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Abstract

Software quality is of utmost importance for the correct functioning of modern systems.

The quality of software projects is measured by different attributes, such as efficiency,

security, or understandability, among others. Without a proper design, the code becomes

prone to errors and unsatisfactory. In this doctoral thesis, we study the optimization of soft-

ware quality. In particular, we focus on the optimization of software maintainability, which

is critical to the long-term success of software projects. The subject studied is known as the

Software Module Clustering Problem, which is a well-known family of optimization prob-

lems in the area of Search-Based Software Engineering. We study four of these problems

based on different quality metrics used to evaluate software systems. Two of them, Mod-

ularization Quality and Function of Complexity Balance, are studied as mono-objective

problems. The other two problems, Maximizing Cluster Approach and Equal-size Cluster

Approach, consider multiple quality metrics and are studied as multi-objective optimiza-

tion problems. Given the complexity of these problems, which have been proven to be

NP-complete, exact methods are impractical for the size of real-world software projects.

Therefore, this doctoral thesis focuses on approximate methods. In particular, the use of

three metaheuristic procedures is proposed: a Greedy-Randomized Adaptive Search Pro-

cedure combined with Variable Neighborhood Descent, a General Variable Neighborhood

Search, and a Multi-Objective General Variable Neighborhood Search. To improve the ef-

ficiency of the aforementioned methods, several novel strategies are introduced, and an ex-

haustive study of neighborhood structures and their exploration is performed. Finally, the

proposed methods have been validated by favorably comparing their performance with the

best algorithms available in the related literature, on a dataset obtained from real software

instances. The significance of the results obtained is supported by statistical tests.
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Chapter 1

Introduction

Software is of utmost importance for the correct functioning of modern systems nowadays.

It is used to control any electronic device, from widespread tools such as mobile phones

to critical aircraft systems or medical instruments. Computer programming has revolution-

ized the world in the last decades and presumably will continue to do so in the following

years. As software systems become larger and more complex, navigating them becomes

increasingly difficult. The more sophisticated the system, the harder it is to understand it.

Moreover, software systems are usually subject to constant change in order to adapt to

new user needs, add features, correct defects, or improve performance. For these reasons,

software systems often deteriorate over time, becoming prone to errors. According to re-

cent studies, low-quality software was responsible for costs of up to 2.08 trillion dollars in

2020, considering only the United States of America [77]. In addition, software errors can

critically impact the outcomes of a system. For example, the launch of satellite Ariane 5 in

1996 [135], the failed landing of Mars Polar Lander in 1999 [5], or the error in Starliner in

2019 [92], are among the most notorious and costly failures caused by software errors.

In an attempt to alleviate some of the problems mentioned above, there has been an

increase in the effort made by the scientific community to automatically improve and cor-

rect software systems. Search-Based Software Engineering (SBSE) is a research area that

tackles Software Engineering (SE) tasks as optimization problems. By applying optimiza-

tion techniques to SE endeavors, the goal of the SBSE community is to improve the quality

of software systems, correct code errors, and, in general, facilitate the work of software
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4 Chapter 1. Introduction

developers.

In this doctoral thesis, we study the Software Module Clustering Problem (SMCP), a

family of problems that can be found within the SBSE research community. In particular,

we study four different problems of the family and propose several heuristic algorithms to

tackle them. For the algorithms proposed, we design some advanced strategies that help im-

prove their performance and efficiency. To empirically validate our findings, we favorably

compare the results obtained by the proposed methods with the most recent state-of-the-art

algorithms in each variant of the problem studied.

In this chapter, we first discuss the motivation to tackle the SMCP in Section 1.1. Then,

we present an introduction to optimization in Section 1.2. Next, we describe the method-

ology followed during this research in Section 1.3. Finally, we conclude this chapter by

presenting the hypothesis and objectives of this doctoral thesis in Section 1.4.

1.1 Motivation

With the widespread use of software programs and electronic devices, the costs of software

development and maintenance have increased significantly in recent years [61]. Moreover,

software development is a complex endeavor. According to a report that surveyed software

projects between 2011 and 2015, 56% of the projects were over budget, 60% were delivered

late, and 44% did not contain the expected set of features [1]. Furthermore, only 56% of

the software projects surveyed delivered customer and user satisfaction. These results are

particularly worrying for the largest software projects, which had a success rate of only 6%

to 11%. As stated in the report, “complexity is one of the main reasons for project failure”

[1].

The life cycle of a software project contains all the activities performed to evolve a

system from its conception until its retirement [61]. In order to ensure that high-quality

code is created, it is advisable for software engineers to follow a structured approach known

as a Software Development Life-Cycle (SDLC). An SDLC is a framework that involves the

definition, ordering, and transition criteria of different stages that contain several processes

and activities related to the life cycle of the system [61]. Although the exact number of

phases can be argued, every SDLC contains at least a requirements definition, analysis and
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design, software development, testing, and maintenance phases. Implementing a defined

SDLC model has been shown to improve the quality of software products [139]. A great

example is NASA1, which, after performing software process improvements for four years,

reduced the error rate for on-board software in their space shuttle from 2 errors per 1000

lines of code to only 0.11 errors per 1000 lines of code (a reduction of 94%) [58].

In the SDLC, there are two major phases: software development and software mainte-

nance. In the software development phase, a system element is produced. That is, the soft-

ware development phase transforms requirements into actions that create a system element

[61]. Software maintenance, on the other hand, focuses on providing cost-effective support

to the system, sustaining its capability to provide a service [61]. This support includes dif-

ferent corrective, adaptive, perfective, and preventive actions [13]. Software maintenance is

often regarded as a somewhat less important phase, resulting in a lack of recognition, moti-

vation, and support [34, 82]. However, maintenance is the most costly phase of the SDLC.

Studies have shown that up to 80% of the total costs are spent on software maintenance

[22]. Interestingly, most of the effort in this phase is devoted to understanding the existing

software [103]. Indeed, the need for software maintenance and the increasing complexity

of software projects throughout their life cycle were already explained by Lehman’s laws

of software evolution, formulated between 1974 and 1996 [81]. Lehman distinguishes pro-

grams in three categories: S, P and E [80]. The Lehman’s laws of sofware evolution apply

to E-programs, which are programs written to perform some real-world activity, as opposed

to S- and P-programs which are written to perform specific tasks and thus do not evolve

over time. Among the eight laws proposed by Lehman, four of them are directly related to

the importance and need for software maintenance:

• Continuing change: a “program that is used must be continually adapted else it be-

comes progressively less satisfactory” [81].

• Continuing growth: “functional content of a program must be continually increased

to maintain user satisfaction over its lifetime” [81].

• Increasing complexity: “as a program is evolved its complexity increases unless work

1https://www.nasa.gov/

https://www.nasa.gov/
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is done to maintain or reduce it” [81].

• Declining quality: “programs will be perceived as of declining quality unless rigor-

ously maintained and adapted to a changing operational environment” [81].

As stated by the aforementioned laws, the continuous change and growth of software

systems result in an increasing complexity and a deterioration of software quality. Ac-

cording to the International Organization for Standardization (ISO)2, product quality is de-

fined by eight attributes: functional suitability, reliability, performance efficiency, usability,

security, compatibility, maintainability, and portability [64]. Amid these attributes, main-

tainability is defined as the “degree of effectiveness and efficiency with which a product or

system can be modified by the intended maintainers”, including corrections, improvements,

or adaptations [64]. Moreover, five characteristics of maintainability, which are tightly in-

tertwined, are defined: modularity, reusability, analysability, modifiability, and testability.

Since maintainability and understandability affect the ease with which a software system

can be modified over time, they are important aspects for the long-term success of software

projects, and ignoring them early can contribute to considerably more effort [42].

Due to the fact that the main problems impacting software maintainability are “software

comprehension problems”, one of the keys to achieve a high level of maintainability is deal-

ing with the static structure of software systems [23]. Organizing source code into different

components facilitates the comprehension of each component independently. However, us-

ing only components to represent a system is not sufficient to gain robust, maintainable,

and reusable designs. Instead, a higher level of abstraction that involves packages or mod-

ules (groups of components) is needed for large codebases to facilitate the comprehension

of each module independently [6]. In this context, modularity is defined as the set of “soft-

ware attributes that provide a structure of highly independent components” [63]. In a mod-

ular organization, software components within the same module should be highly related

(high cohesion), while components within different modules should be weakly connected

(low coupling). Indeed, there exist several studies that positively correlate modularity with

maintainability [4, 12, 19]. There are different notions of what a software component is,

2https://www.iso.org/home.html

https://www.iso.org/home.html
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such as a file, a class, a package, etc. Although in some contexts, the words “module” and

“component” are synonymous, it is worth mentioning that the definition of these two terms

is not standardized [63]. Here, we will utilize the word “component” for individual ele-

ments (files and classes) and the word “module” for collections of components (packages

or folders).

Due to the relations between software modularity and maintainability with software

quality and costs, it is of paramount importance for the long-term success of software

projects to organize their components in a highly modular structure. Such a structure facil-

itates the comprehension of the systems, and thus affects positively the quality of software

projects. In particular, a good modular structure directly benefits all the characteristics of

software maintainability: modularity, reusability, analyzability, modifiability, and testabil-

ity. The SMCP is a family of optimization problems that focuses on the optimization of

software modularity to reduce the maintenance costs of software projects and improve their

quality. The main motivation for this doctoral thesis lies in the design and implementation

of algorithmic approaches to improve the results obtained for the SMCP.

1.2 Optimization

Optimization, the search for the best solution for a given problem, is a process inherent

to any form of life. Darwin’s theory of evolution is, in essence, the description of an opti-

mization process: the maximization of adaptability to the environment [46]. However, the

field of optimization research has not received much attention until the past century [46].

Although there exist known works on optimization prior to 1947, this date marked the be-

ginning of a new period on optimization with the proposal of the simplex method [29]. Now,

optimization, defined as the “search process that seeks for the best solution among the set

of all possible solutions for a given problem” [38], has become an important research field

that integrates efforts from mathematics, computer science, management science, and arti-

ficial intelligence, among others. In this section, we introduce and define some important

concepts of optimization research that are important for the context of this doctoral thesis.

In particular, in Section 1.2.1, we describe optimization problems from a formal point of

view. Then, in Section 1.2.2, we describe approaches to solve optimization problems.



8 Chapter 1. Introduction

1.2.1 Optimization problems

Typically, optimization problems have three fundamental elements. First, a method is needed

to compare solutions. This method is commonly known as the objective function, and it as-

signs a numerical value to any possible solution to the problem. Second, a set of decision

variables must be defined. Each decision variable can hold a value in a given range. A

particular combination of values for the set of decision variables represents a solution to

the problem. The set of all solutions that can be represented by the combination of values

that the decision variables can hold represents the search space of the problem. Finally, a

set of constraints might exist that limit the possible values or combinations of the values

of the aforementioned variables. The set of solutions that satisfy the set of constraints is

commonly known as the set of feasible solutions.

From a formal point of view, an optimization problem P can be defined as a 3-tuple

P = (f ,S ,FS ), such that:

P =


Opt . : f (x ) objective function

s.t .,

x ∈ FS ⊂ S feasible (FS) and possible (S) solutions

(1.1)

where f is the objective function, FS is the set of feasible solutions, and S is the set of

possible solutions. The goal then is to find the solution x⋆ among the set of feasible solutions

that either maximizes or minimizes the objective function, depending on the particular

problem at hand. For the sake of clarity and without loss of generality, for the remainder

of this section, we assume that every objective function must be maximized. Therefore, the

goal is to find the solution x⋆ among the set of feasible solutions that maximizes the value

of the objetive function:

x⋆ = argmax
x ∈ FS

(f (x )). (1.2)

In real life, there are countless problems that can be modeled and tackled as optimiza-

tion problems. Depending on the values that the variables for these problems can have, they

are generally divided into two main categories: continuous and discrete optimization [38].
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In continuous optimization, the variables are continuous quantities, real numbers. There-

fore, the number of possible solutions is infinite. On the other hand, in discrete optimization

problems, the variables are not continuous but discrete. Thus, the set of solutions is finite,

although it may be very large. Many real-life problems need to be defined with discrete

variables, since the resources are indivisible (e.g., machines, people, etc.) [134]. Within

the family of discrete optimization problems, a particular type of problems can be found:

combinatorial optimization problems. In these problems, there exist some discrete vari-

ables and a finite search space. The solution is typically a set of natural numbers that might

be represented as a permutation, a graph, or another structure. Many real-life optimization

problems are combinatorial, such as routing [79, 115], scheduling [113], social network

analysis [84, 114], logistic [109], and graph embedding problems [21], among others.

The distinction between continuous and discrete optimization problems is based on the

nature of the decision variables that represent the set of possible solutions to the problem

at hand. However, optimization problems can also be distinguished based on the number

of objective functions to be optimized. In the aforementioned definition of an optimiza-

tion problem, only one objective function was considered. There, comparing the quality of

different solutions is trivial. However, for many problems, there does not exist a unique

function to optimize, but rather a set of different and conflicting objective functions. These

are called Multi-objective Optimization Problems (MOPs).

Formally, an MOP is defined as:

MOP =


Opt . : F (x ) = (f1(x ), f2(x ), ..., fn(x )) vector of objectives

s.t .,

x ∈ FS ⊂ S feasible (FS) and possible (S) solutions
(1.3)

where F (x ) is the vector of objectives to be optimized. This vector, which represents the

quality of the solution, can be represented in a n-dimensional space, called the objective

space.

In MOPs, the objective functions are in conflict with each other. (In practice, if the

objective functions are not conflicting, then the problem can be tackled as a single-objective
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problem.) This means that improving one objective usually results in the deterioration of

others. This situation makes it difficult to compare solutions. Given two solutions x and

x ′ that have two different objectives such that f1(x ) > f1(x
′) and f2(x ) < f2(x

′), it is not

clear which solution is better. In MOPs, a dominance relation is defined to compare the

quality of solutions. This concept of dominance has its roots in the work of Edgeworth and

Pareto [40, 111]. An objective vector F (x ) = (v1,v2, ...,vn) is said to dominate another

objective vector F (x ′) = (v ′1,v
′
2, ...,v

′
n) if and only if every component in F (x ) is greater

than or equal to the corresponding component in F (x ′) and at least one component in F (x )

is strictly greater than the corresponding component in F (x ′). Formally,

∀i ∈ {1, ...,n} : vi ≥ v ′i ∧∃i ∈ {1, ...,n} : vi > v ′i .

Given the aforementioned definition of dominance, a Pareto optimal solution can be de-

fined as a solution in which it is impossible to improve any objective without deteriorating

at least another one. (There exist other concepts of dominance, such as weak, strong and

ε-dominance, which are not discussed here [134].) Then, the objective of MOPs is to find

the Pareto optimal front, a set of Pareto optimal solutions. In practice, however, the Pareto

optimal front is usually unknown and it is not possible to certify that a given Pareto front is

optimal. Then, it is normally sufficient to find an approximate Pareto front. That is, a set of

good solutions that are not dominated by the rest of the solutions in the same set.

In MOPs, due to the dominance relation, the number of Pareto optimal solutions is di-

rectly related to the number of objectives studied. At least all optimal solutions considering

each objective in isolation are Pareto optimal solutions when the objectives are considered

altogether in an MOP. Moreover, since there is not a clear numerical criterion for compar-

ing solutions, the final choice depends on a decision maker, which adds another layer of

complexity to MOPs.

