for evaluating the quality of clustering algorithms by reducing the
inter-cluster similarity while increasing the intra-cluster similarity. The smaller the index value, the better the clustering.
Table 6 shows the individual results of each algorithm over each instance evaluated with the Davies-Bouldin index.

These results are in line with those reported in Table 5, obtaining our method the best DB index in 16 out of 25 instances,
followed by VNS-LIMA (11 out of 25). As expected, algorithms not explicitly designed for the BMSSC problem present a mod-
erate performance. We can then conclude that the proposed Strategic Oscillation algorithm emerges as the best variant even
considering this new metric.

We complement these experiments by conducting a Friedman test to determine whether there exists statistically signif-
icant differences among the compared methods or not. The resulting p-value smaller than 0.0001, in both MSE and DB met-
rics, indicates that the proposed algorithm is statistically better than the competitors. Table 7 reports the associated rank
values for both MSE and DB for the five compared algorithms. These results confirm the superiority of the proposal when
considering short computing times, which is specially relevant when considering applications where clustering is just a
small part of the whole process that must be performed several times.

6. Experimental analysis

This section is devoted to deeply analyzing the parameters selected for the proposed algorithm. Specifically, we first test
the robustness and reliability of the proposed algorithm by executing 30 times the SO algorithm over the 4 instances of the
preliminary experimentation (Multiple Features, Vehicles, Yeast, and Image Segmentation). Considering that differences in
the objective function are rather large, we use the average deviation with respect to the best value found in the 30 indepen-
dent executions, since it is a dimensionless metric. We depict in Fig. 3 the associated box and whisker plot, reporting for each
instance quartiles, median, minimum, and maximum values (excluding outliers). see Table 8.

Table 4
Results obtained by Strategic Oscillation (SO) with different increments in the cluster size.

Algorithm Dev. (%) #Best Time (s)

JoinClosest(0.25) + FI 0.81 0 10.57
SO(0.10) 0.24 3 10.94
SO(0.25) 0.66 1 10.69
SO(0.50) 0.22 2 10.82
SO(0.75) 0.09 3 11.21

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

537



Table 5
Final comparison among SO, VNS-LIMA, KMH, CGRASP and HCOT considering the MSE metric. Best values found with each method are highlighted with bold
font.

Instance Name HCOT CGRASP KMH VNS OS Time (s)

Body 1.14E+05 1.14E+05 2.34E+05 1.14E+05 1.14E+05 1.08
Breast cancer * 1.38E+08 1.38E+08 1.38E+08 1.38E+08 0.90
Glass 9.70E+02 9.36E+02 7.29E+02 5.08E+02 5.25E+02 0.27
Image Segmentation * 2.24E+07 2.75E+07 2.14E+07 2.14E+07 19.24
Ionosphere 2.52E+03 2.44E+03 2.52E+03 2.43E+03 2.43E+03 0.32
Iris 8.14E+01 8.14E+01 8.90E+01 8.14E+01 8.14E+01 0.06
Libra * 6.66E+07 6.70E+07 6.42E+07 6.41E+07 0.57
Multiple Features 2.04E+06 2.00E+06 2.10E+06 1.99E+06 1.96E+06 16.29
Synthetic Control 1.64E+06 1.09E+06 1.28E+06 1.14E+06 1.01E+06 0.97
Thyroid 3.82E+04 3.70E+04 3.87E+04 3.44E+04 3.44E+04 0.12
User Knowledge 8.31E+01 7.17E+01 8.06E+01 7.09E+01 7.03E+01 0.49
Vehicle * 6.32E+06 4.76E+06 2.93E+06 2.90E+06 2.13
Vowel * 6.47E+07 1.58E+08 7.53E+07 6.45E+07 2.18
Water * 2.73E+10 7.88E+09 7.94E+09 7.93E+09 0.96
Wine * 5.55E+06 3.77E+06 3.83E+06 3.77E+06 0.08
Yeast 6.74E+01 5.82E+01 6.01E+01 5.41E+01 5.35E+01 8.84

Cardiotopography 1.19E+07 2.72E+07 1.10E+07 8.50E+06 8.60E+06 23.24
MobileKSD * 3.85E+10 3.28E+10 3.12E+10 3.11E+10 141.65
Ozone * 3.61E+09 2.56E+09 2.46E+09 2.56E+09 61.93
Seismic Bumps * 1.07E+14 2.96E+13 3.05E+13 2.94E+13 56.93
Internet Ads 3.76E+04 * * 3.74E+04 3.75E+04 24.41
Phones Acc 4.16E+02 * 3.35E+02 3.11E+02 2.63E+02 20.14
Phones Gyro 3.65E+01 * 3.42E+01 3.47E+01 3.37E+01 13.72
Watch Acc 2.08E+03 * 1.80E+03 2.65E+03 1.68E+03 30.86
Watch Gyro 1.64E+01 * 1.58E+01 1.54E+01 1.54E+01 22.86

Table 6
Final comparison among SO, VNS-LIMA, KMH, CGRASP and HCOT considering the Davies-Bouldin metric. Best values found with each method are highlighted
with bold font.

Instance Name HCOT CGRASP KMH VNS OS Time (s)

Body 9.25E+01 9.24E+01 8.35E+02 9.23E+01 9.24E+01 1.08
Breast cancer * 1.64E+02 1.65E+02 1.64E+02 1.64E+02 0.90
Glass 3.02E+02 5.80E+02 9.12E+01 3.67E+01 6.14E+01 0.27
Image Segmentation * 1.11E+03 9.43E+02 8.33E+02 1.15E+03 19.24
Ionosphere 3.07E+02 2.65E+02 3.08E+02 2.64E+02 2.64E+02 0.32
Iris 1.64E+01 1.64E+01 2.02E+01 1.64E+01 1.64E+01 0.06
Libra * 3.24E+02 4.38E+02 2.88E+02 3.16E+02 0.57
Multiple Features 1.18E+03 9.83E+02 1.25E+03 9.50E+02 8.40E+02 16.29
Synthetic Control 1.53E+03 2.90E+02 3.67E+02 4.19E+02 2.36E+02 0.97
Thyroid 1.16E+02 9.86E+01 1.75E+02 9.00E+01 9.00E+01 0.12
User Knowledge 2.55E+02 1.68E+02 2.02E+02 1.56E+02 1.42E+02 0.49
Vehicle * 2.64E+02 9.01E+02 1.40E+02 1.05E+02 2.13
Vowel * 1.47E+02 1.08E+03 1.71E+02 1.47E+02 2.18
Water * 1.58E+03 4.72E+01 2.71E+01 2.53E+01 0.96
Wine * 2.72E+01 1.49E+01 1.51E+01 1.49E+01 0.08
Yeast 7.00E+02 5.89E+02 3.65E+02 3.65E+02 3.63E+02 8.84

Cardiotopography 1.41E+03 3.61E+03 7.75E+02 5.02E+02 4.85E+02 23.24
MobileKSD * 1.95E+03 3.92E+02 3.89E+02 3.94E+02 141.65
Ozone * 5.16E+03 2.91E+02 1.50E+02 1.46E+02 61.93
Seismic Bumps * 3.58E+04 2.11E+02 4.23E+03 2.14E+02 56.93
Internet Ads 3.12E+04 * * 2.57E+04 3.01E+04 24.41
Phones Acc 2.10E+03 * 6.98E+02 3.84E+03 5.22E+02 20.14
Phones Gyro 1.23E+04 * 1.81E+03 1.87E+03 1.66E+03 13.72
Watch Acc 1.46E+03 * 1.19E+03 2.30E+05 1.36E+03 30.86
Watch Gyro 1.54E+04 * 6.60E+03 6.09E+03 6.14E+03 22.86

Table 7
Friedman test for both MSE (Mean Squared Error) and DB (Davies-Bouldin) metrics.

Metric HCOT CGRASP KMH VNS OS p < 0:01

MSE 4.38 3.62 3.50 2.10 1.40 YES
DB 4.34 3.62 3.30 2.10 1.64 YES

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

538



As it can be derived from the results, the proposed algorithm presents a robust behavior when considering 30 indepen-
dent executions in the instances considered for the preliminary experiments. As expected, the combination of GRASP with SO
tries to find a balance between diversification and intensification. Specifically, in all the instances the mean (represented
with an x) and median (represented with an horizontal value) values are very close, with the median under the mean in most
of the cases. This result indicates that the algorithm is able to diversify the search to explore a larger portion of the search
space but the intensification phase is able to lead the algorithm to high-quality solutions.

We additionally conduct a sensitivity analysis. In particular, for each parameter of the SO algorithm, namely a (the bal-
ance between greediness/randomness of the constructive method) and b (the percentage of cluster size increment inside
Strategic Oscillation), we evaluate different possibilities while fixing the remaining parameters to the best values found
in the preliminary experimentation. In particular, we test values a ¼ fRND;0:25;0:50;0:75g and b ¼ f0:1;0:25;0:5;0:75g.
For each instance and each parameter setting, we execute 30 independent iterations of each algorithm.

We consider the Wilcoxon signed rank test to determine if there exists significant statistical differences among variants
(in terms of the average objective function value) when we only vary a single parameter as mentioned above. The corre-
sponding Wilcoxon test shows that the different a configurations do not significantly affect the performance of the proposal.
Specifically, the associated p-values range from 0:181 to 0:742 which are considerably larger than the customary 0:05
threshold. This experiment shows that the proposed algorithm does not present a particular sensitivity with respect to this
parameter.

On the other hand, observing the b parameter, there are statistical differences in performance. Therefore, this experiment
justifies the election of the b ¼ 0:75, as shown in Table 4.

To further investigate the performance of the proposed SO procedure, we conduct a convergence analysis by considering
time-to-target plots (TTTPlot), which is essentially a run-time distribution [1]. The experimental hypothesis in TTTPlots is
that running times fit a two parameter, or shifted, exponential distribution. Then, for a particular instance, the execution
time needed to find an objective function value at least as good as a given target value is recorded. In the context of the
heuristic optimization, the algorithm is determined a pre-established number of times on the selected instance and using

Fig. 3. Box and whisker plot for 30 independent executions.

Table 8
Sensitivity analysis for a and b parameters.

a 0.25 0.50 0.75

0.50 0.686
0.75 0.181 0.581
RND 0.196 0.123 0.742

b 0.10 0.25 0.50

0.25 0.012
0.50 0.002 0.000
0.75 0.133 0.019 0.002

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

539



the given target solution. For each of run, the random number generator is initialized with a different seed and therefore the
executions are assumed to be independent. To compare the empirical and the theoretical distributions, we follow a standard
graphical methodology for data analysis [7], execute our Algorithm 1 times, and recording for each instance/target pair the
corresponding running time. Fig. 4 shows the TTTPlot for those instances in the set of preliminary experiments. In these fig-
ures, each value in the abscissa axis represents a running time, while each value in the ordinate axis, reports the probability
of obtaining the best-known value. This experiment confirms the expected exponential run-time distribution of our SO algo-
rithm. If we analyze the instances Multiple Features, Vehicles, and Yeast, we can observe that the probability of SO to find a
solution at least at good as the target value in less than a second is close to 100%. However, regarding Image Segmentation,
which is a more complex instance, this probability is near 50% when considering 10 s, requiring about 15 s to rise the prob-
ability to 100%.

7. Conclusions

We proposed a Greedy Randomized Adaptive Search Procedure (GRASP) coupled with Strategic Oscillation (SO) algorithm
for the Balanced Minimum Sum-of-Squares Clustering Problem (BMSSC), which consists in grouping a set of s-dimensional
points into kclusters maximizing the similarity among them. The experiments performed showed that SO is able to modify
the search space, allowing us to explore solutions that are unattainable by using traditional heuristic procedures. This behav-

Fig. 4. Time to target plots for the preliminary instances.

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

540



ior leads our proposal to obtain better results than the best previous method found in the state of the art. The simplicity of
the method and its speed is essential when considering large amounts of data that are continuously generated (i.e., data
derived from the stock exchange, social networks, etc.) and must be quickly analyzed.

The proposed algorithm presents the best results in the literature for the BMSSC problem, requiring small computing
times. As we follow the GRASP methodology, the algorithm is easily scalable to a distributed system, in order to further
reduce the computing times. The main limitation of our algorithm emerges when dealing with a variant in which the size
of the clusters is not fixed and can vary during the execution. In that case, a deep redesign of the algorithm should be per-
formed to adapt the method to this new problem. Furthermore, the algorithm is designed to work with a single neighbor-
hood structure. In order to include more neighborhoods, one shall consider a more complex local search method, such as
Variable Neighborhood Descent, which embeds several neighborhood structures in the same algorithm.

In order to summarize the main features of our procedure, we report in Table 9 its main advantages and disadvantages.
Focusing on the first disadvantage mentioned, this paper deals with the BMSSC, in which all the clusters share the same

size. The proposed algorithm is designed to obtain high quality solutions when the cluster size is constrained. This proposal
can be easily adapted to an unconstrained problem by modifying the feasibility constraint and the greedy criterion of the
algorithm, in order to consider alternative moves inside the local search and constructive procedure.

As a metaheuristic algorithm, GRASP does not guarantee optimality. However, it must be born in mind that, in most real
world applications, finding the optimum value is not feasible, mainly due to the complexity of the problem under consider-
ation. Nonetheless, the proposed GRASP algorithm tries to balance solution quality and computational cost, being able to
reach high quality solutions in reasonable computing time. Due to the size of the instances under consideration, using an
exact solver cannot be considered.

This algorithm considers a single neighborhood structure since the results obtained are excellent, and it is not necessary
to increase the computational time by including additional neighborhoods. However, the algorithm can be easily modified to
consider new neighborhood structures, by extending the proposed local search procedure.

CRediT authorship contribution statement

R. Martín-Santamaría: Conceptualization, Methodology, Software. J. Sánchez-Oro: Conceptualization, Methodology,
Software. S. Pérez-Peló: Conceptualization, Methodology, Software. A. Duarte: Conceptualization, Methodology, Software.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

We would like to thank professors Costa, Aloise, and Mladenovic for kindly sending us the executable version of their
algorithm and for the help configuring it. This work has been partially supported by the ‘‘Ministerio de Ciencia, Innovación
y Universidades” under grant Ref. PGC2018-095322-B-C22 and ‘‘Comunidad de Madrid” and ‘‘Fondos Estructurales” of Euro-
pean Union with grant Ref. S2018/TCS-4566.

References

[1] R.M. Aiex, M.G. Resende, C.C. Ribeiro, Ttt plots: a perl program to create time-to-target plots, Optimiz. Lett. 1 (4) (2007) 355–366.
[2] D.J. Aloise, D. Aloise, C.T.M. Rocha, C. Ribeiro, J.R. Filho, L.S. Moura, Scheduling workover rigs for onshore oil production, Discrete Appl. Math. 154 (5)

(2006) 695–702.
[3] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007,

pp. 1027–1035.
[4] S. Chakraborty, S. Das, Detecting meaningful clusters from high-dimensional data: a strongly consistent sparse center-based clustering approach, in:

IEEE Trans. Pattern Anal. Mach. Intell., 2020.
[5] S. Chakraborty, D. Paul, S. Das, Hierarchical clustering with optimal transport, Stat. Probability Lett. 163 (2020) 108781.
[6] S. Chakraborty, D. Paul, S. Das, J. Xu, Entropy weighted power k-means clustering, in: International Conference on Artificial Intelligence and Statistics,

PMLR, 2020, pp. 691–701.

Table 9
Advantages and disadvantages of the proposed algorithm.

Advantages Disadvantages

Best results in the literature Not suitable if the size of the clusters is not fixed
Fast method Does not guarantee optimality
Easily adaptable to new objective functions Works with just one neighborhood structure
Scalable to a distributed architecture
Independent of the dataset

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

541



[7] J.M. Chambers, Graphical methods for data analysis: 0, Chapman and Hall/CRC, 2017.
[8] E.C. Chi, K. Lange, Splitting methods for convex clustering, J. Comput. Graph. Stat. 24 (4) (2015) 994–1013.
[9] L.R. Costa, D. Aloise, N. Mladenović, Less is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering, Inf.

Sci. 415 (2017) 247–253.
[10] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell. 2 (1979) 224–227.
[11] J. Desrosiers, N. Mladenović, D. Villeneuve, Design of balanced mba student teams, J. Oper. Res. Soc. 56 (1) (2005) 60–66.
[12] A. Duarte, J. Sánchez-Oro, M.G.C. Resende, F. Glover, R. Martí, Greedy randomized adaptive search procedure with exterior path relinking for

differential dispersion minimization, Inf. Sci. 296 (2015) 46–60.
[13] A.W.F. Edwards, L. Cavalli-Sforza, A method for cluster analysis, Biometrics 21 (2) (1965) 362–375.
[14] T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set covering problem, Oper. Res. Lett. 8 (2) (1989) 67–71.
[15] T.A. Feo, M.G.C. Resende, S.H. Smith, A greedy randomized adaptive search procedure for maximum independent set, Oper. Res. 42 (5) (1994) 860–878.
[16] F. Glover, J.-K. Hao, The case for strategic oscillation, Ann. Oper. Res. 183 (1) (2011) 163–173.
[17] T.F. González, On the computational complexity of clustering and related problems, in: R.F. Drenick, F. Kozin (Eds.), System Modeling and

Optimization, Berlin, Heidelberg. Springer, Berlin Heidelberg, 1982, pp. 174–182..
[18] L.W. Hagen, A.B. Kahng, New spectral methods for ratio cut partitioning and clustering, IEEE Trans. CAD Integrated Circuits Syst. 11 (9) (1992) 1074–

1085.
[19] A. Hinneburg, D.A. Keim, Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering, in: Proceedings of the

25th International Conference on Very Large Databases, 1999, pp. 506–517..
[20] K. Jajuga, A. Sokolowski, H.-H. Bock, Classification, clustering, and data analysis: recent advances and applications, Springer Science & Business Media,

2012.
[21] J. Jin, W. Wang, et al, Influential features pca for high dimensional clustering, Ann. Stat. 44 (6) (2016) 2323–2359.
[22] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm: analysis and implementation,

IEEE Trans. Pattern Anal. Mach. Intell. 24 (7) (2002) 881–892.
[23] H.W. Kuhn, The hungarian method for the assignment problem, Naval Res. Logist. Quarterly 2 (1–2) (1955) 83–97.
[24] M. Mahajan, P. Nimbhorkar, K. Varadarajan. The Planar k-Means Problem is NP-Hard, in: S. Das, R. Uehara (Eds.), WALCOM: Algorithms and

Computation, Berlin, Heidelberg. Springer, Berlin Heidelberg, 2009, pp. 274–285..
[25] M.I. Malinen, P. Fränti, Balanced k-means for clustering. In: P. Fränti, G. Brown, M. Loog, F. Escolano, M. Pelillo (Eds.), Structural, Syntactic, and

Statistical Pattern Recognition, Berlin, Heidelberg. Springer, Berlin Heidelberg, 2014, pp. 32–41..
[26] R. Martí, A. Martínez-Gavara, J. Sánchez-Oro, A. Duarte, Tabu search for the dynamic Bipartite Drawing Problem, Comput. OR 91 (2018) 1–12.
[27] S.M. Mohammed, K. Jacksi, S. Zeebaree, A state-of-the-art survey on semantic similarity for document clustering using glove and density-based

algorithms, Indonesian J. Electrical Eng. Comput. Sci. 22 (1) (2021) 552–562.
[28] A. Pyatkin, D. Aloise, N. Mladenović, NP-Hardness of balanced minimum sum-of-squares clustering, Pattern Recogn. Lett. 97 (2017) 44–45.
[29] E. Queiroga, A. Subramanian, F. dos Anjos, L. Cabral, Continuous greedy randomized adaptive search procedure for data clustering, Appl. Soft Comput.

72 (2018) 43–55.
[30] M. Sevaux, A. Rossi, M. Soto, A. Duarte, R. Martí, GRASP with ejection chains for the dynamic memory allocation in embedded systems, Soft Comput. 18

(8) (2014) 1515–1527.
[31] L. Shapiro, G. Stockman, Computer Vision, Prentice-Hall, Upper Saddle River, NJ, 2001.
[32] H. Steinhaus, Sur la division des corps matériels en parties, Bull. Acad. Polon. Sci. Cl. III. 4 (1956) 801–804.
[33] W. Su, J. Hu, C. Lin, S.X. Shen, SLA-Aware Tenant Placement and Dynamic Resource Provision in SaaS, in: J.A. Miller, H. Zhu (Eds.), ICWS, IEEE Computer

Society, 2015, pp. 615–622.
[34] K. Wong, A Short Survey on Data Clustering Algorithms, in: 2015 Second International Conference on Soft Computing and Machine Intelligence (ISCMI)

, 2015, pp. 64–68.
[35] K. Wong, Z. Zhang, SNPdryad: predicting deleterious non-synonymous human SNPs using only orthologous protein sequences, Bioinformatics 30 (8)

(2014) 1112–1119.
[36] A.E. Xavier, V.L. Xavier, Solving the minimum sum-of-squares clustering problem by hyperbolic smoothing and partition into boundary and

gravitational regions, Pattern Recogn. 44 (1) (2011) 70–77.
[37] H. Xiong, J. Wu, J. Chen, K-means clustering versus validation measures: a data-distribution perspective, IEEE Trans. Systems, Man, and Cybernetics,

Part B 39 (2) (2009) 318–331.
[38] J. Xu, K. Lange, Power k-means clustering, in: International Conference on Machine Learning, PMLR, 2019, pp. 6921–6931.
[39] R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Networks 16 (3) (2005) 645–678.

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542

542



Chapter 7

An Efficient Algorithm for Crowd
Logistics Optimization

Title An Efficient Algorithm for Crowd Logis-
tics Optimization

Authors Raúl Mart́ın-Santamaŕıa, Ana Dolores
López Sánchez, Maŕıa Luisa Delgado
Jalón and José Manuel Colmenar Ver-
dugo

Publication date 2021
Journal Mathematics
Publisher MDPI
ISBN/ISSN 2227-7390
Impact Factor 2.592 (2021)
Rank by Impact Factor 21/333 (Q1, Mathematics)
DOI https://doi.org/10.3390/

math9050509

77

https://doi.org/10.3390/math9050509
https://doi.org/10.3390/math9050509


78



mathematics

Article

An Efficient Algorithm for Crowd Logistics Optimization

Raúl Martín-Santamaría 1 , Ana D. López-Sánchez 2 , María Luisa Delgado-Jalón 1,3

and J. Manuel Colmenar 1,*

����������
�������

Citation: Martín-Santamaría, R.;

López-Sánchez, A.D.; Delgado-Jalón,

M.L.; Colmenar, J.M. An Efficient

Algorithm for Crowd Logistics

Optimization. Mathematics 2021, 9,

509. https://doi.org/10.3390/

math9050509

Academic Editor: Fabio Caraffini

Received: 27 January 2021

Accepted: 23 February 2021

Published: 2 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science and Statistics Department, Universidad Rey Juan Carlos, Tulipán s/n, Móstoles,
28933 Madrid, Spain; raul.martin@urjc.es (R.M.-S.); marialuisa.delgado@urjc.es (M.L.D.-J.)

2 Department of Economics, Quantitative Methods and Economic History, Universidad Pablo de Olavide,
Ctra. de Utrera km 1, 41013 Sevilla, Spain; adlopsan@upo.es

3 Department of Economics, Quantitative Methods and Economic History, Universidad Rey Juan Carlos,
Tulipán s/n, Móstoles, 28933 Madrid, Spain

* Correspondence: josemanuel.colmenar@urjc.es

Abstract: Crowd logistics is a recent trend that proposes the participation of ordinary people in the
distribution process of products and goods. This idea is becoming increasingly important to both
delivery and retail companies, because it allows them to reduce their delivery costs and, hence, to
increase the sustainability of the company. One way to obtain these reductions is to hire external
drivers who use their own vehicles to make deliveries to destinations which are close to their daily
trips from work to home, for instance. This situation is modelled as the Vehicle Routing Problem with
Occasional Drivers (VRPOD), which seeks to minimize the total cost incurred to perform the deliveries
using vehicles belonging to the company and occasionally hiring regular citizens to make just one
delivery. However, the integration of this features into the distribution system of a company requires
a fast and efficient algorithm. In this paper, we propose three different implementations based on the
Iterated Local Search algorithm that are able to outperform the state-of-art of this problem with regard
to the quality performance. Besides, our proposal is a light-weight algorithm which can produce
results in small computation times, allowing its integration into corporate information systems.

Keywords: vehicle routing problem; crowd logistics; crowdshipping; occasional drivers; iterated
local search

1. Introduction

Nowadays, many people use e-commerce to buy and sell all kind of goods, products
and services. The 24/7 availability of the websites, the wide array of products and services,
the easy reachability to get any of them in any place, the easy way of comparing prices and
the possibility of gather opinions from other customers are some of the advantages that
support the use of the e-commerce. These reasons, together with the lack of time of most
citizens, make e-commerce continue to grow, which leads to an increase on the delivery
services, especially in the last-mile operations [1].

Both delivery companies and retailers which also distribute their products strive to
minimize the total cost and the delivery time to be more efficient [2]. However, the increase
of delivery operations impacts on the sustainability of a company, either by enlarging the
routes or by performing door-to-door distributions, which could require increasing the
number of vehicles attending customers [3]. In an early stage of the last-mile development,
ref. [4] held that the cost related to the last-mile operation may range between 13 and
75% of the total distribution cost. Therefore, the optimization of this step of the supply
chain led to an important reduction on the distribution costs for many delivery companies
that focused on solving the last-mile problem to reduce costs. Since then, many delivery
companies have focused on reducing this cost, but it is important to emphasize that this
range may vary significantly depending on the specific problem under consideration.

Mathematics 2021, 9, 509. https://doi.org/10.3390/math9050509 https://www.mdpi.com/journal/mathematics



Mathematics 2021, 9, 509 2 of 19

Recently, a new trend called crowd logistics is gaining relevance [5–7]. The idea behind
this concept is to favor the participation of ordinary citizens in the distribution of goods.
The authors of [6] distinguish between four types of crowd logistics: crowd storage, crowd
local delivery, crowd freight shipping and crowd freight forwarding. We will only focus
on one of them: the crowd local delivery or crowdshipping, as called by other authors [8].
In particular, the key concept of crowdshipping here is to either deliver orders through
other customers, or hire regular people close to the delivery route to occasionally perform
a delivery on behalf of a logistics operator. The implementation of this idea may contribute
to the sustainability of a company because it will reduce the logistics network [6] and,
eventually, reduce the urban traffic levels [9] as well as the logistics costs [10]. In addition,
this can be an opportunity to obtain extra incomes for the occasional couriers at the cost
of slightly modifying their daily route from work to home or vice versa [6]. Note that
crowshipping can be seen as an example of sustainable transportation apart from other
typical examples such as walking, cycling, carpooling, car sharing, or green vehicles [11].

The concept of crowd logistics is mainly related to the vehicle routing problem (VRP).
The VRP aims to find the best routes to satisfy the demand of a set of customers, given a
fleet of vehicles [12,13]. Therefore, since crowd logistics involves the last-mile operations,
it can be tackled from the VRP point of view.

In this paper we propose a light-weight and efficient algorithm to optimize the last-
mile logistics including the concept of crowdshipping. As it is well-known, the last-mile
delivery problem consists on the transportation of the goods from the warehouse, called
depot in this work, and the final destination, usually the customer’s home or business. Last-
mile problems are considered very important regarding sustainability since they involve
the less efficient phase of the logistic process [14]. Furthermore, in this work, we consider
those deliveries to be performed by ordinary citizens, the occasional drivers, as part of a
crowdshipping strategy, in addition to the own staff of the delivery company. Previous
works like [15] describe the impact on sustainability of this kind of distribution models.

Given the small computation time and low complexity of our algorithm, it can be
included in a corporate information system with the objective of optimizing a set of delivery
orders taking into account both delivery routes and occasional couriers. Hence, a company
will be able to reduce its costs and increase its sustainability levels by hiring occasional
couriers, since the proposed algorithm is able to optimize the last mile routes taking into
account the collaboration of occasional drivers.

In order to assess our proposal, we have studied the Vehicle Routing Problem with
Occasional Drivers (VRPOD). VRPOD is able to model last-mile situations appearing in
delivery companies that allow crowdshipping in addition to their own staff. The VRPOD
assumes that the company has a fleet of vehicles handled by regular drivers who make
deliveries limited by the capacity of the vehicles. Furthermore, the company is able to hire
a number of occasional drivers to make a single delivery using their own vehicles. The
objective of the VRPOD is to minimize the total cost, calculated as the sum of the costs
incurred by the regular drivers performing traditional routes, beginning and ending at
the depot, plus the cost of paying the occasional drivers, since they provide their service
in exchange of remuneration. To the best of our knowledge, this problem was firstly
defined by [16], who studied the potential benefits of including occasional drivers to make
deliveries as a way of crowdshipping. The authors considered two compensation schemes
to pay fixed fees to every occasional driver.

Since then, new variants of the VRPOD have been analyzed. In the work proposed
in [17], the authors considered that occasional drivers appear dynamically and they assume
that stochastic information is known about this behaviour. Furthermore, occasional drivers
could serve one or more of the customers. The authors propose a stochastic mixed-integer
programming formulation to solve the problem. They study the effects of uncertainty
to design the routes when the occasional drivers can appear later in the day. A similar
work by [18] includes two aspects: the possibility for occasional drivers to make multiple
deliveries and the time windows for the customers and so the occasional drivers. The



Mathematics 2021, 9, 509 3 of 19

authors study the advantages of employing two different alternatives: occasional drivers
that are allowed to perform multiple deliveries and occasional drivers that can split the
deliveries. Their proposal is proven using two different mathematical models. Later on, a
variant of the VRPOD in which occasional drivers may accept or reject the assigned delivery
with a certain probability was presented in [19]. The authors solve the problem with a
bi-level methodology in which they start by including all the deliveries in regular routes
without the use of occasional drivers, and then include deliveries to occasional drivers
taking into account their acceptance probabilities modelled using a uniform distribution.

There exist other problems related to the VRPOD although they present some dif-
ferences since they focus on the crowdshipping. In [20], a variant of the dynamic pickup
and delivery problem is introduced, in which occasional drivers dynamically appear to
make deliveries in exchange for a small compensation. They study how profitable is
the use of a platform that matches deliveries and occasional drivers in order to facilitate
on-demand delivery. Furthermore, they use regular routes to serve customers for which
the use of an occasional driver is not feasible or not efficient. They solve the problem using
a rolling horizon framework approach to determine the matches based on the available
information, and propose an exact solution approach to solve the matching problem each
time new information appears. Other similar problem dealing with the crowdshipping
is studied by [21]. In this paper the authors do not consider the use of regular routes to
perform the deliveries but they just assume the use of occasional drivers (or crowdshippers),
who can accept more than one delivery to transport more than one item meanwhile the
vehicle capacity is not exceeded. They propose an exact solution methodology to solve the
specific problem.

Among all the previous works and approaches to the VRPOD, we have selected the
definition stated in [16] in order to assess our proposal. As it will be shown, we propose an
algorithm able to either obtain optimal solutions when the optimal value is known, or to
improve the best-known solutions, providing high-quality results in a reasonable amount
of time for the VRPOD. Hence, our main contribution after [16] is the new algorithmic
design, which is fast enough to be included in corporate information systems, and obtains
better solutions than the previous work. To this end, we propose three different variants
of the Iterated Local Search (ILS) algorithm, since this methodology has been successfully
used to deal with many different variants of vehicle routing problems (VRP). For instance,
in [22] an ILS algorithm solves the VRP with backhauls, being able to obtain high-quality
solutions in short computational time. In [23], an ILS method is proposed to address
another variant of this type of problems, the Multi-Commodity Multi-Trip VRP with Time
Windows, outperforming the previous algorithm. Finally, in [24], the proposed ILS deals
with the Split Delivery VRP obtaining highly competitive results.

Specifically, in this paper we present a multi-start ILS algorithm where a greedy ran-
domized constructive method is proposed, and five different neighborhoods are combined
to form a new extended neighborhood, which is explored by the local search step of ILS
for the solution of the VRPOD. Besides, three perturbation strategies have been proposed
and analyzed. In addition to the customary ILS implementation, we propose a straightfor-
ward parallelization of the ILS method, and a collaboration scheme where different ILS
configurations cooperate in parallel. All these contributions have been assessed in a set of
preliminary experiments where the final configuration and the parameter values for the
algorithm have been determined. Finally, a detailed comparison with the state of the art
is performed.

The rest of the paper is organized as follows. Section 2 describes the VRPOD problem.
Section 3 details the algorithmic proposal implemented to solve the problem under study.
Section 4 provides an extensive computational study, and performs a comparison against
the state of the art. Finally, Section 5 draws the conclusions of this work and discusses
future research.



Mathematics 2021, 9, 509 4 of 19

2. Problem Definition

The VRPOD can be formally stated as follows. Let G = (V, A) be a complete directed
graph, where V = {0, K, C} is the set of vertices, with vertex 0 as the depot, K = {1, . . . , k}
the set of vertices representing the location of the occasional drivers and C = {1, . . . , n}
the set of vertices corresponding to the location of customers (|V| = 1 + k + n). Each node
i ∈ C has an associated positive demand qi > 0. Furthermore, A = {(i, j) : i, j ∈ V, i 6= j}
is the arc set, where (i, j) represents a path between vertices i and j. For each pair (i, j) ∈ A,
let dij ≥ 0 be the length of the shortest path that connects i and j. The cost of a route is the
sum of the distances between consecutive nodes, including the depot.

Customers can be served by regular drivers on routes starting and ending at the depot.
We consider their vehicles to have a limited capacity Q. This variant of the problem allows
to hire occasional drivers to make a single delivery to a customer if the following condition
is satisfied. An occasional driver k ∈ K can serve customer i ∈ C if d0i + dik ≤ ζd0k with
ζ ≥ 1. In other words, if the extra distance to get the occasional driver from the depot
through the customer i is less than or equal to (ζ − 1) times the direct distance from the
depot to the occasional destination’s location; d0i + dik − d0k ≤ (ζ − 1)d0k. Therefore, ζ is
referred as the flexibility of the occasional drivers. It is important to emphasize that a trip
of an occasional driver is measured as the distance traveled from the depot to the customer
and from the customer to the occasional driver location. Furthermore, it is assumed that
the capacity of any occasional driver is enough to satisfy the demand of any customer but
one occasional driver can serve a maximum of one customer.

The objective of the VRPOD is to minimize the aggregated cost incurred by regular
and occasional drivers. Notice that an occasional driver is paid only if he/she serves a
customer. This payment to the occasional driver is computed considering two different
schemes, namely Scheme I and Scheme II. Both take into account a compensation rate
denoted by ρ. In Scheme I, the compensation does not depend on the occasional drivers’
destination. Thus, every occasional driver receives ρd0i as compensation for making a
delivery to customer i. In this scheme, the compensation rate is limited to 0 < ρ < 1.
Therefore, this scheme only requires to know the location of the customers, which means
that occasional drivers serving customers far from their locations are not compensated
for the extra mileage incurred. As an alternative, Scheme II defines a compensation that
actually depends on the destination of the occasional drivers, the customer location and the
depot. In this case, each occasional driver k receives a compensation of ρ(d0i + dik − d0k)
for the extra mileage incurred for serving the customer i, with ρ ≥ 1. This variant is
more difficult to put into practice since the company needs to know the destination of
the occasional drivers. For further details, see [16] where a mathematical formulation
is included.