1.2.2 Optimization methods

Regardless of the type of optimization problem being studied, there exist different ap-

proaches to find the best possible solutions. For combinatorial optimization problems, it

is always possible to find the best solution and certify that it is indeed the best one, simply
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by evaluating all possible solutions. The family of algorithms that are designed to find the

optimal solution and certify its optimality is known as exact algorithms. However, in reality,

it is often impractical to apply exact algorithms due to the vast number of possible solutions

that usually exist for problems of interest. For this reason, it is frequently preferred to find

a high-quality solution in a short or acceptable computing time, even if it is not certified as

optimal. This is the goal of approximate algorithms.

Approximate algorithms try to find a high-quality solution in short computing times by

applying some intelligence or heuristics in the search process. The term heuristic comes

from the greek term heuriskein, which means “to find” or “discover”3. The meaning, how-

ever, has changed over time. The modern meaning of the term “heuristic” was first coined

by G. Polya in 1957 [118]. In optimization, heuristics are defined as “simple procedures,

often guided by common sense, that are meant to provide good but not necessarily opti-

mal solutions to difficult problems, easily and quickly” [146]. By applying some strategies,

heuristics explore only a subset of promising solutions among the whole set of possible

solutions. Therefore, heuristics are approximate in the sense that they do not guarantee

optimality.

Typically, heuristics can be classified in constructive and local search procedures. Con-

structive procedures start with an empty or incomplete solution and perform several opera-

tions to obtain a complete solution, usually feasible. Generally, the purpose of constructive

procedures is to generate an initial solution for a later improvement procedure. On the

other hand, a local search procedure starts from a complete solution and iteratively per-

forms moves or operations on the solution to obtain a better one. At each step, the set

of solutions that can be reached by applying a particular operation is denoted as a neigh-

borhood. Therefore, a local search is the process of iteratively selecting a solution within

the neighborhood of the current solution. Operations usually involve adding or dropping

problem-specific components from the solution, or exchanging the position of two differ-

ent elements.

Although heuristics are great at finding good solutions in a short computing time, they

suffer from a major drawback: their inability to continue the search upon becoming trapped

3The term “Eureka!”, famously known due to the popular story of Archimedes, means “I have found it!”.
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in local optima [46]. Broadly speaking, a local optimum is a solution that is better than

every solution in its surrounding search space. A basin of attraction is a region of the

search space where any gradient descent method leads to a local optimum. If the objective

function is convex, then there exists only one local optimum, which is the global optimum.

On the other hand, if the objective function is non-convex, then there may exist several local

optima. Once trapped in a local optimum, simple heuristics are usually unable to escape the

basin of attraction and continue exploring other regions of the search space.

The aforementioned problem has led researchers to develop metaheuristic approaches.

A metaheuristic is a strategy that guides some underlying heuristics “to create a process

capable of escaping from local optima and performing a robust search of a solution space”

[50]. Metaheuristics are high-level, problem-independent procedures that provide some

guidelines to develop heuristic algorithms, with the aim of overcoming local optima. They

combine intensification (extensively exploring a promising region of the search space) and

diversification (exploring different regions of the search space to identify promising ones)

strategies to perform a more efficient search. Given their suitability to address real problems

of practical interest and their ability to escape local optima, metaheuristic procedures have

been the subject of extensive research in the field of optimization in the last few decades

[38, 50, 91, 134].

1.3 Research methodology

The first recorded use of the term “research” dates from 1577, with the meaning of “careful

or diligent search” [2]. Although there is no uniquely accepted all-encompassing definition

of research, a generally accepted modern definition is “creative and systematic work under-

taken to increase the stock of knowledge [...] and to devise new applications of available

knowledge” [106]. Therefore, research must be performed following a systematic method-

ology. With respect to the scientific method, there is no uniquely accepted way of perform-

ing formal research. However, there exist some steps that are commonly accepted to be

part of any research process: observation, hypothesis, experimentation, analysis of data,

and conclusion. First, an observation or a set of observations is made. Then, a hypothesis is

formulated that explains the observed behavior, and a set of experiments is designed to test
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the hypothesis. Once the experiments have been performed, the data obtained are analyzed

and some conclusions are drawn. This process is usually iterative, which means that data

analysis often results in new observations and/or hypotheses.

Although the general overview of the scientific process is well known, the details differ

depending on the area of study. In the field of heuristic research, which is an experimental

area of study, the scientific process can be extended as illustrated in Figure 1.1. As can

be seen in the activity diagram, the process is made up of ten steps. First, the problem is

identified and its characteristics are examined (step 1). Then, the state of the art is studied

(step 2). As a result, the most relevant algorithms are recognized, and the most appropriate

set of reference instances used for comparison purposes is determined. Once these steps

have been performed, a hypothesis is made considering the previous observations (step 3).

Next, an algorithmic procedure is designed to test the hypothesis (step 4). This algorithm

is then implemented to experimentally test the aforementioned hypothesis (step 5). Usu-

ally, computational experiments with algorithms are performed to accomplish one of two

objectives: (i) to analyze the performance of an algorithm in isolation or (ii) to compare

the performance of different algorithms for the same problem [14]. The first is performed

in step 6, while the latter is performed in step 8. In general, algorithms should be tested

against the best available methods for the problem being studied. In addition, well-known

heuristics, even if not state-of-the-art for the problem at hand, provide valuable points of

reference. As can be observed, after each experimentation phase, there exists a data anal-

ysis phase, where the obtained results are analyzed (steps 7 and 9). These analyses often

result in a modification of the initial hypothesis and further iterations of the algorithmic de-

sign. Finally, a research article is published to share the relevant findings with the scientific

community (step 10). Moreover, given the experimental nature of the field, the research

article should contain enough details to allow the reproducibility of the experiments.

1.4 Hypothesis and objectives

In this doctoral thesis, the main goal is to design and implement optimization algorithms

for the SMCP that outperform current state-of-the-art methods and can help to improve the

maintainability of software projects. The hypothesis of this doctoral thesis is enunciated as
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Figure 1.1 UML activity diagram [62] illustrating the research methodology followed
in the field of heuristic research.



Chapter 1. Introduction 15

follows:

“The structure of software projects can be improved by modeling software maintainability

as an optimization problem and implementing trajectory-based metaheuristics, which can

obtain solutions of higher quality than population-based metaheuristics, currently present

in the state of the art by leveraging domain-specific knowledge of the problem at hand to

implement advanced strategies”.

To achieve the aforementioned goal and test the hypothesis, several partial objectives

are considered. In particular:

1. Review the literature of the problem. The literature about software modularization

and the SMCP must be studied in order to: (i) understand the problem and the mo-

tivation behind it; (ii) identify the current gaps in the literature and promising lines

of research; (iii) study the objective functions and variants of the problem that ex-

ist in the literature, their differences, and advantages; and (iv) identify the reference

algorithms and instances for the problem.

2. Study the modeling of the problem. A thoughtful analysis of the characteristics of

the problem and the representation of the structure of software systems will lead to

the design of efficient algorithms that are particularly suitable for the specifics of the

problem.

3. Collect a relevant dataset of instances. In order to experimentally validate the find-

ings and compare the performance of different algorithms, it is important to use a

reference dataset curated by the community and accepted in the field.

4. Implement the reference state-of-the-art algorithms. In order to experimentally

validate the algorithmic proposals, they must be compared with the best algorithms

available for the problem at hand. To perform a fair comparison, all algorithms being

compared should be executed in a uniform computing environment. Therefore, the

algorithms should be implemented to be executed under the same conditions.

5. Design and develop optimization algorithms based on trajectory-based meta-
heuristic frameworks. These optimization algorithms will be designed with the
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characteristics of the problem and its variants in mind.

6. Parameterize the methods designed. A trade-off in algorithmic design should be

made between specificity for the problem at hand and generality for a wide variety of

problems. Typically, heuristic algorithms include some parameters that can be tuned

to adapt their behavior. These parameters, if any, should be tuned prior to comparison

with other algorithms using a set of instances different from the one used for the

comparison.

7. Analyze the behavior of the proposed algorithms. The behavior of the algorithm

should be analyzed to study its strengths and weaknesses. The speed of convergence,

the ability to escape from local optima, the robustness or the contribution of each

component within the algorithm are among the set of characteristics that should be

studied.

8. Compare the proposed algorithms with the best methods in the state of the art.
This comparison should use realistic and relevant instances, be unbiased, generate

valuable data, and be reproducible. Furthermore, to ensure fairness, a uniform com-

puting environment should be used.

9. Analyze the results obtained. The data obtained from the experimentation should

be analyzed and validated in order to test the hypotheses. This analysis can lead to

further experiments or improvements in the design of the algorithm.

10. Document the process and draw conclusions. The research process should be doc-

umented in detail to share the relevant findings. The resulting document should be

unbiased and allow for the reproducibility of the experiments. In addition, efforts

should be made to draw conclusions that advance the available knowledge of either

the problem studied or the algorithmic strategies designed.

11. Submit the findings to peer review processes. The documented research process

should be submitted to relevant conferences and scientific journals for peer review

and, if acceptable, be published to share the findings with the scientific community.
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Problem definition

In this doctoral thesis, we study the SMCP. In these problems, software projects are com-

monly represented in a graph structure known as an Module Dependency Graph (MDG)

[60]. An MDG is a type of Artifact Dependency Graph, which represents the dependen-

cies between components in a graph structure. There exist complementary types of graph

to model other information about software projects that are not discussed here [60]. More

formally, an MDG is a directed weighted graph G = (V ,E ,W ), where V is the set of

vertices, E is the set of edges, and W is the set of weights associated with the edges in E .

In this context, the vertices represent the components of the source code, the edges repre-

sent the dependencies between those components, and the weights represent the strength

of the dependencies. In Figure 2.1, we show the MDG of a fictitious software project. This

project has ten different components. Component one, represented by v1, has two depen-

dencies (e.g., method calls, inheritance, etc.) toward component two, represented by v2.

Therefore, the edge that connects v1 with v2 has an associated weight of two. Similarly,

component four (v4) depends on components one (v1), three (v3), six (v6), and seven (v7),

etc.

Given an MDG, a solution for the SMCP is represented by a clustering of the vertices of

the graph. That is, a solution is a set M = {m1,m2, ...,mn} of non-empty disjoint subsets

of vertices in V , where n represents the number of modules or clusters and 1 ≤ n ≤ |V |.
A solution M is called trivial if n = 1 or n = |V |. In Figure 2.2 and Figure 2.3, we il-

lustrate two possible solutions for the aforementioned MDG. As can be observed, in the

17
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Figure 2.1 An example of an MDG of a software project. Vertices represent the compo-
nents of the source code, edges represent the dependencies between those components,
and weights represent the strength of the dependencies. For the sake of simplicity, only
weights with a value greater than one are depicted.

first solution, the components have been grouped into three different modules, m1, m2,

and m3. In particular, m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3}, and m3 = {v5,v9,v10}.
In the second solution, the components have been grouped into two different modules,

m1 = {v1,v2,v3,v4} and m2 = {v5,v6,v7,v8,v9,v10}. Finally, Figure 2.4 represents a

trivial solution for the MDG, since there is only one module (n = 1).

In the SMCP, there exist several problem variants that differ on how to evaluate the

quality of modular organizations. In the following sections, the most relevant variants stud-

ied in this doctoral thesis are discussed. In particular, Modularization Quality (MQ) is pre-

sented in Section 2.1, Function of Complexity Balance (FCB) is presented in Section 2.2,

Maximizing Cluster Approach (MCA) is presented in Section 2.3, and Equal-size Cluster

Approach (ECA) is presented in Section 2.4.
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Figure 2.2 A modularized MDG of the software project represented in Figure 2.2 with
three modules: m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3}, and m3 = {v5,v9,v10}.
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Figure 2.3 A modularized MDG of the software project represented in Figure 2.2 with
two modules: m1 = {v1,v2,v3,v4} and m2 = {v5,v6,v7,v8,v9,v10}.
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Figure 2.4 A trivial solution for the MDG of the software project represented in Figure
2.2 which contains only one module (n = 1).

2.1 Modularization Quality

Originally proposed in 1998, MQ is a family of quality metrics to evaluate the quality

of modular organizations for the SMCP. The modularity value is calculated as a trade-

off between coupling (to be minimized) and cohesion (to be maximized). In particular,

two different implementations were proposed to compute the MQ of a modularization:

BasicMQ and TurboMQ [95]. In both implementations, the higher the value, the better the

solution.

2.1.1 BasicMQ

To describe the computation of BasicMQ, we must first define intra- and inter-connectivity.

Intra-connectivity refers to the connectivity between components within the same module.

Its objective is to measure cohesion. Therefore, the higher the intra-connectivity of the

modularization, the better the solution. Specifically, the intra-connectivity of module mi is

defined as:
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Ai =
µi

|mi |2
, (2.1)

where µi is the number of edges that connect vertices within the module mi , and |mi | is the

number of vertices belonging to module mi . The set of edges connecting vertices within

the same module is also known as the set of intracluster edges, formally defined as:

Intra(mi) = {{u,v} ∈ E : u,v ∈ mi}. (2.2)

The intra-connectivity measure is a fraction of the maximum number of intracluster edges

that module mi can have (|mi |2). Therefore, the value of Ai is bounded in the range [0,1].

Inter-connectivity, as opposed to intra-connectivity, measures the connectivity between

two different modules. Its aim is to measure coupling. Therefore, the lower the inter-

connectivity of the modularization, the better the solution. Formally, the inter-connectivity

between two modules mi and mj is defined as:

Ei ,j =

0 if i = j

εi ,j

2·|mi |·|mj | if i ̸= j ,
(2.3)

where εi ,j is the number of edges connecting vertices within mi with vertices belonging to

mj , being the set of intercluster edges between modules mi and mj formally defined as:

Inter(mi ,mj ) = {(u,v) ∈ E : u ∈ mi ∧ v ∈ mj

⋃
(u,v) ∈ E : u ∈ mj ∧ v ∈ mi}. (2.4)

Again, the inter-connectivity measure is a fraction of the maximum number of intercluster

edges that could exist between modules mi and mj . Therefore, the value of Ei ,j is bounded

in the range [0,1].

Once intra- and inter-connectivity measures have been defined, MQ is defined as a

trade-off between the intra-connectivity of every module and the inter-connectivity between

each pair of modules in the solution. Formally:
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MQ =


1
n ·∑

n
i=1Ai − 1

n(n−1)
2

·∑n
i ,j=1Ei ,j if n > 1

A1 if n = 1.
(2.5)

As can be observed from Equation 2.5, MQ establishes a tradeoff between the average intra-

connectivity and the average inter-connectivity. Therefore, the value of MQ is bounded

in the range [-1,1]. Given an MDG with |V | vertices and |E | edges, the complexity of

calculating BasicMQ is O(|V |2 · |E |) [95].

2.1.2 TurboMQ

The TurboMQ measure was designed to improve BasicMQ in two ways: (i) supporting edge

weights in the MDG and (ii) reducing the computational complexity to evaluate the quality

of an MDG. Instead of calculating a trade-off between the average intra-connectivity and

the average inter-connectivity of the whole solution, TurboMQ calculates the sum of the

quality of each module.

First, a cluster factor CF is calculated for each module mi as:

CFi =


0 if µi = 0

2µi
2µi+∑

n
j=1
j ̸=i

(εi ,j )
otherwise. (2.6)

It is important to notice that here, in contrast with BasicMQ, εi ,j does not represent the

number of inter-cluster edges between modules mi and mj , but the sum of their weights.