In [16], the previously explained compensation schemes were studied to assess the
advantages and disadvantages of implementing both schemes, taking also into account
the economical benefits for the companies depending on the number and flexibility of the
occasional drivers. A detailed formulation of this problem can be found in [16]. Despite
that realistic situations may generate different compensation schemes depending on each
specific delivery company payment policy, we will assess the efficiency of our proposed
algorithms by means of a comparison with [16]. Consequently, we consider that the occa-
sional drivers can only visit one customer since they are not professional couriers because
splitting the deliveries would be more expensive for the delivery company. Besides, if the
occasional driver is available to perform a delivery, then the probability of rejecting this
service is uncertain and, likely, very low. Hence, we do not take into account this feature.

3. Algorithmic Proposal

In this paper, an Iterated Local Search (ILS) algorithm is proposed to tackle the VRPOD
problem. This metaheuristic, see [25], proposes the coupling of a local search method with
a perturbation or disturbance process that allows the local search to escape from local
optima. We selected this algorithm due to its simple design, and, at the same time, very



Mathematics 2021, 9, 509 5 of 19

effective performance. In fact, its design favors the implementation of parallel cooperative
schemes, as will be later explained. In particular, we have used a multi-start approach
for the ILS which accepts four different parameters: nc, which determines the number
of constructions to be generated, that is, the number of starts of the algorithm; α, which
controls the greediness of the construction of solutions; np, which corresponds to the
number of perturbations that will be performed; and β, which is the perturbation intensity.

The pseudo-code of our proposal is shown in Algorithm 1. As stated before, ILS
iterates nc times generating a new solution by means of the constructive method (step 3)
on each iteration. Then, a new loop begins, which will disturb and improve the solution np
times (steps 4 to 10). After the perturbation and improvement (steps 5 and 6), the objective
function value of the resulting solution S

′′
is compared with the current solution previous

to the perturbation, S. If the new solution is better, the current best solution is updated
(steps 7 to 9). Finally, the best solution is returned in step 15.

Algorithm 1 ILS(nc, α, np, β)

1: S? ← ∅

2: for 1 . . . nc do

3: S← ConstructiveMethod(α)

4: for 1 . . . np do

5: S
′ ← Perturbation(S, β)

6: S
′′ ← LocalSearch(S

′
)

7: if f (S
′′
) < f (S) then

8: S← S
′′

9: end if

10: end for

11: if f (S) < f (S?) then

12: S? ← S

13: end if

14: end for

15: return S?

Next, each one of the components of the ILS method will be described, as well as
their complexity both in terms of time and space. Notice that the complexity of ILS is the
maximum of its components.

3.1. Constructive Method

In order to generate a variety of different and good-quality initial solutions, a GRASP
methodology has been implemented. GRASP (Greedy Randomized Adaptive Search
Procedure) was proposed in [26] and formally defined in [27] as an iterative algorithm
with two phases: a randomized construction phase that uses a greedy function to build
solutions followed by a local search phase. Two main reasons lead us to select the GRASP
methodology for the constructive phase: on the one hand, it is able to produce high-quality
and diverse solutions by tunning the value of the α parameter, making possible to explore
wider regions of the solutions space; on the other hand, its simple design makes it fast,
being able to obtain a large number of initial feasible solutions in tiny computing times.



Mathematics 2021, 9, 509 6 of 19

Given that the ILS procedure performs its own local search after the perturbation, we only
execute the randomized construction phase in the constructive method.

A solution for the VRPOD is represented as a set S of assignments corresponding either
to routes of regular vehicles or to occasional drivers, considering that each occasional driver
can attend only one customer, and each customer is attended only once. Hence, we propose
a greedy function g(S, ac) for the GRASP construction phase. This function calculates the
increase of the objective cost value in a given solution S due to a route assignment ac, being
c a customer of the instance. In this context, ac represents any valid assignment that does
not break any problem constraint: each customer can be assigned either to any existing
route (in any position, as long as the maximum capacity is not exceeded), to a new route or
to any occasional driver available for the given customer.

Algorithm 2 details the pseudo-code of the proposed constructive method, which adds
assignments to an initially empty solution S (step 1). The candidate list CL is created by
including all possible assignments for each customer. We represent this process of obtaining
all the assignments for the set of customers C with the method ObtainValidAssignments
shown in step 2. The constructive procedure iterates until the CL is empty, that is, all
customers are assigned either to a regular route or to an occasional driver (steps 3–11).
At each iteration of the construction, all the assignments in CL are evaluated with the
greedy function, g(S, ac) , obtaining the best and worst values, gmin and gmax, respectively
(steps 4 and 5) to calculate the threshold, th (step 6). This threshold determines which
assignments enter to the restricted candidate list, RCL (step 7). The method is able to
control the balance between greediness and randomness by means of the parameter α,
with 0 ≤ α ≤ 1. If α = 0, then only those assignments with the best value (gmin) are
included in RCL, which is the full greedy case. If α = 1 then the RCL will contain all the
candidates and, therefore, the method will be completely random. Once the RCL is filled
with assignments, one of them is randomly selected following an uniform distribution
(step 8), whose corresponding customer is denoted as c′. This assignment is then added to
the current solution in step 9, and the CL is updated by removing all the assignments of the
selected customer (step 10). This process is repeated until there are no valid assignments
in the CL, which only happens after every customer has been assigned either to a regular
route or an occasional driver. Therefore, the space complexity of the GRASP constructive
method is O(|V|), as the data structures size scales linearly with the number of customers
and occasional drivers, while the time complexity is O(|C| × |V|).

Algorithm 2 ConstructiveMethod(α)

1: S← ∅

2: CL← ObtainValidAssignments(C)

3: while CL 6= ∅ do

4: gmin = min
v∈CL

g(S, ac)

5: gmax = max
v∈CL

g(S, ac)

6: th← gmin + α(gmax − gmin)

7: RCL← {ac : v ∈ CL∧ g(S, ac) ≤ th}

8: ac′ ← SelectRandom(RCL)

9: S← S ∪ {ac′}

10: CL← CL \ {ac ∈ CL : c = c′}

11: end while

12: return S



Mathematics 2021, 9, 509 7 of 19

3.2. Local Search

Once the construction of a solution is detailed, the local search procedure (step 6
of Algorithm 1) is next defined. In general terms, a local search algorithm traverses a
neighborhood of solutions returning the best one, which is known as the local optimum.
A neighborhood of solutions consists of the set of solutions that can be reached after
applying a move to the current solution. To take advantage of the problem knowledge,
our algorithm considers five different neighborhoods, N1 to N5. Therefore, the exploration
of several different neighbourhood structures is preferred instead of just one, in order to
reach high-quality solutions. The different neighborhoods are defined by the following
moves, where all of them but 2-opt were also used in [16]:

2-opt: a sub-sequence of a route is reversed [28]. Figure 1 shows a simple example
where the subtour delimited by customers B and E is reversed. This move produces the
neighborhood N1. The space and time complexity of completely exploring this neighbor-
hood, are O(1) and O(|C|2), respectively.

A

DEF

B C

Depot

A

DEF

B C

Depot

Figure 1. Example of 2-opt move between B and E nodes, which implies that edges AE and BF are
removed and edges AB and EF are inserted.

1-move: a customer served by a regular route is inserted into a different regular
route. Figure 2 shows how customer B is included in a different route. This move
produces the neighborhood N2. The space and time complexity of completely exploring
this neighborhood, are O(1) and O(|C|2), respectively.

A D

EBC

Depot

A D

EBC

Depot

Figure 2. Example of 1-move of B from solid line route to dashed line route.

Swap-move: a pair of customers served by different regular routes are exchanged.
Figure 3 shows the swap of customers B and E. This move produces the neighborhood N3.
The space and time complexity of completely exploring this neighborhood, are O(1) and
O(|C|2), respectively.

A D

E

F

B

C

Depot

A D

E

F

B

C

Depot

Figure 3. Example of swap move between B and E nodes.

In-move: a customer served by an occasional driver is included in a regular route.
As can be seen in Figure 4 the customer B initially visited by an occasional driver will be
served in a regular route after the in-move. This move produces the neighborhood N4.



Mathematics 2021, 9, 509 8 of 19

The space and time complexity of completely exploring this neighborhood, are O(1) and
O(|K| × |C|), respectively.

A

B

C

Depot

A

B

C

Depot

Figure 4. Example of In-move of B.

Out-move: a customer served by a regular route is assigned to an occasional driver.
Figure 5 shows how customer B, initially visited by a regular route, is now served by an oc-
casional driver. This move produces the neighborhood N5. The space and time complexity
of completely exploring this neighborhood, are O(1) and O(|K| × |C|), respectively.

A

B

C

Depot

A

B

C

Depot

Figure 5. Example of Out-move of B.

The proposed local search method considers an extended neighborhood formed by
the five defined neighborhoods. Algorithm 3 presents the pseudo-code of our proposal.
As seen in the algorithm, the method iterates while the current solution is improved
(steps 3 to 10). Hence, given an incumbent solution S, the five neighborhoods previously
defined are explored in step 4 obtaining S′, which is the best solution of the extended
neighborhood. Then, it is compared with the best solution S? in step 5, updating S?

if necessary in the following step. If no improvement was made, the guard variable is
changed in step 8. At the end, the algorithm returns the local optimum S? in step 11.

Algorithm 3 LocalSearch (S)

1: S? ← ∅

2: improve← true

3: while improve do

4: S
′ ← arg minS∈⋃5

i=1Ni(S)
f (S)

5: if f (S′) < f (S?) then

6: S? ← S′

7: else

8: improve← false

9: end if

10: end while

11: return S?



Mathematics 2021, 9, 509 9 of 19

3.3. Perturbation Procedures

Another important step of the ILS algorithm is the way in which a solution is perturbed
or modified. Given that this problem involves routes and occasional drivers assignations,
several different perturbations can be explored. Among them, three different perturbation
procedures are proposed in this paper, motivated by the need to reach a solution different
from the incumbent one and different to its neighbors, considering the neighborhoods
previously defined. The proposed perturbation procedures are next described:

RandomMove. A move from the five previously defined neighborhoods is randomly
selected and executed, without evaluating the performance impact over the objective
function. This perturbation is applied a fixed number of times, defined by the β parameter.
The complexity of this perturbation method corresponds with the time complexity of the
used neighborhood.

RouteCost. This strategy firstly ranks the routes by their cost per customer, and then
selects a route according to a probability distribution. The probability pri of choosing
a certain route ri is given by Equation (1). This approach to select the route to remove
is analogous to the one followed in [29] and [30] for the construction phase. In our
implementation, removing a route has a time complexity of O(|C|).

pri =
zri

∑
rj∈R

zrj

(1)

where zri represents the cost per customer of route ri, as seen in Equation (2), in which f (r)
represents the cost of a given route r, and |Cr| the number of customers attended by a route
r. In short, as a proportion, the more costly a route is per customer, the more likely it will
be destroyed.

zr =
f (r)
|Cr|

(2)

In case that all the customers where removed from a route, the route is deleted. This
process is repeated β times, producing a number of unassigned customers. Then, those
customers are reassigned using the proposed constructive method (see Section 3.1).

RandomDeassign. It randomly selects β customers following an uniform distribution,
and their assignments are removed from the solution. Then, these customers are reassigned
using the constructive method used in the ILS algorithm. In our implementation, removing
a random set of customers from a given solution has a time complexity of O(|C|2).

All the three perturbation methods require an input parameter which, for the sake of
clarity, we have labeled as β. This parameter determines the perturbation size, which has
different meaning on each perturbation method, as explained above. Hence, the β values
analyzed in the experimental experience will be selected accordingly.

3.4. Parallel Cooperation Proposal

The parallel implementation of an algorithm is usually a straightforward task that
allows the researcher to make use of the full performance of the computer where the
algorithm is run. Moreover, as shown by many works in the literature, parallelism can con-
tribute to the optimization search. For instance, in [31], a parallel Variable Neighborhood
Search (VNS) approach is presented, where a cooperation among threads is developed on a
master-slave scheme. The authors applied this proposal to successfully solve a well-studied
location problem, the p-median problem. Several cooperative schemes for VNS are also
studied in [32], showing that cooperation reaches better results than the straightforward
parallelization in the obnoxious p-median problem.

Based on the previously exposed ideas, we propose a cooperation scheme for the
parallel implementation of the ILS method. This cooperation is shown in Figure 6. As it can
be seen, the multi-start ILS execution is divided into N workers, namely ILS1 to ILSN . Each
worker will execute independently on a different thread following the implementation



Mathematics 2021, 9, 509 10 of 19

shown in Algorithm 1, but applying the cooperation scheme. In particular, each worker
creates a solution with the constructive procedure and, then, executes the internal for loop,
which corresponds to steps 4 to 10 in the algorithm, labelled as ILSLoop in the figure. After
a given number of executions of the loop, a migration of solutions is performed. In this
cooperation, each worker ILSi with i = 1...N “pushes” (sends) its current best solution to a
FIFO queue, qi, from which the following worker will “pull” (receive) a solution. Notice
that ILSN sends its solution to ILS1, creating a ring topology. Once a solution is taken from
the queue, the ILS loop executes on the incoming solution until the following migration or
the execution ends.

Figure 6. Parallel cooperation scheme for the ILS based on solution migrations.

The decoupling of workers by means of the queues makes this scheme very flexible,
allowing different cooperative structures like master-slave or full connection [32]. However,
we propose the ring configuration and the concept of round. A round is completed when a
solution has visited every worker once. Therefore, if we set the number of rounds to two,
each solution will visit each worker twice. In order to honor the total number of allowed
perturbations, the algorithm will divide the number of iterations of the original for loop,
given by the np parameter (see step 4 in Algorithm 1) by (N · rounds).

As it will be shown in the next section, the main advantage of this proposal is being
able to apply different configurations on each worker. Besides, given that the queues take
care of the synchronization of the threads, the execution time will be determined by the
slowest worker.

4. Computational Results

This section presents and discusses the computational experience conducted with the
algorithms proposed in this paper. Firstly, we describe a set of preliminary experiments
that allows us to tune the parameters of the algorithm. Then, we compare the performance
of our proposal against the state of the art, which was stated in [16].

In order to perform a fair comparison, we have used the very same set of instances as
the previous authors. In particular, they consider six types of instances: types C101 and
C201, where customers are clustered; types R101 and R201, where customers are randomly



Mathematics 2021, 9, 509 11 of 19

distributed; and types RC101 and RC201, where customers are partially clustered and
partially randomly distributed. Following the approach from [16], we generated the
different instances among the mentioned six types using the corresponding values for
the parameters that characterize each instance. These parameters and their values are
the following: the number of occasional drivers, |K|, with |K| = {13, 25, 50, 100}); the
compensation rate, ρ, with ρ = {0.05, 0.10, 0.20} and ρ = {1.2, 1.4, 1.6} for the compensation
schemes I and II, respectively; and the flexibility of the occasional drivers, ζ, with ζ =
{1.1, 1.2, 1.3, 1.4, 1.5, 1.6}. The combination of the values of the parameters across the six
types of instances according to [16] produced a total number of 480 instances.

The experiments were run on a machine provided with a Ryzen 7 1700 CPU running
at 3 GHz, with 16GB RAM. All the algorithms are implemented in Java 11.

4.1. Preliminary Experimentation

In order to select the best combination of parameters for our proposed algorithms, a
representative subset of 70 instances out of a total number of 480 instances, was selected
having the following final distribution: 8 instances with |K| = 13, 9 instances with |K| = 25,
26 instances with |K| = 50; and 27 instances with |K| = 100. The selection was made by
randomly picking an instance for each combination of |K|, ζ and ρ.

The first preliminary experiment is devoted to tuning the generation of the initial
solution. As stated in Section 3.1, a GRASP approach is proposed. Therefore, it is re-
quired to determine the best value of the α parameter for this method. Tables 1 and 2
show the results obtained when solutions are built using the GRASP constructive method
and the constructive method coupled with the proposed local search, respectively. In
particular, 10,000 constructions are generated in both experiments. The first column
of both tables contains the different values of the parameter α that have been studied:
α = {0, 0.25, 0.5, 0.75, 1, Random}, where Random means that a value for α was randomly
selected at each iteration, following a uniform distribution. Besides, the number of times
that the algorithm is able to attain the best value is shown in the second column (#B.),
being the best value the minimum value found by any of the compared algorithms in
each experiment; the third column averages the best costs obtained across the 70 instances
(Cost); and, finally, the last column shows the average computation time in seconds (T(s)).

Table 1. Performance of the different values of α for the proposed constructive method after
10,000 iterations.

α #B. Cost T(s)

0.00 57 542.3 5.47
0.25 0 852.3 7.20
0.50 1 1480.0 11.73
0.75 0 1947.0 13.47
1.00 0 2073.0 14.29

Random 15 569.5 11.64

Table 2. Performance of the different values of α for the proposed constructive method coupled with
the local search after 10,000 iterations.

α #B. Cost T(s)

0.00 29 470.9 11.13
0.25 22 474.0 18.44
0.50 17 479.6 24.41
0.75 16 480.2 26.61
1.00 17 484.3 27.00

Random 25 471.5 24.77



Mathematics 2021, 9, 509 12 of 19

The comparison of Tables 1 and 2 evidences the contribution of the local search.
In a pairwise comparison of rows from both tables, it can be seen that, for each value
of α, the local search reaches better results not only in the number of times that the
best value is obtained, but also in the quality of the solutions (see columns 2 and 3,
respectively). Obviously, the CPU time is increased when the local search is run after the
constructive process.

Given that the results of α = 0 and α randomly chosen are very similar when the local
search is run, both configurations will be selected for the next experiment.

In the following experiment we will assess the contribution of the proposed perturba-
tion methods. To this aim, the perturbations have been run with different values for the
perturbation size β, for both α = 0 and α randomly chosen. Table 3 shows the results of
this experiment, where the first column presents the two values of α considered in this
experiment; the second column shows the three perturbation procedures, and the third
column the values for the β parameter. The values for β have been determined experimen-
tally taking into account a similar computational effort among the selected values. The
remaining columns present the same results as in the previous experiment. To carry out
this experimentation, we have run Algorithm 1 after one construction (nc = 1), which is the
same for each instance in all the perturbation methods, hence performing a fair comparison
among them. Besides, the value of np, which is the number of times the perturbation
method is run, was set proportional to the number of occasional drivers. In particular,
np = 100 · |K|.

Table 3. Performance comparison among the proposed perturbation methods.

α Perturbation β #B. Cost T(s)

0 RandomMove 10 23 443.4 4.43
25 38 436.3 5.85
50 40 430.2 6.19
75 28 435.6 6.19

RouteCost 1 1 513.5 2.78
2 1 510.3 3.10
3 1 514.8 3.42

RandomDeassign 1 5 456.5 0.84
2 10 452.6 2.04
3 8 449.6 3.43
5 10 448.4 5.71

Random RandomMove 10 18 448.2 4.95
25 29 436.5 7.50
50 35 433.3 8.74
75 28 435.6 8.47

RouteCost 1 0 590.0 0.75
2 0 590.2 0.82
3 1 590.9 0.79

RandomDeassign 1 17 451.8 3.67
2 22 442.5 5.88
3 19 441.4 7.37
5 17 442.7 8.85

In view of the values shown in Table 3, it can be seen that the best results are obtained
by the RandomMove method with β = 50, for both α values, and that the influence of the
perturbation method over the final score is more important than the value of α.

Besides, the RandomDeassign method obtains competitive results, with a 2.5% dif-
ference with respect to the best perturbation configuration, while the RouteCost method
obtains the worst results.

Finally, in order to take into account other possible algorithmic strategies, we designed
a memetic approach [33] to tackle this problem. Here, the local search was combined with
a genetic algorithm where the routes were encoded with a double chromosome for both
the regular and the occasional drivers. The usual crossover and mutation operators were
also implemented and several configurations were explored in relation with the execution
of the local search step.



Mathematics 2021, 9, 509 13 of 19

From those preliminary experiments, we show in Table 4 the results of the most
relevant executions of the memetic approach, labeled as MA. In particular, the table
shows the comparison of number of best results obtained by the ILSM proposal, the exact
approach from the state of the art (IP) and the memetic algorithm (MA) on a subset of
small-sized instances.

Table 4. Comparison between ILSM, the exact method (IP) and the memetic algorithm (MA).

|K| ρ ζ ILSM IP MA

13 0.2 1.1 6 6 1
1.2 6 6 1
1.3 6 6 2
1.4 6 6 2
1.5 6 6 1

25 0.2 1.1 6 6 1
1.2 6 6 2
1.3 6 6 2
1.4 6 6 1
1.5 5 6 2

59 60 15

As it can be seen in the table, the memetic algorithm obtained poor results in relation
with the two other proposals, while ILSM was able to reach 59 out of the 60 optimal values.
In addition, the execution time of MA was more than 50 times longer than the ILSM
approach. Therefore, we decided to omit the memetic approach from the final comparison.

4.2. Final Comparison

Once the ILS parameters have been studied in the previous section, we now proceed
to compare our proposals with the state of the art, whose results will be labelled as SOTA.
In brief, we propose a multi-start ILS algorithm, namely ILS; a straightforward parallel
version of the multi-start ILS where the iterations of the algorithm are distributed among
N threads, called ILSP; and our proposed cooperative parallel ILS with migration of
solutions, ILSM. This experiment consists on running these algorithms on the whole set of
480 instances. Next, we describe the particular configuration selected for this proposal.

The number of iterations of ILS is 100, which corresponds to 100 constructions gener-
ated with α = 0, and the perturbation method used was RandomMove with β = 50, since
this configuration obtained the best results in the previous experimentation. The number
of executions of the perturbation method was set to np = 10 · |K|. This configuration is
repeated for ILSP given that this is a parallel implementation of ILS.

Regarding ILSM, we take advantage of the cooperative policy by applying different
configurations on each worker. In particular, we have considered N = 4 to be the number
of cores used by the parallel versions of ILS, both ILSP and ILSM. Therefore, we consider
4 different configurations for ILSM. In order to select these configurations we chose
the four best configurations in terms of number of best solutions, as shown in Table 3:
RandomMove with β = 25 (α = 0 and α = Random), and RandomMove with β = 50 (α = 0
and α = Random). The number of rounds was set to 2, making any solution go through
every configuration twice, as explained in Section 3.4.

Table 5 shows the comparison of the proposed ILS algorithms with the state of the
art for those instances with 13 and 25 occasional drivers. The results are summarized
for each value of ζ, which represents the flexibility of the occasional drivers. For each
algorithm (ILS, ILSP and ILSM) the averaged cost, the sum of best values (#B.), and
the execution time in seconds (T(s)) are calculated. Since no information is given about
execution time in [16], only the cost and the number of best results are reported for the
SOTA. As it can be seen in the table, all our ILS proposals obtain the best result for all the
instances, reaching the same average cost among them and improving the results of SOTA.
Regarding the execution time, the fastest algorithm is ILSP, which is a straightforward
parallel implementation of ILS. ILSM is slower than ILSP because its execution time is
determined by the slowest worker.



Mathematics 2021, 9, 509 14 of 19

Table 5. Performance comparison for |K| = 13 and |K| = 25 occasional drivers.

|K| ζ
ILS ILSP ILSM SOTA

Cost #B. T(s) Cost #B. T(s) Cost #B. T(s) Cost #B.

13 1.1 242.38 6 8.67 242.38 6 1.84 242.38 6 3.13 242.53 5
1.2 232.84 6 8.29 232.84 6 0.78 232.84 6 3.39 233.12 4
1.3 230.28 6 8.08 230.28 6 7.00 230.28 6 3.30 230.58 4
1.4 229.53 6 7.72 229.53 6 2.14 229.53 6 3.37 230.38 2
1.5 222.27 6 7.40 222.27 6 1.72 222.27 6 3.13 223.43 1

231.46 30 8.03 231.46 30 2.69 231.46 30 21.26 232.01 16

25 1.1 232.20 6 14.34 232.20 6 3.37 232.20 6 5.18 232.58 4
1.2 227.96 6 14.32 227.96 6 3.38 227.96 6 5.75 228.23 5
1.3 225.24 6 13.35 225.24 6 3.49 225.24 6 5.45 225.25 6
1.4 216.07 6 11.84 216.07 6 4.07 216.07 6 5.18 216.08 6
1.5 212.02 6 11.35 212.02 6 3.21 212.02 6 4.88 212.02 6

222.70 30 13.04 222.70 30 3.51 222.70 30 5.29 222.83 27

For the medium size instances, where |K| = 50, the results are aggregated by the
compensation rate (ρ) and the flexibility of the occasional drivers (ζ), as in [16]. Table 6
shows the results with the same indicators as in the small instances, but adding the relative
percentage deviation from the best-known value (Gap). Looking at the results, we can point
out that the average cost and the number of best results obtained by all the ILS proposals
are better than the SOTA. If we focus on the number of best results (#B.), it can be seen that
the basic ILS obtains practically the same results than the SOTA in this metric, however,
the parallel collaborative scheme, ILSM, obtains almost 50% more best results than the
SOTA. Furthermore, regarding the gap, it can be seen that all the proposed algorithms
obtain better relative deviations from the best-known values than the SOTA, specially the
parallel collaborative scheme, ILSM (0.21%). The execution time follows the same pattern
as for the small instances, with ILSP being the fastest algorithm and ILSM the second one.

Finally, the results for the largest instances with 100 occasional drivers are shown in
Table 7 in a similar fashion as the medium-size instances. As it can be seen, the performance
gap between the ILS proposals and SOTA widens in terms of the number of best results. In
particular, ILSM reaches more than twice the number of best results than SOTA, while also
improving the average cost and having less than half of the deviation. Note that the other
two ILS proposals do not improve the average cost of SOTA by a small margin. However,
both (ILS and ILSP) improve the number of best results obtained. Regarding the average
execution time, the results are similar than in the previous tables.

As a first conclusion from the results, we can affirm that the cooperative ILSM proposal
outperforms the basic ILS, the parallel ILSP and the SOTA methods in terms of cost and,
specially, in terms of number of best results found. As previously mentioned, the ILSM
method is slower than ILSP as its computation time is limited by the slowest worker. For
the sake of space we have omitted the detailed results of all instances. However, we will
make them publicly available at http://grafo.etsii.urjc.es/ (accessed on 16 January 2021).

In order to statistically assess the behavior of the algorithms considered in this work,
we carried out the Bayesian performance analysis for comparing multiple algorithms
over multiple instances simultaneously described in [34,35]. This analysis considers the
experimental results as rankings of algorithms, and on the basis of a probability distribution
defined on the space of rankings, it computes the expected probability of each algorithm
being the best among the compared ones. Not limited to that, it also assesses the uncertainty
related to the estimation in the form of credible intervals. These intervals are computed
using Bayesian statistics and they estimate the most likely values of the unknown parameter
to lie within the interval given a certain probability.



Mathematics 2021, 9, 509 15 of 19

Table 6. Performance comparison for |K| = 50 occasional drivers.

ρ ζ
ILS ILSP ILSM SOTA

Cost Gap #B. T(s) Cost Gap #B. T(s) Cost Gap #B. T(s) Cost Gap #B.

0.05 1.1 539.7853 1.40% 2 419.5918 540.5165 1.53% 0 101.7118 532.3479 0.00% 4 170.3358 537.7986 1.02% 1
1.2 503.2001 0.80% 3 389.4178 500.6505 0.29% 3 64.05583 503.625 0.88% 2 203.561 499.225 0.00% 2
1.3 486.9723 0.26% 1 386.9173 488.1669 0.50% 4 95.45933 485.7328 0.00% 3 195.2685 491.2126 1.13% 0
1.4 471.8444 1.01% 3 382.2975 467.1162 0.00% 4 103.3242 470.8017 0.79% 1 193.2252 473.574 1.38% 1
1.5 453.8147 0.00% 3 383.0937 455.7323 0.42% 0 55.57933 454.9244 0.24% 2 191.0568 456.8082 0.66% 2

0.1 1.1 584.9547 0.00% 1 466.8708 585.692 0.13% 1 96.67783 585.4194 0.08% 2 233.156 587.1946 0.38% 2
1.2 551.9803 0.47% 2 430.2182 553.8638 0.81% 3 79.56183 553.4574 0.74% 3 231.1562 549.3987 0.00% 2
1.3 541.1348 0.00% 3 420.7238 547.067 1.10% 4 85.77933 546.0515 0.91% 3 222.7265 544.3012 0.59% 1
1.4 533.3659 0.59% 1 414.1407 535.6826 1.03% 3 100.1178 537.2698 1.33% 2 221.526 530.2156 0.00% 3
1.5 524.9017 1.55% 3 415.2357 517.1454 0.05% 3 117.9817 519.1073 0.43% 1 217.0753 516.8894 0.00% 3

0.2 1.1 663.5926 0.16% 3 595.0698 663.7559 0.18% 2 141.5705 662.5436 0.00% 3 315.4683 666.3268 0.57% 3
1.2 643.8584 0.38% 2 568.4518 641.8753 0.07% 3 87.92133 641.4362 0.00% 5 326.2498 642.3602 0.14% 1
1.3 641.0553 0.79% 2 562.1503 639.2008 0.50% 3 122.836 639.2933 0.51% 2 329.638 636.0185 0.00% 3
1.4 634.2417 0.24% 3 544.6653 633.5266 0.13% 3 69.31633 632.6958 0.00% 3 324.1843 634.2424 0.24% 3
1.5 626.0921 0.00% 3 535.832 626.2378 0.02% 3 81.129 627.0634 0.16% 2 320.1565 628.7249 0.42% 2

1.2 1.1 548.2522 0.05% 1 419.0178 548.4516 0.08% 2 141.4412 547.9879 0.00% 2 253.8163 556.4641 1.55% 1
1.2 532.7871 0.00% 2 427.1283 533.5399 0.14% 0 51.02833 533.2159 0.08% 2 237.4145 541.4967 1.63% 2
1.3 525.7513 0.16% 2 435.0688 532.1804 1.38% 1 109.7833 524.9333 0.00% 2 243.4765 534.9408 1.91% 1
1.4 526.8243 0.25% 0 443.8138 527.0245 0.29% 3 88.965 525.5251 0.00% 2 248.429 534.9803 1.80% 1
1.5 530.9357 0.91% 0 453.4277 526.1489 0.00% 4 66.63233 526.6752 0.10% 3 258.1862 531.9392 1.10% 1

1.4 1.1 552.3821 0.21% 1 430.4313 551.2252 0.00% 3 91.93033 551.5696 0.06% 2 234.8208 559.322 1.47% 2
1.2 538.8656 0.17% 1 432.7217 538.7884 0.15% 1 57.576 537.9606 0.00% 2 240.0383 546.494 1.59% 2
1.3 536.8756 0.47% 1 441.8725 534.9065 0.10% 3 110.9935 534.3706 0.00% 2 249.0508 543.1721 1.65% 1
1.4 536.7697 0.86% 1 450.4062 536.4604 0.80% 1 108.433 532.1984 0.00% 3 255.0165 540.0234 1.47% 2
1.5 536.2398 0.51% 1 459.4875 535.8174 0.43% 1 132.6498 533.5195 0.00% 3 265.1078 539.6146 1.14% 2

1.6 1.1 554.5638 0.98% 1 427.4273 554.5725 0.98% 2 73.339 549.1668 0.00% 4 245.174 563.0623 2.53% 0
1.2 543.4267 0.16% 3 442.693 544.2657 0.32% 0 120.5182 542.5449 0.00% 3 245.2358 551.6283 1.67% 1
1.3 543.3848 0.17% 1 451.8478 544.4085 0.36% 0 297.7438 542.4653 0.00% 3 254.8628 547.8221 0.99% 2
1.4 541.4304 0.13% 0 460.8212 540.9699 0.04% 2 517.5568 540.7474 0.00% 2 266.4755 546.7086 1.10% 2
1.5 543.274 0.36% 2 468.7355 541.3017 0.00% 2 792.5418 541.4565 0.03% 1 276.5442 547.0722 1.07% 1

549.75 0.43% 52 451.99 549.54 0.39% 64 138.81 548.54 0.21% 74 248.95 552.63 0.97% 50

Table 7. Performance comparison for |K| = 100 occasional drivers.

ρ ζ
ILS ILSP ILSM SOTA

Cost Gap #B. T(s) Cost Gap #B. T(s) Cost Gap #B. T(s) Cost Gap #B.

0.05 1.1 446.8542 0.50% 3 461.8845 446.7632 0.48% 5 50.84183 444.628 0.00% 5 176.1205 445.5205 0.20% 4
1.2 393.4636 0.01% 5 347.7535 394.1906 0.20% 4 124.0983 393.4137 0.00% 6 170.5258 397.6275 1.07% 2
1.3 309.0867 0.00% 6 220.556 309.0867 0.00% 6 76.62167 309.2135 0.04% 5 127.8515 309.1152 0.01% 5
1.4 291.847 0.09% 5 160.219 291.8418 0.09% 5 99.157 291.8761 0.10% 5 95.24367 291.5823 0.00% 4
1.5 256.6883 1.79% 5 128.2215 256.6883 1.79% 5 48.07133 252.8473 0.27% 5 79.11217 252.168 0.00% 6

0.1 1.1 523.0534 1.22% 3 654.3707 519.6255 0.56% 3 120.4445 516.7501 0.00% 6 277.8033 518.4761 0.33% 2
1.2 479.7269 0.31% 4 539.1515 481.4061 0.66% 4 157.8802 478.2522 0.00% 5 274.8117 482.0614 0.80% 4
1.3 427.8776 2.86% 3 462.71 426.3933 2.50% 3 129.64 424.1554 1.96% 4 232.155 415.9928 0.00% 3
1.4 402.368 0.16% 4 415.5207 402.368 0.16% 4 95.69033 401.7055 0.00% 6 211.4222 402.6224 0.23% 2
1.5 384.158 1.88% 4 388.4473 397.081 5.31% 3 89.23267 388.1649 2.94% 4 191.0957 377.0738 0.00% 4

0.2 1.1 639.8737 0.00% 3 1006.771 642.5748 0.42% 4 161.6953 642.3011 0.38% 3 565.708 641.3445 0.23% 3
1.2 623.6678 0.92% 4 964.2745 622.5619 0.74% 5 166.8772 623.7514 0.93% 4 591.0685 618.008 0.00% 2
1.3 605.705 0.91% 4 873.0052 605.7514 0.92% 4 158.8033 602.0615 0.30% 4 546.6782 600.2485 0.00% 3
1.4 596.3077 0.73% 4 845.7318 594.0314 0.35% 4 121.6118 594.0179 0.35% 4 540.0835 591.9684 0.00% 4
1.5 591.5529 1.30% 3 830.2405 590.8163 1.17% 3 57.886 589.4598 0.94% 3 529.7783 583.9739 0.00% 3

1.2 1.1 453.5543 0.56% 3 532.8617 451.9424 0.21% 4 124.8337 451.0063 0.00% 5 329.6615 453.9328 0.65% 1
1.2 437.11 0.56% 4 516.6463 437.2956 0.61% 2 150.8505 434.6544 0.00% 5 248.1792 439.1365 1.03% 0
1.3 413.5353 0.61% 2 470.4215 414.8368 0.93% 2 44.55867 411.0114 0.00% 6 235.5038 418.7916 1.89% 0
1.4 416.3125 1.60% 2 475.7985 413.6793 0.96% 1 127.474 409.7569 0.00% 6 255.2198 417.0191 1.77% 0
1.5 417.7203 1.80% 1 489.0567 413.7277 0.83% 3 92.63217 410.3363 0.00% 4 263.5218 414.6062 1.04% 1

1.4 1.1 457.0456 0.05% 3 537.4583 456.877 0.02% 3 128.7593 456.8032 0.00% 5 283.0257 459.9442 0.69% 1
1.2 445.1086 0.19% 2 531.8792 445.9219 0.38% 1 128.3608 444.2435 0.00% 5 265.7002 448.9299 1.05% 2
1.3 428.7152 0.66% 4 509.4325 430.9109 1.17% 1 109.2697 425.9209 0.00% 2 267.0003 435.4451 2.24% 1
1.4 431.734 0.91% 2 510.7673 428.8154 0.23% 2 110.4097 427.9069 0.01% 4 276.2122 427.8523 0.00% 2
1.5 430.9797 0.62% 2 528.5645 430.8396 0.58% 1 64.2445 428.3419 0.00% 4 292.21 432.2809 0.92% 2

1.6 1.1 461.8792 0.01% 3 558.2377 463.1208 0.28% 2 115.4152 461.8351 0.00% 4 294.3458 465.8242 0.86% 0
1.2 453.4498 0.08% 2 572.0842 453.1118 0.01% 3 78.56083 453.0686 0.00% 4 283.187 457.9317 1.07% 1
1.3 442.0516 0.25% 2 555.9252 440.9349 0.00% 3 66.0465 441.321 0.09% 3 295.9443 449.6249 1.97% 1
1.4 441.1734 0.18% 1 555.8278 440.3888 0.00% 4 109.6753 440.6528 0.06% 3 307.37 443.2396 0.65% 1
1.5 441.7029 0.27% 2 574.9573 441.3502 0.19% 3 88.07833 440.5029 0.00% 4 322.1748 443.3912 0.66% 1

451.48 0.70% 95 540.63 451.50 0.72% 97 106.59 449.67 0.28% 133 294.29 451.19 0.65% 65



Mathematics 2021, 9, 509 16 of 19

Figure 7 shows the credible intervals (5% and 95% quantiles) and the expected
probability of winning for each different implementation of the proposed algorithms and
the state-of-the-art method (SOTA) after the joint analysis of the 480 instances. We will
refer to the term winning when the algorithm is able to find the best solution in relation to
the other methods in the comparison. As seen in the figure, SOTA is the algorithm with
least chances for being the winner, with an expected probability of 0.127 of obtaining the
best solution. Besides, the probability of ILS and ILSP is quite similar (0.243 and 0.276
respectively), with overlapped credible intervals. This result proves that a straightforward
parallelization has a small contribution to the quality reached by the algorithm, and the
main advantage is the savings in computation time. However, both proposals are better
than SOTA since their probabilities of obtaining better solutions than SOTA are higher.
Moreover, the expected probability of ILSM is the highest, reaching a value of 0.354,
showing a credible interval that is not overlapped with any other. In summary, ILSM is
statistically different from all the other algorithms, and it will reach the best solutions in
almost 36% of the instances. The observed length for the intervals in Figure 7 points out
that the estimations for SOTA and ILSM permit to draw solid conclusions, while for the
case of ILSP and ILS, due to the overlapping of the intervals, both algorithms have similar
probability for being the winners.

Figure 7. Credible intervals (5% and 95% quantiles) and expected probability of winning for the
proposed Iterated Local Search (ILS) algorithms and the state of the art (SOTA).

Therefore, this statistical analysis proves that, on the one hand, all our ILS proposals
obtain better results than the state-of-the-art method and, on the other hand, the proposed
cooperative scheme makes a significant difference in relation to the other ILS proposals.

5. Conclusions

Sustainable logistics require the combination of the traditional business logistics and
crowd logistics. However, efficient optimization algorithms are required in order to merge
these approaches into corporate information systems.

In this work we propose an efficient optimization algorithm based on the Iterated Local
Search method which we have assessed on the Vehicle Routing Problem with Occasional
Drivers (VRPOD). This problem models realistic situations appearing in the transportation
of goods for delivery companies in which crowdshipping, a sustainable means of transport,
is feasible, taking into account two different compensation schemes.

In particular, the three proposed implementations of the ILS are able to overcome the
results obtained by the state of the art. The ILS design proposed in this paper includes
a greedy randomized constructive method to build initial solutions and a local search
which explores an extended neighborhood formed by the combination of neighborhoods
generated by five different moves. In addition, three perturbation strategies have been
proposed for this problem. Moreover, a parallel cooperation scheme has been designed



Mathematics 2021, 9, 509 17 of 19

for the ILS proposal. The computational experiments evidence the effectiveness of our
algorithm given that it is able to attain all the optimal values when they are known.
Besides, it obtains better results than the state-of-the-art method spending a competitive
execution time. A statistical assessment of the proposed algorithms performance has
been also included, measuring the differences between the ILS methods and the state
of the art. In the light of the computational results, we can state that the three different
implementations based on the ILS methodology are able to improve the state of the art for
the small instances (instances with 13 and 25 occasional drivers) in a few seconds, finding
17 new best-known solutions. A similar behaviour can be observed for the medium-size
instances (50 occasional drivers), finding 130 out of 180 new best-known solutions. Finally,
in the large instances (those with 100 occasional drivers), the cooperative parallel ILS with
solution migrations, ILSM, not only reduces the average cost value but also reaches 68
out of 180 new best-known solutions. Furthermore, considering all the three different
implementations based on the ILS methodology 115 in total new best-known solutions.
To prove the hypothesis that the ILSM is the best proposal, a statistical analysis has been
included where all the algorithms have been compared. As a conclusion of this analysis,
the three different implementations based on the ILS algorithm outperform the state of the
art, being ILSM the best one among all the studied alternatives.

Therefore, since the previous results are improved by including occasional drivers
with our proposal, we can state that our method is able to optimize the last-mile logistics,
as recommended in [14]. Hence, since the new routes have smaller costs, the sustainability
of the companies is favored. Besides, the reduced computation times of ILSM allows the
inclusion of our method into corporate information systems.

Future research directions could include different compensation schemes profitable
not only for the company but also for the occasional driver, which lead us to a multi-
objective optimization problem since both objectives are clearly in conflict. Furthermore,
another interesting future line would be to include the possibility of allowing more than
one delivery to every occasional driver or even sustainability features included also under
a multi-objective approach to show the trade-off among the different objective functions.
In addition, the use of more detailed instances with information about the type of vehicles
used by the occasional drives will allow to obtain sustainability measures such as the carbon
footprint of a route. Finally, in order to study more realistic scenarios, new instances with
stochastic modeling of the demand or the travelling times could be defined, as suggested
in [36]. Of course, adding new features to the considered problem would lead us to adapt
the ILS methodology and check the robustness of our algorithm since new constraints are
incorporated.

Author Contributions: Conceptualization, R.M.-S., A.D.L.-S. and J.M.C.; Data curation, R.M.-S.,
A.D.L.-S. and J.M.C.; Formal analysis, A.D.L.-S.; Funding acquisition, M.L.D.-J.; Methodology, R.M.-
S., A.D.L.-S. and J.M.C.; Project administration, M.L.D.-J.; Software, R.M.-S. and J.M.C.; Supervision,
J.M.C.; Writing—original draft, R.M.-S., A.D.L.-S. and J.M.C.; Writing—review & editing, R.M.-
S., A.D.L.-S., M.L.D.-J. and J.M.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially supported by the Spanish Ministerio de Ciencia, Innovación y
Universidades (MCIU/AEI/FEDER, UE) under grant ref. PGC2018-095322-B-C2; Comunidad de
Madrid y Fondos Estructurales de la Unión Europea under grant ref. S2018/TCS-4566 and the Junta
de Andalucía, FEDER-UPO Research & Development Call, under grant ref. UPO-1263769.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Detailed results and instances will be publicly available at http://
grafo.etsii.urjc.es/ (accessed on 16 January 2021).

Acknowledgments: The authors wish to express their gratitude to C. Archetti, M. Savelsbergh and
G. Speranza for their collaboration in the provision of all their previous results.



Mathematics 2021, 9, 509 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Allen, J.; Piecyk, M.; Piotrowska, M.; McLeod, F.; Cherrett, T.; Ghali, K.; Nguyen, T.; Bektas, T.; Bates, O.; Friday, A.; et al.

Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: The case of London. Transp.
Res. Part Transp. Environ. 2018, 61, 325–338. [CrossRef]

2. Jia, Y.H.; Chen, W.N.; Gu, T.; Zhang, H.; Yuan, H.; Lin, Y.; Yu, W.J.; Zhang, J. A dynamic logistic dispatching system with set-based
particle swarm optimization. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 1607–1621. [CrossRef]

3. Qin, G.; Tao, F.; Li, L. A vehicle routing optimization problem for cold chain logistics considering customer satisfaction and
carbon emissions. Int. J. Environ. Res. Public Health 2019, 16, 576. [CrossRef]

4. Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Characteristics of innovations in last-mile logistics-using best practices, case
studies and making the link with green and sustainable logistics. Assoc. Eur. Transp. Contrib. 2009 1–21.

5. Sampaio, A.; Savelsbergh, M.; Veelenturf, L.; Van Woensel, T. Chapter 15: Crowd-Based City Logistics. In Sustainable Transportation
and Smart Logistics; Faulin, J., Grasman, S.E., Juan, A.A., Hirsch, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 381–400.

6. Carbone, V.; Rouquet, A.; Roussat, C. The Rise of Crowd Logistics: A New Way to Co-Create Logistics Value. J. Bus. Logist. 2017,
38, 238–252. [CrossRef]

7. Devari, A.; Nikolaev, A.G.; He, Q. Crowdsourcing the last mile delivery of online orders by exploiting the social networks of
retail store customers. Transp. Res. Part Logist. Transp. Rev. 2017, 105, 105–122. [CrossRef]

8. Botsman, R. Crowdshipping: Using the crowd to transform delivery. AFR Boss Mag. 2014.
9. Mckinnon, A. Crowdshipping: A Communal Approach to Reducing Urban Traffic Levels? 2016. Available online: https:

//www.alanmckinnon.co.uk/story_layout.html?IDX=714&b=56 ( accessed on 6 January 2021)
10. Guo, X.; Jaramillo, Y.J.L.; Bloemhof-Ruwaard, J.; Claassen, G. On integrating crowdsourced delivery in last-mile logistics:

A simulation study to quantify its feasibility. J. Clean. Prod. 2019, 241, 118365. [CrossRef]
11. Simoni, M.D.; Marcucci, E.; Gatta, V.; Claudel, C.G. Potential last-mile impacts of crowdshipping services: A simulation-based

evaluation. Transportation 2020, 47, 1933–1954. [CrossRef]
12. Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2014.
13. Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I. The vehicle routing problem: State of the art classification and review. Comput.

Ind. Eng. 2016, 99, 300–313. [CrossRef]
14. Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A review of last mile logistics innovations in an externalities cost reduction

vision. Sustainability 2018, 10, 782. [CrossRef]
15. Wang, Y.; Zhang, D.; Liu, Q.; Shen, F.; Lee, L.H. Towards enhancing the last-mile delivery: An effective crowd-tasking model

with scalable solutions. Transp. Res. Part Logist. Transp. Rev. 2016, 93, 279–293. [CrossRef]
16. Archetti, C.; Savelsbergh, M.; Speranza, M.G. The Vehicle Routing Problem with Occasional Drivers. Eur. J. Oper. Res. 2016,

254, 472–480. [CrossRef]
17. Dahle, L.; Andersson, H.; Christiansen, M. The Vehicle Routing Problem with Dynamic Occasional Drivers; Computational Logistics;

Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 49–63.
18. Macrina, G.; Di Puglia Pugliese, L.; Guerriero, F.; Laganà, D. The Vehicle Routing Problem with Occasional Drivers and Time

Windows. In Optimization and Decision Science: Methodologies and Applications; Sforza, A., Sterle, C., Eds.; Springer International
Publishing: Cham, Switzerland, 2017; pp. 577–587.

19. Gdowska, K.; Viana, A.; Pedroso, J.P. Stochastic last-mile delivery with crowdshipping. Transp. Res. Procedia 2018, 30, 90–100.
[CrossRef]

20. Arslan, A.M.; Agatz, N.; Kroon, L.; Zuidwijk, R. Crowdsourced Delivery: A Dynamic Pickup and Delivery Problem with Ad-Hoc
Drivers. Transp. Sci. 2019, 53, 222–235. [CrossRef]

21. Behrend, M.; Meisel, F.; Fagerholt, K.; Andersson, H. An exact solution method for the capacitated item-sharing and crowdship-
ping problem. Eur. J. Oper. Res. 2019, 279, 589–604. [CrossRef]

22. Brandão, J. A deterministic iterated local search algorithm for the vehicle routing problem with backhauls. TOP 2016, 24, 445–465.
[CrossRef]

23. Cattaruzza, D.; Absi, N.; Feillet, D.; Vigo, D. An iterated local search for the multi-commodity multi-trip vehicle routing problem
with time windows. Comput. Oper. Res. 2014, 51, 257–267. [CrossRef]

24. Silva, M.M.; Subramanian, A.; Ochi, L.S. An iterated local search heuristic for the split delivery vehicle routing problem. Comput.
Oper. Res. 2015, 53, 234–249. [CrossRef]

25. Lourenço, H.R.; Martin, O.C.; Stützle, T. Iterated Local Search. In Handbook of Metaheuristics; Glover, F., Kochenberger, G.A., Eds;
Springer: Boston, MA, USA, 2003; pp. 320–353.

26. Feo, T.A.; Resende, M.G.C. A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 1989,
8, 67–71. [CrossRef]

27. Feo, T.A.; Resende, M.G.C.; Smith, S.H. A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set. Oper.
Res. 1994, 42, 860–878. [CrossRef]

28. Croes, G.A. A Method for Solving Traveling-Salesman Problems. Oper. Res. 1958, 6, 791–812. [CrossRef]



Mathematics 2021, 9, 509 19 of 19

29. Faulin, J.; Juan, A.A. The ALGACEA-1 method for the capacitated vehicle routing problem. Int. Trans. Oper. Res. 2008, 15, 599–621.
[CrossRef]

30. Buxey, G.M. The Vehicle Scheduling Problem and Monte Carlo Simulation. J. Oper. Res. Soc. 1979, 30, 563–573. [CrossRef]
31. Crainic, T.; Gendreau, M.; Hansen, P.; Mladenovic, N. Cooperative Parallel Variable Neighborhood Search for the p-Median.

J. Heuristics 2004, 10, 293–314. [CrossRef]
32. Herrán, A.; Colmenar, J.M.; Martí, R.; Duarte, A. A parallel variable neighborhood search approach for the obnoxious p-median

problem. Int. Trans. Oper. Res. 2020, 27, 336–360. [CrossRef]
33. Neri, F.; Cotta, C.; Moscato, P. Handbook of Memetic Algorithms; Springer: Cham, Switzerland, 2011.
34. Calvo, B.; Ceberio, J.; Lozano, J.A. Bayesian Inference for Algorithm Ranking Analysis. In Proceedings of the Genetic and Evolutionary

Computation Conference Companion; ACM: New York, NY, USA, 2018; pp. 324–325.
35. Calvo, B.; Shir, O.M.; Ceberio, J.; Doerr, C.; Wang, H.; Bäck, T.; Lozano, J.A. Bayesian Performance Analysis for Black-box

Optimization Benchmarking. In Proceedings of the Genetic and Evolutionary Computation Conference Companion; ACM: New York,
NY, USA, 2019; pp. 1789–1797.

36. Juan, A.A.; David Kelton, W.; Currie, C.S.M.; Faulin, J. Simheuristics Applications: Dealing With Uncertainty In Logistics,
Transportation, and Other Supply Chain Areas. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg,
Sweden, 9–12 December 2018; pp. 3048–3059.





Chapter 8

A practical methodology for
reproducible experimentation: an
application to the Double-row
Facility Layout Problem

Title A practical methodology for reproducible
experimentation: an application to the
Double-row Facility Layout Problem

Authors Raúl Mart́ın-Santamaŕıa, Sergio Cavero,
Alberto Herrán, Abraham Duarte and
José Manuel Colmenar

Publication date 2022 (Early Access)
Journal Evolutionary Computation
Publisher MIT Press
ISBN/ISSN 1063-6560
Impact Factor 4.766 (2021)
Rank by Impact Factor 16/110 (Q1, Computer Science, Theory

& Methods)
DOI https://doi.org/10.1162/

evco a 00317

99

https://doi.org/10.1162/evco_a_00317
https://doi.org/10.1162/evco_a_00317


100



101



102



A practical methodology for reproducible
experimentation: an application to the
Double-row Facility Layout Problem

Raúl Martı́n-Santamarı́a raul.martin@urjc.es
Department of Computer Science and Statistics, Universidad Rey Juan Carlos,
Móstoles, 28933, Spain

Sergio Cavero sergio.cavero@urjc.es
Department of Computer Science and Statistics, Universidad Rey Juan Carlos,
Móstoles, 28933, Spain

Alberto Herrán alberto.herran@urjc.es
Department of Computer Science and Statistics, Universidad Rey Juan Carlos,
Móstoles, 28933, Spain

Abraham Duarte abraham.duarte@urjc.es
Department of Computer Science and Statistics, Universidad Rey Juan Carlos,
Móstoles, 28933, Spain

J. Manuel Colmenar josemanuel.colmenar@urjc.es
Department of Computer Science and Statistics, Universidad Rey Juan Carlos,
Móstoles, 28933, Spain

Abstract
Reproducibility of experiments is a complex task in stochastic methods such as evolu-
tionary algorithms or metaheuristics in general. Many works from the literature give
general guidelines to favor reproducibility. However, none of them provide both a
practical set of steps and also software tools to help on this process. In this paper,
we propose a practical methodology to favor reproducibility in optimization prob-
lems tackled with stochastic methods. This methodology is divided into three main
steps, where the researcher is assisted by software tools which implement state-of-the-
art techniques related to this process. The methodology has been applied to study
the Double Row Facility Layout Problem, where we propose a new algorithm able to
obtain better results than the state-of-the-art methods. To this aim, we have also repli-
cated the previous methods in order to complete the study with a new set of larger
instances. All the produced artifacts related to the methodology and the study of the
target problem are available in Zenodo.

Keywords
Reproducibility, Metaheuristics, Double Row Facility Layout Problem.

1 Introduction

There exists a growing concern in the research community about the lack of method-
ological frameworks to compare stochastic algorithms. The list of problems ranges
from the election of instances (Bartz-Beielstein et al., 2020) to ensuring the experimen-
tal reproducibility (Kendall et al., 2016). Evolutionary computation (Bäck et al., 1997) in

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

particular, and metaheuristics (Glover and Kochenberger, 2006) in general, are among
the most renowned stochastic algorithms. In this kind of procedures, results are sup-
ported by empirical studies. Therefore, the ability to reach similar results (both, in qual-
ity and computing time) by repeating an experiment performed by other researchers is
the only way in which the research community can reach a consensus about an empir-
ical finding. Despite a set of guidelines for Optimization Studies in Software Engineer-
ing exists as part of the ACM SGSOFT Empirical Standards effort (Ralph et al., 2020),
many scientific works are not reproducible at all (Baker, 2016). Moreover, reproducibil-
ity issues do not only affect researchers when reproducing experiments conducted by
other researchers, but also when reproducing their own previous experiments.

In this paper, we mainly focus on reproducibility in the context of stochastic pro-
cedures. It is worth mentioning that there does not exist a well established terminology
in this matter. Indeed, terms such as reproducibility and replicability are used almost
as synonymous (López-Ibáñez et al., 2021). We refer the reader to Plesser (2018) for
further details about the evolution of the terminology in this area.

The first studies of reproducibility can be traced back to the nineties (Moscato and
Norman, 1992). In the same line, Gent et al. (1997) claimed that the empirical study
of algorithms is a relatively “immature” field, proposing (colloquially) some “thing to
do” and “thing to not do” in order to ensure the experimental reproducibility. Later,
Johnson (2002) provided a useful guide to computer scientists about how experimen-
tal analysis of algorithms can be performed and, then, described. A similar analysis
was conducted in Eiben and Jelasity (2002) but focused on evolutionary algorithms.
The Association of Computing Machinery (ACM) has recently specified different de-
grees of reproducibility (ACM, 2021) by considering the concepts of artifact and mea-
surement. Specifically, an artifact is defined as a digital object that was either created by
researchers to be used as part of the study or generated by the experiment itself. Ex-
amples of artifacts in the context of stochastic procedures would be source/executable
code of an algorithm or data/code required to fully specify benchmark instances. A
measurement is introduced as an analogy to physical experiments. In the context of
stochastic procedures, it represents the raw data (objective function values, runtimes,
etc.) that results from an experiment. Notice that depending on the level of abstraction
being studied, sometimes reporting aggregated results is more adequate. For example,
summary statistics such as means and standard errors, computational effort evaluated
as cycles, function evaluations, or iteration counters.

Based on these definitions, ACM introduced three new concepts: repeatability, re-
producibility, and replicability (ACM, 2021). However, more recently, a redefinition of
this classification was proposed in López-Ibáñez et al. (2021), also adding the concept of
generalizability. This new classification is based on the definition of fixed and random
factors, which are determined by the researcher and given by elements like random
seeds, respectively. The Turing Way project (Arnold et al., 2019) introduced a comple-
mentary approach. Specifically, it considers reproducibility (same analysis performed
on the same dataset consistently produces the same answer), replicability (same analy-
sis performed on different datasets produces qualitatively similar answers), robustness
(different analysis applied to the same dataset produces a qualitatively similar answer
to the same question), and generalizability (the combination of replicability and robust-
ness). This classification has been mainly adopted in the Machine Learning community
(Pineau et al., 2021). An alternative approach is introduced in Stodden et al. (2014),
which relates to the availability of the code, data and all the details of the implementa-
tion and experimental setup that allow obtaining the published result. It also considers

2 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

statistical reproducibility, which is concerned with validating the results of repeated
experiments by means of statistical assessments.

There exists a vast literature (see López-Ibáñez et al. (2021) for a recent survey) ask-
ing for general guidelines that aim to ensure, assess, and encourage the reproducibility
of experiments. For instance, by publishing permanently accessible, complete, and use-
ful artifacts. Unfortunately, this is particularly difficult in stochastic procedures, since
one must deal not only with differences on hardware and/or software for reproduc-
ing experiments, but also with algorithm randomness. Replicating the exact conditions
of previously reported experiments might be impossible, even for those researchers
that originally proposed the corresponding experiment. This situation arises when, for
example, the original hardware is not available anymore, the version of some software
libraries is not specified, or some sources of randomness are not repeatable, among oth-
ers. In that case, repeatability and reproducibility are unreachable. Replicability may
still be achievable, but, unfortunately, it is not an easy task since replicability requires
high-level descriptions of artifacts with enough detail to enable their independent im-
plementation and a careful selection of measurements with their stated precision and
confidence levels. Only if those prerequisites are fulfilled, other researchers can un-
equivocally conclude if the replication of an experiment is confirmed or not.

In this paper, we propose a methodological approach to increase the reproducibil-
ity of empirical results. It is based on an automated characterization and selection
of test instances and an automated configuration of the proposed algorithm. In ad-
dition, source code, instances, and executable artifacts are publicly available in Zen-
odo. Being this the main contribution, we validate the proposed methodology with a
well-known combinatorial optimization problem. Specifically, we propose a new meta-
heuristic method for the Double Row Facility Layout Problem which is able to obtain
better results than the state-of-the-art algorithms using shorter computation times. In
particular, the proposal obtains all best-known values in a fraction of the time required
by previous methods. The new algorithm is not an outcome of the methodology, but
the reproducibility of the conducted experimentation is.

The rest of the paper is organized as follows. The proposed methodology for re-
producibility is described in Section 2. The definition of the target problem and the
algorithmic proposals are detailed in Sections 3 and 4, respectively. The experimental
results and the application of the proposed methodology to the target problem are ex-
plained in 5, and a thorough description of the provided artifacts is given in Section 6.
Finally, conclusions and future work are drawn in Section 7.

2 Generic methodology for reproducibility

The main goal of this paper is to encourage reproducibility efforts for optimization
problems being solved with metaheuristics. In order to do so, we propose an empirical
methodology based on minimizing the number of decisions taken by researchers (i.e.,
automatizing the majority of them). It is worth mentioning that this methodology is
suitable not only for any evolutionary algorithm, but also for metaheuristic procedures
in general.

The diagram in Figure 1 schematically illustrates the proposed methodology,
where three main steps have been highlighted: benchmark instance selection, param-
eter tuning, and artifact generation. This approach starts by receiving the full set of
instances that will be tackled in the considered optimization problem, returning the set
of artifacts ready to be used by the research community. As shown in Figure 1, this
methodology is composed of three main steps. In the first one, instances are classified

Evolutionary Computation Volume x, Number x 3



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

Benchmark Instances Selection

Selection of
Benchmark
Instances

Parameterization of Algorithms

Automatic selection of parameter values

Sensitivity analysis of parameter values

Número de instancias test

Define structural features

Principal Component Analysis

(PCA) 1-n (n número features) 

>>> Fiabilidad de pérdida de

información

Determine number of clusters

Group instances in clusters

Tuning of
Algorithm's
Parameters

Reproducibility of Results

Automatic generation of artifacts

Replicability guidelines and metrics

Artifacts
Availability

Structural
Features

Characterization

Principal
Component
Analysis

Instance
Clusters

Generation

All 
Instances

U

Benchmark
Instances
Ranking

Parameter Values Tuning

Benchmark 
Instances

Algorithm
ConfigurationArtifacts Generation

ArtifactsArtifactsArtifacts

Instance
Selection Conf.

Figure 1: Proposed methodology to favor reproducibility.

according to structural features, returning a number of representative instances which
are selected as benchmark instances. In the second main step, benchmark instances
are used to tune the parameter values of the algorithm, generating the configuration
that should be used in the experimental experience. Finally, in the third main step, the
algorithm configuration will be used to produce the corresponding artifacts.

The proposed methodology is in line with the one described in López-Ibáñez et al.
(2021). As principal outcomes, it allows researchers to conduct studies about repeata-
bility, reproducibility, replicability, and generalizability. For the sake of completeness,
we include the definition of these concepts, as well as the definition of random and
fixed factors in the context of performance assessment of stochastic algorithms:

• Random factors correspond to those elements whose value may belong to a certain
distribution, but only a random subset of values will be evaluated in the experi-
ment. The typical random factors are the random seeds.

• Fixed factors, as in evolutionary computation, include target instances, parameter
values, time limits, and so on. Converting fixed factors into random factor allows
the generalization of conclusions from an experiment.

• Repeatability consists in repeating the proposed experiment, obtaining the very
same results. This kind of study requires the availability of the same instances,
artifacts, and run environment from the original study. As will be later described
in more detail, the software framework used is able to generate a Docker container
with the full run environment, including the same random factors, in order to
guarantee that the results are identical after each execution.

4 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

• Reproducibility analyzes the influence of random factors over the results of an
experiment. In the proposed methodology, an independent artifact is provided
which automates the benchmark instance selection. In addition, an external tool
is used to select the parameter values of the algorithm. Finally, the algorithm and
source code are provided as artifacts. Therefore, a researcher may vary the random
seeds in any of these elements, including the benchmark selection process.

• Replicability compares the results from a new implementation of the artifacts using
new random factors. In this case, since our methodology thoroughly describe the
benchmark instances selection process and the algorithm configuration, and the
source code is also available, any replication is possible.

• Generalizability comes after replicability studies also analyzing new fixed factors.
Again, since all the steps of the methodology are detailed, a researcher may change
the fixed factors and compare the obtained results. Notice that elements of the
benchmark selection like the features of the instances are also fixed factors which
can be changed.

Next, each one of the proposed steps of our methodology is thoroughly described,
as well as the selected implementation for the target problem.

2.1 Benchmark instance selection

Computer scientists have mainly considered two different strategies to deal with in-
stances, which are based on separating them into two different subsets. The first one
divides the set of instances between “training set” (used to configure/tune the pro-
posed algorithm) and “testing set” (used to compare the proposed algorithm with the
state-of-the-art procedures), the intersection of these two sets being empty. This strat-
egy is the one mainly adopted by the Machine Learning (ML) community. The second
strategy, divides the set of instances also into two sets. On the one hand, the pre-
liminary instance set or benchmark instances, which is devoted to tuning/configuring
the algorithm (equivalent to the training set). However, the comparison of the pro-
posed algorithm with the state-of-the-art procedures is conducted over the whole set
of available instances. This strategy is the one followed by the heuristic optimization
community. As aforementioned, we validate the proposed empirical methodology by
proposing a metaheuristic method to solve a specific optimization problem. Therefore,
we consider an approach commonly used in the heuristic optimization community.

As a departing hypothesis, we consider that the larger the studied set of instances,
the more precise the expected outcomes of the algorithm. Therefore, we presume that
researchers will provide as many instances as possible for the corresponding experi-
ments. According to the number of instances, it is customary to choose a representative
percentage of the total number of instances. The design of this benchmark instance set
is critical, affecting directly to the performance of an algorithm. As stated in De Souza
et al. (2021), a common mistake in the process of tuning an algorithm occurs when the
instances selected in the preliminary set do not represent the whole set of available in-
stances. Therefore, the configurations of the algorithm may be specialized on “known
instances” (those included in the preliminary set) and perform poorly on “unknown
instances” (those not included in the preliminary set).

The size of the benchmark instance set is usually selected arbitrarily, and it de-
pends, among others, on the total number of instances of the problem, the time needed
to perform the preliminary experiments, or the instances characteristics. Therefore, in

Evolutionary Computation Volume x, Number x 5



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

this research, we do not go deeper into the decision of this value and let the researcher
the decision of how many instances have to be selected in the benchmark set. On the
contrary, we address the decision of defining the benchmark instance set, i.e., the choice
of the instances that constitute the benchmark set.

We propose a semi-automatic benchmark selection process based on the four afore-
mentioned principles: repeatability, reproducibility, replicability, and generalizability.
To this end, we try to minimize the number of decisions based on the researcher’s
experience, by favoring those based on rational criteria. In particular, we adapt to the
instance selection context some techniques commonly related to the statistical ML field.
The idea of applying ML techniques in the metaheuristic domain to design efficient, ef-
fective, and robust algorithms has become increasingly popular during the last decades
(Birattari et al., 2006; Olvera-López et al., 2010; Talbi, 2021). Among ML techniques, we
propose the use of Principal Component Analysis (PCA) and k-means clustering algo-
rithms to select the benchmark instances.

As seen in Figure 1, the benchmark selection process receives as input the whole set
of available instances of the problem. Additionally, it is provided a user-defined con-
figuration that includes the number of instances to be selected, and the parameters re-
quired for the initialization of the PCA and k-means algorithms (seed, confidence level,
number of repetitions, etc.). Then, four steps are sequentially executed: Structural Fea-
tures Characterization, Principal Component Analysis, Instance Clusters Generation,
and Benchmark Instance Ranking. These steps are explained below.

Structural Features Characterization. In this first step, the instances are read and
processed to obtain, for each one of them, a set of metrics and features. This step needs
the intervention of the researcher, since it requires identifying and describing the fea-
tures that are relevant for a given problem. Then, those features are extracted by the
code implementation of the researcher. In many cases, understanding the problem do-
main helps to detect which features can be useful.

Principal Component Analysis. The previous step generates an output matrix
of metrics and features, i.e., a multivariate data set. However, a high number of in-
stance features hinders the analysis of the data for extracting conclusions. This issue
specifically gets worse when features have different scales or measurement units. Oc-
casionally, this is not an issue at all, depending on the target problem. Therefore, we
propose to ensemble two well-known techniques to deal with it: standardization of the
data and PCA.

Data standardization is a common requirement for ML algorithms and consists of
transforming the data by removing the mean value of each feature and then scaling
it by dividing each value by its standard deviation. Therefore, the application of data
standardization results in a new set of values where the mean is zero and the standard
deviation is one.

Once the data have been standardized, we perform the PCA. This technique is
generally used to reduce the redundant information of a given set of variables. This
procedure generates a new set of features, denoted as the principal components set,
that retains much of the information from the original set, although the number of
variables included has been significantly reduced (Jolliffe, 2005).

To determine the number of principal components, we use the explained variance
ratio, i.e., the percentage of variance that is attributed to each one of the selected com-
ponents. Generally, we would like to select a number of principal components that
explain around the 90% of the data (Jolliffe and Cadima, 2016). We have implemented
this process to be run automatically. However, the percentage of attributed variance

6 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

has to be established by the researcher in the input configuration file of the procedure.
Instance Clusters Generation. The result of the second step is a reduced set of

variables that represent the features of the instances. In this third step, we use the
k-means algorithm to classify the instances in clusters, according to the principal com-
ponents previously obtained. The k-means algorithm is one of the most widely used
clustering methods. It aims to partition a set of observations into k clusters, where more
similar elements are classified in the same cluster (MacQueen et al., 1967).

The number of clusters is usually specified by the researcher. However, a simple
and popular solution to determine the optimal number of clusters is the elbow method.
The elbow method consists of executing the k-means algorithm for a determined range
of k values. Then, for each cluster obtained in each one of the k executions, the average
of the distortion score (the sum of the squared distances from each point to its assigned
cluster center) is computed. Finally, the optimal value of k is determined visually as the
point where the slope of the curve has a significant change (like an elbow) when plot-
ting the obtained scores. In order to automate the process of determining the number
of clusters and to avoid possible mistakes by the researcher, we have implemented the
method proposed by Satopaa et al. (2011), which detects the optimal number of clusters
and, therefore, automating this process. Briefly, the authors proposed a formal defini-
tion for identifying a knee in discrete data sets based on the mathematical definition of
curvature for continuous functions. We omit the details for the sake of brevity.

As a result of this third step, we obtain a classification of the instances into an
appropriate set of clusters based on the initial structural features.

Benchmark Instances Ranking. The fourth and final step of the proposed method-
ology aims to determine the instances that will become part of the benchmark set. For
this purpose, the k clusters are sorted in descending order according to their size, i.e.,
the number of instances. Then, they are sequentially traversed, selecting from each of
them the instance that minimizes the distance to its centroid. This automatic process
is repeated until the desired number of instances of the benchmark set is reached. It
is worth mentioning that the selected instances are removed within its cluster, so no
instances can be repeated in the benchmark set, and if a cluster is empty, it is skipped
and the next non-empty cluster is visited.

Hence, the selected benchmark instances represent the diversity of the complete
set of instances according to their structural features. Moreover, the selection is not
made by the researcher, but given by these automatic procedures, supported by the
described methods.

The proposed methodology in this section has been implemented using Jupyter
Notebooks using Python. Section 5.1 presents the application of the proposed method-
ology in the context of the DRFLP. All artifacts and source code are publicly available,
as will be detailed in Section 6.