That is:

εi ,j = ∑
(u,v) ∈ Inter(mi ,mj )

w(u,v). (2.7)

Similarly, µi does not represent the number of intra-cluster edges within module mi , but

the sum of their weights. That is:

µi = ∑
(u,v) ∈ Intra(mi )

w(u,v). (2.8)
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Then, TurboMQ is defined as:

TurboMQ =
n

∑
i=1

CFi . (2.9)

The complexity of calculating TurboMQ is O(|E |) [95], which is much lower than the

complexity of calculating BasicMQ.

In Figure 2.5, we present the evaluation of the solution depicted in Figure 2.2. Next to

each module, we detail the intra-connectivity (µ), the inter-connectivity (ε), and the CF of

the module. For module m1, µ1 = 4, since there are four edges with weight one that connect

the vertices within m1 ((v4,v6),(v4,v7),(v7,v8), and (v8,v7)). Similarly, ε1,2 = 5, since

there is one intercluster edge with weight equal to one ((v4,v1)) and another intercluster

edge with weight equal to four ((v4,v3)). Therefore, CF1 =
2·4

2·4+5+4 = 8
17 = 0.47. The rest

of the CF values for each module are calculated in a similar fashion. Finally, the quality of

the solution is calculated as TurboMQ = CF1 +CF2 +CF3 = 1.48.

2.2 Function of Complexity Balance

The MQ problem has been widely studied by the SBSE community, but some researchers

have highlighted some limitations of that approach. The Function of Complexity Bal-

ance (FCB) was proposed as an alternative to MQ with the aim of reducing the number

of isolated modules (modules with only one component) [105]. Formally, FCB is described

as follows:

FCB =

C + max
mi ∈ M

(µi)

T
, (2.10)

where C represents the coupling of the entire architecture and µi represents the cohesion

of module mi . In particular, C is calculated as follows:

C =
k−1

∑
i=1

k

∑
j=i+1

∑
(u,v)

∈ Inter(mi ,mj )

wu,v . (2.11)

On the other hand, µi is calculated as described in Equation 2.8. Finally, T is the sum
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Figure 2.5 Calculation of the quality of a solution in the MQ problem for a modu-
larized MDG of the software project represented in Figure 2.2 with three modules:
m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3}, and m3 = {v5,v9,v10}.

of the weights of all edges of the entire architecture. Thus, T is a constant value that is

independent of the particular clustering of the graph. Mathematically,

T = ∑
e=(u,v) ∈ E

wu,v . (2.12)

This constant is used to normalize the resulting value of FCB in the range [0,1], allowing

for comparisons between solutions for different software projects. In the case of the FCB

problem, contrary to MQ, the lesser the value, the better the solution.

In Figure 2.6, we present the evaluation of the solution depicted in Figure 2.2. Next

to each module, we detail its cohesion. For module m1, µ1 = 4, since there are four edges

with weight one that connect vertices within m1 ((v4,v6),(v4,v7),(v7,v8), and (v8,v7)).
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20
= 0.7

𝜇2 = 4
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Figure 2.6 Calculation of the quality of a solution in the FCB problem for a mod-
ularized MDG of the software project represented in Figure 2.2 with three modules:
m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3}, and m3 = {v5,v9,v10}.

Similarly, µ2 = 4, since there is one intracluster edge with weight two ((v1,v2)) and two

intracluster edges with weight one ((v1,v3) and (v3,v1)). Then, the coupling of the entire

architecture (C ) is calculated as the sum of weight of intercluster edges, which is equal

to ten, since there are three intercluster edges with weight one ((v4,v1),(v5,v3), and

(v5,v6)), one edge with weight four ((v4,v3)), and one edge with weight three ((v8,v9)).

Accordingly, T is equal to the sum of all weights, which is 20. Finally, the quality of the

solution is calculated as FCB = C+max (µi )
T = 14

20 = 0.7.
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2.3 Maximizing Cluster Approach

When the principle of tight cohesion and loose coupling is taken to extremes, the best

possible solution is trivial: a single module that contains all components. However, such a

solution is not good for maintainability purposes. In practice, there exist other objectives

that must be considered for the optimization of modularity in the context of SE. In the

MQ problem, since quality is measured as the sum of the quality of each module, the

number of modules is implicitly considered. In fact, the greater the number of modules, the

easier it is to understand each module separately. However, the other trivial solution, where

every component belongs to an isolated module, is not desirable either. In fact, one of the

objectives of the FCB problem is to reduce the number of isolated modules that resulted in

the case of MQ. Thus, a trade-off must be considered between the number of modules, the

number of isolated modules, the cohesion, and the coupling of the solution.

In 2011, some authors considered the aforementioned problems and proposed a multi-

objective approach for the SMCP [121]. By addressing the SMCP as an MOP, two advan-

tages were obtained: (i) several conflicting objectives could be considered to better reflect

the desires of software developers, and (ii) a set of non-dominated solutions could be pro-

vided to a decision maker (e.g., a software developer) to allow the introduction of their

subjective experience and preferences into the process.

In particular, the authors proposed two different approaches. The first MOP was called

Maximizing Cluster Approach (MCA). This approach considers five different objectives:

1. Coupling. The first objective is to minimize the coupling of the entire architecture.

That is, to minimize the sum of the weights of the edges that connect vertices be-

longing to different modules (see Equation 2.11).

2. Cohesion. The second objective is to maximize the cohesion of the entire architec-

ture. That is, to maximize the sum of the weights of the edges that connect vertices

belonging to the same module. Formally:

Cohesion =
n

∑
i=1

µi , (2.13)

where µi is calculated as described in Equation 2.8.



Chapter 2. Problem definition 27

3. TurboMQ. Interestingly, the MCA approach also includes MQ as one of the ob-

jectives to consider. This objective, to be maximized, is calculated as described in

Equation 2.9.

4. Number of modules. In addition to the previous objectives, MCA considers the max-

imization of the number of modules in the solution. Trivially, the value of this objec-

tive is n.

5. Number of isolated modules. Finally, MCA also considers the minimization of the

number of isolated modules. That is, the number of modules that contain only one

vertex.

In Figure 2.7, we represent the evaluation of the solution depicted in Figure 2.2. Next

to each module, we detail its cohesion. For module m1, µ1 = 4, since there are four edges

with weight one that connect vertices within m1 ((v4,v6),(v4,v7),(v7,v8), and (v8,v7)).

Similarly, µ2 = 4, since there is one intracluster edge with weight two ((v1,v2)) and two

intracluster edges with weight one ((v1,v3) and (v3,v1)). Then, the coupling of the en-

tire architecture is calculated as the sum of the weights of intercluster edges, which is

equal to ten, since there are three intercluster edges with weight one ((v4,v1),(v5,v3), and

(v5,v6)), one edge with weight four ((v4,v3)), and one edge with weight three ((v8,v9)).

Accordingly, the cohesion of the entire architecture is equal to ten, since µ1 = 4, µ2 = 4,

and µ3 = 2. The TurboMQ value is equal to 1.48, as previously described in Figure 2.5,

where the TurboMQ value of this solution is calculated. The number of modules (3) is cal-

culated trivially. Finally, since there are no modules with only one vertex, the number of

isolated modules is equal to zero.

2.4 Equal-size Cluster Approach

The Equal-size Cluster Approach (ECA) was the second problem introduced in [121],

where MCA was also presented. ECA considers five different objectives. The first four

objectives are shared with MCA: coupling, cohesion, TurboMQ, and the number of mod-

ules. However, instead of considering the number of isolated modules as the fifth objective,
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Figure 2.7 Calculation of the quality of a solution in the MCA problem for a mod-
ularized MDG of the software project represented in Figure 2.2 with three modules:
m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3}, and m3 = {v5,v9,v10}.

ECA considers the minimization of the difference in size between the largest and smallest

modules in the solution. Here, the size of a module is equal to the number of vertices be-

longing to that module. Therefore, the fifth objective is to minimize the difference between

the maximum number of vertices in any module and the minimum number of vertices in

any module. Due to the similarities between MCA and ECA, these two problems are often

studied together.

In Figure 2.8, we present the evaluation of the solution depicted in Figure 2.2. Next

to each module, we detail its cohesion. For module m1, µ1 = 4, since there are four edges

with weight one that connect vertices within m1 ((v4,v6),(v4,v7),(v7,v8), and (v8,v7)).

Similarly, µ2 = 4, since there is one intracluster edge with weight two ((v1,v2)) and two
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2. 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 𝜇1 + 𝜇2 + 𝜇3 = 4 + 4 +  =  0
3. 𝑇𝑢𝑟𝑏𝑜𝑀𝑄 =  .48
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𝜇2 = 4
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Figure 2.8 Calculation of the quality of a solution in the ECA problem for a mod-
ularized MDG of the software project represented in Figure 2.2 with three modules:
m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3}, and m3 = {v5,v9,v10}.

intracluster edges with weight one ((v1,v3) and (v3,v1)). Then, the coupling of the en-

tire architecture is calculated as the sum of the weights of the intercluster edges, which is

equal to ten, since there are three intercluster edges with weight one ((v4,v1),(v5,v3), and

(v5,v6)), one edge with weight four ((v4,v3)), and one edge with weight three ((v8,v9)).

Accordingly, the cohesion of the entire architecture is equal to ten, since µ1 = 4, µ2 = 4,

and µ3 = 2. The TurboMQ value is equal to 1.48, as previously described in Figure 2.5,

where the TurboMQ value of this solution is calculated. The number of modules (3) is cal-

culated trivially. Finally, the difference in size between the maximum number of vertices

in any module and the minimum number of vertices in any module is equal to 1, since m1

contains 4 vertices and m3 contains 3 vertices.





Chapter 3

Literature review

Search-Based Software Engineering (SBSE) is a research area that focuses on both the re-

formulation of Software Engineering (SE) tasks as optimization problems and the design of

optimization algorithms to solve them. Although there exist some preliminary works in the

twentieth century that can be classified within the SBSE field [69, 70, 76, 112, 136, 138],

the term Search-Based Software Engineering was first coined in 2001 by Mark Harman

and Bryan F. Jones [54]. There, the authors claimed that SBSE was an emerging field of

software engineering research and that they expected to “see a dramatic development of the

field” [54]. More than twenty years later, in 2023, the Symposium on Search Based Soft-

ware Engineering (SSBSE) celebrated its fifteenth edition [10]. Throughout the first eleven

editions, more than 290 authors from 25 countries had already contributed to the main

track of SSBSE [25]. The contributions of the SBSE community to reputed journals have

also been significant. Only in Spain, more than 145 authors from more than 19 different

institutions have published their results on a variety of SBSE topics [125].

In the SBSE field, there exist different families of optimization problems, each target-

ing a different SE task. Following the SDLC structured approach, SBSE problems can be

categorized into different groups, depending on the software development phase in which

these problems arise. Following this idea, in Table 3.1 we present a classification of differ-

ent SBSE problems in the phase of a SDLC where they arise primarily, based on the related

literature [35, 55, 102, 124, 129, 131]. As can be observed, SBSE problems arise in many

SDLC phases, from project management and requirements to software maintenance.

31
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Table 3.1 Classification of some families of problems identified in the SBSE research
field according to the phase within a SDLC where they mostly arise.

SDLC phase SBSE problem Relevant references

Project
management and
requirements

Predictive modeling

[45, 117, 130, 36]
Project scheduling
Requirements selection and prioritization
Next release problem

Software analysis
and design

Object-oriented architecture design

[83, 26, 127]
Software product lines
Service-oriented architecture design
Model-based software engineering

Integration and
deployment

Service composition

[126, 11]
Component allocation
Software deployment
Systems configuration

Software testing

Test case generation

[74, 93, 53, 47]
Test case prioritization
Black-box testing
Regression testing
Program verification

Software
maintenance

Software modularization
[102, 17, 60, 141]Automated bug fixing

Software refactoring

The family of problems that focus on software modularization, located in the mainte-

nance phase, is also commonly known as the SMCP. The SMCP is a family of optimization

problems whose objective is to find the best possible organization for a software project

in terms of modularity. As defined by the ISO [63], modularity is the set of “software at-

tributes that provide a structure of highly independent components”. In a desirable modular

structure, components within the same module are strongly related among them (high co-

hesion) and weakly connected to the components of other modules (low coupling). The

main goal of the SMCP is to facilitate the understanding of software projects.

In Table 3.2 and Table 3.3, we present a chronological summary of articles that study

mono-objective and multi-objective SMCP problems. The first table presents works that
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tackle single-objective variants, while the second one presents works that study multi- and

many-objective variants. For each work included in the table, we report the year of publica-

tion, the problem studied, and the metaheuristic framework on which the approach is based.

Population-based heuristics are highlighted in green , while trajectory-based heuristics are

highlighted in red . As can be observed in Table 3.2, the first approach towards the SMCP

was proposed by Mancoridis et al. in 1998 [89]. These authors proposed the MQ objective

function, where the value of modularity is calculated as a trade-off between coupling and

cohesion. This metric was later extended into two variants to accelerate its computation and

improve the results: BasicMQ [94] and TurboMQ [95]. As can be seen in the table, MQ

has become the most studied problem in the SMCP literature. However, some recent studies

have highlighted some concerns about its design [16, 66]. Due to these reasons, alternative

variants have been proposed in the literature, including: Dependency Quality and Con-

nection Quality (DQCQ) [3]; Entropy-based Objective Function (EOF) [66]; FCB [105];

Modularization Quality measure based on similarity (MS) [56]; Cohesion, Coupling, pack-

age Count index, and package Size index (CCCS) [7]; Linear Compound Criteria (LCC)

[119]; and MQ, Non-extreme distribution, Coupling, and Cohesion (MNCC) [123].

Traditionally, software engineers have organized their projects in modules based on

their own expertise and understanding of the code. Consequently, this process is often

neither systematic nor repeatable [16]. Due to this concern, some authors have proposed

multi-objective approaches for the SMCP, which seem to be more suitable in this context

because: i) the consideration of different conflicting objectives is a more accurate reflection

of the modularity of the system than the consideration of each objective in isolation; and ii)

presenting a set of good solutions to a decision maker (e.g., a software developer) allows

the stakeholders to prioritize some objectives over others depending on the context, and

also to introduce their subjective experience in the process.

Following the aforementioned ideas, Praditwong et al. [121] introduced two different

multi-objective problems for the SMCP in 2011: MCA and ECA. These variants became

the most studied multi-objective variants of the SMCP in the literature, and were also ex-

tended into two additional variants: the Extended Maximizing Cluster Approach (E-MCA)

and the Extended Equal-size Cluster Approach (E-ECA) [24]. As can be observed in Table

3.3, other multi-objective approaches to the SMCP have also been studied throughout the
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years, such as: Structure of packages, Semantics coherence, and History of changes (SSH)

[99]; Multi-Factor Module Clustering (MFMC) [59]; Interactive Fitness Function (IFF)

[128]; and Multi-Objective Fitness function (MOF) [67]. However, none were as popular

as MCA and ECA.

Regardless of the problem studied, many different metaheuristics have been proposed

for the SMCP. It is worth mentioning that, since the SMCP is proven to be NP-complete

[18], exact methods are not suitable for the problem, except for tiny software projects [95].