2.2 Parameter values tuning

Generally, metaheuristic approaches require tuning several parameters. These param-
eters make the proposed algorithm robust, but also flexible, and have a great influence
on its effectiveness and efficiency. The problem of finding the optimal parameters for
an algorithm could be considered itself as a hard continuous optimization problem,
where the objective is to optimize the performance of a given optimization algorithm
over a set of preliminary instances.

Researchers have generally classified the tuning strategies in two types: offline
parameter tuning and online parameter tuning. The first strategy consists of fixing the

Evolutionary Computation Volume x, Number x 7



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

algorithm parameters before execution, while in the second strategy, the parameters
are dynamically adapted during execution. This work is mainly focused on the first
strategy, the offline parameter tuning.

Customarily, parameter tuning is done manually, and it includes a difficult and
time-consuming test approach guided by the experience of the researcher. Particularly,
manual tuning involves a preliminary exploration to find a suitable range of parame-
ters. Then, tests are executed to evaluate only a single parameter at a time, while the
others parameters are set to a rational value. The best value of the parameter tested is
set for the next experiment. These systematic tests are performed until all algorithm
parameters have been tuned (Crainic et al., 1993; Gendreau, 2003).

Although manual testing could be effective for adjusting a few parameters, it has
many drawbacks when the algorithm to be optimized is complex. For instance, it has
difficulties in adjusting algorithms in which there are cross effects between parameters,
the design alternatives that are explored are limited by the number of experiments, the
tuning process is irreproducible, or some configurations are discarded due to bad per-
formance in a particular experiment, among others (Stützle and López-Ibáñez, 2019).

To mitigate the disadvantages of manual tuning, researches have proposed ad-
vanced automatic tuning procedures that do not require their intervention. These pro-
cedures, usually denoted as Automatic Algorithm Configuration (AAC) procedures,
follow a common general scheme: first, they receive as input the parameters to config-
ure of the algorithm, as well as their domain, range and restrictions; then, they generate
a list of candidate configurations of the algorithm which are evaluated over a bench-
mark set of instances; finally, the best configurations are returned. Examples of these
AAC procedures are ParamILS (Hutter et al., 2009), Sequential Model-based Algorithm
Configuration (SMAC) (Hutter et al., 2011), and irace (López-Ibáñez et al., 2016).

In this work, we propose the use of irace for automatically tuning the algorithm
proposals. irace is an iterated racing method based on the Friedman-Race (F-Race)
and the iterated F-Race (I/F-Race). Particularly, the irace program requires a user-
defined input configuration that defines the behavior of the algorithm to be tuned.
The evaluation of the configurations is done through a racing procedure where each
configuration is evaluated for each instance of the benchmark set. The irace software
has been implemented in R and is freely available at http://iridia.ulb.ac.be/irace/.

Section 5.2 describes the use of irace on the DRFLP, as well as the obtained re-
sults.

2.3 Artifacts generation

There exist several technical solutions that allow the portability of software to different
environments such as virtual machines and containers like Docker, and platforms like
Open Science Foundation or Code Ocean, for instance (Clyburne-Sherin et al., 2019).
These technical solutions include everything needed to replicate an experiment (code,
system tools, system libraries, and settings, and independence of the underlying oper-
ating system). Nevertheless, once this validation step is done, the preservation of code
and data is more useful in the long-term than the availability of a reproducible exper-
imental environment. This is due to the rapid obsolesce of software/hardware. Even
if the original study becomes non-reproducible due to the obsolescence of its original
artifacts, studying their code and data could help future replication and generalization
efforts.

According to the definitions from literature, an artifact is a digital object that was
part of the research process, either created or being an external tool used in this process

8 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

(ACM, 2021). In addition, instances, result files, etc. are also considered artifacts.
Therefore, taking into account the previously mentioned four different types of re-

producible studies according to López-Ibáñez et al. (2021), our methodology proposes
the generation of a number of mandatory artifacts, which are listed below:

• Problem instances and results files. Not only the instance files to be read by the
algorithm but also, if possible, explanatory text files regarding technical questions
like, for instance, file format. In addition, plain text files (or spreadsheet files) with
the obtained results.

• Source code of the proposed methods. These files include proposed software for
instance processing (if needed), proposed algorithms and methods to generate the
final results with the metrics detailed in the work.

• Executable artifacts. Binary or executable versions on a portable environment for
all the elements described in the previous item.

• Analysis artifacts. Generated diagrams, R scripts or any tool used to generate
them, with the raw results used to generate any related figure or summary table.

Giving access to these artifacts allows the development of any kind of reproducibil-
ity study. As it will be later described, some of these artifacts were automatically gen-
erated by the framework we have developed.

3 Double Row Facility Location Problem

Despite the main proposal of the work is to provide a practical methodology for re-
producibility, we also describe how this methodology has been applied to a particular
problem from the family of Facility Layout Problems (FLP), where we have also im-
proved the results from the state of the art.

The FLP family comprises a number of different optimization problems that are
devoted to determine the optimal position of a given set of facilities in a particular
layout. This family of problems has many interesting applications in Flexible Manu-
facturing Systems (FMS), where facilities have to be positioned on a particular layout
where, usually, an automated machine carries material among facilities (Satheesh Ku-
mar et al., 2008). Hence, the objective of the optimization problem is to minimize a cost
function which is related to the material handling cost between facilities.

3.1 State of the art

Several layouts can be found in the related literature. For instance, the simplest layout,
where all facilities are consecutively located, is known as the Single Row Facility Loca-
tion Problem (SRFLP) (Simmons, 1969; Rubio-Sánchez et al., 2016). Some other layouts
are the multiple row layout (Herrán et al., 2021), the circular layout (Hungerländer
et al., 2020), and the T-row layout (Dahlbeck, 2021), among others.

In this paper, we have selected one of the most common layouts in the literature,
which is the use of two rows to arrange the facilities allowing free space separation
between them, known as the Double Row Facility Location Problem (DRFLP). Notice
that the variant of this problem where no empty space is allowed between facilities is
known as the Space-Free Double Row Facility Location Problem (SF-DRFLP) or Corri-
dor Allocation Problem (CAP) (Amaral, 2012).

The DRFLP was firstly tackled from a heuristic point of view in Chung and Tan-
choco (2010). In this work, five heuristics were compared with a branch & cut algorithm

Evolutionary Computation Volume x, Number x 9



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

solving a MIP model. One of the heuristics was finally used to generate an initial so-
lution for the exact algorithm, and its behavior was compared in a set of 16 instances
from 6 to 36 facilities. The DRFLP was also studied in Amaral (2013), proposing a
new mathematical model smaller than the one proposed by Chung and Tanchoco. The
experimental results, however, do not compare the same instances as in the previous
paper. Besides, some years later, the mathematical model was enhanced in Secchin and
Amaral (2019) improving the results of Amaral (2013) in instances up to 16 facilities.
In Chae and Regan (2020), the authors propose another mathematical model obtaining
competitive results for instances up to 16 facilities. Following his work on this prob-
lem, Amaral recently published a work improving the mathematical model once again
(Amaral, 2021) reporting better results than Chae and Regan (2020) and, finally, a dif-
ferent work proposing a two-phase algorithm which merges a heuristic method with a
linear programming routine (Amaral, 2020). This is the paper with the highest number
of instances and, in addition, with the largest sizes of the state of the art.

As seen, many works have proposed exact algorithms for this problem, and some
of them have included heuristic methods. However, reproducibility has not been pro-
moted in any of them. One of the reasons for this situation could be that there are no
algorithmic parameters to tune due to the nature of the proposed methods. Besides, the
small size of the instances studied in the state of the art prevents the design of an auto-
mated selection of instances. In addition, regarding the heuristic methods, there is no
publicly available code or artifacts, and no effort has been made to group the studied
instances in the most recent papers.

3.2 Description of the problem

The Double Row Facility Location Problem (DRFLP) is anNP-hard optimization prob-
lem that consists in finding an optimal arrangement of rectangular facilities in two
rows.

Let F be the set of facilities (with n = |F |), where each facility i ∈ F has an asso-
ciated length li, and wij is the amount of flow between two facilities i, j ∈ F . Then, an
instance I of the DRFLP is defined by a triplet I = (F,L,W ), where L is a vector (of
size n) containing all the facility lengths and W is a squared matrix (of size n × n) of
pairwise flows. Let us illustrate with an example all the relevant information of an in-
stance of the DRFLP. To this end, we consider the instance S9 from Amaral (2020) with
n = 9 facilities, represented with capital letters (from F1 to F9). Specifically, Table 1
shows the cost between each pair of facilities (W ), and the length of each facility (L).
Figure 2 shows a feasible solution π for the instance introduced in Table 1, where xi is
the abscissa of the center of facility i when it is assigned to any row of the layout. As
can be seen in Figure 2, all the facilities in F must be placed at some position xi but
with no overlapping between consecutive facilities in each row of the layout.

A solution to this optimization problem is to find an optimal mapping π that as-
signs the set of facilities F to the corresponding layout with two rows, together with
the exact horizontal location of the center of each facility i in the layout (abscissa xi).
Specifically, given a facility i ∈ F , πk(p) = i indicates that i is located at position p of
the permutation corresponding to row k in the layout π. Hence, the complete layout
is defined by two permutations of facilities, one for each row, π = {π1, π2}. It trivially
holds that the number of facilities of a feasible solution is |π| = |π1|+ |π2| = n. For the
example shown in Figure 2, π1 = {F2, F3, F4, F8} and π2 = {F7, F5, F6, F9, F1}. In addi-
tion to the permutation, the location of centers xi must be provided since free space can
be found in a solution.

10 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

Table 1: Instance data for S9 from Amaral (2020).
W F1 F2 F3 F4 F5 F6 F7 F8 F9

F1 0 0 2 8 7 4 0 1 6
F2 0 0 8 0 2 7 4 4 6
F3 2 8 0 2 7 8 0 2 6
F4 8 0 2 0 5 0 8 8 6
F5 7 2 7 5 0 5 4 7 6
F6 4 7 8 0 5 0 8 2 6
F7 0 4 0 8 4 8 0 4 6
F8 1 4 2 8 7 2 4 0 6
F9 6 6 6 6 6 6 6 6 0
L 2 8 9 7 3 4 6 8 9

F7

x7 = 4

F5

x5 = 9

F6

x6 = 12.5

F1

x1 = 26

F9

x9 = 20.5

F4

x4 = 20.5

F3

x3 = 12.5

F2

x2 = 4

row 1 F8

x8 = 28

row 2

Figure 2: Feasible solution of the DRFLP for the instance introduced in Table 1.

Then, given an instance I and a solution defined by a permutation π together with
the centers xi of each facility i ∈ F , the objective function of the DRFLP, denoted as
F(I, π), is computed as the total weighted sum of the center-to-center distances be-
tween each pair of facilities. This cost, usually known as the material handling cost,
can be formulated in mathematical terms as it is shown in Equation (1). According to
the data introduced above, the solution shown in Figure 2 has a cost F(I, π) = 1607.

F(I, π) =
∑

1≤i<j≤n

wij · |xi − xj | (1)

The optimization problem then consists in finding the permutation π together with
the centers xi of each facility i ∈ F that minimizes the aforementioned objective func-
tion subjected to the following constraints to avoid the overlapping between consecu-
tive facilities in each row:

xπk(p) ≥ xπk(p−1) +
lπk(p−1)

2
+

lπk(p)

2
(2)

3.3 Combinatorial approach

As stated before, a solution to the DRFLP is defined by two permutations of facilities,
one for each row, π = {π1, π2}, together with the exact horizontal location of the center
of each facility i in the layout (abscissa xi). The location of the centers is required since
an optimal solution of the DRFLP could have a free space between consecutive facili-
ties located in the same row, and the permutation is not able to store this information
without the centers.

Evolutionary Computation Volume x, Number x 11



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

If the length of each facility is an integer number greater or equal than 1, it can be
demonstrated that the allowed free spaces between consecutive facilities in the optimal
solution (if they exist) is a multiple of 0.5 units1. Hence, a modification in the solu-
tion representation can be made in order to represent the complete layout (free spaces
included) in the permutation.

In particular, we incorporate “dummy facilities” of length 0.5, whose weight be-
tween them and any other facility (including other dummy facilities) is equal to zero.
Hence, adding a number of these “dummy facilities” to the original instance I , makes it
possible to find the optimal solution of an instance that could need free spaces between
facilities by only dealing with permutations. This way, centers xi are not considered as
decision variables in this process.

Figure 2 shows a feasible solution π = {π1, π2} of the DRFLP for the instance intro-
duced in Table 1 considering 6 “dummy facilities” of length 0.5 denoted as di to model
free spaces between facilities. The permutations for these solutions are the following,
π1 = {F2, F3, F4, F8} and π2 = {d1, d2, F7, d3, F5, F6, d4, d5, d6, F9, F1}.

F5 F6 F1F9

F4F3

d4 d5 d6

F2

d1 
d2

F8

d3

F7

Figure 3: Solution representation of example depicted in Figure 2 including “dummy
facilities”.

Then, once the set of “dummy facilities” D is included in the original instance I =
I ∪D, the optimization problem then consists in finding the solution π⋆ that minimizes
the aforementioned objective function without considering the center of each facility as
a decision variable. More formally:

π⋆ ← argmin
π∈Π

F(I, π) (3)

where Π represents the set of all feasible layouts for the DRFLP.

4 Algorithmic approach for the DRFLP

Previous works on the DRFLP have designed heuristic methods which provided good-
quality initial solutions for exact methods, as in Amaral (2020). On the contrary, our
proposal is based on applying a metaheuristic method to tackle this problem. In
particular, an Iterated Greedy algorithm is designed where the constructive and im-
provement phases are based on the Greedy Randomized Adaptive Search Procedure
(GRASP), followed by a destructive method. In addition, the algorithm is embedded
in a multi-start loop which is responsible for introducing spaces between facilities by
means of “dummy facilities” (see Section 3.3).

1The minimum difference between two facilities is 1 unit. If they are centered, a space of 0.5 units is
generated at each side of the smallest of both, being the smallest gap possible.

12 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

Next, the algorithmic proposals are described, ending the section with the com-
plete structure of the final algorithm.

4.1 Iterated Greedy algorithm

We have selected the Iterated Greedy (IG) algorithm (Jacobs and Brusco, 1995) as the
main component of our algorithmic proposal. It is a very fast and simple method based
on consecutive partial destruction and re-construction of a candidate solution. Due
to its simple design and efficient performance, it has been applied to many different
problems (Ruiz and Stützle, 2007; Lozano et al., 2011; Ruiz et al., 2019; Quintana et al.,
2021).

Algorithm 1 shows the pseudocode of our IG proposal, which receives the follow-
ing input parameters: I , which is the target instance; α1 and α2, which balance the
random bias of the constructive methods; imax, which corresponds to the number of
iterations of the IG inner loop; and β, which determines the damage ratio in the de-
structive method. As seen in step 1 of the pseudocode, an initial solution π is generated
from scratch. This initial solution is improved by a local search procedure and stored
as the current best solution π⋆ in step 2. Then, the inner loop begins with the partial
destruction of solution π⋆ in step 4. The resulting solution, π′, is re-constructed in step
5 and then improved again by a local search in step 6, obtaining a new solution π′′′.
Finally, steps 7 to 8 represent the acceptance criterion of our IG proposal, which is a
simplified version of the one used in the original IG proposal from Ruiz and Stützle
(2007). In particular, a re-constructed solution is accepted for the next iteration only
if its cost function value is better than the current best solution π⋆. Therefore, π⋆ is
updated accordingly and returned by the algorithm in step 9 after the corresponding
number of iterations imax.

Algorithm 1: Iterated Greedy(I, α1, α2, imax, β)

1 π ← InitialConstructiveMethod(α1)
2 π⋆ ← LocalSearch(π)
3 for i = 1 to imax do
4 π′ ← DestructiveMethod(π⋆, β)
5 π′′ ← ReconstructionMethod(π′, α2)
6 π′′′ ← LocalSearch(π′′)
7 if F(I, π′′′) < F(I, π⋆) then
8 π⋆ ← π′′′

9 return π⋆

4.2 Constructive methods

In order to either create an initial solution or reconstruct an incoming solution, we have
designed two different approaches based on the Greedy Randomized Adaptive Search
Procedure (GRASP). GRASP was proposed by Feo and Resende (1989) as a new method
where greediness and randomness are balanced in the construction of a solution.

Algorithm 2 shows the pseudocode of our first constructive proposal, called C1.
This method builds a solution by iteratively adding new facilities to the partial lay-
out, which is initially empty. The method starts by adding a randomly selected facility
i at the beginning of the first row of an empty layout π1(1) in steps 1 and 2. Then,

Evolutionary Computation Volume x, Number x 13



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

after creating a candidate list CL with the rest of facilities in step 3, the method en-
ters a loop until all the facilities in CL are allocated in the final layout π, returned in
step 13. To this purpose, an extended candidate list ECL is created in step 5. Notice
that this list contains all the combinations (i, k, p) of facilities i ∈ CL and the positions
1 ≤ p ≤ |πk| + 1 in each row 1 ≤ k ≤ 2 of the partial solution π where these facilities
can be inserted. Then, a greedy function g is defined for the selection of a combination
(i, k, p) ∈ ECL. Specifically, g evaluates the contribution to the objective function when
a facility i ∈ CL is inserted at position p of row k, resulting in a new partial solution
π′, g(I, π, i, k, p) = F(I, π′)−F(I, π). Once the minimum and maximum values of this
function are computed in steps 6 and 7, respectively, a threshold value th is calculated
in step 8 to generate the reduced candidate list RCL from ECL in 9. This list is pop-
ulated with all the elements in ECL whose greedy function g is below the previously
calculated threshold value th, which depends on α. Finally, the loop ends by randomly
selecting one element (i, k, p) from RCL in step 10, and inserting the selected facility i
at the corresponding position (k, p) of the layout π in step 11. Notice that the insertion
of a facility i in position (k, p) increases the center (abscissa) of all the facilities in posi-
tions from p to |πk| row k in li units. Once the facility i is included in the partial layout
π, it is removed from CL in step 12 and a new iteration stars computing the new ECL
at step 5.

Algorithm 2: C1 (I, α)

1 i← SelectRandom(F )
2 π1(1)← i
3 CL← F \ {i}
4 while |CL| > 0 do
5 ECL← {(i, k, p) : i ∈ CL, 1 ≤ k ≤ 2, 1 ≤ p ≤ |πk|+ 1}
6 gmin = min

(i,k,p)∈ECL
g(I, π, i, k, p)

7 gmax = max
(i,k,p)∈ECL

g(I, π, i, k, p)

8 th← gmin + α · (gmax − gmin)
9 RCL← {(i, k, p) ∈ ECL : g(I, π, i, k, p) ≤ th}

10 (i, k, p)← SelectRandom(RCL)
11 π ← InsertFacility(π, i, k, p)
12 CL← CL \ {i}
13 return π

As seen, this proposal follows the customary GRASP-constructive approach,
which performs a greedy selection followed by a random choice of a candidate. An
alternative to this approach is to exchange the random and greedy stages to perform
random selections and, then, to select the best facility in terms of the greedy func-
tion. Therefore, we propose a new constructive procedure called C1′ where the main
changes are in the while-loop. Specifically, steps 6 to 10 in Algorithm 2 are substituted
by first taking at random a percentage α of elements from ECL (i.e., the number of
selected elements is α · |ECL|) and, finally, selecting the best one of these elements
according to the corresponding greedy function. We have omitted the pseudocode de-
scription of this method for the sake of space, since the source code will be provided.

We propose a third constructive method, called C2, where a solution is constructed
by iteratively merging facilities to produce partial solutions until all the facilities are in-

14 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

cluded in the layout. Algorithm 3 shows the pseudocode of our second constructive
proposal C2. The algorithm starts by creating the candidate list CL with n partial solu-
tions (each containing one of the n facilities i ∈ F ) in step 1. Then it enters a while-loop
(steps 2 to 10) which reduces the number of partial solutions in CL in one unit at each
iteration by merging a pair of solutions πa, πb ∈ CL. This loop ends when all the partial
solutions are merged into a single solution (|CL| = 1), which is returned in step 11. In
this case, the extended candidate list ECL is generated with all the combinations of
pairs of partial solutions πa, πb ∈ CL and moves m ∈M , (πa, πb,m) to merge them into
a new resulting partial solution. Figure 4 shows the set M of available moves for merg-
ing two solutions. The greedy function g′ here computes the increase in the objective
function value of a partial solution π′ resulting from applying move m to combine πa

and πb: g(I, πa, πb,m) = F(I, π′)−F(I, πa)−F(I, πb). After computing the minimum
and maximum values of this function in steps 4 and 5, a threshold value th is calculated
in 6 to generate the reduced candidate list RCL from ECL in 3. Finally, the loop ends
by randomly selecting one element (πa, πb,m) from RCL in step 8, and performing the
selected move m to merge πa and πb into a new partial solution π in step 9. Then, solu-
tions πa and πb are removed from CL, and the partial solution π is added to CL in step
10.

d1 
d2

d1 
d2

F2 F3

F6

F3

F6

F3

F2F3

F6

F2

F2

F3

F6

(a)

(c)

F5

d1 
d2 d3

F7

F2

F5

d1 
d2 d3

F7

F5

d1 
d2 d3

F7 F3

F6

(e)

F5

d3

F7

F5

d3

F7

(b)

(d)

(f)

Figure 4: Available moves for constructive procedure C2 considering (a) and (b) as
partial solutions: (c) is the right-hand concatenation; (d) is the left-hand concatenation;
(e) is the swapped right-hand concatenation where facilities of the left-hand partial
solution changed the assigned row; and (f) is the swapped left-hand concatenation.

In addition to these GRASP-based constructive strategies, we propose a baseline
method, called C0, devoted to construct a completely random solution. This method

Evolutionary Computation Volume x, Number x 15



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

Algorithm 3: C2 (I, α)

1 CL← GeneratePartialSolutions(F )
2 while |CL| > 1 do
3 ECL← {(πa, πb,m) : πa, πb ∈ CL, m ∈M}
4 g′min = min

(πa,πb,m)∈ECL
g′(I, πa, πb,m)

5 g′max = max
(πa,πb,m)∈ECL

g′(I, πa, πb,m)

6 th← g′min + α · (g′max − g′min)
7 RCL← {(πa, πb,m) ∈ ECL : g′(I, πa, πb,m) ≤ th}
8 (πa, πb,m)← SelectRandom(RCL)
9 π ← MergePartialSolutions(πa, πb,m)

10 CL← CL \ {πa} \ {πb} ∪ {π}
11 return π ∈ CL

is equivalent to executing either C1 or C2 with α = 1. The goal of including this
method is to evaluate whether the use of information about the problem (e.g., C1 and
C2) improves the outcomes or not.

4.3 Local search

As it is shown in Algorithm 1, our IG implementation includes a local search procedure
to improve the solution generated in the construction phase. Specifically, we have used
the best improvement strategy to explore the neighborhoods generated by insert moves.
Moreover, we have also implemented the efficient computation of the cost associated
to the neighbor solutions based on swap moves. See Herrán et al. (2021) for a detailed
explanation of insert moves and the efficient exploration strategy.

4.4 Destructive methods

In this work we have implemented two different destructive methods depending on
how the initial solution is constructed. The first method, called D1, randomly removes
a number of facilities (controlled by the parameter β) of the current solution π.

The second destructive method, called D2, tries to split the current solution into
several partial solutions. First, it randomly selects a facility i ∈ π1, and then, it ran-
domly selects a facility j ∈ π2 that is located in a position “overlapped” by i. For
example, considering the solution depicted in Figure 5 (a), if the method selects the
facility i = F3, a facility j is randomly selected among F5, F6, F9 or any of the three
“dummy facilities” between F6 and F9 since they all are overlapped by F3. Assuming
that the method selects j = F6, the original solution is split into the three partial solu-
tions depicted in Figure 5(b): those facilities located on one side of the selected facilities
(left-hand side of the figure); both the selected facilities (center of the figure); and those
facilities located on the other side of the selected facilities (right-hand side of the figure).
Notice that the facilities of these outgoing solutions are aligned to the origin abscissa.
Hence, this method can be applied again to the two partial solutions different to the
selected facilities.

Since we will provide the source code of our proposals, we have omitted the pseu-
docode of these methods for the sake of space.

16 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

(a)

(b)

F5

F2

d1 
d2

F7

d3

F6

F3F3 F4

F1

F8

d4 d5 d6

F9

F5 F9

F8F4F2

F6 F1

F3

d4 d5 d6d1 
d2 d3

F7

Figure 5: Destructive procedure for the solution shown in Figure 3.

4.5 Final proposal

In this paper we propose a multi-start Iterated Greedy algorithm (MS-IG) which we
have modified in order to increasingly include “dummy facilities” into the correspond-
ing instance I while the current solution can be improved. Algorithm 4 shows the
pseudocode of our final proposal. The algorithm begins by setting to 0 the number of
“dummy facilities” of the instance to be solved (d) and the number of “dummy facil-
ities” of the instance associated to the best current solution found (d⋆) in steps 1 and
2, respectively. It also calculates in step 3 the threshold value th used for the termina-
tion criteria of the while loop. The threshold is defined as the maximum increment of
fake facilities since last improvement, or, in other words, how many fake facilities can
be added to a solution without improving before stopping. This value depends on the
current instance, and it will be one of the parameters of the algorithm to tune. Next, the
IG method described in Algorithm 1 is applied to solve the original instance I (without
including any “dummy facility”) in step 4. Then, the algorithm enters a while-loop
which applies tmax times at each iteration the IG method, but using a new instance
I ′ containing additional “dummy facilities” (step 9). This new instance I ′ is updated
from I in step 8 according to the new number of “dummy facilities” calculated in step
7. The strategy for increasing fake facilities can be easily customized. In this case, we
propose two different implementations: linearly increment fake facilities after each it-
eration by a constant or exponentially increasing them using a function or sequence
such as Fibonacci. Again, this will be another parameter to tune. After solving the new
problem in step 9, steps 10 to 13 update the best current solution found π, instance I
and number of “dummy facilities” d⋆ if some improvement on the objective function
cost value is achieved in step 10. The loop in steps 5 to 13 iterates while the difference
between the number of “dummy facilities” of the instance I ′ solved at each iteration
and the number of “dummy facilities” of the instance I associated to the best current
solution is below the threshold value th calculated in step 3.

Once again, since the source code is available in Zenodo, we omit the pseudocode

Evolutionary Computation Volume x, Number x 17



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

Algorithm 4: Multi-Start Iterated Greedy(I, α, imax, β, tmax)

1 d← 0
2 d⋆ ← d
3 th← GetThreshold(I)
4 π ← IteratedGreedy(I, α, imax, β)
5 while (d− d⋆) < th do
6 for t = 0 to tmax do
7 d← IncreaseDummyFacilities(d)
8 I ′ ← IncludeDummyFacilities(I, d)
9 π′ ← IteratedGreedy(I ′, α, imax, β)

10 if F(I ′, π′) < F(I, π) then
11 π ← π′

12 I ← I ′

13 d⋆ ← d

14 return π

of GetThreshold, IncreaseDummyFacilities and IncludeDummyFacilities
methods.

5 Results

Once the proposed methodology is described, the target problem defined and the al-
gorithmic proposal detailed, this section is devoted to show the particular application
of the methodology to the DRFLP. Similarly, we will also show the results obtained by
our approach in relation to the state of the art on the target problem. Finally, since we
propose a new set of larger instances, we have been forced to re-implement the algo-
rithmic proposal from the state of the art because no code or binaries were provided by
the authors. We then describe this replicability study as well as the obtained results.

All the algorithmic components have been implemented using Java 17, under our
developing framework MORK2. In addition, all experiments have been executed on
the same virtual machine, provided with 32 cores, 16 GB of RAM and Ubuntu Server
20.04 as the operating system. We have also used Gurobi 9.1.2 as an exact solver in the
replication of the state-of-the-art algorithms.

5.1 Instances under study

In the case of the DRFLP, state-of-the-art algorithms have been tested on a set of 38
synthetic instances. These instances have been proposed in several papers related to
Facility Layout Problems (Amaral, 2006, 2019; Anjos and Vannelli, 2008; Secchin and
Amaral, 2019; Simmons, 1969). Additionally, we have extended the set of instances by
introducing 15 new larger instances also used in the FLP problem family (Maadi et al.,
2017).

According to the topology and structure of the DRFLP, instances can be under-
stood as a weighted and undirected graph. The vertices correspond to facilities, which
have a given size corresponding to the width of the facility. The weight of the edges
will correspond to the pairwise material handling cost between facilities. If this value
is zero, no edge will connect two vertices. Therefore, we apply some common graph

2https://doi.org/10.5281/zenodo.6241726

18 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

Avg. Vert. Avg. Edges Avg. Width Avg. Weight Density
State-of-the-art set (38) 20.47 162.90 7.82 9.23 0.66
New proposed set (15) 62.00 1290.93 24.79 2.53 0.67

Table 2: Comparison between the state-of-the-art set of instances and the new proposed
set of instances.

metrics for both instance sets. Particularly, we show in Table 2 the average number of
vertices (Avg. Vert.), the average number of edges (Avg. Edges), the average facility
width (Avg. Width), the average edge weight (Avg. Weight), and density. The selected
metrics are able to describe the main features of the instances, with no redundant in-
formation. Both instance sets and the analysis can be publicly found as artifacts as
specified in Section 6.

Given the complete set of 53 instances, the proposed Benchmark Instance Selec-
tion process was executed in order to determine the benchmark set. First, the general
properties of the procedure are configured. Specifically, the number of instances of the
benchmark set is established as 15% of the total sample size, i.e., 8 instances. According
to the number of components of the PCA, we select the minimum number of compo-
nents whose explained variance is greater than 90%. Regarding the k-means algorithm
configuration, k-means++ is chosen for the selection of the initial values of the algo-
rithm (further details of the k-means++ initialization algorithm can be found in Arthur
and Vassilvitskii (2006)). Besides, the maximum number of iterations is set to 1000 and
the maximum number of clusters is set to 15. Once the input parameters for the process
have been specified, the four steps detailed in Section 2.1 are performed.

The Benchmark Instance Selection process starts with the structural fea-
tures characterization. Considering the instances as graphs, we propose the
following structural properties: number of vertices, number of edges, maxi-
mum/minimum/average/standard deviation of the degree of the vertices, max-
imum/minimum/average/standard deviation of the size of the vertices, maxi-
mum/minimum/average/standard deviation of the weight of the edges and density
of the graph. Hence, these 15 features were obtained for each one of the 53 instances.

In the second step, we scale the data through standardization. Then, we execute
the PCA to obtain the cumulative explained variance for a number of principal compo-
nents in the range [0,14]. The result of the PCA is presented in Figure 6. Particularly,
it can be observed that the 4 variables are enough to explain more than the 90% of the
data. In addition, we represent the individual explained variance of each component
with green bars.

Given the obtained 4 principal components, we execute multiple times the k-mean
algorithm with k in the range [2 − 14]. Then, for each value of k the distortion score is
reported and plotted in order to determine the optimal number of clusters using the
elbow method. The resultant chart is depicted in Figure 7. As it can be observed, the
“elbow” occurs when k = 5. Therefore, the instances will be classified into 5 clusters.

Finally, the benchmark instance selection process concludes by selecting the most
representative instances of each cluster, i.e., the closest instances to the centroid of each
cluster, following a descending order. The number of instances selected of each cluster
depends on the cardinality of it. Specifically, the selected 8 instances are: 40-02, 40-04,
40-06, A60 03, A70 03, sko56 04, 14a and Am13a. Moreover, in Table 3, we report the
same graph metrics as in Table 2 for the selected instances and the cluster they belong
to. As it can be easily observed, there is a clear distinction between instances of each

Evolutionary Computation Volume x, Number x 19



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

0 2 4 6 8 10 12 14
Number of components

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e 
ex

pl
ai

ne
d 

va
ria

nc
e

Figure 6: cumulative explained variance by the number of components computed using
PCA.

2 4 6 8 10 12 14
Number of clusters

0

50

100

150

200

250

300

350

400

D
is

to
rti

on
 S

co
re

elbow at k = 5, score = 95.993

Figure 7: Finding the optimal number of clusters using the Elbow method for k-means
clustering algorithm.

20 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

Cluster Instance Vert. Edges Avg. Width Avg. Weight Density
0 40-02 40 484 10.10 12.17 0.62

40-04 40 391 9.13 11.51 0.50
1 40-06 40 694 11.25 50.24 0.89
2 A60 03 60 1076 31.05 1.61 0.61

A70 03 70 1669 38.26 1.52 0.69
3 sko56 04 56 1061 5.52 4.02 0.69
4 14a 14 69 6.57 4.25 0.76

Am13a 13 56 6.85 4.21 0.72

Table 3: Selected instances of each cluster after the benchmark instance selection pro-
cess.

cluster. For instance, selected instances from clusters 0 and 1, which share the same
number of vertices, differ in other features like number of edges and average weight.
Similarly, instance from cluster 3 presents an average width very different to instances
from cluster 2, which are closer in terms of number of edges. A similar analysis can be
performed for all the different combinations of clusters.

5.2 Automatic algorithm configuration

Following the guidelines of the proposed methodology, the parameters of the algorithm
were adjusted with an automated method. In particular, the algorithm has been tuned
using irace (López-Ibáñez et al., 2016).

Table 4 summarizes the parameters given to irace. In particular, “constructive”
decides which constructive implementation to use in the initial constructive method
(step 1 in Algorithm 1). Their possible values are: “random”, corresponding to the
random generator of solutions denoted as C0 in Section 4.2, “graspgr” and “grasprg”,
which correspond to the greedy-random and random-greedy methods C1 and C1′ (Al-
gorithm 2); and “tetris”, which corresponds to C2 (Algorithm 3). Parameter “alpha1”
represents the α1 parameter for the initial constructive method. The reconstruction
method (step 5 in Algorithm 1) is firstly configured by using the “reconstructive” pa-
rameter, which specifies the reconstructive implementation to use. Notice that it re-
ceives the same set of values as the initial constructive method. Parameter “alpha2”
defines the α2 parameter for the reconstruction phase and “destratio” defines the per-
centage of the solution to destroy during the destruction phase, denoted as β in Algo-
rithm 1. Notice that there is no parameter for the destructive method (step 4 in Algo-
rithm 1) since D2 destruction is required in case any variant of C2 is selected, since they
both are based on combinations of partial solutions (see Section 4.4). On the contrary,
D1 is selected if any variant of C1 is chosen by irace. The following parameters cor-
respond to the multi-start configuration. Parameter “stop” defines the strategy used
to determine the threshold to stop (step 3 in Algorithm 4): by fraction or by constant
values. Hence, depending on the selected value, a “fractionv”fraction for a given in-
stance, or “constantv” constant value must be selected. The “increment” parameter
defines how the fake facilities are incremented (step 7 in Algorithm 4): linearly with
“linearinc” value or following the Fibonacci function with the “fiboinc” value. Parame-
ter “linearratio” refines the value of the linear increment. Finally, since irace is able to
choose the number of iterations for both the multi-start and the Iterated Greedy com-
ponents, irace will try to maximize both as they will never worsen the final result,

Evolutionary Computation Volume x, Number x 21



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

getting an increment of the total computing time. Instead of providing a maximum
number of iterations for both components to irace, the parameter “iterationsratio” is
defined as the proportion of iterations spent in the outer for-loop of the MS-IG (tmax
in Algorithm 4) compared with the inner for loop of the IG method (imax in Algorithm
1) such as outerIterations ∗ IGIterations = 1000000. This way, irace is able to bal-
ance the time spent diversifying with different solutions or intensifying working on the
same solution.