Instead, approximate search-based metaheuristics are more convenient [25, 55, 129]. In

this sense, population-based methods have traditionally been favored in the literature for

the SMCP, including: Genetic Algorithms (GAs) [37, 68, 85, 87, 121]; Hybrid Genetic Al-

gorithms (HGAs) [87, 105]; Genetic Algorithm with Hill Climbing (GAHC) [85]; Firefly

Algorithm (FA) [86]; Evolutionary Call-Dependency Graph Modularization method

(E-CDGM) [65]; Estimation of Distribution (EoD) [67, 133]; Harmony Search (HS) [7];

Multi-Agent Evolutionary Algorithms (MAEAs) [56, 57]; Multi-objective Hyper-heuristic

Evolutionary Algorithm (MHypEA) [78]; Two-Archive Artificial Bee Colony (TA-ABC)

[8]; Many-objective Artificial Bee Colony (MaABC) [24]; Interactive Evolutionary Com-

putation (IEC) [128]; Particle Swarm Optimization (PSO) [123]; Grid-based Large-scale

Many-objective Particle Swarm Optimization (GLMPSO) [122]; and Non-dominated Sort-

ing Genetic Algorithm III (NSGA-III) [99]. In contrast, some authors have remarked the

absence of efficient single-solution metaheuristics such as Iterative Local Search (ILS) or

Variable Neighborhood Search (VNS) from the literature [129]. To fill this gap, multiple

trajectory-based metaheuristics have been proposed as an effective alternative to the clas-

sic population-based proposals, achieving competitive results. Most of the first proposals

in this sense were based on Hill Climbing (HC) [73, 85, 88, 89, 94, 96] or Simulated

Annealing (SA) [3, 97, 98]. More recently, some algorithms have been proposed based

on graph properties, such as the Graph-based Modularization Algorithm (GMA) [119], or

based on metaheuristics such as Large Neighborhood Search (LNS) [104], VNS [144, 145],

Multi-Objective Variable Neighborhood Descent (MO-VND) [143], or Greedy Random-

ized Adaptive Search Procedure (GRASP) and Variable Neighborhood Descent (VND)

[141].
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Table 3.2 Chronological summary of proposals for single-objective optimization in the SMCP family.

Single-objective optimization problems

Year Ref. MQ DQCQ MS CCCS MNCC EOF FCB LCC

1998 [89] HC - - - - - - -

1999 [88] HC - - - - - - -

[37] GA - - - - - - -

2001 [94] NAHC , SAHC - - - - - - -

2002 [96] SAHC - - - - - - -

2005 [85] HC , GAHC - - - - - - -

2006 [97] GA , HC - - - - - - -

2008 [98] SA - - - - - - -

2009 [3] - SA - - - - - -

[87] HGA - - - - - - -

2011 [120] GA - - - - - - -

2014 [116] ILS - - - - - - -

[86] FA - - - - - - -

2016 [56] - - HC , GA , MAEA - - - - -

[65] E-CDGM - - - - - - -

[68] GA - - - - - - -

[133] EoD - - - - - - -

2017 [57] MAEA - - - - - - -

[7] - - - HS - - - -

[73] HC - - - - - - -
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Table 3.2 Chronological summary of proposals for single-objective optimization in the SMCP family.

Single-objective optimization problems

Year Ref. MQ DQCQ MS CCCS MNCC EOF FCB LCC

2018 [123] - - - - PSO - - -

[104] LNS - - - - - - -

2019 [66] - - - - - GA - -

2020 [105] - - - - - - HGA -

2021 [119] - - - - - - - GMA

2022 [141] GRASP-VND - - - - - - -

[144] - - - - - - VND -

2024 [145] - - - - - - GVNS -
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Table 3.3 Chronological summary of proposals for multi-objective optimization in the SMCP family.

Multi-objective optimization problems

Year Ref. MCA, ECA SSH MFMC IFF E-MCA, E-ECA MOF

2011 [121] GA - - - - -

2015 [99] - NSGA-III - - - -

2016 [78] MHypEA - - - - -

2017 [59] - - HC - - -

2018 [128] - - - IEC - -

[8] TA-ABC - - - - -

[24] - - - - MaABC -

2019 [67] - - - - - EoD

2022 [9] GA - - - - -

[122] - - - - GLMPSO -

[143] MO-VND - - - - -



38 Chapter 3. Literature review

As can be observed in Table 3.2, there exist many algorithmic proposals for the prob-

lems belonging to the SMCP family. Since in this doctoral thesis we study four problems

in the SMCP family, in the following sections we review the best methods identified in the

literature for these problems. In particular, we review a LNS method proposed for the MQ

problem (Section 3.1), a HGA method proposed for the FCB problem (Section 3.2), and a

TA-ABC method proposed for the MCA and ECA problems (Section 3.3).

3.1 Large Neighborhood Search for the MQ problem

In 2018, some authors proposed a method based on Large Neighborhood Search (LNS)

to tackle the TurboMQ problem [104]. Intuitively, the higher the number of solutions ex-

plored, the greater the chance to find the global optimum for the problem and the instance

at hand. Therefore, a search in very large neighborhoods should lead to a better solution

than exploring small neighborhoods. However, it is often the case that a trade-off must be

accepted between the quality of the solution and the computing time. LNS belongs to a fam-

ily of heuristics known as Very Large Scale Neighborhood search (VLSN) algorithms. The

idea of VLSN algorithms is to explore a large neighborhood only considering a restricted

subset of the solutions in the neighborhood. LNS was proposed by Shaw in 1998 [132]. In

LNS, an initial solution is gradually improved by iteratively destroying and repairing the

solution.

In Algorithm 1, the pseudocode of LNS is presented. The algorithm receives an initial

solution x . This solution is saved as the best solution xb (step 2). Then, x is destroyed

and repaired (steps 4-5). The resulting solution, x ′′, is then evaluated twice. First, if the

acceptance criteria are met, it is saved to continue improving it in the next iteration (steps

6-7). This acceptance criteria can be established to allow for temporary deterioration of the

current solution in order to escape from local optima. Finally, the quality of the resulting

solution is calculated. If the current solution x ′′ is better than the best solution found xb ,

then it is saved as the best solution (steps 8- 9). This process is repeated iteratively until the

stopping criterion is met (step 3). Once the stopping criterion has been met, the procedure

ends and the best solution found (xb) is returned.

As can be observed, the pseudocode of LNS contains some components that must be
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Algorithm 1: LNS procedure
1 Procedure LNS(x):
2 xb ← x
3 do
4 x ′← destroy(x)
5 x ′′← repair(x ′)
6 if accept(x ′′,x) then
7 x ← x ′′

8 if OF(x ′′)> OF(xb) then
9 xb ← x ′′

10 while end condition is not met
11 return x

designed for the particular problem at hand (e.g., destroy, repair, accept, stopping criterion,

etc.). The authors proposed several heuristics for the configuration of the components and

performed a set of preliminary experiments to choose the best configuration. Here, we

describe the final configuration selected by the authors.

First, to construct an initial solution for the LNS algorithm, the authors proposed an

agglomerative method. This method starts by placing each vertex in a separate module.

Then, at each iteration, all possible merges between modules are evaluated and the best (in

terms of MQ) is performed. The method continues to perform merges at each iteration until

all vertices are placed in the same module. Then, the best solution found during the process

is returned.

For the destructive component of the algorithm, the authors proposed a random ap-

proach. This approach removes k vertices from the solution, selected at random. Here, k

is a parameter that can be adjusted. In particular, k represents the degree of destruction. In

this case, the degree of destruction was set to k = 0.1 ·n. That is, the destroy method

removes 10% of the vertices in the solution at hand.

For the repair component of the algorithm, two approaches were proposed. First, a Re-

pair Greedy Best Improvement Random was described. This method performs an iteration

for each vertex removed by the destroy method. At each iteration, one of the removed

vertices is selected at random. Then, its insertion into every module in the solution is eval-

uated, also considering the creation of a new isolated module, and the insertion that leads
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to the highest value of MQ is performed. The second repair method is regarded as Repair

Greedy Best Improvement. In this case, the insertion of all the removed vertices into the

solution is considered simultaneously and the best assignment in terms of MQ is performed.

For the stopping criterion, the authors considered a maximum number of iterations

without improvement. In particular, the maximum number of iterations without improve-

ment was set to 2000. Moreover, at each iteration, only one of the aforementioned repair

methods is used. The repair method to be used is changed when 1000 iterations have been

performed without improving the best solution.

Finally, for the acceptance criterion, the proposed heuristic only accepts solutions that

improve the value of the objective function (i.e., no deterioration is allowed).

The authors favorably compared the proposed approach with a ILS procedure, consid-

ered the best for the MQ [104, 116] problem. Therefore, the LNS procedure presented by

the authors became the most competitive algorithm for MQ. In an effort to allow for the

reproducibility of the experiments, the authors reported the detailed results per instance and

published the source code online.

3.2 Hybrid Genetic Algorithm for the FCB problem

The Hybrid Genetic Algorithm (HGA) described in this section was proposed in 2020 for

the FCB problem [105]. The proposed method consists of the hybridization of a construc-

tive heuristic to generate initial high-quality solutions and a GA.

The proposed constructive heuristic is similar to the one described for LNS in the pre-

vious Section 3.1. First, every vertex is placed in an isolated module. Then, an iterative

process is performed, where two modules are merged at each iteration. In particular, all

possible merges of existing modules are evaluated at each iteration and the best merge, in

terms of the resulting FCB value, is performed. The process ends when all vertices have

been placed in the same module. At the end, the best solution found during the process

is returned. In the case of ties between different merge options, one of the operations is

selected at random. This makes it possible for the constructive heuristic to return different

solutions after each execution.

The constructive heuristic is used to generate an initial population of solutions that is
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then improved with a GA. The proposed GA uses two well-known operators: the Laplace

crossover [32] and the Power mutation [33]. Both operators are available in Matlab, where

the authors implemented the proposed approach. For the GA parameters, the population

size is set to max (min(10 · |V |,200),40) and an elitist archive is set to have a size equal to

0.05 ·max (min(10 · |V |,200),40). That is, the population size is set in the range [40,200],

depending on the number of components, and the size of the elitist archive is set to be a

5% of the population size. In addition, two hybrid stopping criteria are set: a maximum

of 400 generations and a maximum of 200 generations without improvement. If either is

reached, the GA stops. The selection function and the fraction of the population that is used

for crossover and mutation are not reported in the article.

In order to improve the efficiency of the designed algorithm, the authors proposed two

advanced strategies. The first strategy consists of a vectorization method to speed up the

evaluation of possible merges in the agglomerative constructive. This method is based on a

matrix representation to evaluate possible merges. Although the method is more complex

than the intuitive approach (to evaluate the merges in a loop), it avoids repeated evaluation

and accelerates the constructive procedure.

The second strategy devised by the authors also consists of a vectorization method,

but this time designed to evaluate the fitness function of a given solution. In particular,

the authors state that the most critical part of evaluating the FCB value is calculating the

cohesion of each module. Therefore, they propose a vectorization method based on a matrix

representation to calculate the cohesion value of every module in the solution.

Finally, the authors compare the performance of the proposed HGA approach with two

reference algorithms: a GA [137] and a multi-start HC algorithm [98]. The comparison is

made over a set of sixteen real software systems and a set of synthetic instances generated

by the authors [105]. Unfortunately, neither the code nor the datasets used are publicly

available.
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3.3 Two-Archive Artificial Bee Colony for the MCA and

ECA problems

In 2018, Chhabra et al. published a Two-Archive Artificial Bee Colony (TA-ABC) algo-

rithm for the multi-objective MCA and ECA problems, previously described in Section 2.3

and Section 2.4, respectively. Swarm intelligence is broadly defined as the collective be-

havior of self-organized and decentralized swarms [72]. The Artificial Bee Colony (ABC)

algorithm is a swarm-based metaheuristic that was introduced by Karaboga in 2005 [71],

inspired by the behavior of bee hives.

The pseudocode of the proposed method is presented in Algorithm 2. The algorithm is

divided into four phases: population initialization, employed bees, onlooker bees, and scout

bees. The procedure receives three parameters: the size of the population (PS ), the number

of maximum iterations (NI ), and the maximum number of attempts to improve any given

solution (LMT ). First, the population is randomly initialized (steps 4). To generate each

solution, every vertex is placed in a module randomly chosen in the range [1,|V |]. Then,

in the Employed Bees phase, each solution is modified by changing one decision variable

(step 7). That is, by moving one vertex from its current module to another. If the result-

ing solution dominates the original one, then the modified solution replaces the original in

the population FS . In the Onlooker Bees phase, the same procedure is repeated, but only

considering some of the solutions, depending on their fitness (step 8). Here, the fitness of

each solution is calculated on the basis of the indicator Iε+ given in Indicator-Based Evo-

lutionary Algorithm (IBEA) [148]. At each iteration of this phase, a solution is selected by

the roulette wheel selection mechanism and then modified. Again, if the resulting solution

dominates the original one, then the modified solution replaces the original in the popu-

lation FS . Finally, in the Scout Bees phase, solutions that have not been improved after a

certain number of attempts are replaced by new solutions generated at random (step 9). As

can be noticed, employed and onlooker bees are responsible for the intensification of the

search, whereas scout bees provide some diversification. At the end of each iteration, some

of the solutions in FS are stored in two different archives: a Convergence Archive (CA) and

a Diversity Archive (DA). These archives contain non-dominated solutions and implement

a mechanism to maintain diverse solutions. Regarding the stopping criterion, the authors
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define a maximum number of evaluations for comparison purposes.

Algorithm 2: Artificial Bee Colony procedure
1 Procedure ABC(PS ,NI ,LMT):
2 CA← /0
3 DA← /0
4 FS ← PopulationInitialization()
5 iter ← 0
6 while iter < NI do
7 FS ← EmployedBeesPhase(PS ,FS)
8 FS ← OnlookerBeesPhase(PS ,FS ,NI)
9 FS ← ScoutBeesPhase(PS ,FS ,LMT)

10 CA,DA←UpdateArchives(FS ,CA,DA)
11 iter ← iter +1
12 end
13 return CA∪DA

The proposed algorithm was tested on ten weighted and seven unweighted real software

instances. The smallest instance had a minimum of 20 vertices and 57 edges, while the

largest instance had 198 vertices and 3262 edges.

The performance of the algorithm was compared with two state-of-the-art methods:

the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [30] and a Two-Archive Al-

gorithm (TAA) [121]. The configuration of these methods is the same as that reported in

[15, 121]. According to the results, TA-ABC performed better than NSGA-II and TAA

considering several quality metrics, including Hypervolume, Inverted Generational Dis-

tance (IGD), and Spread.





Chapter 4

Algorithmic proposal

In this doctoral thesis, four different problems are studied: TurboMQ, FCB, MCA, and

ECA. To address these problems, three different algorithms are proposed. For the first prob-

lem, MQ, a hybridization between the GRASP and the VND metaheuristics is proposed.

This proposal is described in Section 4.2. For the second problem, FCB, a method based

on the General Variable Neighborhood Search (GVNS) scheme is proposed. This method

is described in Section 4.3. Finally, for the third and fourth problems, MCA and ECA, a

method based on the Multi-Objective General Variable Neighborhood Search (MO-GVNS)

methodology is proposed. This approach is described in Section 4.4. Before describing the

methods mentioned above, we first introduce some of the ideas that underlie the foundations

of GRASP, VNS, and Multi-Objective Variable Neighborhood Search (MO-VNS) in Sec-

tion 4.1. All the methods proposed in this doctoral thesis include some components based

on the exploration of neighborhood structures. The neighborhood structures proposed for

the different problems studied are described in Section 4.5. Finally, some advanced strate-

gies are proposed to improve the efficiency of the procedures proposed in this doctoral

thesis. These strategies are described in Section 4.6.