This configuration is described in the “parameters.txt” file inside the irace folder
in the repository specified in Section 6.

Table 4: Parameter definitions for irace tuning.
Name Type Restriction

constructive category {graspgr, grasprg, tetris, random}
alpha1 real [0, 1]

reconstructive category {graspgr, grasprg, tetris, random}
alpha2 real [0, 1]
destratio real [0, 1]

stop category {fraction, constant}
fractionv real [0, 0.5]
constantv integer [0, 40]

increment category {linearinc, fiboinc}
linearratio integer [1, 20]

iterationsratio ordinal {v : 1000000 mod v = 0}

Using a maximum budget of 1000 experiment, and limiting the total execution
time of any algorithm to 60 seconds, the best algorithm configurations found by irace
are summarized in Table 5.

Table 5: Top three configurations found by irace. NA means a configuration value
is not applicable to the current algorithm. “destratio” omitted as it is not applicable to
any of the chosen algorithm configurations.

# constr alpha1 reconst alpha2 iterationsratio stop fractionv constantv increment linearratio
1 graspgr 0.73 tetris 0.30 200 fraction 0.21 NA linearinc 11
2 graspgr 0.78 tetris 0.05 160 fraction 0.27 NA linearinc 9
3 grasprg 0.57 tetris 0.36 400 fraction 0.36 NA linearinc 6

Elite configurations have several properties in common: first, the constructive cho-
sen for all configurations is C1. Both variants (greedy random and random greedy)
have high values for “alpha1”, which means that the constructive method favors di-
verse solutions, accepting suboptimal moves during the construction phase. The best
reconstruction method is C2, and during reconstruction, the “alpha2” parameter is
more restrictive. The preferred stop or threshold method is using a fraction of the in-
stance size, and best results are achieved by incrementing the number of fake facilities
linearly each iteration. Finally, the “iterationsratio” is balanced, or in other words, the
number of iterations will be distributed uniformly between the iterated greedy and the
multistart loops.

The best algorithm configuration found, represented as #1, is selected for the com-
parison with the state of the art.

22 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

5.3 Comparison with the state of the art

Once the best algorithm configuration has been determined by irace, its performance
is assessed over the complete set of 53 problem instances.

Firstly, our Multi-Start Iterated Greedy (MS-IG) proposal is compared with the
four heuristics proposed in Amaral (2020) (H1, H2, H3 and H4) under the same set
of 38 instances tackled in that paper. Table 6 illustrates this comparison, showing the
averaged objective function value (Avg. o.f.), execution time in seconds, percentage
deviation to the best value found (% Dev.), and number of best values found (# Best) for
each algorithm, highlighting in bold font the best results. As seen, our MS-IG proposal
obtains all the best values (38 of 38), spending short computation times. Detailed tables
with objective function values and execution times per instance are available in Annex
A in tables 8 and 9 respectively. Notice that a fair comparison of execution times cannot
be made, since the previous work does not report the characteristics of the computer
where the experiments were run.

Table 6: Summary comparison between the state-of-the-art algorithm and our proposal,
using the set of 38 instances from Amaral (2020).

H1 H2 H3 H4 MS-IG
Avg. o.f 101143.9 101137.1 101139.2 101137.1 101117.0
Time (s) 8575.2 7456.2 9335.7 9246.0 27.2
% Dev. 0.01% 0.01% 0.01% 0.01% 0.00%
# Best 31 31 26 27 38

Due to the fact that the previous work has not made any executable, artifact or
source code available, we have implemented their proposal following the descriptions
in Amaral (2020). To ease future comparisons, we have made it available on the same
code repository as our proposal, including an explanation of the correspondence be-
tween each coded instruction with Amaral’s algorithm.

In this small replicability study, we have also assessed the validity of our imple-
mentation of the state-of-the-art method in order to verify that the comparison is fair.
In this way, the results reported in Amaral (2020) are compared to our implementa-
tion of the previous methods using the original set of instances, obtaining a maximum,
minimum and average deviations over the results of 2.41%,−0.02%, and 0.32%, respec-
tively. Despite these differences, which could be attributed to fine-grain implementa-
tion details, we believe that our implementation is correct. Complete tables comparing
both the objective function values and execution times between each heuristic pair for
each instance can be found in Annex A, in tables 10 and 11 respectively. Notice that our
implementations of Amaral’s methods are labeled as H1’, H2’, H3’ and H4’.

Note that, probably due to hardware differences and programming language used
in the previous work computer and ours, the execution times are different. In particu-
lar, as seen in Table 11, our implementation of the state-of-the-art heuristics is up to 10
times faster.

Once the accuracy of the previous heuristics implementations has been estab-
lished, a new experiment is executed with the set of 18 larger instances. The previous
heuristics are limited to one hour execution time, while the MS-IG is limited to a max-
imum time of 600 seconds. Both algorithms are executed in the same machine, using
the same runtime libraries. A summary of the results is presented in Table 7, where
the MS-IG proposal obtains all the best values, with an average execution time one or-

Evolutionary Computation Volume x, Number x 23



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

der of magnitude lower. Notice that the previous heuristics reach the time limit in all
runs. As with the previous experiment, detailed tables comparing both the objective
function values and execution times can be found in Annex A, in tables 12 and 13 re-
spectively. Hence, the MS-IG proposal is able to obtain the best results in all the 53
problem instances, spending short computation times in relation to the state-of-the-art.

Table 7: Summary comparison between the state-of-the-art algorithm and our proposal,
using the new proposed set of instances.

H1’ H2’ H3’ H4’ MS-IG
Avg. f.o 501776.6 502013.0 501494.5 501260.7 499954.4
Time (s) 3600.8 3600.8 3600.8 3600.6 429.4
% Dev 0.37% 0.47% 0.28% 0.25% 0.00%
# Best 0 0 0 0 15

Finally, we statistically compare the results of our MS-IG proposal in relation to
the previous heuristic approaches. In particular, a performance analysis comparison of
multiple algorithms over multiple instances simultaneously was performed under the
Bayesian approach described in Calvo et al. (2018, 2019). This kind of analysis is able
to produce a ranking of algorithms based on a probability distribution created after the
results. Therefore, it calculates the expected probability of each algorithm to obtain bet-
ter results than the others, denoted as probability of winning, giving credible intervals
to this probability. Figure 8 shows the credible intervals (5% and 95% quartiles) and
the expected probability of winning for all the methods in this comparison. In order
to perform this analysis, the results from H1 to H4 were used for the 35 instances from
the state of the art, while the results from our state-of-the-art implementation H1’ to
H4’ were used for the 18 largest instances. All of them are represented by the H1 to H4
labels in the plot.

H1

H2

H3

H4

MS−IG

0.1 0.2 0.3 0.4 0.5
Probability of winning

A
lg

or
ith

m

Figure 8: Credible intervals for the cost result obtained by all the heuristics approaches
from Amaral (2020), and the proposed MS-IG.

As it can be seen in the figure, our MS-IG approach reaches higher probability
values than the state-of-the-art methods. Besides, the credible intervals of all the state-
of-the-art variants overlap, which means that their behavior is comparable. On the

24 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

other hand, MS-IG approach reaches the highest probability of obtaining the best solu-
tion on average, 0.457, in relation to the other methods (< 0.15 on average). Moreover,
the overall performance of this algorithm is clearly distinguished, since the credible in-
tervals are not overlapped. Hence, the superiority of the proposed methods is not only
supported by the results, but also for this Bayesian analysis.

6 Provided Artifacts and Reproducibility Discussion

All artifacts related to this paper are publicly available at GitHub3 and archived in
Zenodo4, which in turn is indexed in OpenDOAR in order to ensure compliance with
the FAIR principles (Wilkinson et al., 2016).

Following the recommendations from our methodology (see Section 2.3), the avail-
able artifacts are:

Problem instances and result files

• All instances used, both from the small and the new proposed set.

• Excel files with both the raw results data and the processed and summarized ver-
sions as used in this work.

• CSV and Excel files for the Bayesian analysis with the objective function results for
all the instances and algorithms.

Source code of the proposed methods

• Python Jupyter notebook used to load, analyze and generate the benchmark in-
stance set. The notebook can be easily adapted to work with instances from other
problems.

• Java source code for both our proposal and our implementation of the state-of-the-
art algorithms.

• Documentation detailing how to execute and reproduce the results, including ex-
tending the algorithms or using a new set of instances.

Executable artifacts

• The Python Jupyter notebook used for benchmark instance selection.

• Small Docker scripts that can build, run and deploy containers that easily run the
proposal in any platform.

Analysis artifacts

• The R script used to generate the Bayesian analysis shown in Figure 8.

• Generated diagrams and tables.

Reproducibility Discussion
The proposed methodology as well as the provided artifacts ensure the reproducibility
of our work on the DRFLP. Repeatability studies may be developed since all the exe-
cutable artifacts and instances are publicly available. Reproducibility is possible since
the source code for all the elements are available, allowing the researcher to modify any

3https://github.com/GRAFO-URJC/DRFLP
4https://doi.org/10.5281/zenodo.6212684

Evolutionary Computation Volume x, Number x 25



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

of the random factors. Replicability can be performed based not only in the provided
source code, but also in the pseudo-code descriptions of all the methods. Finally, gen-
eralizability is also possible since all the steps of the study in the DRFLP are detailed,
and the source code is also provided. Therefore, any fixed factors could be modified to
compare with the proposed work.

7 Conclusions and Future Work

The aim of this paper is two-fold. On the one hand, we propose a practical method-
ology to reproduce the work on an optimization problem solved by means of meta-
heuristics. On the other hand, we have improved the state of the art on the Double-Row
Facility Location Problem (DRFLP) applying the proposed methodology.

As seen in the paper, not only a set of precise steps have been described on the
methodology, i.e., benchmark instances selection, parameter values tuning and artifact
generation, but we have also provided actual artifacts that can be used by researchers in
any kind of reproducibility studies. In particular, a Python notebook implementing all
the methods described in the benchmark instances selection is available. Besides, our
optimization framework MORK is connected to irace to automatically tune algorith-
mic parameters. In addition, the proposal is able to generate Docker containers with
source code as well as including the same experimental environment of this work. Note
that the applicability of these steps is not limited to using a specific software. Hence, a
researcher may follow either the description in the paper or the source code to develop
his/her own implementation, tune the algorithmic parameters with a different external
software, and produce his/her own corresponding artifacts.

Regarding the DRFLP, we propose the application of a Multi-Start Iterated Greedy
(MS-IG) algorithm, where four different constructive methods and two destructive
methods have been proposed. Besides, we follow a model of the problem which intro-
duces “fake facilities” as spaces between the actual facilities using two different strate-
gies implemented in the MS-IG external loop. As stated before, we have followed our
semi-automated methodology to select the instances and tune the algorithm in order to
assure reproducibility studies.

In the experimental results, we have collected 38 instances from previous papers,
and we also propose 15 new larger instances for this problem. In order to compare our
MS-IG proposal in the larger instances, we have replicated the state-of-the-art method,
obtaining similar results in the previous instances. This way, we have also shown
the difficulties of these tasks when no artifacts are provided. As described in the ex-
perimental experience, our MS-IG proposal is able to obtain all the 53 best solutions
spending a fraction of the execution time compared with the state of the art. Finally,
a statistical analysis is conducted following a Bayesian approach in order to assess the
performance of the different algorithms on the tackled set of instances.

Currently, we are studying different related lines regarding reproducibility, such
as automatic characterization of instances. Furthermore, we pursue the creation of
adimensional metrics to more precisely evaluate the performance of different imple-
mentations of algorithms over a problem. As in the case of this work, we will not only
describe our findings, but we also will apply them on actual optimization problems.

Acknowledgments

This work has been partially supported by the Spanish Ministerio de Ciencia
e Innovación (MCIN/AEI/10.13039/501100011033/FEDER, UE) under grant ref.
PID2021-126605NB-I00; Spanish Ministerio de Ciencia, Innovación y Universidades

26 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

(MCIU/AEI/FEDER, UE) under grant refs. PGC2018-095322-B-C22 and FPU19/04098;
and Comunidad de Madrid y Fondos Estructurales de la Unión Europea with grant ref.
P2018/TCS-4566.

References

ACM (2021). Artifact review and badging, version 2.0.

Amaral, A. R. (2006). On the exact solution of a facility layout problem. European Journal
of operational research, 173(2):508–518.

Amaral, A. R. (2012). The corridor allocation problem. Computers & Operations Research,
39(12):3325–3330.

Amaral, A. R. (2013). Optimal solutions for the double row layout problem. Optimiza-
tion Letters, 7(2):407–413.

Amaral, A. R. (2019). A mixed-integer programming formulation for the double row
layout of machines in manufacturing systems. International Journal of Production Re-
search, 57(1):34–47.

Amaral, A. R. (2020). A heuristic approach for the double row layout problem. Annals
of Operations Research, pages 1–36.

Amaral, A. R. (2021). A mixed-integer programming formulation of the double row
layout problem based on a linear extension of a partial order. Optimization Letters,
15(4):1407–1423.

Anjos, M. F. and Vannelli, A. (2008). Computing globally optimal solutions for single-
row layout problems using semidefinite programming and cutting planes. INFORMS
Journal on Computing, 20(4):611–617.

Arnold, B., Bowler, L., Gibson, S., Herterich, P., Higman, R., Krystalli, A., Morley, A.,
O’Reilly, M., Whitaker, K., et al. (2019). The turing way: a handbook for reproducible
data science. Zenodo.

Arthur, D. and Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding.
Technical report, Stanford.

Bäck, T., Fogel, D. B., and Michalewicz, Z. (1997). Handbook of evolutionary computa-
tion. Release, 97(1):B1.

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604).

Bartz-Beielstein, T., Doerr, C., Berg, D. v. d., Bossek, J., Chandrasekaran, S., Eftimov, T.,
Fischbach, A., Kerschke, P., La Cava, W., Lopez-Ibanez, M., et al. (2020). Benchmark-
ing in optimization: Best practice and open issues. arXiv preprint arXiv:2007.03488.

Birattari, M., Zlochin, M., and Dorigo, M. (2006). Towards a theory of practice in meta-
heuristics design: A machine learning perspective. RAIRO-Theoretical Informatics and
Applications, 40(2):353–369.

Calvo, B., Ceberio, J., and Lozano, J. A. (2018). Bayesian inference for algorithm ranking
analysis. In Proceedings of the Genetic and Evolutionary Computation Conference Compan-
ion, GECCO ’18, pages 324–325, New York, NY, USA. ACM.

Evolutionary Computation Volume x, Number x 27



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

Calvo, B., Shir, O. M., Ceberio, J., Doerr, C., Wang, H., Bäck, T., and Lozano, J. A.
(2019). Bayesian performance analysis for black-box optimization benchmarking. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO
’19, pages 1789–1797, New York, NY, USA. ACM.

Chae, J. and Regan, A. C. (2020). A mixed integer programming model for a double
row layout problem. Computers & Industrial Engineering, 140:106244.

Chung, J. and Tanchoco, J. (2010). The double row layout problem. International Journal
of Production Research, 48(3):709–727.

Clyburne-Sherin, A., Fei, X., and Green, S. A. (2019). Computational reproducibility via
containers in psychology. Meta-psychology, 3.

Crainic, T. G., Gendreau, M., Soriano, P., and Toulouse, M. (1993). A tabu search proce-
dure for multicommodity location/allocation with balancing requirements. Annals
of Operations research, 41(4):359–383.

Dahlbeck, M. (2021). A mixed-integer linear programming approach for the t-row and
the multi-bay facility layout problem. European Journal of Operational Research.

De Souza, M., Ritt, M., López-Ibáñez, M., and Pérez Cáceres, L. (2021). Acviz: A tool for
the visual analysis of the configuration of algorithms with irace. Operations Research
Perspectives, 8:100186.

Eiben, A. E. and Jelasity, M. (2002). A critical note on experimental research method-
ology in ec. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02
(Cat. No. 02TH8600), volume 1, pages 582–587. IEEE.

Feo, T. and Resende, M. (1989). A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8:67–71.

Gendreau, M. (2003). An Introduction to Tabu Search, pages 37–54. Springer US, Boston,
MA.

Gent, I., Grant, S., Macintyre, E., Prosser, P., Shaw, P., Smith, B., and Walsh, T. (1997).
How not to do it. Technical report, 97.27. School of Computer Studies, University of
Leeds.

Glover, F. W. and Kochenberger, G. A. (2006). Handbook of metaheuristics, volume 57.
Springer Science & Business Media.

Herrán, A., Colmenar, J. M., and Duarte, A. (2021). An efficient variable neighborhood
search for the space-free multi-row facility layout problem. European Journal of Oper-
ational Research.

Hungerländer, P., Maier, K., Pachatz, V., and Truden, C. (2020). Exact and heuristic
approaches for a new circular layout problem. SN Applied Sciences, 2(6):1–22.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based opti-
mization for general algorithm configuration. In International conference on learning
and intelligent optimization, pages 507–523. Springer.

28 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). Paramils: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267–
306.

Jacobs, L. W. and Brusco, M. J. (1995). Note: A local-search heuristic for large set-
covering problems. Naval Research Logistics (NRL), 42(7):1129–1140.

Johnson, D. S. (2002). Experimental analysis of algorithms. Data Structures, Near Neigh-
bor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges: Pa-
pers Related to the DIMACS Challenge on Dictionaries and Priority Queues (1995-1996)
and the DIMACS Challenge on Near Neighbor Searches (1998-1999), 59:215.

Jolliffe, I. (2005). Principal component analysis. Encyclopedia of statistics in behavioral
science.

Jolliffe, I. T. and Cadima, J. (2016). Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 374(2065):20150202.

Kendall, G., Bai, R., Błazewicz, J., De Causmaecker, P., Gendreau, M., John, R., Li, J., Mc-
Collum, B., Pesch, E., Qu, R., et al. (2016). Good laboratory practice for optimization
research. Journal of the Operational Research Society, 67(4):676–689.

López-Ibáñez, M., Branke, J., and Paquete, L. (2021). Reproducibility in evolutionary
computation. ACM Transactions on Evolutionary Learning and Optimization, 1(4):1–21.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., and Birattari, M.
(2016). The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58.

Lozano, M., Molina, D., and Garcı́a-Martı́nez, C. (2011). Iterated greedy for the maxi-
mum diversity problem. European Journal of Operational Research, 214(1):31–38.

Maadi, M., Javidnia, M., and Jamshidi, R. (2017). Two strategies based on meta-
heuristic algorithms for parallel row ordering problem (prop). Iranian Journal of Man-
agement Studies, 10(2):467–498.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, volume 1,14, pages 281–297. Oakland, CA, USA.

Moscato, P. and Norman, M. G. (1992). A memetic approach for the traveling salesman
problem implementation of a computational ecology for combinatorial optimization
on message-passing systems. Parallel computing and transputer applications, 1:177–186.

Olvera-López, J. A., Carrasco-Ochoa, J. A., Martı́nez-Trinidad, J. F., and Kittler, J. (2010).
A review of instance selection methods. Artificial Intelligence Review, 34(2):133–143.

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d’Alché Buc,
F., Fox, E., and Larochelle, H. (2021). Improving reproducibility in machine learning
research: a report from the neurips 2019 reproducibility program. Journal of Machine
Learning Research, 22.

Plesser, H. E. (2018). Reproducibility vs. replicability: a brief history of a confused
terminology. Frontiers in neuroinformatics, 11:76.

Evolutionary Computation Volume x, Number x 29



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

Quintana, J. D., Martin-Santamaria, R., Sanchez-Oro, J., and Duarte, A. (2021). Solv-
ing the regenerator location problem with an iterated greedy approach. Applied Soft
Computing, 111:107659.

Ralph, P., Ali, N. b., Baltes, S., Bianculli, D., Diaz, J., Dittrich, Y., Ernst, N., Felderer,
M., Feldt, R., Filieri, A., et al. (2020). Empirical standards for software engineering
research. arXiv preprint arXiv:2010.03525.

Rubio-Sánchez, M., Gallego, M., Gortázar, F., and Duarte, A. (2016). Grasp with path
relinking for the single row facility layout problem. Knowledge-Based Systems, 106:1–
13.

Ruiz, R., Pan, Q.-K., and Naderi, B. (2019). Iterated greedy methods for the distributed
permutation flowshop scheduling problem. Omega, 83:213–222.

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European journal of operational research,
177(3):2033–2049.

Satheesh Kumar, R., Asokan, P., Kumanan, S., and Varma, B. (2008). Scatter search
algorithm for single row layout problem in fms. Advances in Production Engineering
& Management, 3(4):193–204.

Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B. (2011). Finding a” kneedle” in a
haystack: Detecting knee points in system behavior. In 2011 31st international confer-
ence on distributed computing systems workshops, pages 166–171. IEEE.

Secchin, L. D. and Amaral, A. R. S. (2019). An improved mixed-integer programming
model for the double row layout of facilities. Optimization Letters, 13(1):193–199.

Simmons, D. M. (1969). One-dimensional space allocation: an ordering algorithm. Op-
erations Research, 17(5):812–826.

Stodden, V., Leisch, F., and Peng, R. D. (2014). Implementing reproducible research, volume
546. CRC Press Boca Raton, FL.

Stützle, T. and López-Ibáñez, M. (2019). Automated design of metaheuristic algorithms.
In Handbook of metaheuristics, pages 541–579. Springer.

Talbi, E.-G. (2021). Machine learning into metaheuristics: A survey and taxonomy.
ACM Computing Surveys (CSUR), 54(6):1–32.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., et al. (2016). The fair
guiding principles for scientific data management and stewardship. Scientific data,
3(1):1–9.

A Detailed results of the experiments

In order to facilitate future comparisons, the complete set of results for every algorithm
and instance combination is provided in this annex.

Tables 8 and 9 show, respectively, the objective function values and total execution
time in seconds obtained by the methods described in Amaral (2020) (denoted as H1

30 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

to H4) and our MS-IG proposal on the set of 38 instances from Amaral (2020). The best
results are highlighted in bold font. As can be seen, the MS-IG proposal reaches all the
best values, spending only a fraction of the total computing time spent by the previous
methods.

Table 8: Full comparison of objective function values between the state of the art and
our MS-IG proposal, using the original set of 38 instances from Amaral (2020).

Instance H1 H2 H3 H4 MS-IG
S9 1179 1179 1179 1179 1179
S9H 2293 2293 2293 2293 2293
S10 1351 1351 1351 1351 1351
11a 5559.5 5559.5 5559 5560.2 5559
11b 3655.5 3655.5 3655.5 3655.5 3655.5
11c 3832.5 3832.5 3832.5 3832.5 3832.5
11d 906.5 906.5 906.5 906.5 906.5
11e 578 578 578 578 578
11f 825.5 825.5 825.7 825.5 825.5
S11 3424.5 3424.5 3424.5 3424.5 3424.5
12a 1493 1493 1493 1493 1493
12b 1606.5 1606.5 1606.5 1606.5 1606.5
12c 2012.5 2012.5 2012.5 2012.5 2012.5
12d 1107 1107 1107 1107 1107
12e 1066 1066 1066 1066 1066
12f 997.5 997.5 997.7 997.6 997.5
13a 2456.5 2456.5 2456.5 2456.5 2456.5
13b 2864 2864 2864 2864 2864
13c 4136 4136 4136 4136 4136
13d 6164.5 6164.5 6164.5 6164.5 6164.5
13e 6502.5 6502.5 6502.5 6502.5 6502.5
13f 7699.5 7699.5 7699.5 7699.5 7699.5
14a 2904 2904 2904 2904 2904
14b 2736 2736 2736 2736 2736
P15 3195 3195 3195.3 3195 3195
P17 4655 4655 4655 4655 4655
N30 01 4115 4115 4115 4115 4115
N30 02 10771 10771 10773.5 10771 10771
N30 03 22692 22697 22692 22692 22692
N30 04 28390 28390 28393.5 28393 28390
N30 05 57400 57393.5 57395.5 57410.5 57393.5
40-01 99525.5 99543 99537 99531.5 99492.5
40-02 301002 300973.5 300992.5 300976 300961.5
40-03 416271.5 416277 416264 416257 416254.5
40-04 207510 207510 207511 207528 207510
40-05 193748 193748 193778 193783 193748
40-06 1881366.5 1881351.5 1881277 1881281.5 1881277
40-07 545474.5 545239 545358.5 545271 544640

Table 10 shows the results obtained by our implementation of the state-of-the-art
heuristic, denoted as H1’ to H4’, in relation with the methods from Amaral (2020) for
the set of 38 previous instances. The differences were calculated as a percentage devia-
tion over the objective function score (columns %H1 to %H4). Total execution times in
seconds are provided in Table 11.

Finally, Table 12 shows the objective function value obtained by our implementa-
tion of the state-of-the-art methods (H1’ to H4’) and our MS-IG proposal on the set of

Evolutionary Computation Volume x, Number x 31



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

Table 9: Full comparison of execution times between the state of the art and our MS-IG
proposal, using the original set of 35 instances from Amaral (2020).

Instance H1 H2 H3 H4 MS-IG
S9 64.1 59.4 32.4 32.1 4.6
S9H 62.3 58.2 28.7 28.4 3.2
S10 95.5 90.6 50.2 49.5 3.0
11a 135.7 132.7 75.8 75.1 29.2
11b 139.7 137.9 71.5 71.1 3.6
11c 136.2 133.9 71.6 71.2 3.1
11d 136.3 134 71.7 71.1 3.9
11e 136.6 134.8 68.9 69.2 4.6
11f 136 134.1 74.3 73.9 4.4
S11 142.7 135 69.7 69.2 3.8
12a 199.5 196.4 111.8 110.7 4.6
12b 198.9 195.8 103.3 102.8 4.7
12c 200.1 196.7 103.6 101.3 4.4
12d 201.6 186 94.1 92.7 4.4
12e 198.4 191 104.7 102.9 4.8
12f 197 193.9 109.1 108.4 4.3
13a 278 272.3 175.5 173.4 4.8
13b 278.7 271.5 182.6 180.7 5.3
13c 268.8 262.4 167.5 166.9 5.0
13d 271.7 266.5 168.7 165.8 5.1
13e 274.7 267.9 141.3 140.3 4.5
13f 271.6 265.2 159.9 158.4 5.3
14a 383.3 370.9 238.1 228.8 5.6
14b 380.1 370.4 232 228.5 5.2
P15 515 498.6 349.6 345.9 7.6
P17 892.8 870.3 639 631.5 7.5
N30 01 20296.2 19829 11597.8 11140.4 14.2
N30 02 12842.2 11779.5 8889.6 8679.2 26.7
N30 03 10805.1 9656.6 9231.2 9059.4 26.5
N30 04 10726.2 9712.9 10154.6 10051.1 30.9
N30 05 9529.7 8479.5 8952.2 8935.5 51.4
40-01 36940.4 31511.7 37697.9 37413.9 77.4
40-02 36351.6 30784.1 47770.6 47502.9 94.3
40-03 36710.5 31291.3 53366.1 52988.8 97.1
40-04 37832.6 32492.3 43152.6 42688.8 76.9
40-05 36249 31121.1 32599.3 32004.4 191.5
40-06 35919.9 30579.8 49446.2 49318 75.2
40-07 35458.1 30069.9 38202.2 37915 123.4

32 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

Ta
bl

e
10

:C
om

pa
ri

so
n

be
tw

ee
n

th
e

ob
je

ct
iv

e
fu

nc
ti

on
va

lu
es

of
th

e
pr

ev
io

us
al

go
ri

th
m

(H
1

to
H

4)
an

d
ou

r
im

pl
em

en
ta

ti
on

(H
1’

to
H

4’
).

In
st

an
ce

H
1

H
2

H
3

H
4

H
1’

H
2’

H
3’

H
4’

%
H

1
%

H
2

%
H

3
%

H
4

S9
11

79
11

79
11

79
11

79
11

81
.5

11
81

.5
11

81
.5

11
81

.5
0.

21
0.

21
0.

21
0.

21
S9

H
22

93
22

93
22

93
22

93
22

93
22

93
22

93
22

93
0.

00
0.

00
0.

00
0.

00
S1

0
13

51
13

51
13

51
13

51
13

67
13

67
13

70
.5

13
70

.5
1.

18
1.

18
1.

44
1.

44
11

a
55

59
.5

55
59

.5
55

59
55

60
.2

56
31

.5
56

31
.5

56
21

.5
56

28
.5

1.
30

1.
30

1.
12

1.
23

11
b

36
55

.5
36

55
.5

36
55

.5
36

55
.5

36
55

.5
36

55
.5

36
55

.5
36

55
.5

0.
00

0.
00

0.
00

0.
00

11
c

38
32

.5
38

32
.5

38
32

.5
38

32
.5

38
32

.5
38

32
.5

38
32

.5
38

32
.5

0.
00

0.
00

0.
00

0.
00

11
d

90
6.

5
90

6.
5

90
6.

5
90

6.
5

90
6.

5
90

6.
5

90
6.

5
90

6.
5

0.
00

0.
00

0.
00

0.
00

11
e

57
8

57
8

57
8

57
8

58
3

58
3

58
3

58
3

0.
87

0.
87

0.
87

0.
87

11
f

82
5.

5
82

5.
5

82
5.

7
82

5.
5

82
7

82
7

82
7

82
7

0.
18

0.
18

0.
16

0.
18

S1
1

34
24

.5
34

24
.5

34
24

.5
34

24
.5

34
39

.5
34

39
.5

34
39

.5
34

39
.5

0.
44

0.
44

0.
44

0.
44

12
a

14
93

14
93

14
93

14
93

15
29

15
29

15
29

15
29

2.
41

2.
41

2.
41

2.
41

12
b

16
06

.5
16

06
.5

16
06

.5
16

06
.5

16
09

.5
16

09
.5

16
09

.5
16

09
.5

0.
19

0.
19

0.
19

0.
19

12
c

20
12

.5
20

12
.5

20
12

.5
20

12
.5

20
35

20
35

20
35

20
35

1.
12

1.
12

1.
12

1.
12

12
d

11
07

11
07

11
07

11
07

11
12

.5
11

14
11

12
.5

11
14

0.
50

0.
63

0.
50

0.
63

12
e

10
66

10
66

10
66

10
66

10
66

10
66

10
66

10
66

0.
00

0.
00

0.
00

0.
00

12
f

99
7.

5
99

7.
5

99
7.

7
99

7.
6

99
7.

5
99

8
99

7.
5

99
7.

5
0.

00
0.

05
-0

.0
2

-0
.0

1
13

a
24

56
.5

24
56

.5
24

56
.5

24
56

.5
24

57
.5

24
67

.5
24

57
.5

24
57

.5
0.

04
0.

45
0.

04
0.

04
13

b
28

64
28

64
28

64
28

64
28

70
28

70
28

70
28

70
0.

21
0.

21
0.

21
0.

21
13

c
41

36
41

36
41

36
41

36
41

49
41

49
41

52
41

52
0.

31
0.

31
0.

39
0.

39
13

d
61

64
.5

61
64

.5
61

64
.5

61
64

.5
61

64
.5

61
64

.5
61

64
.5

61
64

.5
0.

00
0.

00
0.

00
0.

00
13

e
65

02
.5

65
02

.5
65

02
.5

65
02

.5
65

11
.5

65
11

.5
65

11
.5

65
11

.5
0.

14
0.

14
0.

14
0.

14
13

f
76

99
.5

76
99

.5
76

99
.5

76
99

.5
76

99
.5

76
99

.5
76

99
.5

77
04

.5
0.

00
0.

00
0.

00
0.

06
14

a
29

04
29

04
29

04
29

04
29

20
29

20
29

20
29

20
0.

55
0.

55
0.

55
0.

55
14

b
27

36
27

36
27

36
27

36
27

46
.5

27
46

.5
27

36
.5

27
46

.5
0.

38
0.

38
0.

02
0.

38
P1

5
31

95
31

95
31

95
.3

31
95

31
95

32
06

31
95

32
06

0.
00

0.
34

-0
.0

1
0.

34
P1

7
46

55
46

55
46

55
46

55
46

66
46

66
46

66
46

66
0.

24
0.

24
0.

24
0.

24
N

30
01

41
15

41
15

41
15

41
15

41
15

41
15

41
15

41
15

0.
00

0.
00

0.
00

0.
00

N
30

02
10

77
1

10
77

1
10

77
3.

5
10

77
1

10
79

3.
5

10
78

1.
5

10
78

9.
5

10
78

2
0.

21
0.

10
0.

15
0.

10
N

30
03

22
69

2
22

69
7

22
69

2
22

69
2

22
71

0
22

70
6

22
71

1.
5

22
71

7
0.

08
0.

04
0.

09
0.

11
N

30
04

28
39

0
28

39
0

28
39

3.
5

28
39

3
28

42
7

28
41

7
28

41
7

28
43

0.
5

0.
13

0.
10

0.
08

0.
13

N
30

05
57

40
0

57
39

3.
5

57
39

5.
5

57
41

0.
5

57
48

1
57

47
0.

5
57

48
5.

5
57

48
5

0.
14

0.
13

0.
16

0.
13

40
-0

1
99

52
5.

5
99

54
3

99
53

7
99

53
1.

5
99

87
4.

5
99

78
8

99
72

7.
5

99
78

8
0.

35
0.

25
0.

19
0.

26
40

-0
2

30
10

02
30

09
73

.5
30

09
92

.5
30

09
76

30
12

16
.5

30
12

31
.5

30
12

65
.5

30
10

89
0.

07
0.

09
0.

09
0.

04
40

-0
3

41
62

71
.5

41
62

77
41

62
64

41
62

57
41

64
01

41
64

32
41

63
28

.5
41

64
13

0.
03

0.
04

0.
02

0.
04

40
-0

4
20

75
10

20
75

10
20

75
11

20
75

28
20

76
70

20
76

96
20

76
93

20
76

96
0.

08
0.

09
0.

09
0.

08
40

-0
5

19
37

48
19

37
48

19
37

78
19

37
83

19
40

47
19

40
52

19
39

57
19

40
52

0.
15

0.
16

0.
09

0.
14

40
-0

6
18

81
36

6.
5

18
81

35
1.

5
18

81
27

7
18

81
28

1.
5

18
81

66
8.

5
18

81
60

5.
5

18
81

88
1.

5
18

81
51

1.
5

0.
02

0.
01

0.
03

0.
01

40
-0

7
54

54
74

.5
54

52
39

54
53

58
.5

54
52

71
54

71
37

54
87

58
54

66
71

.5
54

61
33

0.
30

0.
65

0.
24

0.
16

Evolutionary Computation Volume x, Number x 33



R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, J. M. Colmenar

Table 11: Comparison between the execution times of the previous algorithm (H1 to
H4) and our implementation (H1’ to H4’).

Instance H1 H2 H3 H4 H1’ H2’ H3’ H4’
S9 64.1 59.4 32.4 32.1 26.8 22.0 5.9 5.5
S9H 62.3 58.2 28.7 28.4 22.1 19.3 5.3 5.3
S10 95.5 90.6 50.2 49.5 45.0 30.6 8.0 8.9
11a 135.7 132.7 75.8 75.1 62.4 46.2 13.9 11.9
11b 139.7 137.9 71.5 71.1 57.9 44.0 11.2 11.1
11c 136.2 133.9 71.6 71.2 57.5 44.2 12.5 12.3
11d 136.3 134.0 71.7 71.1 58.9 43.0 11.0 10.8
11e 136.6 134.8 68.9 69.2 56.8 43.7 11.1 10.1
11f 136.0 134.1 74.3 73.9 50.7 42.1 10.5 11.4
S11 142.7 135.0 69.7 69.2 51.2 43.2 10.0 8.8
12a 199.5 196.4 111.8 110.7 84.5 67.3 15.7 14.5
12b 198.9 195.8 103.3 102.8 71.0 62.6 15.2 14.3
12c 200.1 196.7 103.6 101.3 79.5 65.3 16.3 15.1
12d 201.6 186.0 94.1 92.7 82.4 62.8 16.7 16.7
12e 198.4 191.0 104.7 102.9 81.3 64.3 16.6 17.6
12f 197.0 193.9 109.1 108.4 80.4 60.2 16.2 14.6
13a 278.0 272.3 175.5 173.4 121.9 94.8 24.2 22.3
13b 278.7 271.5 182.6 180.7 114.6 94.1 22.6 22.7
13c 268.8 262.4 167.5 166.9 106.8 90.3 22.1 20.5
13d 271.7 266.5 168.7 165.8 107.2 89.4 22.8 22.1
13e 274.7 267.9 141.3 140.3 99.4 87.4 21.6 22.0
13f 271.6 265.2 159.9 158.4 101.8 76.6 17.7 18.5
14a 383.3 370.9 238.1 228.8 140.0 109.4 30.5 31.5
14b 380.1 370.4 232.0 228.5 124.4 104.6 26.2 31.6
P15 515.0 498.6 349.6 345.9 157.4 131.5 38.2 39.8
P17 892.8 870.3 639.0 631.5 256.3 201.4 64.2 63.5
N30 01 20296.2 19829.0 11597.8 11140.4 3466.1 2822.9 705.8 746.2
N30 02 12842.2 11779.5 8889.6 8679.2 3600.0 3308.0 799.9 874.3
N30 03 10805.1 9656.6 9231.2 9059.4 3600.0 3569.5 882.9 901.9
N30 04 10726.2 9712.9 10154.6 10051.1 3600.0 3600.0 912.1 963.7
N30 05 9529.7 8479.5 8952.2 8935.5 3600.0 3600.0 936.3 988.0
40-01 36940.4 31511.7 37697.9 37413.9 3600.1 3600.0 3600.1 3600.0
40-02 36351.6 30784.1 47770.6 47502.9 3600.1 3600.1 3600.1 3600.1
40-03 36710.5 31291.3 53366.1 52988.8 3600.1 3600.1 3600.1 3600.1
40-04 37832.6 32492.3 43152.6 42688.8 3600.1 3600.0 3600.0 3600.0
40-05 36249.0 31121.1 32599.3 32004.4 3600.1 3600.1 3600.1 3600.0
40-06 35919.9 30579.8 49446.2 49318.0 3600.1 3600.1 3600.1 3600.1
40-07 35458.1 30069.9 38202.2 37915.0 3600.1 3600.1 3600.1 3600.0

34 Evolutionary Computation Volume x, Number x



A practical methodology for reproducibility

15 new instances. Table 13 provides the total execution times in seconds. The time limit
is set to 3600 seconds for the state-of-the-art implementation and to 600 seconds for our
MS-IG proposal. Note that although the state-of-the-art implementation reaches the
time limit in every instance, and the MS-IG reaches it in those instances of size 70, the
best solution found in that time is reported.

Table 12: Comparison of objective function values between our implementation of the
state of the art and our proposal, using the new proposed set of 15 instances.

Instance H1’ H2’ H3’ H4’ MS-IG
sko56 01 32021 32009 31982 32009 31972
sko56 02 249541 249258 248439 248385 248201.5
sko56 03 85393 85544 85265 85304 85166.5
sko56 04 157084 156883 156826 156838 156626.5
sko56 05 296357.5 296567.5 296438.5 296365.5 296168.5
A60 01 739879 740637.5 739464 739597.5 738869
A60 02 421256 421291 421268 421291 420890
A60 03 325343.5 325129.5 324887.5 325129.5 324201.5
A60 04 200260 200231 200068 200231 199116
A60 05 161468 163123 160576 160167 159578
A70 01 767469 768145 766473 766741.5 764416
A70 02 724458.5 721885 721885 721885 720706
A70 03 763116 762165.5 764582.5 759912 759405
A70 04 484917.5 489218 488639.5 489218 484328
A70 05 2118085.5 2118108.5 2115623.5 2115836.5 2109671.5

Table 13: Comparison of execution times between our implementation of the state of
the art and our proposal, using the new proposed set of 15 instances.

Instance H1’ H2’ H3’ H4’ MS-IG
sko56 01 3600.3 3600.7 3600.2 3600.5 98.7
sko56 02 3600.6 3600.6 3600.2 3600.3 405.9
sko56 03 3600.3 3600.6 3600.2 3600.5 162.4
sko56 04 3600.3 3600.5 3600.2 3600.4 181.8
sko56 05 3600.9 3600.6 3600.1 3600.1 211.0
A60 01 3600.9 3600.5 3600.5 3600.2 486.4
A60 02 3600.3 3600.6 3600.3 3600.9 453.1
A60 03 3600.2 3600.4 3600.6 3600.6 339.2
A60 04 3600.7 3600.3 3600.2 3600.7 467.0
A60 05 3600.4 3600.2 3600.2 3600.1 609.5
A70 01 3601.0 3601.7 3602.5 3601.7 605.7
A70 02 3600.2 3601.4 3600.9 3600.5 606.3
A70 03 3601.4 3601.3 3602.7 3601.8 606.1
A70 04 3602.0 3600.4 3601.5 3600.3 605.9
A70 05 3601.8 3601.6 3601.7 3601.0 602.0

Evolutionary Computation Volume x, Number x 35





Chapter 9

On the automatic generation of
metaheuristic algorithms for
optimization problems

Title On the automatic generation of meta-
heuristic algorithms for optimization
problems

Authors Raúl Mart́ın-Santamaŕıa, José Manuel
Colmenar, Abraham Duarte, Manuel
López-Ibáñez and Thomas Stützle

Publication date Submitted for review in May 2023
Journal European Journal of Operational Re-

search
Publisher Science Direct
ISBN/ISSN 0377-2217
Impact Factor 6.363 (2021)
Rank by Impact Factor 17/87 (Q1, Operations Research & Man-

agement Science)
DOI Pending assignment

139



140



On the automatic generation of metaheuristic
algorithms for combinatorial optimization problems

Raúl Martín-Santamaríaa, J. Manuel Colmenara, Abraham Duartea,
Manuel López-Ibáñezb, Thomas Stützlec

aDepartment of Computer Science and Statistics, Universidad Rey Juan
Carlos, Móstoles, Spain

bAlliance Manchester Business School, University of Manchester, Manchester, UK
cIRIDIA, Université Libre de Bruselles, Brussels, Belgium

Abstract

Metaheuristic algorithms have become one of the preferred approaches for
solving optimization problems. However, some issues have been highlighted
in the literature, among others, reproducibility, fragmentation and lack of
reusability are some of the main challenges to overcome when designing
metaheuristics algorithms. To this end, we propose a new methodology for
automatically generating metaheuristic approaches using both existing com-
mon components and user specific or custom components. Moreover, we will
implement the proposed methodology in a new optimization tool, demon-
strating the benefits of the methodology by outperforming earlier research in
three distinct problems from completely different families: a facility layout
problem, a vehicle routing problem and a clustering problem.

Keywords: metaheuristics, methodology, reproducibility, automatic
configuration

1. Introduction

Stochastic algorithms, and specially metaheuristics, are one of the most
successful methods for solving optimization problems. Their distinct per-
formance, specially when short computing times are required in practical
applications, makes them considerably popular (Hoos and Stützle, 2004).

Email addresses: raul.martin@urjc.es (Raúl Martín-Santamaría),
josemanuel.colmenar@urjc.es (J. Manuel Colmenar), abraham.duarte@urjc.es
(Abraham Duarte), manuel.lopez-ibanez@manchester.ac.uk (Manuel López-Ibáñez),
stuetzle@ulb.ac.be (Thomas Stützle)

Preprint submitted to European Journal of Operational Research May 2, 2023



Metaheuristic approaches design is mostly guided by human expertise
and intuition and a great deal of trial-and-error, where the same problem-
independent algorithmic components are recombined in various ways together
with other problem-specific components. However, in recent times, there is
a lot of interest in automatically designing metaheuristics from a library of
algorithmic components given training instances of a problem.

Hyper-heuristics have been mostly used to generate or select low-level
heuristics within a given algorithmic structure. Yet, there is very little sepa-
ration between the algorithmic framework that implements the design space
and the optimizer that searches that design space and instantiates new al-
gorithms (Grefenstette, 1986). More recent approaches for the automatic
design of metaheuristics have followed a different path, by clearly separat-
ing the algorithmic design framework and the automatic configuration tool,
which we will call AC from this point on. This separation allows employing
powerful off-the-shelf automatic configuration methods, initially designed for
parameter tuning (or hyper-parameter optimization in machine learning) as
AC. Early examples of this approach are SATenstein (KhudaBukhsh et al.,
2009, 2016) and AutoMOACO (López-Ibáñez and Stützle, 2012a).

While the parametric tuning of algorithms has been studied in depth,
structural tuning has received less attention. In Stützle and López-Ibáñez
(2019), the authors discuss the problem and metaheuristic specific automated
design proposals, noting the lack of a general framework. Previous automated
configuration proposals, such as KhudaBukhsh et al. (2016), are usually re-
stricted to applying a limited set of metaheuristic methods to a single opti-
mization problem family. In addition, the proposal from KhudaBukhsh et al.
(2016) is a monolithic framework: there is a high-level algorithmic template
with various parameters. This imposes a rather inflexible algorithmic struc-
ture. However, this inflexibility can be overcome by the use of grammars to
define the design space (Mascia et al., 2014).

One of the most recent and relevant proposals, the Emili framework (Pag-
nozzi and Stützle, 2019), follows a more interesting approach. The authors
of Emili propose splitting the algorithm components into high-level compo-
nents, common for different problems, and low-level components, specific for
a given problem, and used by the high-level components. This idea, proposed
previously by Marmion et al. (2013), is improved by the Emili framework by
providing the researcher with several high-level components. However, the
user must manually modify the grammar defined by Emili and the interface
with the AC to work, which is an error-prone process.

A similar limitation is shared by the ParadisEO framework. ParadisEO
is an optimization framework written in C++ with a long track record (Ca-
hon et al., 2004) that recently has incorporated an automating configuration

2



module (Dréo et al., 2021). However, it shares a similar limitation with
Emili: grammars still need to be manually defined. Moreover, the frame-
work user needs to implement specific C++ code in order to transform each
parameter to the corresponding parameter format of the AC tool, and to
instantiate each component. This approach, while functional, requires a lot
of user work.

To this end, we have not found an existing proposal that will automati-
cally discover the algorithmic components, their relationships and dependen-
cies given a source code, and automatically design a new algorithm. On the
contrary, previous works require users to explicitly enumerate all the com-
ponents, their parameters, and their relationships; a process that is tedious
and error-prone. Moreover, since the user has to manually specify the de-
sign space in the format of the selected AC method, such as the case of the
ParadisEO framework, the user is locked to a single AC tool, as parameter
information needs to be provided using the tools’ specific format.

In Swan et al. (2022), some key ideas that influence our research are
presented. Specifically, the authors argue that automatic design frameworks
should be “truly extensible algorithm templates that support reuse without
modification”, which is closely related to the well known SOLID design princi-
ples (Martin, 2011). In particular, the Liskov substitution principle (Martin,
1996a), also known as design by contract ; and the open-close principle (Mar-
tin, 1996b), that states that components should be extendable rather than
modifiable. Both principles will be key aspects of the proposed component-
based design. The former, because by definition any algorithmic component
will be able to be swapped by any other component that satisfies the same
requirements. For example, all constructive methods can be used in place of
each other.

The second principle, because components themselves cannot be modified.
The application of the second principle may be counter intuitive at first,
as not allowing users to modify existing framework components may give
the impression that the framework is not flexible. This is a trap in which
many existing frameworks have fallen. By allowing users to modify reference
components, they may no longer match the same base requirements, and
therefore components stop being easily reusable and applicable to multiple
situations. The alternative is to make the components easily extendable,
by splitting big components in as many independent components as possible,
and allowing the user to easily extend and override each component behavior,
while matching the same set of requirements.

Our proposal in this work is twofold. We propose a methodology which
automates the whole generation process of metaheuristic algorithms from a
given set of algorithmic components. To this aim, a classification of com-

3



ponents that include all algorithmic elements and their relationships, and a
labeling nomenclature that allows the automatic component discovery and
analysis is provided, including the automatic grammar generation that mod-
els them. Besides, we propose a new parsing and generating strategy for
automatically transforming the decisions to the appropriate parameter space
as required by the chosen AC tool. The AC tool will be treated as a black-
box component, with the ability of being swapped by any other tool if so
desired by the user. Moreover, the proposed methodology will be applied
to three different combinatorial optimization problems, using a library of al-
ready implemented components, starting the automatic configuration from
scratch, without providing existing knowledge in the form of initial good con-
figurations. As it will be shown in Section 4, we obtain competitive results
in relation to the state of the art.

The rest of the paper is organized as follows: first, we present the full
methodology in Section 2. Afterward, in Section 3, the target problems are
defined, and a summary of the state of the art is presented. Next, we detail
the experimentation methodology in Section 4, and compare the performance
of the automatically generated algorithms using the proposed methodology
against the state of the art. Finally, the conclusions and future line of research
are presented in Section 5.

2. Automatic design by optimization

In this section, the proposed methodology is introduced. As seen in Fig-
ure 1, the methodology is formed by two main phases: (1) component dis-
covery and automatic grammar generation, and (2) design by optimization.

Next, we describe the details of both phases of the proposed methodology
in a general way, that is, without being bound to a particular algorithm or
problem, which is one of the main contributions of this work.

2.1. Components discovery and grammar processing
The first phase of the methodology is implemented by three different

steps: the code scanner, the recursive grammar walk, and the parameter space
transformer, as seen on the left side of Figure 1. In brief, the methodology
has been implemented on different software modules which interact with both
the source code that implements the algorithmic components and the selected
AC tool.

Before detailing their behavior, some definitions are introduced in the
next subsection.

4



Source
Code

     Scanner

Runnable
Algorithm

Grammar &
Inventory

     Recursive
     Grammar

    Walk

Execution
Metrics

Algorithm
Score

Configured
Params

    Executor

    Algorithm
    Builder

    Automatic
    Config.

    Results
    Analyzer

     Param
     Space

      Transform

Parameter
List

Proposed
Algorithms

1)

2)

Figure 1: Complete picture of the automatic generation and configuration of algorithms
methodology.

2.1.1. Components and relationships
For the sake of generalization, we define algorithmic component as any

procedure, method or parameter used inside any heuristic or metaheuristic
method, and any of their internal components. Examples of algorithm com-
ponents are constructive methods, stopping conditions, neighborhoods and
local search methods. Note that all heuristic and metaheuristic methods are
considered as algorithmic components themselves, as they can be used by
other metaheuristics.

Any algorithmic component can declare a dependency on any other com-
ponent type. This dependency will be automatically resolved to any avail-
able component which fulfills the required functionality. In this regard, if
a given component called SimpleAlgorithm requires a component of type
Constructive in order to work, this dependency can be satisfied by any com-
ponent that matches the same specification defined by Constructive by means
of inheritance, composition or any other available mechanism of the program-
ming language used. In Grammar 1, this dependency example is described.
The first grammar rule is the list of available algorithms in the current con-
text, represented by the starting symbol S, with each found algorithm as
a derivation. The second rule in the example specifies that the algorithm
SimpleAlgorithm has a dependency on both a Constructive and an Improver
component. Constructive can be subsequently replaced with any component
that matches its specification, for example, a random shuffle (RandomShuf-

5



fle) of the instance data, or a greedy constructive heuristic (Greedy).

hSi ::= hSimpleAlgorithmi | . . . (1)
hSimpleAlgorithmi ::= hConstructivei hImproveri (2)
hConstructivei ::= hRandomShufflei | hGreedyi (3)

Grammar 1: Example grammar with a single algorithm and two constructive implemen-
tations.

A set of algorithmic components have been already implemented in a
publicly available framework1 in order to prove our methodology. Besides,
any new component coded by a researcher will be automatically discovered
by this methodology. Figure 2 shows an example of algorithmic components
that could be used to solve the classic Travelling Salesman Problem (Gavish
and Graves, 1978). The yellow background components are those provided
by our framework, while the blue background ones are custom components
developed by a researcher: a custom algorithm, using a memetic metaheuris-
tic (Neri et al., 2011); a constructive method which shuffles the order in
which the destinations are visited; a candidate list manager for the GRASP
constructive (Feo and Resende, 1989); a swap neighborhood which changes
the order in which two destinations are visited, and a Tabu improvement
strategy (Glover and Laguna, 1997). Notice the inheritance (“is a”) and
composition (“part of”) relationships, denoted with white triangle and black
diamond symbols, respectively.

2.1.2. Code analysis and grammar generation
Under this scenario, the source code is analyzed by the Scanner mod-

ule (see Figure 1), looking for both algorithmic components provided by the
framework and those provided by the user. Each component is individually
analyzed, listing its dependencies and the roles that it may perform, generat-
ing a graph similar to Figure 2. The dependencies are generated by following
the principles of OOP (Object-Oriented Programming) languages, where the
roles a component may perform are determined by the union of its relation-
ships. For a full technical description of how the implementation of this step
works, see Appendix B.

Note that the color differentiation in Figure 2 is only for explanation pur-
poses, as that differentiation does not exist at runtime. This approach allows

1https://github.com/mork-optimization/mork

6



Algorithm

Simple

MultiStart

Memetic

Constructive

RouteShuffle

GRASP

Improver

LocalSearch

BestImprLS

FirstImprLS

TabuSearch

Neighborhood

SwapNeigh

CandidateList

TSPCandtList

TSPTabu

Figure 2: Example of automatically discovered components and the hierarchy they form.
Diamond arrows mean that the component at the side of the diamond is composed by or
depends on the component at the other side, while the unfilled triangle represents that a
given component implements or is of the type pointed by the triangle.

the user to design an arbitrary hierarchy of components and their implemen-
tations, that may or may not be related to the existing hierarchies proposed
by our framework, making it trivially to extend. The only component that
must always be used or inherited is the Algorithm component, as it is the
starting point for the generated grammar, but it may have dependencies on
algorithmic components unknown by the framework, and it will still work, as
the dependency graph between components is built at runtime. See Figure
A.7 in Appendix A for a full list of the proposed components and types in
our framework.

This design strictly adheres to the open-close principle (Martin, 1996b):
algorithmic components are open to be extended, but cannot be modified.
Or more specifically, users can add their own components, or extend existing
ones to add or change their behavior, but they cannot modify their origi-
nal specification. The importance of following this design is highlighted in
(Swan et al., 2019), where it stipulates the requirements for reusing algorithm
components in the context of automated assembly of algorithms.

Once all components have been analyzed, and the implicit grammar is
generated, the next step consists in exploring all valid component combina-
tions available, or in other words, building the derivation tree. Exploration
depth is limited by a maximum depth parameter defined by the user. If a
given component combination does not generate a valid proposal, because

7



a component has a dependency that cannot be satisfied, or the maximum
depth is reached for a given component combination, the affected branches
of the derivation tree are pruned.

The derivation tree defines the space of valid algorithmic component com-
binations that will be explored by the AC tool. Hence, by means of the
derivation tree, any valid algorithm configuration can be generated.

Figure 3 shows two algorithms that could be generated for the example
presented in Figure 2. In the first one, Figure 3a, the MultiStart algorithm
provided by the framework has been chosen, using the Simple component as
its internal algorithm. The Simple algorithm consists in sequentially building
a solution using a constructive method, using an improvement method over
the generated solution afterward. Parameters are represented as green empty
boxes. In Figure 3b, a more complex example is built using the user provided
Memetic algorithm. Notice that framework provided components and user
defined components are intermingled, without any differentiation, which is
one of the novelty contributions of our approach. This is demonstrated by
the fact that an existing GRASP constructive component is chosen, using
the user provided list manager.

MultiStart ⇾Algorithm

Simple ⇾Algorithm

RouteShuffle ⇾ Constructive

TSPTabu ⇾ Improver

TabuListSize ⇾ Integer

Iterations ⇾ Integer

(a) Example of a generated multi-start GRASP al-
gorithm.

Memetic ⇾Algorithm

PopulationSize ⇾ Integer

CrossoverOp ⇾ Category

GRASP ⇾ Constructive

TSPCandtList ⇾ CandidateList

Alpha  ⇾ Double

FirstImpLS ⇾ Improver

SwapNeighborhood ⇾ Neighborhood

(b) Example of a generated hybrid evolutionary al-
gorithm, using a memetic approach.

Figure 3: Examples of automatically generated algorithms. Each component and param-
eter is represented as a box, which may recursively contain components. Provided com-
ponents in the framework are yellow; integer, real, categorical and numerical parameters
are green, and blue components are the ones provided by the user

Recursivity is implicitly allowed in our proposal, and may occur in cases
when an algorithmic component ends up depending on another component of
its very same type or subtype. Figure 2, shows that the MultiStart component
includes an Algorithm component. This is the consequence of the design

8



of MultiStart, which executes any component of type Algorithm n times.
Therefore, it may contain another MultiStart component with a different
configuration. This behavior can be further tuned using metadata provided
in the components, as will be shown in Section 2.2.

Lastly, since the proposed methodology uses an external AC tool to de-
termine the best configuration, the derivation tree is translated into the par-
ticular configuration format required by the AC tool. This is implemented
by the Parameter Space Transformer component, which is dependant on the
chosen AC method.

2.2. Automatic design by optimization
The automatic design by optimization proposal is based on the idea that

the different algorithmic combinations or configurations correspond to solu-
tions in the space defined by the previously generated grammar. Hence, a
process must be initiated where the selected AC tool will explore this solu-
tions space in order to find the best algorithm configuration. In addition,
the interaction between the AC tool and the framework modules have to be
defined.

2.2.1. Parameter optimization loop
As explained before, the derivation tree generated after the grammar

provides the definition of the solution space that feeds the AC. Besides, the
AC has to be able to build and run the generated algorithm configuration
obtaining a quality value, also named score, to this configuration. This pro-
cess, represented as a loop in Figure 1, is formed by four distinct independent
components:

• Automatic Config. Represents the automatic configuration tool, ex-
ternal to the framework. Outputs run configurations, formed by an
instance and a set of parameters and their values to test. Receives the
score of the given combination of parameters, and decides subsequent
parameter combinations to test.

• Algorithm Builder. Transforms the parameters as received from the
AC method to an intermediate language that is later parsed to build, in
execution time, the algorithm requested by the AC. In our implemen-
tation, no compilation is needed in this step. Parsing is implemented
using ANTLR Parr and Quong (1995). For a complete technical de-
scription of this step, see Appendix B.

• Executor. Launches the runnable algorithm generated by the algo-
rithm builder using the chosen instance, in a reproducible environment.

9



Two implementations are provided: the first one executes built algo-
rithms sequentially, while the second one can parallelize a limited set
of the runs. All algorithm configurations have a configurable maximum
runtime, after which the configuration is terminated if they have not
finished earlier.

• Results analyzer. Collects the metrics generated during the algo-
rithm execution, specifically how the objective function evolves over
time. Typically, the AC tool expects a single number representing the
performance of the given parameter combination, so we propose using
the AUC (Area Under Curve) metric in order to represent the anytime
algorithm performance. For more information about anytime optimiza-
tion and its relation to the automated configuration of algorithms, see
López-Ibáñez and Stützle (2012b).

This process is repeated until the stopping criteria of the AC tool is met,
which, except in trivial cases where the full parameter space can be explored,
occurs when the tuning budget is exhausted. The best combinations of algo-
rithmic components and their parameters are returned, along with a report
summarizing the findings.

2.2.2. Integration with automatic configuration tool
In order to ensure the modularity of our approach, we have created an in-

termediate language and defined a set of annotations to describe parameters,
that greatly simplifies integration between any AC tool and the framework,
by allowing us to define arbitrary algorithmic component combinations and
their respective parameters as simple strings. Moreover, this representation
improves the explainability of the configurations as they are being tuned,
and greatly simplifies debugging when compared against the equivalent AC
output.

Six different parameter types are proposed to describe all possible com-
ponents in the methodology and their dependencies. These parameter are:

• Algorithmic Component parameter : represents any algorithmic compo-
nent type required as a dependency. By default, any component that
matches the given type could be used. For example, a parameter of
type Improver, could be filled either by any LocalSearch component, or
any custom Improver implemented by the user. An algorithmic com-
ponent may optionally provide metadata to explicitly declare which
components are allowed, or block some specific components, reducing
the number of possibilities available by default. For example, it may

10



be desired to avoid using a Multistart inside another Multistart com-
ponent.

• Context parameter : represents any parameter type whose value is either
fixed or calculated at runtime by a user provided function. Examples
can be the algorithm name, or the direction of the objective function
(maximize or minimize). Independently of their type, the automatic
configuration engine will not consider them as parameters to be passed
to the AC tool, and will be automatically filled by the algorithm builder
component when generating the algorithm using the parameters pro-
vided by the AC tool.

• Integer parameter : represents an integer value, allowing the user to
define a range of valid values that the component accepts.

• Real parameter : represents a real value, allowing the user to define a
range of valid values that are valid for the given component.

• Categorical and Ordinal parameters : represents a decision to be taken
between a predefined set of values. An example of a categorical param-
eter could be the crossover operator type used in a population-based
algorithmic component. If there is an implied order between the pos-
sible values, the parameter type is called ordinal.

Using the derivation tree built at the end of the first phase, we can al-
ways generate a parametric description with the proposed intermediate lan-
guage (López-Ibáñez et al., 2016). The parameter description will use all
found parameters found in each component, in addition to categorical pa-
rameters to represent choices among components, using conditions to control
which other components (and their parameters) are activated when certain
components are selected earlier in the derivation tree.

A parametric description of the design space enables the use of off-the-
shelf automatic algorithm configuration methods, such as irace (López-
Ibáñez et al., 2016). We have chosen irace as the AC software, due to
the fact that it is open source, well documented, widely used and matches all
our requirements. Moreover, previous benchmarks and research has shown
it is very capable (Rasku et al., 2019).

Listing 1 shows an example of a run request to our framework from the
irace AC tool. The parameters in the request are transformed to our inter-
mediate language as shown in Listing 2.

Listing 1: Example command line call made by irace to execute the algorithm presented
in Figure 3a.

11



--Algorithm=MultiStart --Algorithm_MultiStart.algorithm=Simple
,! --Algorithm_MultiStart.iterations=10 --
,! Algorithm_MultiStart.algorithm_Simple.constructive=
,! RouteShuffle --Algorithm_MultiStart.algorithm_Simple.
,! improver=TSPTabu --Algorithm_MultiStart.algorithm_Simple
,! .improver_TSPTabu.tabuListSize=250

Listing 2: Intermediate language representation of the algorithm presented in Figure 3a

MultiStart{
iterations=10,
algorithm=Simple{
constructive=RouteShuffle{},
improver=TSPTabu{
tabuListSize=250

}
}

}

However, due to the fact that the AC component is loosely coupled to
the framework, other tools may be easily integrated, such as Optuna (Akiba
et al., 2019), SMAC (Hutter et al., 2011) or ParamILS (Hutter et al., 2009).
Additionally to the parameter list using the format required by the chosen
tool, a configuration file is provided specifying, among others, the tuning
budget, which is calculated dynamically according to the total number of
parameters to tune, scaling accordingly automatically.

3. Target problems

The proposed methodology for the automated design of metaheuristics
will be tested on three optimization problems from different problem families.
In this section, each problem is introduced along with a summary of its state
of the art.

3.1. Space-Free Multi-Row Facility Layout Problem (SF-MRFLP)
The Space-Free Multi-Row Facility Layout Problem (SF-MRFLP) be-

longs to the family of Facility Layout Problems (FLP). This family encom-
passes a set of optimization problems devoted to placing facilities using a
given layout as the main constraint, trying to optimize magnitudes that are
usually related to handling material among different facilities or operation

12



costs (Anjos and Vieira, 2017). Examples of layouts are circular or loop lay-
outs, row based layouts and open-field layouts. The SF-MRFLP generalizes
the Corridor Allocation Problem (CAP) (Amaral, 2012), in which only two
rows may be used.

The SF-MRFLP consists of placing a predefined number of facilities in a
layout formed by two or more rows, taking into account that no free space is
allowed between adjacent facilities in the same row, and that all rows must
be aligned to the left-hand side. Each facility i has a particular length li and
a list of weights wij specifying the material flow to other facilities j. The
position of each facility i in its assigned row determines its loading point xi,
which is situated at the center of the facility. The loading point is calculated
as the sum of the lengths of all facilities before itself, plus half its length. If
the facility is the first in the row, the loading point is simply xi = li

2
. The

goal is to minimize the material handling cost (MHC), which is calculated
as the sum of the horizontal distances, assuming the distances between rows
and the height of the facilities are negligible, between the loading points of
each facility pair, multiplied by their respective material flow:

Minimize
nX

i=1

nX

j=i+1

wij · |xi � xj| (4)

Several authors have addressed this problem. To the best of our knowl-
edge, the state of the art metaheuristic is a variable neighborhood search
(VNS) described by Herrán et al. (2021). The method uses a GRASP ap-
proach for the constructive phase, using two different strategies for picking
elements from the candidate list, RandomGreedy and GreedyRandom. Dur-
ing the improvement step of the VNS algorithm, three different neighbor-
hoods are used: removing and adding a facility from one position to another,
swapping two facilities, and an extended neighborhood formed by both. Fur-
thermore, the proposed neighborhoods can be explored using three different
strategies: first improvement, best improvement and hybrid (pick best move
in a smaller section of the neighborhood).

3.2. Balanced Minimum Sum-of-squares Clustering problem (BMSSC)
The second problem used to validate the proposal is the Balanced Mini-

mum Sum-of-squares Clustering (BMSSC) problem (Xavier and Xavier, 2011).
This problem is devoted to assigning a number of elements into sets (clusters)
of equal size. The number of clusters k is given a priori. If the number of
elements n is not divisible by k, there will be n mod k clusters of size dn/ke,
and k�(n mod k) clusters of size bn/kc. The objective function, represented

13



in Equation 5, consists in minimizing the sum-of-squares distance of an as-
signment of points P = {p1, p2, . . . , pn}, located in a Euclidean space, to the
k clusters, taking into account the distance of each point pj to the centroid
ci of the cluster it is assigned to. The centroid ci is defined as the point with
the minimum distance to all points assigned to the same cluster i. aij is a
binary variable that takes the value of 1, if point j is assigned to cluster i,
and 0 in all other cases.

min
kX

i=1

nX

j=1

||pj � ci||2 · aij (5)

The state of the art is Martín-Santamaría et al. (2022), where the authors
propose combining a GRASP approach (Feo et al., 1994) with the Strategic
Oscillation (SO) method (Glover and Hao, 2011). Two neighborhoods are
proposed: the first one swaps elements between clusters, which maintains so-
lution feasibility; while the second one removes and element from its currently
assigned cluster and reassigns it to a different one, which due to the problem
restrictions is likely to break the size constraint. The authors propose using
the first neighborhood during the local search phase of the GRASP meta-
heuristic, while using the second one during the strategic oscillation step,
while relaxing the cluster size constraint. Afterward, the solutions may need
to be repaired, which is achieved by using the same neighborhood to reassign
elements from overloaded clusters to undersized clusters.

3.3. Vehicle Routing Problem with Occasional Drivers (VRPOD)
The third and final problem belongs to the family of the Vehicle Routing

Problems (VRP). The main objective of the VRP is to create delivery routes,
in order to fully satisfy consumer demand, while minimizing operating costs.
The VRPOD, firstly introduced in Archetti et al. (2016), is a variant of the
VRP that considers the possibility of having occasional drivers (ODs) to
attend some customers, therefore reducing the length and number of routes,
and the associated operating costs. An occasional driver is not a professional
driver, they may be a customer that goes to a physical shop location, and
may agree to deliver a package from an online order for a small compensation
if the package destination is in route to their destination. The objective
function takes into account both the cost of the vehicle fleet and the sum
of compensations to the occasional drivers. Different compensation schemes
may be used, see Archetti et al. (2016) for more details and the full problem
formulation.

The current state of the art for the VRPOD is Martín-Santamaría et al.
(2021), where the results obtained by Archetti et al. (2016) are improved. The

14



authors propose using a cooperative parallel Iterative Local Search Scheme,
proposing five different neighborhoods for the local search step: three of
which are commonly used in VRP problems, specifically move one package
from one route to another one in any position, swapping two deliveries, and
reversing a route fragment, also known as 2-Opt. Moreover, two specific
neighborhoods for the VRPOD related to the usage of ODs are used: assign-
ing a delivery to an OD, and therefore removing it from its associated route,
or the reverse operation, removing an OD and assigning its delivery to any
route in any position. For the perturbation step, three different methods are
presented: removing a random route, using a probability distribution which
depends on the total cost of the route; randomly deassigning a percentage of
all deliveries, to be later repaired; and randomly apply movement from any
neighborhood.

4. Experimental analysis

In this section, the experimentation environment is firstly detailed. Then,
the modifications performed to the source code and its rationale are pre-
sented. In order to validate that our modifications do not affect the original
proposals’ performance, a comparison will be made against the modified code,
which we will call reimplementation in this section. After the reimplementa-
tion has been validated, the automatic design experiment is detailed, and the
best configurations found will be compared against the reimplementation.

4.1. Reimplementation of previous methods
Due to the fact that different problems are implemented in different lan-

guages, using different hardware to execute the experimentation, and with
different parallelization strategies, the first step we have taken is to create a
common environment. Specifically, all algorithms have been reimplemented
in Java 17. The JVM has been limited to 4GB of RAM, and all experiments
are run in a single thread configuration. All experiments have been executed
in VMs, running on a cluster formed by multiple hosts with 2x AMD EPYC
7282 CPUs and 96GB of RAM.

The state-of-the-art problems have been reimplemented in Java 17, split-
ting the code into independent components following the framework design
principles, as presented in Section 1. The only components from the state-of-
the-art proposals that are not ported due to technical complexities are those
responsible for parallelizing the corresponding previous approach. If there
were hardcoded parameters in the original code, the code has been modified
to accept different values in reasonable ranges. In the first experiment, when

15



comparing the reimplementation performance against the previous authors
code, the original parameter values are used.