4.1 Fundamentals of the algorithmic methodologies

The algorithms proposed in this doctoral thesis are based on the GRASP [43, 44] and

VNS [100] methodologies. In this section, we provide an introduction to these schemes

45
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and outline their main ideas and foundations. First, we introduce the GRASP scheme in

Section 4.1.1. Then, we describe the main ideas and concepts of VNS in Section 4.1.2.

Finally, we present the MO-VNS framework in Section 4.1.3. Although MO-VNS is an

extension of VNS, given that it is designed to tackle MOPs, we decide to describe the

MO-VNS scheme in a separate section.

4.1.1 Greedy Randomized Adaptive Search Procedure

The GRASP methodology was first presented by Thomas A. Feo and Mauricio G.C. Re-

sende in 1989 [43, 44]. GRASP is a multistart procedure. At each iteration, two phases are

performed: construction and local search. In the construction phase, a feasible initial solu-

tion is built. This solution is then improved in the local search phase until a local optimum

is found. After a local optimum has been reached, the process is restarted and another solu-

tion is built and improved. The construction phase of GRASP starts from an empty solution

and adds one element at each iteration until the solution is complete. At each step, the ele-

ment to be added to the solution is selected following a semi-greedy criterion. The decision

is taken at random among the best available elements according to the greedy criterion.

That is why GRASP is greedy and randomized.

In Algorithm 3, we show the pseudocode of GRASP. This procedure receives one pa-

rameter: the maximum number of iterations (MaxIter). First, the best solution found during

the search is initialized (step 2). Then, at each iteration (steps 4-11), an initial solution is

built (step 5) and improved (step 8). Moreover, if the built solution is not feasible (step 6),

it is necessary to repair it before performing the local search (step 7). At the end of each

iteration, the local optimum obtained (x ′) is compared with the best solution found during

the search (step 9). If the new solution x ′ is better than the previous best solution, then it is

saved as the new best solution (step 10). Finally, the best solution found during the search

is returned.

In Algorithm 4, we show the pseudocode of the constructive procedure in GRASP.

The algorithm starts by initializing a solution x , which is empty (step 2), and the list of

candidates CL, which will contain the set of elements that can be added to the solution

(step 3). Then, the value of α is selected at random in the range [0,1] (step 4). Once these
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Algorithm 3: Pseudocode of GRASP
1 Procedure GRASP(MaxIter):
2 bestSolution← /0
3 i ← 0
4 while i < MaxIter do
5 x ← Construction()
6 if x is not feasible then
7 x ← Repair(x)
8 x ′← LocalSearch(x)
9 if IsBetter(x ′,bestSolution) then

10 bestSolution← x ′

11 end
12 return bestSolution

variables have been initialized, the procedure iteratively adds an element to the solution

until the solution is complete (steps 5-11). At each iteration, a threshold is first established

(step 6). This threshold is in the range [lb,ub], where lb is the benefit of choosing the worst

possible element from the CL and ub is the benefit of choosing the best possible element

from the CL, according to a greedy function g . Then a Restricted Candidate List (RCL) is

built that contains only the candidates from the CL that are better than the aforementioned

threshold (step 7). As can be seen, the higher the value of α , the higher the threshold and

the more restrictive the list. Next, a candidate element s is selected at random from the RCL

(step 8) and added to the current solution x (step 9). Furthermore, the chosen candidate s

is removed from the CL (step 10). Finally, the procedure returns the built solution.

In Figure 4.1, we illustrate the main idea of the GRASP constructive procedure. In

particular, we represent a CL and a RCL in one iteration of the constructive procedure. In

the y-value, we represent candidate elements that can be added to a given solution. In the x-

axis, we represent the value of each candidate u according to the greedy function g . As can

be observed, a threshold th is established in the figure to delimit the set of candidates that

are considered in the RCL. This threshold depends on the value of α , the value of the worst

candidate according to the greedy function (min(g(u))), and the value of the best candidate

according to the greedy function (max (g(u))). At the end of the iteration, a candidate

from the RCL will be selected and added to the solution. The RCL is the greedy aspect
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Algorithm 4: Pseudocode of the construction phase in GRASP
1 Procedure GRASPConstructive():
2 x ← /0
3 CL← GetCandidates(x)
4 α ← Random(0.0,1.0)
5 while CL ̸= /0 do
6 th←min(g(u))+α · (max(g(u))−min(g(u))) | u ∈ CL
7 RCL←{u ∈ CL | g(u)≥ th}
8 s ← RANDOMCHOICE(RCL)
9 x ← x ∪ s

10 CL← CL\ s
11 end
12 return x

of GRASP, since candidates are selected greedily. The selection of an element from the

RCL is the probabilistic aspect of GRASP, that provides diversification to the constructive

procedure. Once the selected element is incorporated into the partial solution, the candidate

list is updated, and the costs are reevaluated. This is the adaptive aspect of GRASP [50].

In the pseudocode presented, the value of α is randomly obtained from a uniform distri-

bution for each construction. However, other strategies can be implemented. For example,

α can be fixed beforehand for all constructions in the procedure, it can be obtained ran-

domly from non-uniform distributions, or it can be self-tuned along the search process in

adaptive schemes.

The greedy function g used to evaluate each candidate in the CL to the solution is

problem-dependent. In addition, for some problems, adding the selected element to the

solution is not a trivial task. In those cases, it might be necessary to design a method to

decide how to add the selected element to the solution at hand.

GRASP is one of the most well-known methodologies in heuristic research. It has been

applied to a wide variety of applications and several extensions and hybrid schemes exist.

For more information on the subject, we refer the reader to relevant sources [43, 44, 50, 91].
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Figure 4.1 Restricted Candidate List in the GRASP constructive procedure (adapted
from [38]).

4.1.2 Variable Neighborhood Search

The VNS methodology was first proposed in 1997 by Nenad Mladenović and Pierre Hansen

[100]. The main idea of VNS is to perform a systematic change of the neighborhood struc-

ture to explore during the search process. The benefits of exploring different neighborhood

structures in VNS instead of a single one are based on three facts: (i) “a local minimum

within one neighborhood structure is not necessarily so for another” [50]; (ii) “a global

minimum is a local minimum within all possible neighborhood structures” [50]; and (iii)

“for many problems, local minima within one or several neighborhoods are relatively close

to each other” [50].

In Figure 4.2, we illustrate some of the main ideas behind the VNS framework. In

particular, we illustrate some iterations of a search process based on the ideas of VNS.

In Figures 4.2(a), 4.2(b), 4.2(c), and 4.2(d), we depict the set of possible solutions for a

given optimization problem in a plane: the x-axis represents the search space, while the

y-axis represents the objective function value of each possible solution. In Figure 4.2(a),
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we represent an initial solution x with a solid red circle. Two rectangles represent the areas

of the search space included in the neighborhood structures N1 (depicted in green) and

N2 (depicted in gray) of the initial solution x . In this first illustration, N1(x ) is explored,

resulting in the application of a move operator to x in order to obtain solution x ′, the best

solution in the neighborhood, which is represented by a red circle with a diagonal pattern.

Next, in Figure 4.2(b), we represent the exploration of N1(x
′), where x ′ is the solution

obtained in the previous figure. As can be observed, there is no neighbor solution that is

better than x ′ in N1(x ). Then, an alternative neighborhood structure, N2, is explored in

Figure 4.2(c). Although x ′ was a local optimum in N1(x
′), it is not a local optimum in the

neighborhood structure N2(x
′). As a result, x ′′ is obtained. Finally, in Figure 4.2(d), N1

is explored again. After the previous move operation, the current solution x ′′ is no longer

a local optimum in N1, and x ′′′ is obtained. This solution, as can be observed, is a global

optimum in the search space represented in Figure 4.2(d) and therefore a local optimum

within all possible neighborhood structures. Therefore, the search process is finished.

There exist several schemes within the VNS methodology that mix stochastic and deter-

ministic behaviors, such as Basic Variable Neighborhood Search (BVNS), Variable Neigh-

borhood Descent (VND), Reduced Variable Neighborhood Search (RVNS), or General

Variable Neighborhood Search (GVNS) [91]. In Algorithm 5, we present the pseudocode

of a BVNS procedure, the first scheme proposed in the VNS framework [100]. This method

includes both deterministic and stochastic components. As can be observed, the method re-

ceives three parameters: an initial solution (x ), a maximum perturbation size (kmax ), and

a time limit (tmax ). The procedure will explore the search space until the time limit tmax

is reached (steps 2-14). First, the variable k is initialized (step 4) and an iterative process

is started (step 5). At each iteration, a new solution x ′′ is generated by performing a shake

procedure (step 6) and a local search (step 7) to solution x . The shake procedure performs

a perturbation in the incumbent solution by performing random moves within a neighbor-

hood structure. The number of moves (i.e., the size of the perturbation) to be performed

depends on the value of the variable k . The objective of the shake procedure is to escape

from local optima, introducing some diversification in the search process. The local search

procedure explores a given neighborhood structure, performing moves that improve the in-

cumbent solution. If the resulting solution is better than the best solution found (step 8),
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Figure 4.2 Illustration of some of the main ideas behind the VNS framework.
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Figure 4.2 Illustration of some of the main ideas behind the VNS framework.
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then it is saved (step 9) and the search is restarted from the first neighborhood structure by

setting k to one (step 12). Otherwise, k is incremented to try to escape from local optima in

the next iteration (step 10). This process is repeated until the maximum size of the pertur-

bation (kmax ) is reached (step 5). Finally, the method returns the best solution found during

the search.

Algorithm 5: Pseudocode of the BVNS scheme
1 Procedure BVNS(x ,kmax , tmax):
2 t ← 0
3 while t < tmax do
4 k ← 1
5 while k < kmax do
6 x ′← Shake(x ,k)
7 x ′′← LocalSearch(x ′)
8 if IsBetter(x ′′,x) then
9 x ← x ′′

10 k ← 1
11 else
12 k ← k +1
13 end
14 t ← CPUTime()
15 end
16 return x

In Algorithm 6, we present the pseudocode of a VND procedure. This method receives

two parameters: an initial solution x and a set of neighborhood structures N . First, the vari-

able l is initialized to 1 (step 2). This variable indicates the next neighborhood to explore

within the method. Then, at each iteration, a solution x ′ is obtained by performing a local

search in the neighborhood structure Nl and starting with the solution x (step 4). If the re-

sulting solution x ′, a local optimum within Nl , is better than the incumbent solution x (step

5), then x ′ is saved as the best solution (step 6) and l is reset to 1 (step 7) in order to restart

the search from the first neighborhood structure in N . Otherwise, the value of l increases

by 1 (step 9). The process stops when the best solution x is a local optimum within every

neighborhood structure in N (step 3). At that point, the best solution found, x , is returned.
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Algorithm 6: Pseudocode of the VND
1 Procedure VND(x ,N):
2 l ← 1
3 while l ≤ |N | do
4 x ′← LocalSearch(x ,Nl)
5 if IsBetter(x ′,x) then
6 x ← x ′

7 l ← 1
8 else
9 l ← l +1

10 end
11 return x

The pseudocode of GVNS is shown in Algorithm 7. The procedure receives four pa-

rameters: an initial solution x , a set of neighborhoods N , a maximum perturbation size

kmax , and a maximum computation time tmax . First, a variable t is initialized to control the

execution time of the method (step 2). Once the maximum amount of computing time has

been consumed, the search is stopped (step 3). During the search, a variable k is first ini-

tialized to zero (step 4). This variable controls the size of the perturbation to be performed.

At each iteration, a solution x ′ is obtained by perturbing the best solution x within a shake

method (step 6). Then, the obtained solution x ′ is improved in a VND procedure (step 7).

If the resulting solution x ′′ is better than the incumbent solution x (step 8), then x ′′ is saved

as the best solution (step 9) and k is reset to zero (step 10). Otherwise, k is incremented to

perform a larger perturbation and diversify the search process (step 12).

In addition to the different schemes mentioned above, one might find other extensions

in the literature such as: Variable neighborhood formulation space search [101], which

switches between different formulations of the same problem; variable formulation search,

which switches between alternative objective functions; or parallel VNS [48], where dif-

ferent strategies are proposed to introduce parallelization in the VNS schemes. In addition,

MO-VNS [39] extends the ideas of VNS for MOPs. This extension is discussed in the next

section. For more information on VNS, its ideas, applications, and extensions, we refer the

reader to relevant sources [50, 91, 100, 110].
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Algorithm 7: Pseudocode of the GVNS method
1 Procedure GVNS(x ,N ,kmax , tmax):
2 t ← CPUTime()
3 while CPUTime()− t < tmax do
4 k ← 0
5 while k < kmax do
6 x ′← Shake(x ,k)
7 x ′′← VND(x ′,N)
8 if IsBetter(x ′′,x) then
9 x ← x ′′

10 k ← 0
11 else
12 k ← k +1
13 end
14 end
15 return x

4.1.3 Multi-Objective Variable Neighborhood Search

Due to the competitive results achieved by VNS-based proposals in many domains, dif-

ferent extensions of the basic ideas behind the methodology have been investigated in the

literature. In 2015, Duarte et al. proposed an extension of VNS for MOPs named MO-VNS

[39]. To adapt VNS to the multi-objective context, MO-VNS first redefines the concept of

a solution in the context of VNS. In MO-VNS, a solution is defined as an approximate set

of efficient points found during the search process [39]. Accordingly, an efficient point is a

particular vector of decision variables for the problem at hand (i.e., what is normally con-

sidered a solution for a problem in the context of VNS). Then, a solution is said to improve

when a new efficient point is included in the set. Usually, an efficient point is included in

the solution if it is not dominated by any point in the solution, although other inclusion

criteria might be implemented.

In Algorithm 8, we present the pseudocode of the MO-Improvement method. This

method receives two solutions: E and E ′. Note that, in this context, a solution is a set of

efficient points. Therefore, E and E ′ are sets of efficient points or Pareto fronts. Then,

the method checks if there exists at least one efficient point in E ′ that is neither contained
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Algorithm 8: Pseudocode of MO-Improvement
1 Procedure MO-Improvement(E ,E ′):
2 forall x ∈ E do
3 if x /∈ E ∧¬Dominated(x ,E) then
4 return True
5 end
6 return False

nor dominated in E . If such an efficient point exists in E ′, then an improvement has been

achieved. As can be observed, the method assumes that there are no efficient points in E

that are not contained or dominated in E ′. In the different MO-VNS schemes, E is always

the incumbent solution, while E ′ is a solution that has been obtained after trying to improve

E . Therefore, in the worst-case scenario, no improvement has been achieved and E =E ′. If

an improvement has been obtained, then the best solution found during the search process

(E ) is updated. That is, all efficient points in E ′ that are not contained in E are added to

the solution E . Then, every dominated efficient point in E is removed.

Once the concept of a solution has been redefined within the MO-VNS framework, the

well-known schemes and extensions of VNS can easily be adapted to the study of MOPs.

For the remainder of this doctoral thesis, we will use the aforementioned terminology to

describe the behavior of MO-VNS methods.

In Algorithm 9, we present the pseudocode of the MO-GVNS procedure. This method

receives five parameters: a solution E , a set of neighborhood structures N , a maximum

perturbation size kmax , a set of objectives R, and a maximum computing time tmax . The

search process is performed until the maximum time tmax is reached (step 3). First, the

variable k is initialized and set to one (step 4). Then the solution E is iteratively improved

(steps 4- 13). At each iteration, three phases are performed. First, the efficient points in

the solution E are perturbed by a MO-Shake procedure (step 6), which is detailed in

Section 4.4.2. Then, the resulting solution, E ′, is improved in a MO-VND procedure (step

7). The procedure MO-VND improves each efficient point in the solution considering each

objective r ∈ R separately. If the resulting solution E ′′ contains any efficient point that is

not dominated within E (step 8), then E is updated to include all non-dominated efficient

points in E ∪ E ′′ (step 9). Moreover, since the solution has been improved, k is reset to one
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Algorithm 9: Pseudocode of the MO-GVNS method
1 Procedure MO-GVNS(E ,N ,kmax ,R, tmax):
2 t ← CPUTime()
3 while CPUTime()− t < tmax do
4 k ← 1
5 while k < kmax do
6 E ′← MO-Shake(E ,k)
7 E ′′← MO-VND(E ′,N ,R)
8 if MO-Improvement(E ,E ′′) then
9 E ← MO-Update(E ,E ′′)

10 k ← 1
11 else
12 k ← k +1
13 end
14 end
15 return E

Algorithm 10: Pseudocode of the MO-Shake procedure
1 Procedure MO-Shake(E ,k):
2 E ′← /0
3 forall x ∈ E do
4 x ′← Shake(x ,k)
5 E ′← E ′∪{x ′}
6 end
7 return E ′

(step 10). On the other hand, if no improvement has been achieved, the value of k increases

by one (step 12). Finally, the solution E is returned.

In Algorithm 10, we present the pseudocode of the MO-Shake procedure. As can be

observed, this method receives two parameters as input: a solution E and a perturbation size

k . A new solution E ′ is first initialized (step 2). Then, each efficient point in the solution

is perturbed by a shake method (step 4) and added to the new solution E ′ (step 5). After

iterating through the entire set of efficient points in E (step 3), the new solution E ′ is

returned.

Finally, in Algorithm 11, we present the pseudocode of the MO-VND method. This
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Algorithm 11: Pseudocode of the MO-VND procedure
1 Procedure MO-VND(SE ,N ,R):
2 S1← /0, S2← /0, . . . , S|R|← /0
3 i ← 1
4 while i ≤ |R| do
5 while |SE \Si | ≥ 1 do
6 x ← Pick(SE \Si)
7 SEi ← VND-i(x ,N)
8 Si ← Si ∪ SEi ∪ {x}
9 end

10 if MO-Improvement(SE ,Si) then
11 SE ← Update(SE ,Si)
12 i ← 1
13 else
14 i ← i +1
15 end
16 return SE

method receives three input parameters: a solution SE , a set of neighborhood structures

N , and a set of objectives R. First, the method initializes some sets of efficient points

(step 2). Each set Si will contain the efficient points that have already been visited con-

sidering the objective Ri . Then, the method performs a search process considering each

objective separately (step 4). For each objective Ri , the entire set of efficient points in SE

is explored considering only that objective (step 5). Those efficient points that have already

been explored considering the objective Ri (i.e., those contained in Si ) are ignored (step 6).

Then, the neighborhood structures of each efficient point x ∈ SE \Si are explored within

a VND-i method (step 7). This VND-i method explores the set of neighborhoods N of an

efficient point x considering only one objective Ri as a traditional VND approach. However,

VND-i has the particularity that, instead of returning the local optimum found, it returns

the set of efficient points found during the search process (including the local optimum).

Then, this set of efficient points and the incumbent efficient point x are added to the set

of visited points Si (step 8). When every efficient point in the solution has been explored,

the procedure checks if an improvement has been made (step 10). If made, then the non-

dominated efficient points found are added to the solution (step 11) and i is reset to one
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(step 12). Otherwise, i is incremented and the search process continues considering the

next objective in R (step 14). Once all objectives have been considered without improving

the current solution, the method returns the set of non-dominated efficient points SE .

4.2 Algorithmic proposal for the MQ problem

For the MQ problem, this doctoral thesis proposed a method that hybridizes the GRASP

and VNS methodologies. In particular, the local search phase of GRASP is replaced by a

VND component. In Algorithm 12, we present the pseudocode of the algorithm proposed.

As can be seen, the method receives two parameters: the MDG to be modularized (G) and

the maximum number of iterations to be performed (MaxIter). The procedure starts with a

preprocessing phase (step 2). This phase reduces the size of a given MDG in order to accel-

erate the following phases (the preprocessing phase is described in Section 4.2.1). Then, an

initial solution x is built in the GRASP construction phase, considering the reduced MDG

(step 6). Next, the initial solution x is improved using a VND method (step 7). If the re-

sulting solution x ′ is better than the best solution found during the search, it is saved as the

new best solution (steps 8-9). Finally, the best solution found during the search is returned.

Algorithm 12: Pseudocode of GRASP-VND
1 Procedure GRASP-VND(G ,MaxIter):
2 G ′← PreprocessingPhase(G)
3 bestSolution← /0
4 i ← 0
5 while i < MaxIter do
6 x ← ConstructionPhase(G ′)
7 x ′← VND(x)
8 if IsBetter(x ′,bestSolution) then
9 bestSolution← x ′

10 end
11 return bestSolution

In the following sections, we describe each of the three phases included in the proposed

GRASP-VND method. In particular, we detail the preprocessing reduction phase in Sec-

tion 4.2.1, the constructive phase in Section 4.2.2, and the VND method in Section 4.2.3.
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Additionally, the search parameter that determines the maximum number of iterations is

experimentally set in Section 5.2.

4.2.1 Preprocessing reduction phase

In 2013, Köhler et al. proved the following theorem: “Let G = (V ,E ) be the undirected

weighted graph given as input for the SCP. Let u ∈ V be a node with degree equal to one

and v ∈ V be adjacent to u. Then in the optimal solution of the SCP, u and v are assigned

to the same cluster” [75]. Based on this theorem, the authors proposed a preprocessing

procedure to reduce the size of a given MDG. The pseudocode of the procedure is shown

in Algorithm 13. As can be observed, the procedure receives an undirected weighted graph

G = (V ,E ,W ) as input. First, a copy of the graph (G ′) is obtained (step 2). Then, the

algorithm iterates through the vertices in V ′ that have a degree equal to one (step 3). For

each vertex u with deg(u) = 1, its adjacent vertex v is obtained (step 4) and a self-loop

(v ,v) is added to the new graph (step 5). If the self-loop (v ,v) already exists in W ′, then

the weight is increased by adding the weight of the edge (u,v) (step 7). Otherwise, the same

weight that the edge between u and v has is assigned (steps 9 to 10). At the end of each

iteration, u is removed from the new graph G ′, along with its associated edge (steps 11 to

13). Finally, the procedure returns the resulting graph G ′ = (V ′,E ′,W ′), with |V ′| ≤ |V |.
As can be noticed, the procedure described expects an undirected weighted graph as

input. However, it might be the case that the MDG at hand is not an undirected weighted

graph. Nevertheless, a directed unweighted graph can be easily transformed into a valid

graph for the preprocessing step. First, all edges are assigned an equal weight (e.g., one).

Then, all edges connecting the same pair of vertices, regardless of the direction of the edge,

are combined into a single undirected edge. The weight of the resulting edge is equal to the

sum of the weights of the combined original edges.

In Figure 4.3, we illustrate the preprocessing procedure with an example. First, a di-

rected unweighted graph is depicted in Figure 4.3(a). This MDG is transformed into an

undirected weighted graph following the steps mentioned above. That is: (i) the edges are

assigned a weight equal to one, (ii) the directions of the edges are removed, and (iii) edges

with the same pair of nodes are combined. As a result, the solution shown in Figure 4.3(b)
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Algorithm 13: Pseudocode of the preprocessing phase
1 Procedure PreprocessingPhase(G):
2 G ′(V ′,E ′,W ′)←G(V ,E ,W )
3 for u ∈ V ′ : deg(u) = 1 do
4 v ← GetAdjacentVertex(G ′,u)
5 E ′← E ′∪ (v ,v)
6 if w ′(v ,v) ∈W ′ then
7 w ′(v ,v) = w ′(v ,v)+w ′(u,v)
8 else
9 w ′(v ,v) = w ′(u,v)

10 W ′←W ′∪w ′(v ,v)
11 V ′← V ′ \u
12 E ′← E ′ \ (u,v)
13 W ′←W ′ \w ′(u,v)
14 end
15 return G ′

is obtained. Then, the graph is reduced by applying the method presented in Algorithm 13.

First, v2 is removed from the graph, and a self-loop is added to v1. Since the weight of the

edge (v1,v2) is equal to one and the edge (v1,v1) did not exist before, the weight of the

resulting self-loop is equal to one, as depicted in Figure 4.3(c). The procedure continues

by removing the vertex v10 and adding a self-loop (v9,v9) with a weight equal to one, as

shown in Figure 4.3(d). As can be observed, after the preprocessing procedure is applied,

the resulting graph contains two vertices less than before (v2 and v10).

It is worth mentioning that the reduced graph obtained and the original MDG have the

same TurboMQ value [75]. Once the search process has ended and a solution is found,

the structure of the original MDG can be trivially recovered by adding back the removed

vertices and placing them in the same module to which their adjacent vertices belong.

4.2.2 Constructive phase

The constructive phase, introduced in Algorithm 12, starts with an empty solution (a solu-

tion with no vertices). In an iterative process, the method selects one vertex per iteration
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(a) Original directed unweighted MDG. (b) Adapted undirected weigthed graph.

(c) Preprocessing procedure: removed v2. (d) Preprocessing procedure: removed v10.

Figure 4.3 Resulting graph after the preprocessing phase. In Figure 4.3(a), the original
MDG is depicted. In Figure 4.3(b), the original MDG is transformed into an undi-
rected weighted graph. In Figure 4.3(c), vertices with a degree equal to one have been
removed and a self-loop to v1 has been added. In Figure 4.3(d), vertex v10 has been
removed and a self-loop to v9 has been added.
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and adds it to the partial solution. The process ends when the solution is complete. That is,

when every vertex has been added to the solution.

Formally, we define a partial solution as S = {S1,S2, ...,Sp}, where each Si (with 1 ≤
i ≤ p) represents the set of vertices belonging to module mi . Accordingly, the set of vertices

that are not included in the solution is defined as Q = V \
⋃p
i=1Si . Then, a solution S is

partial iff |Q |> 0. Otherwise, if ∑
p
i=1 |Si |= |V |, then the solution is considered complete.

In Algorithm 14, we present the pseudocode of the constructive method. As can be

observed, this pseudocode is very similar to the one presented in Algorithm 4. The adjust-

ments introduced to adapt this method for the MQ problem are highlighted in green , in

steps 6 and 9. As highlighted, the greedy function must be defined for the problem at hand.

In addition, the adding function is now performed by a method named AddVertex, which

will be described next.

Algorithm 14: Pseudocode of the constructive procedure
1 Procedure ConstructivePhase(G(V ,E ,W )):
2 x ← /0
3 CL← V
4 α ← Random(0,1)
5 while CL ̸= /0 do
6 th←min( g(v) )+α · (max ( g(v) )−min( g(v) )) | v ∈ CL

7 RCL← v ∈ CL | g(v)≥ th
8 vertex ← RandomChoice(RCL)
9 x ← AddVertex(x ,vertex)

10 CL← CL\ vertex
11 end
12 return x

First, a vertex is selected at each iteration to be added to the solution, using a greedy

function g . As mentioned in Section 4.1.1, the greedy function of a GRASP constructive

procedure is problem dependent. In this case, the greedy function is designed to evaluate

the “proximity” of each candidate vertex to the partial solution. The greedy criterion, for

any given vertex v , is computed as a trade-off between the number of adjacent vertices to v

that are already included in the partial solution and the number of adjacent vertices to v not

yet included in the partial solution. In particular, the greedy function is defined as follows:
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g(v) = max
Si ∈ S

(
∑

u ∈ Si

w(v ,u),1≤ i ≤ k

)
︸ ︷︷ ︸

(a)

− ∑
u ∈ Q

w(v ,u)︸ ︷︷ ︸
(b)

. (4.1)

For each vertex v , the greedy function calculates: (a) the maximum sum of the weights of

the edges connecting v with any vertex belonging to any module Si ∈ S ; and (b) the sum of

the weights of the edges connecting v with any vertex u ∈ Q not yet included in the partial

solution. Then, it returns the difference between (a) and (b). As can be observed, the higher

the number of adjacent vertices to v that are already included in the solution, the higher the

chance that v is added to the solution.

In many problems, adding the selected candidate to the solution is a trivial task. How-

ever, for problems of the SMCP family, this task is not trivial, since a given vertex can

be added to any module of the solution. In this case, once a candidate vertex v has been

selected, the AddVertex method introduced in step 9 of Algorithm 14 (highlighted in

green ) is responsible for selecting the module where v is inserted. The AddVertex

method evaluates the quality of the resulting solution considering the insertion of v into

each existing module Si ∈ S and also into a new empty module. Moreover, since a module

with a single vertex does not have cohesion, the method additionally considers the creation

of a new module that contains both v and any vertex u ∈ S that is adjacent to v . This pro-

motes the creation of new modules in the partial solution. Finally, the decision that results

in the solution with better quality is selected.

4.2.3 Variable Neighborhood Descent

The improvement phase of search algorithms aims to refine an initial solution until a local

optimum is found. In the algorithmic proposal presented in Algorithm 12, the improve-

ment phase, usually performed by a local search procedure, is replaced by a VND method,

which is one of the most widely used extensions of VNS. In VND, a set of different neigh-

borhoods is systematically explored. In Algorithm 15, we present the pseudocode of the

VND component used in Algorithm 12. As can be observed, this method is similar to the

procedure described in Algorithm 6. Some adjustments are introduced to adapt the local
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Algorithm 15: Pseudocode of the VND component of the method proposed for
the MQ problem.
1 Procedure VND(x ,N = {N1,N3,N4}):
2 l ← 1
3 while l ≤ |N | do
4 switch l do
5 case 1
6 x ′← LocalSearchFirstImprovement(x ,N1)

7 end
8 case 2
9 x ′← LocalSearchFirstImprovement(x ,N3)

10 end
11 case 3
12 x ′← LocalSearchFirstImprovement(x ,N4)

13 end
14 end
15 if IsBetter(x ′,x) then
16 x ← x ′

17 l ← 1
18 else
19 l ← l +1
20 end
21 return x

search strategies and the neighborhood structures explored in steps 6, 9, and 12, which

have been highlighted in green color. The set of neighborhood structures N contains three

neighborhoods: N1, N3, and N4. Since all procedures proposed in this doctoral thesis con-

tain methods based on the exploration of neighborhood structures, all neighborhoods are

described together in Section 4.5. In this case, the VND component of the algorithm pro-

posed for the MQ problem explores the neighborhoods N1, N3, and N4. The preliminary

experiments devoted to the analysis of these neighborhoods and the order in which they

should be explored are described later in Section 5.2. Additionally, it should be noted that

the local search procedures described in the VND component of this proposal follow a First

Improvement strategy. That is, when exploring the different neighborhood structures, the

first move found in the neighborhood that improves the quality of the solution is applied.
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4.3 Algorithmic proposal for the FCB problem

In this section, we describe a procedure based on GVNS, which is proposed for the FCB

problem. Within the VNS methodology, several schemes have been proposed that imple-

ment the ideas of VNS in both stochastic and deterministic components. BVNS, which was

presented in Algorithm 5, was the first scheme proposed in the methodology, implement-

ing the ideas in a stochastic component, the perturbation phase, designed to escape local

optima. On the contrary, VND, which was presented in Algorithm 6, does not include a

perturbation phase, but rather explores a set of different neighborhood structures in a sys-

tematic way. GVNS, in contrast, combines a stochastic and a deterministic exploration of

different neighborhood structures. The stochastic behavior is achieved by a perturbation

phase, which modifies a given solution by performing random moves within a neighbor-

hood structure to introduce diversification in the search, while the improvement phase is

performed by a VND procedure.