In order to validate our reimplementation of the previous methods against
the source code provided by the previous authors, we have executed 30 times
both the actual previous approach from the state of the art as is and our
reimplementation, using as stopping condition the limit proposed in the re-
spective state-of-the-art paper, be it a time limit or a maximum number
of algorithm iterations, being specific for each one of the three problems.
While the resulting execution times are different, as would be expected due
to using a different experimental environment, the gap between the objective
function values is very small. In particular, the percentage average difference
in objective function values between the state of the art and the reimplemen-
tation is 0.02% for the SF-MRFLP, 0.12% for the BMSSC and 3.93% for the
VRPOD. Notice that the slightly higher percentage average in the last case
can be explained by the absence of the parallel cooperative scheme in the
reimplementation, as detailed before.

4.2. Automated Metaheuristic Design
The methodology and configuration designed for automatically designing

metaheuristics is exactly the same for the three target problems. We have
chosen irace as the AC tool, scaling the computational budget dynamically
according to the number of parameters. Specifically, irace will have a budget
of 10 000 evaluations per 50 parameters, with a minimum of 10 000, where
each evaluation corresponds to running once one candidate design on one
training instance. For example, in the case of SF-MRFLP, the design space
has a total of 203 parameters, so irace will execute a maximum of 40 600
evaluations. In the case of the BMSSC and the VRPOD, the number of
parameters is 261 and 149, respectively.

The objective function used in irace to optimize algorithm configurations
is the AUC (Area Under Curve) (López-Ibáñez and Stützle, 2014) for the
objective function of the given problem, measured over time, discarding the
area outside the interval [10, 60] in seconds. Any algorithm configuration that
does not report a score value before the first 10 seconds is considered invalid
and removed. irace is configured to evaluate the configurations’ performance
using the Friedman test, and to start from randomly sampled algorithm
designs without any prior knowledge about good algorithm designs or default
parameter values, which demonstrates one of the main contributions of the
paper. For each studied problem, the best algorithm design found by irace
will be compared with the validated reimplementation.

16



4.3. Comparison with reimplementation
Once an algorithm configuration has been obtained for each problem, the

comparison with the reimplementation of the state-of-the-art method will use
the same methodology as when validating the reimplementation. In order
to perform a fair comparison, for each instance of the target problem, the
automatically generated configuration, called Auto, will be executed 30 times
using as time limit the average execution time spent by the reimplementation
for each instance in the previous experiment.

For each problem, the following four metrics are reported, comparing the
reimplementation and Auto: number of times that the configuration reaches
the best known value for all instances (#Times reaches bkv); number of in-
stances for which the algorithm obtains the best known value at least once
(#Instances finds bkv); averaged percentage deviation of the best value found
by the configuration to the best known value (%Dev Min); and lastly, aver-
aged percentage deviation of all iterations to the best known value (%Dev
Avg).

Moreover, with the objective of statistically assessing the performance
of the Auto approach with respect to the reimplementation, we will use the
Bayesian performance analysis over all the instances simultaneously described
in Calvo et al. (2019). In this approach, the algorithms are ranked per in-
stance and the expected winning probability for each algorithm is computed.
Moreover, it is also useful for assessing the estimation uncertainty using cred-
ible intervals. In Bayesian statistics, credible intervals estimate the range of
values the unknown parameter may have with a given probability.

In the next subsections, we summarize the results obtained for each prob-
lem. For a more detailed analysis, including descriptions of the generated
configurations, full tables, generated figures, etc., see Appendix C, where
references to Zenodo and code repositories for each problem are provided.

4.4. Results for the SF-MRFLP

AutoSF-MRFLP Reimplementation

#Times reaches bkv 485 (19.96%) 895 (36.83%)
#Instances finds bkv 78 (96.30%) 42 (51.85%)
%Dev Min 0.00 0.01
%Dev Avg 0.45 0.03

Table 1: Comparison between the automatically generated algorithm and the reimplemen-
tation of the state-of-the-art for the SF-MRFLP. bkv are the initials of best known value.

17



Table 1 shows the comparison between the best algorithm found by the
automatic configuration procedure, called AutoSF-MRFLP algorithm with the
reimplementation of the state-of-the-art method. We can observe that the
reimplementation obtains the best known value around 37%, while AutoSF-MRFLP

obtains about 20%. However, the AutoSF-MRFLP algorithm reaches the best
known value for 78 out of 81 instances, while its counterpart reaches it only
for 42 instances. This difference in results can be explained by the fact
that, in most cases, the reimplementation either reaches the best value for
an instance in all iterations, or none, as can be seen in the detailed results
provided as complementary material. The deviations show us the same be-
havior. While the AutoSF-MRFLP reaches at least a better value once, the
original proposal obtains slightly better results on average.

Regarding the statistical analysis, Figure 4 shows, with a green dot, the
average probability of winning obtained by the Bayesian approach previ-
ously described. We can observe in the plot that AutoSF-MRFLP has a greater
average chance of winning than the reimplementation. However, since the
confidence intervals overlap, the performance of both algorithms could be
equivalent in some instances. In other words, the AutoSF-MRFLP algorithm
reaches the performance of the manually-designed state-of-the-art algorithm
despite being generated automatically from a large space of algorithmic com-
ponents without any expert guidance.

Figure 4: Expected winning probability for both the SF-MRFLP state-of-the-art and the
best automatically generated algorithm found.

4.5. Results for the BMSSC
Table 2 shows the comparison between the best automatically generated

configuration found, called AutoBMSSC, and the reimplementation proposals.
We can see that both the number of times the best value is reached and

18



the unique instances for which the AutoBMSSC has the best known value is
slightly higher. Moreover, the AutoBMSSC proposal obtains a lower deviation
minimum deviation (0.03%) to the best known values, and an equal average
(0.46%).

With regard to the statistical analysis in Figure 5, while the AutoBMSSC

has a slightly greater chance of winning (52% vs 48%), the confidence inter-
vals are overlapped, so we can consider the performance of both algorithms
to be similar.

AutoBMSSC Reimplementation

#Times reaches bkv 221 (29.47%) 206 (27.47%)
#Instances finds bkv 18 (72.00%) 17 (68.00%)
%Dev Min 0.03 0.20
%Dev Avg 0.46 0.46

Table 2: Comparison between the automatically generated algorithm and the reimplemen-
tation of the state-of-the-art for the BMSSC. bkv are the initials of best known value.

Figure 5: Expected winning probability for both the BMSSC state-of-the-art and the best
automatically generated algorithm found

4.6. Results for the VRPOD
In Table 3 we can observe the comparison between the automatically gen-

erated configuration, called AutoVRPOD and the reimplementation proposals.
In this case, the AutoVRPOD reaches the best known value around 30% of
times, having the best value for 89% of instances, while the reimplementa-
tion obtains 19% and 31% respectively. However, both deviations are worse
for the AutoVRPOD. This can be explained by the fact that for about 1%

19



VRPOD AutoVRPOD Reimplementation

#Times reaches bkv 3816 (30.29%) 2373 (18.83%)
#Instances finds bkv 372 (88.57%) 132 (31.43%)
%Dev Min 1.55 0.68
%Dev Avg 5.06 1.91

Table 3: Comparison between the automatically generated algorithm and the reimplemen-
tation of the state-of-the-art for the VRPOD. bkv represents best known value.

percentage of the instances, the minimum deviation is greater than 10%, and
around 6% for the average deviation.

Regarding the statistical analysis in Figure 6, we can observe that the
AutoVRPOD has a much stronger probability of winning, with non overlap-
ping intervals. We can assert with confidence that the performance of the
AutoVRPOD proposal is better than the Reimplementation.

The big difference of results obtained by both methods, comparing the
results with the other two problems, may be explained by the types of in-
stances. Instances in the VRPOD can be divided according to the compen-
sation scheme used to pay the occasional drivers. Analyzing the results, we
have observed that the AutoVRPOD proposal obtains good results for both
compensation schemes types available in the state of the art, while the reim-
plementation performs well for the first compensation scheme but falls behind
in the second type. Due to this, we may conclude that the AutoVRPOD gen-
eralizes better the instances properties, and therefore it is much more likely
to win under new instance sets.

Figure 6: Expected winning probability for both the VRPOD state-of-the-art and the best
automatically generated algorithm found

To sum up, the automatic configuration methodology is able to find al-

20



gorithms with equal or greater performance than traditional manual tuning,
in an automatic and reproducible way.

5. Conclusions and Future Work

In this work, we have proposed a methodology to automatically generate
metaheuristic approaches for optimization problems, taking special care of
the research reproducibility.

We have demonstrated the advantages of the proposed methodology, im-
proving in key areas over existing works, notably proposing a replacement
for the manual preliminary experimentation approach commonly used via
the use of automatic algorithm component discovery and their configuration.
Moreover, we have demonstrated how automatic configuration proposals can
improve or at least tie with existing results, using three problems from com-
pletely different problem families, a facility layout problem, a vehicle routing
problem and a clustering problem.

The algorithms generated for each problem start with no previous knowl-
edge of the performance of each component. An idea worth exploring in
future works may be to analyze the effect of providing good known existing
configurations, such as those existing in the state of the art, and measure
how they affect the performance and convergence of the optimization engine.

Another aspect that needs further exploration is analyzing the algorithm
equivalencies and investigating the viability of automatically simplifying con-
figurations generated by the AC tool, and immediately return if it is found
that it is equivalent to an already evaluated configuration. An example may
be a MultiStart algorithm with a number of executions n = 1, where re-
moving the MultiStart component and calling the internal algorithm directly
should obtain the same results.

Appendix A. Full component hierarchy

In this Annex, an overview of the full component hierarchy is provided.
Figure A.7 shows the hierarchy formed by the common components used

in the experiments, based on the usual classification of algorithms: construc-
tive methods, improving methods, perturbation methods and neighborhoods.
Empty triangle arrows represent the type hierarchy, or in other words, where
a given component may be used. For example, both MultiStart and Sim-
ple are of type Algorithm, and may be used anywhere where an algorithm
is requested. Furthermore, diamond arrows mean that the component at
the side of the diamond is composed by or depends on the component at
the other side, that is, a MultiStart element is composed by an Algorithm

21



component and Simple, IteratedGreedy, VNS and SimAnnealing algorithms
need a Constructive component, for instance. As it can be seen in the blue
elements, user components may extend or implement any functionality to
match its needs, and the components are automatically detected and added
to the hierarchy.

Components are ordered in three columns to facilitate the explanation.
The first column, represents the Algorithm component type, which is the only
mandatory one that must be always used, either by extending it and adding a
custom implementation, or by using any of the already implemented compo-
nents. In the second column, we see the most common components type used
in the literature, namely Constructive, Improver and Shake or perturbation
components. Finally, in the third column, we have any specific components
required depended on by any other component, or problem specific compo-
nents. We are continuously working on expanding the hierarchy in order to
include more metaheuristic approaches. See the GitHub repository for the
latest code https://github.com/mork-optimization/mork and the docs
at https://docs.mork-optimization.com for a more up-to-date version.

Several examples of recursivity can be seen in Figure A.7, for instance
the MultiStart algorithm requires an algorithm over which it will iterate.
Another example is the VND Duarte et al. (2018), which consists on trying
multiple improve methods on a deterministic way, and therefore needs multi-
ple Improver methods. One of this improvement methods by default may be
another VND with a different configuration. If recursion is not desirable for
a given component, it can be specified as metadata inside the component,
or checked when constructing the component and removing the candidate
configuration due to a broken constraint.

Appendix B. Technical implementation details: annotations and
intermediate language

In order to easily allow users to specify the components or parameters
metadata, we propose to the use of a kind of “marks” inside the user code
that do not affect how it works. Most programming languages allow a way to
declare this kind of marks that can provide arbitrary metadata and automate
their parsing either during compilation or at runtime. Most importantly,
marks do not affect the code behavior. Implementation examples of this
pattern in commonly used programming languages are as follows:

• Java - Known as annotations. See https://docs.oracle.com/javase/
tutorial/java/annotations/ for more information.

• Python - Known as decorators. https://peps.python.org/pep-0318/

22



Algorithm

Simple

MultiStart

IteratedGreedy

GVNS / ILS

SimAnnealing

UserAlgorithm

Constructive

UserConst

Reconstructive

Random

GRASP

UserReconst

Improver

Shake

SequentialImpr

VND

LocalSearch

BestImprLS

FirstImprLS

UserLS
UserImprover

DestroyRebuild

RndMoveShake

StratOscillation

UserShake

Neighborhood

ConcatNeigh

InterleaveNeigh

RndNeigh

UserRndNeigh

UserNeigh

Destroy

UserDestructive

CandidateList

Figure A.7: Algorithm component hierarchy provided by the framework. Diamond arrows
mean that the component at the side of the diamond is composed by or depends on the
component at the other side, while the unfilled triangle represents that a given component
implements or is of the type pointed by the triangle. Colors are used to more easily
differentiate relationships.

23



• C# - Known as attributes. See https://learn.microsoft.com/en-us/
dotnet/csharp/programming-guide/concepts/attributes/ for more
information.

Although the framework has been implemented using the Java program-
ming language, the same concepts can be applied to most programming lan-
guages. An example of an annotated component in Java can be seen in
Figure B.8. As Java supports multiple constructor methods in the same
class, the first annotation, @AutoconfigConstructor, is used to differenti-
ate which constructor should be preferred when automatically building the
component. The first parameter, name, is annotated as a @ProvidedParam,
which prevents the parameter from being passed to the parameter optimizer,
and a strategy will be found at runtime to fill its value. In this case, a ran-
dom name will be generated for each configuration of this algorithm. For
the second and third parameters, the annotation @IntegerParam is used to
restrict the parameter’s maximum and minimum values. These restrictions
will then be translated appropriately to the format used by the parameter
optimizer. The fourth and fifth parameters are component dependencies
without restrictions, and lastly the sixth parameter is a component where
the @ComponentParam annotation is used to prevent the listed implementa-
tions or its children from being used. By default, if no annotation is used,
any subclass of Improver, or more abstractly, any other component that
matches the same specification, could be used.

As introduced previously, our implementation uses an intermediate lan-
guage to represent algorithm configurations, and has a translator to trans-
form them into the format required by the AAC tool, and transform back
combinations of parameters to the intermediate language.

This intermediate language allows the usage of any AAC tool, and eases
debugging. The language is inspired by both JSON and default Java object
to string formatters. In Listing 3, the main rules of the grammar that defines
the intermediate language are presented.

Examples of algorithms represented using the intermediate grammar can
be seen in the next section, representing the best configurations found for
each target problem.

Appendix C. Generated configurations and artifacts

In this Appendix, we will detail the configurations found by the Au-
toconfig procedure. Configurations are represented using the intermediate
language described in the previous section.

24



Figure B.8: Example of the usage of annotations in Java.

Listing 3: Grammar rules of the Intermediate language. The grammar is used to generate
a lexer, parser and visitor automatically using the ANTLR library. Semicolons are used
to delimit grammar rules, colons separate a grammar non-terminal from its derivations.
The vertical bar represents alternative derivations.

component: ID ‘{’ properties? ‘}’;
properties: property (‘,’ property)*;
property: ID EQ propertyValue;
propertyValue: literal | component;
literal: NullLiteral | BooleanLiteral | FloatingPointLiteral |

,! IntegerLiteral | StringLiteral | CharacterLiteral |
,! arrayLiteral;

25



Listing 4: Intermediate language representation of the best algorithm found for the SF-
DRFLP problem

IteratedGreedy{
maxIterations=535158,
stopIfNotImprovedIn=664797,
destructionReconstruction=CAPShake{

type="1"
},
improver=SequentialImprover{

improverA=CAPLS{
type="ins_bi"

},
improverB=SequentialImprover{

improverA=NullImprover{},
improverB=CAPLS{

type="exc_bi"
}

}
},
constructive=CAPConstructive{

alpha=0.93,
type="greedyB2"

}
}

Listing 5: Intermediate language representation of the best algorithm found for the BMSSC
problem

VNS{
shake=StrategicOscillation{

increment=0.45
},
maxK=20,
improver=VND{

improver1=ShakeImprover{
shake=StrategicOscillation{

increment=0.33
},
improver=NullImprover{}

},
improver2=FirstImpLS{},
improver3=BestImpLS{},

26



},
constructive=RandomGreedyGRASPConstructive{

alpha=0.75{},
candidateListManager=BMSSCListManager{}

}
}

Listing 6: Intermediate language representation of the best algorithm found for the VR-
POD problem

IteratedGreedy{
maxIterations=743168,
stopIfNotImprovedIn=977131,
destructionReconstruction=DestroyRebuild{

constructive=VRPODGRASPConstructive{
alpha=0.03

},
destructive=RandomDeassign{}

},
improver=LocalSearchBestImprovement{

neighborhood=VRPODExtendedNeighborhood{}
},
constructive=VRPODGRASPConstructive{

alpha=0.06
}

}

Moreover, the links to the source code repositories and all artifacts pub-
lished in Zenodo are available in Table C.4.

Problem Live Code Archived Artifacts DOI

BMSSC rmartinsanta/ac-BMSSC 10.5281/zenodo.7774638
VRPOD rmartinsanta/ac-VRPOD 10.5281/zenodo.7774831
SFDRFLP rmartinsanta/ac-SFDRFLP 10.5281/zenodo.7774833

Table C.4: References to source code repositories and archived artifacts in Zenodo.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., 2019. Optuna: A
next-generation hyperparameter optimization framework, in: Teredesai,

27



et al. (Eds.), 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM Press, New York, NY, pp. 2623–2631.
doi:10.1145/3292500.3330701.

Amaral, A.R.S., 2012. The corridor allocation problem. Computers & Op-
erations Research 39, 3325–3330. doi:10.1016/j.cor.2012.04.016.

Anjos, M.F., Vieira, M.V., 2017. Mathematical optimization approaches for
facility layout problems: The state-of-the-art and future research direc-
tions. European Journal of Operational Research 261, 1–16.

Archetti, C., Savelsbergh, M., Speranza, M.G., 2016. The vehicle routing
problem with occasional drivers. European Journal of Operational Re-
search 254, 472–480. doi:10.1016/j.ejor.2016.03.049.

Cahon, S., Melab, N., Talbi, E.G., 2004. ParadisEO: A framework for
the reusable design of parallel and distributed metaheuristics. Journal
of Heuristics 10, 357–380. doi:10.1023/B:HEUR.0000026900.92269.ec.

Calvo, B., Shir, O.M., Ceberio, J., Doerr, C., Wang, H., Bäck, T., Lozano,
J.A., 2019. Bayesian performance analysis for black-box optimization
benchmarking, in: López-Ibáñez, M., Auger, A., Stützle, T. (Eds.),
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO Companion 2019. ACM Press, New York, NY, pp. 1789–1797.
doi:10.1145/3319619.

Dréo, J., Liefooghe, A., Verel, S., Schoenauer, M., Merelo, J.J., Quemy, A.,
Bouvier, B., Gmys, J., 2021. Paradiseo: from a modular framework for
evolutionary computation to the automated design of metaheuristics: 22
years of Paradiseo, in: Chicano, F., Krawiec, K. (Eds.), Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO Companion
2021. ACM Press, New York, NY, pp. 1522–1530. doi:10.1145/3449726.
3463276.

Duarte, A., Sánchez-Oro, J., Mladenović, N., Todosijević, R., 2018. Variable
neighborhood descent, in: Martí, R., Pardalos, P.M., Resende, M.G.C.
(Eds.), Handbook of Heuristics. Springer International Publishing, pp.
341–367. doi:10.1007/978-3-319-07124-4_9.

Feo, T.A., Resende, M.G.C., 1989. A probabilistic heuristic for a compu-
tationally difficult set covering problem. Operations Research Letters 8,
67–71.

28



Feo, T.A., Resende, M.G.C., Smith, S.H., 1994. A greedy randomized adap-
tive search procedure for maximum independent set. Operations Research
42, 860–878.

Gavish, B., Graves, S.C., 1978. The travelling salesman problem and related
problems. Operations Research Center Working Paper .

Glover, F., Hao, J.K., 2011. The case for strategic oscillation. Annals of
Operations Research 183, 163–173.

Glover, F., Laguna, M., 1997. Tabu Search. Kluwer Academic Publishers,
Boston, MA, USA.

Grefenstette, J.J., 1986. Optimization of control parameters for genetic algo-
rithms. IEEE Transactions on Systems, Man, and Cybernetics 16, 122–128.
doi:10.1109/TSMC.1986.289288.

Herrán, A., Colmenar, J.M., Duarte, A., 2021. An efficient variable neighbor-
hood search for the space-free multi-row facility layout problem. European
Journal of Operational Research doi:10.1016/j.ejor.2021.03.027.

Hoos, H.H., Stützle, T., 2004. Stochastic Local Search: Foundations and
Applications. Elsevier, Amsterdam, The Netherlands.

Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Sequential model-based
optimization for general algorithm configuration, in: Coello Coello, C.A.
(Ed.), Learning and Intelligent Optimization, 5th International Confer-
ence, LION 5. Springer, Heidelberg. volume 6683 of Lecture Notes in Com-
puter Science, pp. 507–523. doi:10.1007/978-3-642-25566-3_40.

Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T., 2009. ParamILS: an
automatic algorithm configuration framework. Journal of Artificial Intel-
ligence Research 36, 267–306. doi:10.1613/jair.2861.

KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K., 2009. SATen-
stein: Automatically building local search SAT solvers from components,
in: Boutilier, C. (Ed.), Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI-09), AAAI Press, Menlo Park, CA.
pp. 517–524.

KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K., 2016. SATen-
stein: Automatically building local search SAT Solvers from Components.
Artificial Intelligence 232, 20–42. doi:10.1016/j.artint.2015.11.002.

29



López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Bi-
rattari, M., 2016. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives 3, 43–58.
doi:10.1016/j.orp.2016.09.002.

López-Ibáñez, M., Stützle, T., 2012a. The automatic design of multi-
objective ant colony optimization algorithms. IEEE Transactions on Evo-
lutionary Computation 16, 861–875. doi:10.1109/TEVC.2011.2182651.

López-Ibáñez, M., Stützle, T., 2012b. Automatically Improving the
Anytime Behaviour of Optimisation Algorithms. Technical Report
TR/IRIDIA/2012-012. IRIDIA, Université Libre de Bruxelles, Belgium.
Published in European Journal of Operational Research López-Ibáñez and
Stützle (2014).

López-Ibáñez, M., Stützle, T., 2014. Automatically improving the anytime
behaviour of optimisation algorithms. European Journal of Operational
Research 235, 569–582. doi:10.1016/j.ejor.2013.10.043.

Marmion, M.E., Mascia, F., López-Ibáñez, M., Stützle, T., 2013. Auto-
matic design of hybrid stochastic local search algorithms, in: Blesa, M.J.,
Blum, C., Festa, P., Roli, A., Sampels, M. (Eds.), Hybrid Metaheuristics.
Springer, Heidelberg. volume 7919 of Lecture Notes in Computer Science,
pp. 144–158. doi:10.1007/978-3-642-38516-2_12.

Martin, R.C., 1996a. The Liskov substitution principle. C++ Report 8, 14.

Martin, R.C., 1996b. The open-closed principle. More C++ gems 19, 9.

Martin, R.C., 2011. The clean coder: a code of conduct for professional
programmers. Pearson Education.

Martín-Santamaría, R., Sánchez-Oro, J., Pérez-Peló, S., Duarte, A., 2022.
Strategic oscillation for the balanced minimum sum-of-squares clustering
problem. Information Sciences 585, 529–542. doi:10.1016/j.ins.2021.
11.048.

Martín-Santamaría , R., López-Sánchez , A.D., Delgado-Jalón , M.L., Col-
menar , J.M., 2021. An efficient algorithm for crowd logistics optimization.
Mathematics 9. doi:10.3390/math9050509.

Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., 2014.
Grammar-based generation of stochastic local search heuristics through
automatic algorithm configuration tools. Computers & Operations Re-
search 51, 190–199. doi:10.1016/j.cor.2014.05.020.

30



Neri, F., Cotta, C., Moscato, P. (Eds.), 2011. Handbook of Memetic Algo-
rithms. volume 379 of Studies in Computational Intelligence. Springer.

Pagnozzi, F., Stützle, T., 2019. Automatic design of hybrid stochastic local
search algorithms for permutation flowshop problems. European Journal of
Operational Research 276, 409–421. doi:10.1016/j.ejor.2019.01.018.

Parr, T.J., Quong, R.W., 1995. ANTLR: A predicated-LL (k) parser gener-
ator. Software — Practice & Experience 25, 789–810.

Rasku, J., Musliu, N., Kärkkäinen, T., 2019. On automatic algorithm con-
figuration of vehicle routing problem solvers. Journal on Vehicle Routing
Algorithms 2, 1–22. doi:10.1007/s41604-019-00010-9.

Stützle, T., López-Ibáñez, M., 2019. Automated design of metaheuristic al-
gorithms, in: Gendreau, M., Potvin, J.Y. (Eds.), Handbook of Metaheuris-
tics. Springer. volume 272 of International Series in Operations Research &
Management Science, pp. 541–579. doi:10.1007/978-3-319-91086-4_17.

Swan, J., Adriaensen, S., Barwell, A.D., Hammond, K., White, D.R., 2019.
Extending the “open-closed principle” to automated algorithm configura-
tion. Evolutionary Computation 27, 173–193. doi:10.1162/evco_a_00245.

Swan, J., Adriaensen, S., Brownlee, A.E.I., Hammond, K., Johnson, C.G.,
Kheiri, A., Krawiec, F., Merelo, J.J., Minku, L.L., Özcan, E., Pappa, G.,
García-Sánchez, P., Sörensen, K., Voß, S., Wagner, M., White, D.R., 2022.
Metaheuristics “in the large”. European Journal of Operational Research
297, 393–406. doi:10.1016/j.ejor.2021.05.042.

Xavier, A.E., Xavier, V.L., 2011. Solving the minimum sum-of-squares clus-
tering problem by hyperbolic smoothing and partition into boundary and
gravitational regions. Pattern Recognition 44, 70–77. doi:10.1016/j.
patcog.2010.07.004.

31





Part III

Additional Publications during
thesis development





Contents

10 Journal articles indexed in JCR & SJR 177
10.1 On the analysis of the influence of the evaluation metric in community

detection over social networks . . . . . . . . . . . . . . . . . . . . . . . 177
10.2 Solving the regenerator location problem with an Iterated Greedy approach178
10.3 WebGE: An Open-Source Tool for Symbolic Regression Using Gram-

matical Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.4 A Scatter Search Approach for the Parallel Row Ordering Problem . . 179

11 Research presented in international and national conferences 181
11.1 A meta-heuristic approach for the Vehicle Routing Problem with occa-

sional drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.2 Using the Optaplanner solver . . . . . . . . . . . . . . . . . . . . . . . 182
11.3 A Variable Neighborhood Search approach for the Maximum Quasi-

clique Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.4 Un algoritmo eficiente para el problema de disposición de instalaciones

en dos filas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.5 MORK: Metaheuristic Optimization framewoRK . . . . . . . . . . . . 183
11.6 A Scatter Search approach for the Parallel Row Ordering Problem . . . 183
11.7 A VNS approach for the combined cell layout problem . . . . . . . . . 184

175





Chapter 10

Journal articles indexed in JCR &
SJR

Additional publications in journals indexed in JCR and LNCS. Publications are or-
dered by acceptance date, from oldest to more recent. Submitted publications not yet
published are last in the list.

10.1 On the analysis of the influence of the evalua-

tion metric in community detection over social

networks

Title On the analysis of the influence of the
evaluation metric in community detec-
tion over social networks

Authors Sergio Pérez-Peló, Jesús Sánchez-Oro,
Raúl Mart́ın-Santamaŕıa and Abraham
Duarte

Publication date 2019
Journal Electronics
Publisher MDPI
ISBN/ISSN 2079-9292
Impact Factor 2.412 (2019)
Rank by Impact Factor 125/266 (Q2, Engineering, Electrical &

Electronic)
DOI https://doi.org/10.3390/

electronics8010023

177

https://doi.org/10.3390/electronics8010023
https://doi.org/10.3390/electronics8010023


178

10.2 Solving the regenerator location problem with

an Iterated Greedy approach

Title Solving the regenerator location problem
with an Iterated Greedy approch

Authors Juan David Quintana, Raúl Mart́ın-
Santamaŕıa, Jeśıs Sánchez-Oro and
Abraham Duarte

Publication date 2021
Journal Applied Soft Computing
Publisher Science Direct
ISBN/ISSN 1568-4946
Impact Factor 8.263 (2021)
Rank by Impact Factor 11/112 (Q1, Computer Science, Interdis-

ciplinary Applications)
DOI https://doi.org/10.1016/j.asoc.

2021.107659

10.3 WebGE: An Open-Source Tool for Symbolic

Regression Using Grammatical Evolution

Title WebGE: An Open-Source Tool for Sym-
bolic Regression Using Grammatical
Evolution

Authors José Manuel Colmenar Verdugo, Raúl
Mart́ın-Santamaŕıa and José Ignacio Hi-
dalgo

Publication date 2022
Journal Lecture Notes in Computer Science
Publisher Springer International Publishing
ISBN/ISSN 978-3-031-02462-7
SJR 0.41 (2021)
Rank in SJR Q2, Computer Science (miscellaneous)
DOI https://doi.org/10.1007/

978-3-031-02462-7 18

https://doi.org/10.1016/j.asoc.2021.107659
https://doi.org/10.1016/j.asoc.2021.107659
https://doi.org/10.1007/978-3-031-02462-7_18
https://doi.org/10.1007/978-3-031-02462-7_18


179

10.4 A Scatter Search Approach for the Parallel

Row Ordering Problem

Title A Scatter Search Approach for the Par-
allel Row Ordering Problem

Authors Raúl Mart́ın-Santamaŕıa, José Manuel
Colmenar Verdugo and Abraham Duarte
Muñoz

Publication date 2023
Journal Lecture Notes in Computer Science
Publisher Springer International Publishing
ISBN/ISSN 978-3-031-26504-4
SJR 0.41 (2021)
Rank in SJR Q2, Computer Science (miscellaneous)
DOI https://doi.org/10.1007/

978-3-031-26504-4 40

https://doi.org/10.1007/978-3-031-26504-4_40
https://doi.org/10.1007/978-3-031-26504-4_40




Chapter 11

Research presented in international
and national conferences

Research projects presented both in national and international conferences, ordered by
conference celebration date, from oldest to more recent.

11.1 A meta-heuristic approach for the Vehicle Rout-

ing Problem with occasional drivers

Title A meta-heuristic approach for the Ve-
hicle Routing Problem with occasional
drivers

Authors Raúl Mart́ın-Santamaŕıa, Ana Dolores
López-Sánchez, José Manuel Colmenar
Verdugo and Maŕıa Luisa Delgado Jalón

Conference 7th Workshop of the EURO Working
Group on Vehicle Routing and Logistics
optimization (VeRoLog2019)

Celebration date 02/06/2019
Location Sevilla, España
Organizing entity EURO Working group

181



182

11.2 Using the Optaplanner solver

Title Using the Optaplanner solver
Authors Raúl Mart́ın Santamaŕıa
Conference 7th Workshop of the EURO Working

Group on Vehicle Routing and Logistics
optimization (VeRoLog2019)

Celebration date 02/06/2019
Location Sevilla, España
Organizing entity EURO Working group

11.3 A Variable Neighborhood Search approach for

the Maximum Quasi-clique Problem

Title A Variable Neighborhood Search ap-
proach for the Maximum Quasi-clique
Problem

Authors Raúl Mart́ın-Santamaŕıa and José
Manuel Colmenar Verdugo

Conference 8th International Conference on Variable
Neighborhood Search (ICVNS2022)

Celebration date 22/03/2021

Location Abu Dhabi, Emiratos Árabes Unidos
Organizing entity Khalifa University

11.4 Un algoritmo eficiente para el problema de

disposición de instalaciones en dos filas

Title Un algoritmo eficiente para el problema
de disposición de instalaciones en dos fi-
las

Authors Raúl Mart́ın-Santamaŕıa, Alberto
Herrán González, José Manuel Colmenar
Verdugo and Abraham Duarte Muñoz

Conference XIV Spanish Congress on Metaheuris-
tics, Evolutionary and Bioinspired Algo-
rithms (MAEB2021)

Celebration date 22/09/2021
Location Málaga, España
Organizing entity Universidad de Málaga



183

11.5 MORK: Metaheuristic Optimization framewoRK

Title MORK: Metaheuristic Optimization
framewoRK

Authors Raúl Mart́ın-Santamaŕıa, José Manuel
Colmenar Verdugo and Abraham Duarte
Muñoz

Conference Doctoral Consortium del Congreso de la
Asociación Española de Inteligencia Ar-
tificial (CAEPIA-DC 2021)

Celebration date 22/09/2021
Location Málaga, España
Organizing entity Universidad de Málaga

11.6 A Scatter Search approach for the Parallel

Row Ordering Problem

Title A Scatter Search approach for the Paral-
lel Row Ordering Problem

Authors Raúl Mart́ın-Santamaŕıa, José Manuel
Colmenar Verdugo and Abraham Duarte
Muñoz

Conference 14th Metaheuristics International Con-
ference (MIC2022)

Celebration date 11/07/2022
Location Ortigia-Syracuse, Italy
Organizing entity University of Catania



184

11.7 A VNS approach for the combined cell layout

problem

Title A VNS approach for the combined cell
layout problem

Authors Raúl Mart́ın-Santamaŕıa, José Manuel
Colmenar Verdugo and Abraham Duarte
Muñoz

Conference 9th International Conference on Variable
Neighborhood Search (ICVNS2022)

Celebration date 25/10/2022

Location Abu Dhabi, Emiratos Árabes Unidos
Organizing entity Khalifa University



Part IV

Appendix





Appendix A

Resumen en castellano

De acuerdo al art́ıculo 22 de la Normativa Reguladora de los Estudios de Doctorado
de la Universidad Rey Juan Carlos, aprobada en Consejo de Gobierno de 07/06/2019,
se provee un resumen en castellano del contenido completo de la tesis, incluyendo
espećıficamente los antecedentes, objetivos, metodoloǵıa, resultados y conclusiones
obtenidas.

A.1 Introducción

Todos los d́ıas tomamos decenas de decisiones: qué ruta escoger para llegar al trabajo
en función del tráfico, cómo organizar nuestros armarios, o qué productos comprar para
preparar nuestras comidas son ejemplos de ello. Los problemas de optimización no se
limitan a decisiones de nuestro d́ıa a d́ıa, sino que afectan a disciplinas tan diversas
como las ingenieŕıas, la economı́a o la loǵıstica. Todos los problemas de optimización
tienen algo en común: maximizar o minimizar uno o varios objetivos, de acuerdo a una
serie de restricciones.

Las técnicas para resolver problemas de optimización se pueden clasificar en dos
grandes grupos: los métodos exactos y los métodos aproximados. Los primeros son
capaces de encontrar la mejor solución posible a un problema dado, de acuerdo a sus
restricciones, pero suelen requerir una gran potencia de cómputo, y suelen degradar su
rendimiento en problemas reales donde el tamaño del problema es grande. Por otra
parte, los métodos aproximados, como las heuŕısticas y las metaheuŕısticas, pueden
encontrar soluciones de gran calidad utilizando pocos recursos computacionales, pero
no pueden certificar si una solución dada es óptima, o si, por el contrario, existen
soluciones mejores.