The pseudocode of the GVNS method is described in Algorithm 7. The constructive

procedure used to build the initial solution is described in Section 4.3.1. The VND compo-

nent of the method is described in Section 4.3.2.

4.3.1 Constructive procedure

In this case, the initial solution x received as input in the GVNS method is built at random.

The pseudocode of the constructive procedure is presented in Algorithm 16. The construc-

tive procedure receives an MDG (G(V ,E ,W )) as input. First, an initial empty solution x

is created (step 2). Then, |V | modules are created, which are initially empty, and added to

the solution x (steps 3-7). Next, each vertex of the graph is assigned to a random module,

following a uniform distribution (steps 9-11). Finally, once every vertex belongs to a mod-

ule in the solution, the modules that do not contain any vertices are removed (steps 13-15).

The resulting solution x is then returned.
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Algorithm 16: Pseudocode of the constructive procedure used in the method pro-
posed for the FCB problem.
1 Procedure Constructive(G(V ,E ,W )):
2 x ← /0
3 i ← 0
4 for u ∈ V do
5 Si ←{}
6 x ← x ∪Si
7 i ← i +1
8 end
9 for u ∈ V do

10 i ← Random(0, |V |−1)
11 Si ← Si ∪u
12 end
13 for Si ∈ x do
14 if |Si |= 0 then
15 x ← x \Si
16 end
17 return x

4.3.2 Variable Neighborhood Descent

In Algorithm 17, we present the pseudocode of the VND component used in the GVNS

method proposed for the FCB problem. As can be observed, this method is similar to the

procedure described in Algorithm 6. The difference lies in the local search strategies and

the neighborhood structures explored in steps 6, 9, and 12, which have been highlighted

in green color. The set of neighborhood structures N contains three neighborhoods: N4,

N3, and N1. Since all procedures proposed in this doctoral thesis contain methods based

on the exploration of neighborhood structures, all neighborhoods are described together

in Section 4.5. In this case, the VND component of the algorithm proposed for the FCB

problem explores the neighborhoods N4, N3, and N1. The preliminary experiments devoted

to the analysis of these neighborhoods and the order in which they should be explored

are described later in Section 5.2. Furthermore, it should be noted that the local search

procedures described in the VND component of this proposal follow a First Improvement

strategy. That is, when exploring the different neighborhood structures, the first move found
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in the neighborhood that improves the quality of the solution is applied.

Algorithm 17: Pseudocode of the VND component of the method proposed for
the FCB problem.
1 Procedure VND(x ,N = {N4,N3,N1}):
2 l ← 1
3 while l ≤ |N | do
4 switch l do
5 case 1
6 x ′← LocalSearchFirstImprovement(x ,N4)

7 end
8 case 2
9 x ′← LocalSearchFirstImprovement(x ,N3)

10 end
11 case 3
12 x ′← LocalSearchFirstImprovement(x ,N1)

13 end
14 end
15 if IsBetter(x ′,x) then
16 x ← x ′

17 l ← 1
18 else
19 l ← l +1
20 end
21 return x

4.4 Algorithmic proposal for the MCA and ECA prob-

lems

In this section, we describe a procedure based on MO-GVNS, which is proposed for the

MCA and ECA problems. As introduced in Section 2.3 and Section 2.4, the MCA and ECA

problems share four quality metrics. For this reason, they are usually studied together in

the literature. In this doctoral thesis, we propose a procedure based on MO-GVNS for both

problems.
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As described in Section 4.1.3, MO-GVNS is an adaptation of the well-known GVNS

scheme for MOPs, based on the MO-VNS extension. Note that in this context, a solution is

defined as a set of efficient points. That is, a Pareto front or a set of non-dominated efficient

points.

As shown in Algorithm 9, the presented MO-GVNS algorithm receives an initial solu-

tion as input. In Section 4.4.1, we describe the construction procedure used to generate the

initial set of efficient points. In the same way, the MO-Shake and MO-VND procedures are

described in Sections 4.4.2 and 4.4.3, respectively.

4.4.1 Constructive procedure

To generate the initial solution for the MO-GVNS procedure presented in Section 4.4,

we propose an agglomerative constructive based on the ideas of Path Relinking [52]. The

constructive procedure starts by generating two trivial efficient points:

1. In the first efficient point, each vertex is contained in a different module. That is, there

are as many modules as vertices in the efficient point, and all of them are isolated

modules (n = |V |). This trivial efficient point is optimal in terms of the number of

modules (considering MCA and ECA). However, it has zero cohesion and maximum

coupling, which are not desirable properties of good modular organizations.

2. In the second efficient point, every vertex belongs to the same module. That is, the

efficient point contains only one module (n = 1). This trivial efficient point has zero

coupling and maximum cohesion, which are desirable properties. However, having

only one module is not desirable.

Once these two trivial efficient points are generated, the procedure proceeds to build a

path between them, obtaining one efficient point at each iteration. In particular, a solution

is obtained at each iteration by merging two different modules into a single one.

In Figure 4.4, we illustrate this process with an example. As can be observed, the pro-

cedure starts with building an initial trivial efficient point xs with five isolated modules

(iteration 1). Then, all possible merges of two different modules are evaluated (iteration 2).

Since both the MCA and ECA problems consider MQ as one of the objectives, we use the
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MQ value to evaluate the quality of possible merges. The best possible merge in terms of

MQ is selected and committed. Therefore, the resulting solution x ′ is obtained by merging

the modules that contain vertices v2 and v4. Then, all possible merges are evaluated again

(iteration 3). As a result, the solution x ′′ is obtained by merging the modules that contain

vertices v1 and v3. The process continues iteratively until the second trivial efficient point

xt is obtained (iteration 5), where all vertices belong to the same module. Finally, all the

efficient points generated during the process (xs ,x ′,x ′′,x ′′′, and xt ) are added to the initial

solution E .

In Figure 4.5, we represent a solution E obtained by the described constructive pro-

cedure. The efficient points are represented by a red dot in a two-dimensional objective

space. The x-axis represents the MQ value, while the y-axis represents the number of mod-

ules in each efficient point. The constructive procedure generates efficient points along the

objective space by iteratively reducing the number of modules by one while simultaneously

improving the MQ value of the efficient point obtained at each iteration. As a result, the

constructive procedure generates efficient points from the upper left corner to the lower

right corner of the objective space represented in the figure, and none of the efficient points

generated is dominated within the initial solution. As can be seen, all the generated efficient

points are not dominated by the rest, since each obtained efficient point has less modules

but better MQ value than the previous one.

In this case, the greedy criterion used to evaluate the possible merge operations at each

iteration is TurboMQ. As illustrated in Figure 4.4, the merge operation selected at each

iteration is the one that results in the solution with the maximum TurboMQ value among

the candidates. However, the procedure can be trivially adapted to use any other criterion for

the selection of the operation to perform at each iteration. Moreover, semi-greedy selection

mechanisms can also be used to add some randomization to the process. Finally, it is worth

noting that only the merges possible in the efficient point obtained after each iteration are

evaluated. Thus, the whole search space is not explored.
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Figure 4.4 Example of the agglomerate constructive process for an MDG with five
vertices. Five iterations are shown, where a path is built linking two trivial efficient
points: xs and xt .
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Figure 4.5 Representation of a solution generated by the MO-GVNS constructive pro-
cedure in the objective space of two quality metrics: MQ and the number of modules.
Note that all efficient points depicted are not dominated, since both objectives should
be maximized.

4.4.2 Multi-Objective Shake

In MO-GVNS, the MO-Shake component extends the idea of the shake method of GVNS,

by performing a perturbation in each efficient point within the solution. For the shake pro-

cedure, a neighborhood structure is proposed based on swap operations. Here, a swap op-

eration is based on interchanging the positions of two vertices. Given two vertices v1 and

v2 that belong to modules m1 and m2, respectively, swapping them will result in vertex

v1 belonging to module m2 and vertex v2 belonging to module m1. The number of swap

operations to perform within the Shake procedure is determined by the value of k . The

higher the value of k , the higher the number of swap operations to perform.

Here, we propose four different shake procedures based on the neighborhood mentioned
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Table 4.1 Selection criteria used for each of the two vertices involved in a swap oper-
ation, for each of the proposed shake procedures.

Selection criterion
First vertex Second vertex

Shake 1 Random Random
Shake 2 Greedy Greedy
Shake 3 Random Greedy
Shake 4 Greedy Random

earlier. These procedures differ in the criteria used to select the vertices to swap. We pro-

pose two different selection criteria for the first vertex and two different selection criteria

for the second vertex. In both cases, one criterion is random, and the other is greedy. In

Table 4.1, we present the proposed criteria. As can be observed, the resulting shake proce-

dures are purely random (Shake 1), purely greedy (Shake 2), or a combination of random

and greedy criteria (Shakes 3 and 4). The shake procedures presented here are later em-

pirically evaluated in Section 5.2.2. In particular, the proposed shakes and their selection

criteria are designed as follows:

• Shake 1. In the first shake, both vertices are randomly selected from any module in

the efficient point.

• Shake 2. In the second shake, both vertices are greedily selected. For the first vertex,

we find the module mi that has the worst CF value (see Equation 2.6). Then, a

random vertex vi is selected within that module. For the second vertex, we select the

vertex most closely related to module mi (calculated as the sum of the weights of the

edges that connect a given vertex to vertices in module mi ).

• Shake 3. In the third shake, the first vertex is selected at random. Then, the second

vertex is selected as described in Shake 2. That is, for the second vertex, we select

the one with the strongest connection to the module of the first vertex selected.

• Shake 4. In the fourth shake, we first find the module mi that has the worst CF

value within the efficient point (see Equation 2.6). Then, the first vertex is selected at

random from that module. The second vertex is selected at random.
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Algorithm 18: Pseudocode of the MO-VND component of the method proposed

for the MCA and ECA problems

1 Procedure
MO-VND(SE ,N = {N1,N3,N2,N4},R= {MQ,Cohesion,NumberOfModules}):

2 S1← /0, S2← /0, . . . , S|R|← /0

3 i ← 1

4 while i ≤ |R| do
5 while |SE \Si | ≥ 1 do
6 x ← Pick(SE \Si)
7 switch i do
8 case 1

9 SEi ← VND-MQ(x ,N = {N1,N3,N2,N4})
10 end
11 case 2

12 SEi ← VND-Cohesion(x ,N = {N1,N3,N2,N4})
13 end
14 case 3

15 SEi ← VND-NumberOfModules(x ,N = {N1,N3,N2,N4})
16 end

17 end
18 Si ← Si ∪ SEi ∪ {x}
19 end
20 if MO-Improvement(SE ,Si) then
21 SE ← Update(SE ,Si)

22 i ← 1

23 else
24 i ← i +1

25 end

26 return SE
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4.4.3 Multi-Objective Variable Neighborhood Descent

In Algorithm 18, we present the pseudocode of the MO-VND component of the MO-GVNS

method proposed for the MCA and ECA problems. As can be observed, this method is

similar to the procedure described in Algorithm 11. The difference lies in the the neigh-

borhood structures explored and objectives considered. The differences in the pseudocode

have been highlighted in green color. The set of neighborhood structures N contains four

neighborhoods: N1, N3, N2, and N4. Since all procedures proposed in this doctoral thesis

contain methods based on the exploration of neighborhood structures, all neighborhoods

are described together in Section 4.5. The objectives considered in R are: MQ, cohesion,

and the number of modules. The objectives to be explored within the method and the order

in which they are explored are experimentally configured in Section 5.2.3. Furthermore,

it should be noted that the local search procedures described in the MO-VND component

of this proposal follow a First Improvement strategy. That is, when exploring the differ-

ent neighborhood structures, the first move found in the neighborhood that improves the

quality of the solution is applied.

4.5 Neighborhood structures

All procedures proposed in this doctoral thesis are based on the exploration of multiple

neighborhood structures through the use of VNS. In this context, it is desirable that the

neighborhoods included in the methods complement each other. As discussed previously,

for the SMCP, a trade-off must be made between the number of modules and the size of

each module (see Section 2). This balance has been promoted differently depending on the

particular problem (e.g., MQ, FCB, MCA, or ECA). Nevertheless, it is undoubtedly impor-

tant to allow a search algorithm to alter the number of modules in any solution. Here, we

propose a categorization of neighborhood structures into three different groups, depending

on the impact that they have on the number of modules:

1. Neighborhood structures defined by operations that do not alter the number of mod-

ules. The exploration of these neighborhood structures is intended to lead to the

movement of vertices between existent modules.
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2. Neighborhood structures defined by operations that increase the number of modules.

The exploration of these neighborhood structures is intended to create new modules

within the solution.

3. Neighborhood structures defined by operations that reduce the number of modules.

The exploration of these neighborhood structures is intended to remove one or more

modules from the solution, relocating the vertices in those modules into other existing

modules.

Given the aforementioned classification, we propose six different neighborhood struc-

tures. Two of them (N1 and N2), described in Sections 4.5.1 and 4.5.1, belong to the first

category; two of them (N3 and N6), described in Sections 4.5.2 and 4.5.2, belong to the sec-

ond category; and two of them (N4 and N5), described in Sections 4.5.3 and 4.5.3, belong

to the third category.

4.5.1 Neighborhood structures defined by operations that do not alter
the number of modules

In this section, we define neighborhood structures defined by operations that do not alter

the number of modules. In particular, two neighborhoods are proposed: N1, based on an

insert operator; and N2, based on a swap operator. Both neighborhoods are described next.

N1: Insert

This neighborhood structure is based on insert operations. An insertion is a classic move in

optimization research [28, 51, 108]. It consists of changing the position of a single compo-

nent of the solution. In this case, an insertion is defined as the relocation of a given vertex to

a module different from the one to which it belongs. In Figure 4.6, we present an example

of this operation. In particular, we represent the insertion of vertex v1 into module m1. On

the left, we present the initial solution x , where the vertex v1 belongs to module m2. On the

right, we present the resulting solution x ′, where the vertex v1 is now contained in module

m1.
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𝑥 𝑥′

𝑥′ ← 𝐼𝑛𝑠𝑒𝑟𝑡(𝑥, 𝑣1, 𝑚2, 𝑚1)

𝑚1 𝑚2

𝑚3

𝑚′1 𝑚′2

𝑚′3

Figure 4.6 Example of an insert operation. Given the solution x on the left side, the
solution x ′ on the right side is obtained by inserting vertex v1 into module m1.

Formally, we define an insert operation as x ′ ← Insert(x ,v ,m,mt), where x is the

solution at hand, v is a vertex contained in module m, mt is the target module where v will

be inserted, and x ′ is the resulting solution after applying the insert operation. Therefore,

Figure 4.6 represents the operation x ′← Insert(x ,v1,m2,m1).

Given the above definition of the insert operation, the resulting neighborhood, denoted

as N1, of any solution x , which is formed by all the solutions that can be obtained by

applying any insert operation to x , is defined as follows:

N1(x ) = {x ′← Insert(x ,v ,m,mt) : ∀v ∈ V ,∀mt ∈ M / v ∈ m,m ̸=mt}.