Mientras que las heuŕısticas y metaheuŕısticas se han vuelto unas de las técnicas
más populares para resolver problemas de optimización, trabajos previos de la liter-
atura han criticado la falta de un marco metodológico que cubra aspectos como la
comparativa entre aproximaciones, la reproducibilidad experimental y la reusabilidad
de las componentes algoŕıtmicas implementadas por los investigadores [2, 3].

187



188

El resto del resumen está organizado como sigue. En la sección A.2, se presentan
la hipótesis de partida y los objetivos propuestos. En la siguiente sección, A.3, se re-
sumen los aspectos más relevantes de la propuesta metodológica, cuya implementación
se validará en la sección A.4, utilizando tres problemas de optimización pertenecientes
a familias completamente diferentes. Para finalizar, en la sección A.5 se presentan las
conclusiones y posibles ĺıneas de trabajo futuras.

A.2 Hipótesis y objetivos

Como se ha introducido previamente en la sección A.1, existe una falta de comprensión
en la comunidad investigadora sobre la configuración automática de algoritmos y la se-
lección de instancias de referencia. Por lo tanto, nuestra principal hipótesis es que
proponiendo una metodoloǵıa hoĺıstica podemos mejorar la robustez, calidad y repro-
ducibilidad de los enfoques metaheuŕısticos minimizando al mismo tiempo el esfuerzo
para desarrollarlos.

El objetivo principal de esta tesis doctoral es desarrollar y validar una nueva
metodoloǵıa basada en evidencia cient́ıfica para la aplicación de métodos metaheuŕısticos
en problemas de optimización. En concreto, los objetivos espećıficos son los siguientes:

1. Proponer un enfoque metodológico para aumentar la reproducibilidad de los re-
sultados emṕıricos, minimizando el número de decisiones que deben tomar los
investigadores. En concreto, nos centraremos en tres puntos clave: la selección
automática de instancias de prueba, en función de sus caracteŕısticas; la gen-
eración y validación completamente automatizada de algoritmos; y, por último,
la generación de artefactos para garantizar la reproducibilidad y favorecer la
reusabilidad de las propuestas.

2. Desarrollar y publicar un conjunto de herramientas informáticas de código abierto
accesibles públicamente a toda la comunidad cient́ıfica, que implementen y auto-
maticen la metodoloǵıa propuesta.

3. Validar la metodoloǵıa propuesta con problemas conocidos de optimización com-
binatoria de diferentes familias no relacionadas. Este objetivo incluye la publi-
cación de todos los artefactos (código fuente, instancias, artefactos ejecutables y
resultados procesados) en repositorios de acceso público.

4. Publicar todos los resultados en revistas relevantes y conferencias nacionales e
internacionales.

A.3 Propuesta metodológica

En esta sección se resume la propuesta metodológica desarrollada en la tesis, cuya
descripción completa puede encontrarse en el caṕıtulo 2. En la figura A.1 se muestran
los tres aspectos clave a tratar: la selección automática de instancias, la configuración
automática de algoritmos y la generación de artefactos.



189

Selección de
Instancias

Experimentos

Instancias
Filtradas

Instancias

Configuración
Automática de

Algoritmos

         Algoritmos
         Propuestos

       Código
       Fuente

         Config. de
         Selección

Generación de
Artefactos

Figure A.1: Propuesta metodológica, representando con diferentes colores los tres as-
pectos claves de la propuesta: la selección automática de instancias, la configuración
automática de algoritmos y la generación de artefactos.

La primera parte de la propuesta se centra en la selección automática de instan-
cias de acuerdo a sus caracteŕısticas. Para ello, es necesario que el investigador defina
una lista de caracteŕısticas a utilizar. Por ejemplo, en el caso de un grafo, posibles
caracteŕısticas podŕıan ser su densidad, el número de vértices y aristas, el número
de componentes conexas, etc. Dada la lista de caracteŕısticas, cuyo número puede
ser tan grande como requiera el investigador, se propone el uso de métodos probados
como Principal Component Analysis (PCA) y clustering basado en k-means, para de-
terminar qué combinación de caracteŕısticas son relevantes, agrupando aśı instancias
similares. De esta forma, es posible elegir un subconjunto de instancias representativo
para realizar la experimentación posterior.

La segunda parte propone un esquema de generación automática de algoritmos
y su posterior validación de forma completamente automática, utilizando una aproxi-
mación basada en la generación de gramáticas a partir del código y las componentes
algoŕıtmicas propuestas por el usuario. La propuesta consiste en analizar el código
del usuario en tiempo de ejecución, detectando todas las componentes algoŕıtmicas
disponibles, para entender qué dependencias existen entre todas ellas, y generar un
árbol con todos los posibles algoritmos que podŕıan ser generados, filtrando todas aque-
llas combinaciones que no sean válidas. Este árbol puede ser transformado al espacio
de parámetros utilizado por diferentes herramientas de optimización de parámetros,
como irace, que tratarán de encontrar la mejor combinación de los mismos. Para
poder evaluar el rendimiento de los algoritmos en diferentes momentos del tiempo,
proponemos usar la métrica Area Under Curve (AUC), es decir, evaluar el rendimiento
de cada algoritmo no en momentos arbitrarios de tiempo de ejecución, sino durante la
evolución completa de la función objetivo.

Por último, la tercera parte de la propuesta trata de aspectos como el estandarizado



190

de los artefactos ejecutables. En este sentido se propone utilizar contenedores para
garantizar que la propuesta pueda ser ejecutada fácilmente en el futuro usando platafor-
mas como Code Ocean 1. Además, se listan los artefactos que deben ser publicados de
forma obligatoria, incluyendo el código fuente completo de la propuesta, el conjunto de
instancias original, y todos aquellos scripts y resultados intermedios que se hayan uti-
lizado para generar los resultados de las publicaciones. Todos estos artefactos pueden
ser publicados en plataformas como Zenodo 2.

La propuesta no se limita a ser puramente teórica, y su funcionamiento se demues-
tra en la siguiente sección, utilizando tres problemas de optimización pertenecientes a
familias diferentes: un problema de clustering, un problema de rutas y un problema de
disposición de instalaciones. La implementación que soporta esta metodoloǵıa, denomi-
nada Mork , del inglés Metaheuristic Optimization framewoRK, se encuentra disponible
de forma pública en GitHub 3.

A.4 Resultados

El primer problema elegido para demostrar la propuesta es el Vehicle Routing Problem
with Ocassional Drivers (VRPOD), llamado en castellano problema de optimización
de rutas con conductores ocasionales. La familia de problemas de optimización de
rutas son un clásico en la literatura, cuyo objetivo suele ser una variante del siguiente:
dado un almacén central que contiene los pedidos a repartir a un conjunto de clientes,
se busca crear las rutas necesarias para satisfacer la demanda, minimizando el coste
incurrido por la distancia recorrida. En esta variante del problema se dispone, además,
de conductores ocasionales, que podŕıan ser hipotéticos clientes que han acudido a
comprar al almacén, y que, si se les compensa de forma adecuada, podŕıan acceder a
repartir uno de los paquetes, siempre que el destino del paquete sea cercano o esté en
la ruta al destino final del cliente.

El segundo problema es el Balanced Minimum Sum-of-Squares Clustering (BMSSC),
que consiste en agrupar un conjunto de elementos en grupos o clusters del mismo
tamaño, de forma que elementos con caracteŕısticas similares pertenezcan al mismo
clúster. La función de similitud utilizada es la suma de distancias cuadradas (sum-of-
squares, en Inglés) Entre las aplicaciones prácticas cabe destacar la mineŕıa de datos,
reconocimiento de patrones y procesamiento de imágenes.

El último problema, llamado Space-Free Double Row Facility Layout Problem
(SF-DRFLP), consiste en organizar un conjunto de elementos arbitrario, llamados fa-
cilities, en una rejilla formada por dos filas, de forma que se minimice coste de trasladar
elementos entre cada par de facilities. Un ejemplo de aplicación podŕıa ser la dis-
tribución de servicios en salas de un recinto, de forma que, sabiendo el número de
personas que necesita cada servicio, o la secuencia de servicios que se suelen utilizar, se

1https://codeocean.com/
2https://zenodo.org/
3https://github.com/mork-optimization/mork

https://codeocean.com/
https://zenodo.org/
https://github.com/mork-optimization/mork


191

minimice la suma de los desplazamientos totales entre cada par de facilities. A difer-
encia de otras variantes de la familia de problemas, en este no se permiten espacios
libres entre facilities, por lo que todas deben ser consecutivas y el comienzo de ambas
filas debe estar alineado.

En la tabla A.1, se presenta el resumen de los resultados comparando las aprox-
imaciones originales, etiquetadas como Trabajo previo, contra las aproximaciones gen-
eradas utilizando la metodoloǵıa explicada en la sección A.3, etiquetadas como Config.
Automática. Para cada problema, se muestran las siguientes métricas: número de veces
que la configuración generada alcanza el mejor valor conocido para todas las instancias
(#Times reaches bkv); número de veces que la configuración generada alcanza el mejor
valor al menos una vez (#Instances finds bkv); promedio de desviación porcentual del
mejor valor encontrado por una configuración respecto al mejor valor conocido (%Dev
Min); y finalmente, promedio de desviación porcentual para todas las iteraciones al
mejor valor conocido (%Dev Avg).

SF-DRFLP Config. Automática Trabajo previo

#Times reaches bkv 485 (19.96%) 895 (36.83%)
#Instances finds bkv 78 (96.30%) 42 (51.85%)
%Dev Min 0.00 0.01
%Dev Avg 0.45 0.03

BMSSC

#Times reaches bkv 221 (29.47%) 206 (27.47%)
#Instances finds bkv 18 (72.00%) 17 (68.00%)
%Dev Min 0.03 0.20
%Dev Avg 0.46 0.46

VRPOD

#Times reaches bkv 3816 (30.29%) 2373 (18.83%)
#Instances finds bkv 372 (88.57%) 132 (31.43%)
%Dev Min 1.55 0.68
%Dev Avg 5.06 1.91

Table A.1: Comparación entre las configuraciones generadas automáticamente para
cada uno de los problemas y las aproximaciones originales. bkv son las iniciales en
inglés de best known value, es decir, mejor valor conocido.

Como se puede observar, las configuraciones generadas de forma automática en-
cuentran el mejor valor para la gran mayoŕıa de instancias, mejorando o igualando los
resultados de la propuesta previa basada en configuración manual de los experimentos,
para los tres problemas propuestos, todo ello utilizando un procedimiento reproducible
y automático. Para un análisis completo, ver el caṕıtulo 4.



192

A.5 Conclusiones y trabajos futuros

En esta tesis se ha propuesto una nueva metodoloǵıa para desarrollar aproximaciones
heuŕısticas y metaheuŕısticas para diferentes clases de problemas de optimización, te-
niendo en cuenta los problemas más comunes existentes, especialmente aquellos rela-
cionados con la reproducibilidad experimental y automatización de decisiones.

Como se ha demostrado en la sección A.4, hemos verificado la hipótesis ini-
cial, es decir, es posible generar configuraciones de forma totalmente automática cuyo
rendimiento iguale o incluso mejore aproximaciones configuradas de forma manual.
Para ello, se han utilizado tres problemas pertenecientes a familias diferentes, utilizando
estructuras para representar la solución y sus respectivos movimientos completamente
dispares, mejorando en todos ellos el estado del arte existente.

Una limitación de la metodoloǵıa es que no se puede garantizar la optimalidad de
las soluciones obtenidas por los algoritmos generados, es decir, pueden existir diferentes
configuraciones de parámetros que generen mejores resultados que las configuraciones
propuestas. Sin embargo, nuestro objetivo principal no es garantizar dicha optimalidad,
sino asegurarnos de que podemos construir, ejecutar y validar el rendimiento de las
aproximaciones, de forma que garanticemos la reproducibilidad experimental, todo de
forma procedural, igualando o mejorando los resultados existentes en el estado del arte,
especialmente aquellos que utilizan aproximaciones basadas en configuración manual.

A lo largo de este proyecto de investigación, que culmina con la presente tesis, se
han publicado 5 art́ıculos JCR, cuatro de ellos en revistas Q1 del área, y el restante
en una revista Q2, además de haber realizado múltiples contribuciones a congresos
tanto nacionales como internacionales. Todos los artefactos generados a partir de la
investigación realizada en esta tesis se encuentran disponibles de forma pública en
Zenodo. Ver sección 5.1 para más detalle.

Como trabajos futuros, varias ĺıneas interesantes son las siguientes: estudiar la
compatibilidad con otros motores de optimización de parámetros como alternativa a
irace; expandir la lista de componentes disponible listos para usar, añadiendo meta-
heuŕısticas basadas en poblaciones; estudiar la aplicación de esta metodoloǵıa a prob-
lemas multi-objetivo; y, por último, finalizar la implementación basada en sistemas
distribuidos para permitir escalabilidad horizontal, que puede ser fácilmente aprovech-
able en entornos de cómputo modernos.



Bibliography

[1] A. R. Amaral, “A heuristic approach for the double row layout problem,” Annals
of Operations Research, pp. 1–36, 2020.

[2] T. Bartz-Beielstein, C. Doerr, D. v. d. Berg, J. Bossek, S. Chandrasekaran,
T. Eftimov, A. Fischbach, P. Kerschke, W. La Cava, M. Lopez-Ibanez, et al.,
“Benchmarking in optimization: Best practice and open issues,” arXiv preprint
arXiv:2007.03488, 2020.

[3] G. Kendall, R. Bai, J. B lazewicz, P. De Causmaecker, M. Gendreau, R. John,
J. Li, B. McCollum, E. Pesch, R. Qu, et al., “Good laboratory practice for op-
timization research,” Journal of the Operational Research Society, vol. 67, no. 4,
pp. 676–689, 2016.

[4] R. E. Ladner, “On the Structure of Polynomial Time Reducibility,” Journal of
the ACM, vol. 22, pp. 155–171, Jan. 1975.

[5] L. A. Hemaspaandra, “Sigact news complexity theory column 36,” ACM SIGACT
News, vol. 33, no. 2, pp. 34–47, 2002.

[6] A. Wigderson, “P, NP and mathematics – a computational complexity perspec-
tive,” in Proceedings of the International Congress of Mathematicians Madrid,
August 22–30, 2006 (M. Sanz-Solé, J. Soria, J. L. Varona, and J. Verdera, eds.),
pp. 665–712, Zuerich, Switzerland: European Mathematical Society Publishing
House, May 2007.

[7] G. B. Dantzig, A. Orden, P. Wolfe, et al., “The generalized simplex method for
minimizing a linear form under linear inequality restraints,” Pacific Journal of
Mathematics, vol. 5, no. 2, pp. 183–195, 1955.

[8] J. E. Mitchell, “Branch-and-cut algorithms for combinatorial optimization prob-
lems,” Handbook of applied optimization, vol. 1, no. 1, pp. 65–77, 2002.

[9] M. Gendreau, J.-Y. Potvin, et al., Handbook of metaheuristics, vol. 2. Springer,
2010.

[10] F. W. Glover and G. A. Kochenberger, Handbook of metaheuristics, vol. 57.
Springer Science & Business Media, 2006.

193



194

[11] M. Birattari, “F-race for tuning metaheuristics,” in Tuning metaheuristics,
pp. 85–115, Springer, 2009.

[12] A. Corominas, A. Garćıa-Villoria, and R. Pastor, “a systematic procedure based
on calibra and the nelder & mead algorithm for fine-tuning metaheuristics,”
Journal of the Operational Research Society, vol. 64, no. 2, pp. 276–282, 2013.

[13] T. Stützle and M. López-Ibáñez, “Automated design of metaheuristic algo-
rithms,” in Handbook of metaheuristics, pp. 541–579, Springer, 2019.

[14] B. Adenso-Diaz and M. Laguna, “Fine-tuning of algorithms using fractional ex-
perimental designs and local search,” Operations Research, vol. 54, pp. 99–114,
Jan. 2006.

[15] M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, et al., “A racing algorithm
for configuring metaheuristics.,” in Gecco, vol. 2 of GECCO’02, p. 11–18, 2002.

[16] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “Paramils: an au-
tomatic algorithm configuration framework,” Journal of Artificial Intelligence
Research, vol. 36, pp. 267–306, 2009.

[17] M.-C. Riff and E. Montero, “A new algorithm for reducing metaheuristic design
effort,” in 2013 IEEE Congress on Evolutionary Computation, pp. 3283–3290,
IEEE, 2013.

[18] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimiza-
tion for general algorithm configuration,” in International conference on learning
and intelligent optimization, pp. 507–523, Springer, 2011.

[19] O. Maron and A. W. Moore, “The racing algorithm: Model selection for lazy
learners,” Artificial Intelligence Review, vol. 11, no. 1, pp. 193–225, 1997.

[20] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-race and iterated f-race:
An overview,” Experimental methods for the analysis of optimization algorithms,
pp. 311–336, 2010.

[21] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birat-
tari, “The irace package: Iterated racing for automatic algorithm configuration,”
Operations Research Perspectives, vol. 3, pp. 43–58, 2016.

[22] M. De Souza, M. Ritt, M. López-Ibáñez, and L. Pérez Cáceres, “Acviz: A tool
for the visual analysis of the configuration of algorithms with irace,” Operations
Research Perspectives, vol. 8, p. 100186, 2021.

[23] M. López-Ibáñez, J. Branke, and L. Paquete, “Reproducibility in evolutionary
computation,” ACM Transactions on Evolutionary Learning and Optimization,
vol. 1, no. 4, pp. 1–21, 2021.

[24] M. Birattari, M. Zlochin, and M. Dorigo, “Towards a theory of practice in meta-
heuristics design: A machine learning perspective,” RAIRO-Theoretical Infor-
matics and Applications, vol. 40, no. 2, pp. 353–369, 2006.



195

[25] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Mart́ınez-Trinidad, and J. Kit-
tler, “A review of instance selection methods,” Artificial Intelligence Review,
vol. 34, no. 2, pp. 133–143, 2010.

[26] E.-G. Talbi, “Machine learning into metaheuristics: A survey and taxonomy,”
ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–32, 2021.

[27] I. Jolliffe, “Principal component analysis,” Encyclopedia of statistics in behavioral
science, 2005.

[28] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent
developments,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 374, no. 2065, p. 20150202, 2016.

[29] J. MacQueen et al., “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, vol. 1,14, pp. 281–297, Oakland, CA, USA, 1967.

[30] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a” kneedle” in a
haystack: Detecting knee points in system behavior,” in 2011 31st international
conference on distributed computing systems workshops, pp. 166–171, IEEE, 2011.

[31] J. Swan, S. Adriaensen, C. Johnson, A. Kheiri, F. Krawiec, J. Merelo Guervós,
L. Minku, E. Özcan, G. Pappa, P. Garćıa-Sánchez, K. Sörensen, S. Voss, M. Wag-
ner, and D. White, “Metaheuristics “in the large”,” European Journal of Opera-
tional Research, vol. 297, pp. 393–406, 03 2022.

[32] R. C. Martin, “The Liskov substitution principle,” C++ Report, vol. 8, no. 3,
p. 14, 1996.

[33] R. C. Martin, “The open-closed principle,” More C++ gems, vol. 19, no. 96, p. 9,
1996.

[34] J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, and D. R. White, “Ex-
tending the “Open-Closed Principle” to Automated Algorithm Configuration,”
Evolutionary Computation, vol. 27, pp. 173–193, Mar. 2019.

[35] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Satenstein:
Automatically building local search sat solvers from components,” Artificial In-
telligence, vol. 232, pp. 20–42, 2016.

[36] F. Pagnozzi and T. Stützle, “Automatic design of hybrid stochastic local search
algorithms for permutation flowshop problems,” European Journal of Operational
Research, vol. 276, no. 2, pp. 409–421, 2019.

[37] F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, and T. Stützle, “Grammar-based
generation of stochastic local search heuristics through automatic algorithm con-
figuration tools,” Computers & Operations Research, vol. 51, pp. 190–199, 2014.

[38] J. Dreo, A. Liefooghe, S. Verel, M. Schoenauer, J. J. Merelo, A. Quemy, B. Bou-
vier, and J. Gmys, “Paradiseo: From a modular framework for evolutionary



196

computation to the automated design of metaheuristics: 22 years of paradiseo,”
in Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, GECCO ’21, (New York, NY, USA), p. 1522–1530, Association for Com-
puting Machinery, 2021.

[39] F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, and T. Stützle, “From gram-
mars to parameters: Automatic iterated greedy design for the permutation flow-
shop problem with weighted tardiness,” in Learning and Intelligent Optimization
(G. Nicosia and P. Pardalos, eds.), pp. 321–334, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013.

[40] J. Rasku, N. Musliu, and T. Kärkkäinen, “On automatic algorithm configura-
tion of vehicle routing problem solvers,” Journal on Vehicle Routing Algorithms,
vol. 2, no. 1, pp. 1–22, 2019.

[41] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, 2019.

[42] ACM, “Artifact review and badging, version 2.0,” 2021.

[43] A. Clyburne-Sherin, X. Fei, and S. A. Green, “Computational reproducibility via
containers in psychology,” Meta-psychology, vol. 3, 2019.

[44] F. Glover, “Future paths for integer programming and links to artificial intelli-
gence,” Computers & operations research, vol. 13, no. 5, pp. 533–549, 1986.

[45] I. Boussäıd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuris-
tics,” Information Sciences, vol. 237, pp. 82–117, July 2013.

[46] T. Feo and M. Resende, “A probabilistic heuristic for a computationally difficult
set covering problem,” Operations Research Letters, vol. 8, pp. 67–71, 1989.

[47] T. A. Feo, M. G. C. Resende, and S. H. Smith, “A Greedy Randomized Adaptive
Search Procedure for Maximum Independent Set,” Operations Research, vol. 42,
no. 5, pp. 860–878, 1994.

[48] R. Mart́ı, A. Mart́ınez-Gavara, J. Sánchez-Oro, and A. Duarte, “Tabu search for
the dynamic Bipartite Drawing Problem.,” Computers & OR, vol. 91, pp. 1–12,
2018.

[49] A. Duarte, J. Sánchez-Oro, M. G. C. Resende, F. Glover, and R. Mart́ı, “Greedy
randomized adaptive search procedure with exterior path relinking for differential
dispersion minimization.,” Inf. Sci., vol. 296, pp. 46–60, 2015.

[50] F. Glover, “Multi-start and strategic oscillation methods–principles to exploit
adaptive memory,” Computing tools for modeling, optimization and simulation:
interfaces in computer science and operations research, pp. 1–24, 2000.



197

[51] M. Sevaux, A. Rossi, M. Soto, A. Duarte, and R. Mart́ı, “GRASP with ejection
chains for the dynamic memory allocation in embedded systems.,” Soft Comput.,
vol. 18, no. 8, pp. 1515–1527, 2014.

[52] K. Jajuga, A. Sokolowski, and H.-H. Bock, Classification, clustering, and data
analysis: recent advances and applications. Springer Science & Business Media,
2012.

[53] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on
neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[54] A. E. Xavier and V. L. Xavier, “Solving the minimum sum-of-squares clustering
problem by hyperbolic smoothing and partition into boundary and gravitational
regions.,” Pattern Recognition, vol. 44, no. 1, pp. 70–77, 2011.

[55] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The Planar k-Means Problem
is NP-Hard,” in WALCOM: Algorithms and Computation (S. Das and R. Uehara,
eds.), (Berlin, Heidelberg), pp. 274–285, Springer Berlin Heidelberg, 2009.

[56] D. J. Aloise, D. Aloise, C. T. M. Rocha, C. Ribeiro, J. R. Filho, and L. S.
Moura, “Scheduling workover rigs for onshore oil production.,” Discrete Applied
Mathematics, vol. 154, pp. 695–702, Sept. 2006.

[57] A. Pyatkin, D. Aloise, and N. Mladenović, “NP-Hardness of balanced minimum
sum-of-squares clustering.,” Pattern Recognition Letters, vol. 97, pp. 44–45, 2017.

[58] T. F. González, “On the computational complexity of clustering and related
problems,” in System Modeling and Optimization (R. F. Drenick and F. Kozin,
eds.), (Berlin, Heidelberg), pp. 174–182, Springer Berlin Heidelberg, 1982.

[59] E. Queiroga, A. Subramanian, and L. dos Anjos F. Cabral, “Continuous greedy
randomized adaptive search procedure for data clustering,” Applied Soft Com-
puting, vol. 72, pp. 43–55, 2018.

[60] S. Chakraborty, D. Paul, and S. Das, “Hierarchical clustering with optimal trans-
port,” Statistics & Probability Letters, vol. 163, p. 108781, 2020.

[61] S. M. Mohammed, K. Jacksi, and S. Zeebaree, “A state-of-the-art survey on
semantic similarity for document clustering using glove and density-based algo-
rithms,” Indonesian Journal of Electrical Engineering and Computer Science,
vol. 22, no. 1, pp. 552–562, 2021.

[62] A. Hinneburg and D. A. Keim, “Optimal grid-clustering : Towards breaking the
curse of dimensionality in high-dimensional clustering,” in Proceedings of the 25
th International Conference on Very Large Databases, 1999, pp. 506–517, 1999.

[63] K. Wong, “A Short Survey on Data Clustering Algorithms,” in 2015 Second
International Conference on Soft Computing and Machine Intelligence (ISCMI),
pp. 64–68, 2015.



198

[64] H. Steinhaus, “Sur la division des corps matériels en parties,” Bull. Acad. Polon.
Sci. Cl. III., vol. 4, pp. 801–804, 1956.

[65] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and
A. Y. Wu, “An efficient k-means clustering algorithm: analysis and implementa-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 7, pp. 881–892, 2002.

[66] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,”
tech. rep., Stanford, 2006.

[67] J. Xu and K. Lange, “Power k-means clustering,” in International Conference on
Machine Learning, pp. 6921–6931, PMLR, 2019.

[68] S. Chakraborty, D. Paul, S. Das, and J. Xu, “Entropy weighted power k-means
clustering,” in International Conference on Artificial Intelligence and Statistics,
pp. 691–701, PMLR, 2020.

[69] L. R. Costa, D. Aloise, and N. Mladenović, “Less is more: basic variable neigh-
borhood search heuristic for balanced minimum sum-of-squares clustering.,” Inf.
Sci., vol. 415, pp. 247–253, 2017.

[70] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval re-
search logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[71] R. Elshaer and H. Awad, “A taxonomic review of metaheuristic algorithms for
solving the vehicle routing problem and its variants,” Computers & Industrial
Engineering, vol. 140, p. 106242, Feb. 2020.

[72] J. Allen, M. Piecyk, M. Piotrowska, F. McLeod, T. Cherrett, K. Ghali,
T. Nguyen, T. Bektas, O. Bates, A. Friday, et al., “Understanding the impact of
e-commerce on last-mile light goods vehicle activity in urban areas: The case of
london,” Transportation Research Part D: Transport and Environment, vol. 61,
pp. 325–338, 2018.

[73] R. Gevaers, E. Van de Voorde, T. Vanelslander, et al., “Characteristics of in-
novations in last-mile logistics-using best practices, case studies and making the
link with green and sustainable logistics,” Association for European Transport
and contributors, 2009.

[74] L. Ranieri, S. Digiesi, B. Silvestri, and M. Roccotelli, “A review of last mile logis-
tics innovations in an externalities cost reduction vision,” Sustainability, vol. 10,
no. 3, p. 782, 2018.

[75] M. Janjevic and M. Winkenbach, “Characterizing urban last-mile distribution
strategies in mature and emerging e-commerce markets,” Transportation Re-
search Part A: Policy and Practice, vol. 133, pp. 164–196, Mar. 2020.

[76] A. Sampaio, M. Savelsbergh, L. Veelenturf, and T. Van Woensel, “Chapter 15:
Crowd-Based City Logistics,” in Sustainable Transportation and Smart Logistics



199

(J. Faulin, S. E. Grasman, A. A. Juan, and P. Hirsch, eds.), pp. 381–400, Elsevier,
2019.

[77] V. Carbone, A. Rouquet, and C. Roussat, “The rise of crowd logistics: A new
way to co-create logistics value,” Journal of Business Logistics, vol. 38, no. 4,
pp. 238–252, 2017.

[78] A. Devari, A. G. Nikolaev, and Q. He, “Crowdsourcing the last mile delivery of
online orders by exploiting the social networks of retail store customers,” Trans-
portation Research Part E: Logistics and Transportation Review, vol. 105, pp. 105
– 122, 2017.

[79] R. Botsman, “Crowdshipping: using the crowd to transform delivery,” AFR Boss
Magazine, no. September 12, 2014.

[80] X. Guo, Y. J. L. Jaramillo, J. Bloemhof-Ruwaard, and G. Claassen, “On integrat-
ing crowdsourced delivery in last-mile logistics: A simulation study to quantify
its feasibility,” Journal of Cleaner Production, vol. 241, p. 118365, 2019.

[81] M. D. Simoni, E. Marcucci, V. Gatta, and C. G. Claudel, “Potential last-mile im-
pacts of crowdshipping services: a simulation-based evaluation,” Transportation,
pp. 1–22, 2019.

[82] C. Archetti, M. Savelsbergh, and M. G. Speranza, “The vehicle routing problem
with occasional drivers,” European Journal of Operational Research, vol. 254,
no. 2, pp. 472 – 480, 2016.

[83] R. Mart́ın-Santamaŕıa, A. D. López-Sánchez, M. L. Delgado-Jalón, and J. M.
Colmenar, “An Efficient Algorithm for Crowd Logistics Optimization,” Mathe-
matics, vol. 9, p. 509, Mar. 2021.

[84] R. Satheesh Kumar, P. Asokan, S. Kumanan, and B. Varma, “Scatter search
algorithm for single row layout problem in fms,” Advances in Production Engi-
neering & Management, vol. 3, no. 4, pp. 193–204, 2008.

[85] D. M. Simmons, “One-dimensional space allocation: an ordering algorithm,”
Operations Research, vol. 17, no. 5, pp. 812–826, 1969.

[86] M. Rubio-Sánchez, M. Gallego, F. Gortázar, and A. Duarte, “Grasp with path
relinking for the single row facility layout problem,” Knowledge-Based Systems,
vol. 106, pp. 1–13, 2016.

[87] A. Herrán, J. M. Colmenar, and A. Duarte, “An efficient variable neighborhood
search for the space-free multi-row facility layout problem,” European Journal of
Operational Research, 2021.

[88] P. Hungerländer, K. Maier, V. Pachatz, and C. Truden, “Exact and heuristic
approaches for a new circular layout problem,” SN Applied Sciences, vol. 2, no. 6,
pp. 1–22, 2020.



200

[89] M. Dahlbeck, “A mixed-integer linear programming approach for the t-row and
the multi-bay facility layout problem,” European Journal of Operational Re-
search, 2021.

[90] A. Drira, H. Pierreval, and S. Hajri-Gabouj, “Facility layout problems: A survey,”
Annual Reviews in Control, vol. 31, pp. 255–267, Jan. 2007.

[91] J. Chung and J. Tanchoco, “The double row layout problem,” International
Journal of Production Research, vol. 48, no. 3, pp. 709–727, 2010.

[92] A. R. Amaral, “Optimal solutions for the double row layout problem,” Optimiza-
tion Letters, vol. 7, no. 2, pp. 407–413, 2013.

[93] L. D. Secchin and A. R. S. Amaral, “An improved mixed-integer programming
model for the double row layout of facilities,” Optimization Letters, vol. 13, no. 1,
pp. 193–199, 2019.

[94] J. Chae and A. C. Regan, “A mixed integer programming model for a double
row layout problem,” Computers & Industrial Engineering, vol. 140, p. 106244,
2020.

[95] A. R. Amaral, “A mixed-integer programming formulation of the double row
layout problem based on a linear extension of a partial order,” Optimization
Letters, vol. 15, no. 4, pp. 1407–1423, 2021.

[96] F. Glover and J.-K. Hao, “The case for strategic oscillation,” Annals of Opera-
tions Research, vol. 183, no. 1, pp. 163–173, 2011.

[97] M. I. Malinen and P. Fränti, “Balanced k-means for clustering,” in Structural,
Syntactic, and Statistical Pattern Recognition (P. Fränti, G. Brown, M. Loog,
F. Escolano, and M. Pelillo, eds.), (Berlin, Heidelberg), pp. 32–41, Springer Berlin
Heidelberg, 2014.

[98] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE trans-
actions on pattern analysis and machine intelligence, no. 2, pp. 224–227, 1979.

[99] R. M. Aiex, M. G. Resende, and C. C. Ribeiro, “Ttt plots: a perl program to
create time-to-target plots,” Optimization Letters, vol. 1, no. 4, pp. 355–366,
2007.

[100] H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated Local Search, pp. 320–353.
Boston, MA: Springer US, 2003.

[101] A. Herrán, J. M. Colmenar, R. Mart́ı, and A. Duarte, “A parallel variable neigh-
borhood search approach for the obnoxious p-median problem,” International
Transactions in Operational Research, vol. 27, no. 1, pp. 336–360, 2020.

[102] J. Faulin and A. A. Juan, “The ALGACEA-1 method for the capacitated vehicle
routing problem,” International Transactions in Operational Research, vol. 15,
no. 5, pp. 599–621, 2008.



[103] G. M. Buxey, “The vehicle scheduling problem and monte carlo simulation,”
Journal of the Operational Research Society, vol. 30, no. 6, pp. 563–573, 1979.

[104] L. W. Jacobs and M. J. Brusco, “Note: A local-search heuristic for large set-
covering problems,” Naval Research Logistics (NRL), vol. 42, no. 7, pp. 1129–
1140, 1995.

[105] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem,” European journal of operational
research, vol. 177, no. 3, pp. 2033–2049, 2007.

[106] M. Lozano, D. Molina, and C. Garćıa-Mart́ınez, “Iterated greedy for the max-
imum diversity problem,” European Journal of Operational Research, vol. 214,
no. 1, pp. 31–38, 2011.

[107] R. Ruiz, Q.-K. Pan, and B. Naderi, “Iterated greedy methods for the distributed
permutation flowshop scheduling problem,” Omega, vol. 83, pp. 213–222, 2019.

[108] J. D. Quintana, R. Martin-Santamaria, J. Sanchez-Oro, and A. Duarte, “Solving
the regenerator location problem with an iterated greedy approach,” Applied Soft
Computing, vol. 111, p. 107659, 2021.

[109] M. López-Ibánez and T. Stützle, “Automatically improving the anytime be-
haviour of optimisation algorithms,” European Journal of Operational Research,
vol. 235, no. 3, pp. 569–582, 2014.

[110] S. Cavero, E. G. Pardo, and A. Duarte, “Efficient iterated greedy for the two-
dimensional bandwidth minimization problem,” European Journal of Operational
Research, vol. 306, no. 3, pp. 1126–1139, 2023.

[111] I. Lozano-Osorio, J. Sánchez-Oro, A. Mart́ınez-Gavara, A. D. López-Sánchez, and
A. Duarte, “An efficient fixed set search for the covering location with intercon-
nected facilities problem,” in Metaheuristics (L. Di Gaspero, P. Festa, A. Nakib,
and M. Pavone, eds.), (Cham), pp. 485–490, Springer International Publishing,
2023.

[112] J. Mockus, “The Bayesian Approach to Local Optimization,” Bayesian Approach
to Global Optimization, pp. 125–156, 1989.

[113] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,”
Journal of machine learning research, vol. 13, no. 2, 2012.