According to the definition of the neighborhood, each combination of a pair (v ,mt)

results in a different neighbor. Therefore, given a solution x with |V | vertices and |M |
modules, the size of the neighborhood is |V | · (|M |−1).
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𝑥 𝑥′

𝑥′ ← 𝑆𝑤𝑎𝑝 (𝑥, 𝑣3, 𝑚2, 𝑣4, 𝑚1)

𝑚1 𝑚2

𝑚3

𝑚′1 𝑚′2

𝑚′3

Figure 4.7 Example of a swap operation. Given the solution x on the left side, the
solution x ′ on the right side is obtained by swapping vertices v3 and v4.

N2: Swap

The second neighborhood proposed is based on swap operations. Again, a swap operation

is a classic move in optimization research [20, 49, 107]. It consists of interchanging the

position of two different vertices. That is, given two vertices v1, contained in module m1,

and v2, contained in module m2, swapping them would result in vertex v1 belonging to

module m2 and vertex v2 belonging to module m1. In Figure 4.7, we present an example

of this operation. In particular, we represent the swap of vertices v3 and v4. On the left, we

present the initial solution x , where the vertex v3 belongs to module m2 and the vertex v4

belongs to module m1. On the right, we present the resulting solution x ′, where the vertex

v3 belongs to module m ′1 and the vertex v4 belongs to module m ′2.

Formally, we define a swap operation as x ′← Swap(x ,vi ,mk ,vj ,ml ), where x repre-

sents the initial solution, vi is a vertex that belongs to module mk , vj is a vertex that belongs

to module ml , and x ′ is the resulting solution obtained after applying the swap operation.

Therefore, in Figure 4.7, the operation represented is x ′← Swap(x ,v3,m2,v4,m1).
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Given the above definition of the swap operation, the resulting neighborhood, denoted

as N2, of any solution x , which is formed by all the solutions that can be obtained by

applying any swap operation to x , is defined as follows:

N2(x ) = {x ′← Swap(x ,vi ,mk ,vj ,ml ) : ∀vi ,vj ∈ V

/ vi ∈ mk ∧ vj ∈ ml ∧mk ,ml ∈ M ∧mk ̸=ml},

where 1≤ i , j ≤ |V | and 1≤ k , l ≤ |M |.
According to the definition of the neighborhood, given a solution x with |V | vertices,

the size of the neighborhood in the worst case is |V | · V−1
2 . In practice, the size of the

neighborhood is smaller since the vertices within the same module cannot be swapped.

4.5.2 Neighborhood structures defined by operations that increase the
number of modules

In this section, we define neighborhood structures defined by operations that increase the

number of modules. In particular, two neighborhoods are proposed: N3, based on a extract

operator; and N6, based on a split operator. Both neighborhoods are described next.

N3: Extract

The third neighborhood proposed is based on an extraction operation. This operation con-

sists of inserting some vertices from one or more modules into a new empty module. In

Figure 4.8, we present an example of this operation. In particular, we represent the extrac-

tion of vertices v1 and v4. On the left, we present the initial solution x , where the vertex

v1 belongs to module m2 and the vertex v4 belongs to module m1. On the right, we present

the resulting solution x ′, where the vertices v1 and v4 belong to a new module m ′4. Note

that the resulting solution contains an additional module, m ′4.

Formally, we define an extraction operation as x ′← Extract(x ,O), where x represents

the initial solution, O is a set of vertices, and x ′ is the solution that results after extracting

all vertices in O to a new module. Therefore, in Figure 4.8, the operation represented is
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𝑥 𝑥′

𝑥′ ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝑥, {𝑣1, 𝑣4})

𝑚1 𝑚2

𝑚3

𝑚′1 𝑚′2

𝑚′3

𝑚′4

Figure 4.8 Example of a extract operation. Given the solution x on the left side, the
solution x ′ on the right side is obtained by extracting vertices v1 and v4 to a new
module m ′4.

x ′← Extract(x ,{v1,v4}).
Given the above definition, the resulting neighborhood, denoted as N3, of any solution

x , which is formed by all the solutions that can be obtained by applying any extraction

operation to x , is defined as follows:

N3(x ) = {x ′← Extract(x ,O) : O ⊆ V }.

According to the above definition of the neighborhood, given a solution x with |V |
vertices, the size of the neighborhood in the worst case is |V |!. As can be noticed, the size

of the neighborhood can become extremely large and unmanageable. Therefore, in practice,

we limit the neighborhood to include only neighbors that can be obtained by performing

extraction operations with only two or three vertices, as follows:

N3(x ) = {x ′← Extract(x ,O) : O ⊆ V / 2≤ |O | ≤ 3}.
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𝑥 𝑥′

𝑥′ ← 𝑆𝑝𝑙𝑖𝑡 (𝑥, 𝑚2, {𝑣5, 𝑣9, 𝑣10})

𝑚1 𝑚2 𝑚′1 𝑚′2

𝑚′3

Figure 4.9 Example of a split operation. Given the solution x on the left side, the
solution x ′ on the right side is obtained by splitting module m2 into two new modules
m ′2 and m ′3.

Therefore, the size of this neighborhood in practice is V ·(V −1)+V ·(V −1) ·(V −2). It

is worth mentioning that the size of this neighborhood structure can be adapted by changing

the aforementioned limit depending on the problem studied.

N6: Split

The sixth proposed neighborhood is based on a split operation. This operation consists of

dividing a module into halves. In Figure 4.9, we present an example of this operation. In

particular, we represent the splitting of the module m2. On the left, we present the initial

solution x , where vertices v1, v2, v3, v5, v9, and v10 belong to module m2. On the right,

we present the resulting solution x ′, where module m2 has been divided into the new mod-

ules m ′2 and m ′3. Notice that the resulting solution now contains one additional module and

vertices v1, v2, and v3 belong to module m ′2, while vertices v5, v9, and v10 belong to

module m ′3.
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Formally, we define a split operation as x ′ ← Split(x ,m,O), where x represents the

initial solution, m is a module to be split, and O is a set of vertices (with |m|2 ≈ |O |) to be

inserted into a new empty module. Therefore, in Figure 4.9, the operation represented is

x ′← Split(x ,m2,{v5,v9,v10}).
Given the above definition, the resulting neighborhood, denoted as N6, of any solution

x , which is formed by all the solutions that can be obtained by applying any split operation

to x , is formally defined as follows:

N6(x ) = {x ′← Split(x ,m,O) : ∀m ∈ M / |O |= ⌊|m|
2
⌋},

where M represents the set of modules in the solution x . If all possible distributions of the

vertices in m are considered, the size of the entire neighborhood is equal to ∑
|M |
i=1

|m|!
|O |!(|m|−|O |)! .

As can be seen, the size of the entire neighborhood is prohibitively large. In practice, we

bound it to find a balance between performance and time consumption. In particular, we

only explore |V | solutions. Each solution is constructed by dividing the vertices of a mod-

ule considering their adjacency. In particular, we consider each vertex as a candidate seed.

The seed is inserted into a new empty module together with half of the vertices from the

same module that have the strongest dependencies towards the seed in terms of adjacency.

The remaining vertices of the module are inserted into another new empty module. Since

all vertices are considered as possible seeds, the size of this neighborhood is |V |.

4.5.3 Neighborhood structures defined by operations that reduce the
number of modules

In this section, we define neighborhood structures defined by operations that reduce the

number of modules. In particular, two neighborhoods are proposed: N4, based on a destroy

operator; and N5, based on a merge operator. Both neighborhoods are described next.

N4: Destroy

The fourth proposed neighborhood is based on a destruction operation. This operation con-

sists of removing a module from the solution and reinserting the vertices that belonged to
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𝑥′ ← 𝐷𝑒𝑠𝑡𝑟𝑜𝑦 (𝑥, 𝑚2, 𝑣1, 𝑣2, 𝑣3 , {𝑚1, 𝑚1, 𝑚3})
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Figure 4.10 Example of a destroy operation. Given the solution x on the left side,
the solution x ′ on the right side is obtained by destroying module m2 and reinserting
vertices v1, v2, and v3 into modules m ′1, m ′1, and m ′3, respectively.

that module into other modules. In Figure 4.10, we present an example of this operation.

In particular, we represent the destruction of module m2. On the left, we present the initial

solution x , where vertices v1, v2, and v3 belong to module m2. On the right, we present

the resulting solution x ′, where module m2 has been destroyed and vertices v1, v2, and

v3 have been relocated to modules m ′1, m ′1, and m ′3, respectively. Note that the resulting

solution contains one module less.

Formally, we define a destruction operation as x ′←Destroy(x ,m,O ,D), where x rep-

resents the initial solution, m is a module to be removed, O is an ordered list of the vertices

that belong to module m, D is an ordered list of modules where vertices contained in mod-

ule m must be relocated to, and x ′ is the solution that results after the operation is applied.

Notice that there exists an order correspondence between O and D , such that vertex Oi is

inserted in module Di (with 1 ≤ i ≤ |O |). Therefore, in Figure 4.10, the operation repre-

sented is x ′← Destroy(x ,m2,{v1,v2,v3},{m1,m1,m3}).
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Given the above definition, the resulting neighborhood, denoted as N4, of any solution

x , which is formed by all the solutions that can be obtained by applying any destruction

operation to x , is formally defined as follows:

N4(x ) = {x ′← Destroy(x ,m,O ,D) : ∀m ∈ M / |O |= |D |,m /∈ D},

where O contains all vertices that belong to module m (and no more) and D is a list of

modules where there can be repetitions, but not module m.

According to the above definition of the neighborhood, given a solution x with |V |
vertices and |M | modules, the size of the neighborhood is |M | · (|M |− 1)(|V |/|M |), where

|V |/|M | is the average number of vertices per module. As can be noticed, the size of

the resulting neighborhood structure can be very large. In practice, we bound it to find a

balance between performance and time consumption. In particular, we do not consider all

the possible insertions when a module is destroyed. Instead, each vertex is inserted only in

the module that has the most dependencies towards that vertex. Therefore, in practice, the

size of this neighborhood structure is equal to the number of modules |M |.

N5: Merge

The fifth proposed neighborhood is based on a merge operation. This operation consists

of merging two modules into a single one. In Figure 4.11, we present an example of this

operation. In particular, we represent the merging of modules m2 and m3. On the left,

we present the initial solution x , where vertices v1, v2, and v3 belong to module m2,

while vertices v5, v9, and v10 belong to module m3. On the right, we present the resulting

solution x ′, where modules m2 and m3 have been merged into the new module m ′2. Notice

that the resulting solution contains one module less and that vertices v1, v2, v3, v5, v9,

and v10 now belong to the new module m ′2.

Formally, we define a merge operation as x ′←Merge(x ,mi ,mj ), where x represents

the initial solution, and mj is the module that will be merged into module mi . That is, mi

will contain all the vertices in mi ∪mj . Therefore, in Figure 4.11, the operation represented

is x ′←Merge(x ,m2,m3).
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𝑥 𝑥′

𝑥′ ← 𝑀𝑒𝑟𝑔𝑒 (𝑥, 𝑚2, 𝑚3)

𝑚1 𝑚2
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𝑚′1 𝑚′2

Figure 4.11 Example of a merge operation. Given the solution x on the left side, the
solution x ′ on the right side is obtained by merging modules m2 and m3 into the new
module m ′2.

Given the above definition, the resulting neighborhood, denoted as N5, for any solu-

tion x , which is formed by all the solutions that can be obtained by applying any merge

operation to x , is formally defined as follows:

N5(x ) = {x ′←Merge(x ,mi ,mj ) : ∀mi ,mj ∈ M / i ̸= j},

where M represents the set of modules in x . According to the above definition of the

neighborhood, given a solution x with |M | modules, the size of the neighborhood is |M | ·
|M |−1

2 .
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4.6 Advanced strategies

To improve the efficiency of the algorithmic proposals described in previous sections, here

we introduce three different advanced strategies. First, in Section 4.6.1, we describe a strat-

egy to accelerate the computation of the quality metrics. This strategy is applied to all the

problems studied in this doctoral thesis: MQ, FCB, MCA, and ECA. Then, in Section 4.6.2,

we introduce a strategy to reduce the size of the neighborhoods by exploring only promis-

ing regions in the search space. Again, this strategy is applied to all the problems studied

in this doctoral thesis: MQ, FCB, MCA, and ECA. Finally, in Section 4.6.3, we describe

a strategy to analyze the contribution of the guiding functions in a multi-objective context

and reduce the set of guiding functions used during the search process. This strategy is

applied in two of the problems studied in this doctoral thesis: MCA, and ECA.

4.6.1 Incremental evaluation of the objective functions

The first advanced strategy is designed to accelerate the computation of the objective func-

tions during the search process. As previously described, the value of TurboMQ is calcu-

lated as the sum of different factors (see Equation 2.9). In particular, it is calculated as the

sum of the cluster factor CF of each module in the solution. As can be observed in the cal-

culation of the cluster factor of a module (see Equation 2.6), this value depends only on the

vertices contained within that particular module. Therefore, as long as a module remains

unaltered, its CF value does not change.

In trajectory-based search methods, a solution is usually modified over time by making

changes to its decision variables. For example, in the case of the insertion neighborhood, a

change in the solution involves the relocation of a single vertex from one module to another.

Thus, an insert operation only changes the CF value of at most two modules. Therefore,

if the CF value of the rest of the modules in the solution is already known, the TurboMQ

value of the solution can be easily obtained by only recalculating the CF value of the

modified modules.

In Figure 4.12, we illustrate this concept with an example. As can be observed in Fig-

ure 4.12(a), an initial solution x is presented, with four different modules. To obtain the

TurboMQ value of the solution x , we first need to calculate the CF value of each module
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within the solution (presented in rectangular boxes filled with blue). The resulting value

of TurboMQ is equal to 1.47 (presented in a rectangular box filled with green). Then, an

insert operation is applied to the solution x , where the vertex v1 is relocated from module

m2 to module m1. The resulting solution x ′ is presented in Figure 4.12(b). Once again,

to obtain the TurboMQ value of the solution x ′, we first need to obtain the CF value

of each module within the solution. However, this time, the CF values of modules m ′3
and m ′4 are already known (presented in rectangular boxes filled with gray) as they have

not been modified. Therefore, we can obtain the value of the TurboMQ objective func-

tion by recalculating only the CF values of modules m ′1 and m ′2 (presented in rectangular

boxes filled with blue). As can be observed, only two CF values have been calculated.

Furthermore, the new TurboMQ value (TurboMQ′) can be calculated by updating the CF

values of the affected modules, instead of adding the CF values of each module in the

solution. The benefits of the incremental evaluation are not exclusively attained after per-

forming insert operations, but after performing any operation. To illustrate it, in Figure

4.12(c) we present a third solution x ′′ obtained after performing a destruction operation

(x ′′ ← Destroy(x ′,m4,{v5,v9,v10},{m ′3,m ′3,m ′3})) to the previous solution x ′. Accord-

ingly, only the CF value of the module m ′′3 is recalculated.

It should be noted that the number of CF values to recalculate depends solely on the

number of modules that have been modified, not on the number of modules within the

solution. After an insert operation, only two CF values must be recalculated, regardless of

the size of the solution. Therefore, the cost of recomputing the TurboMQ value remains

constant with respect to the size of the project. The larger the graph, the larger the benefit

of the incremental evaluation.

This idea of incremental evaluation can easily be extended to the rest of the quality met-

rics studied in this doctoral thesis. In the case of FCB, the value of the objective function

is obtained by adding the coupling of the entire architecture and the maximum cohesion

of any module (see Equation 2.10). If the cohesion and coupling of each module are pre-

viously known and stored, only the cohesion and coupling of the modules that have been

modified after each operation need to be recalculated. Then, the FCB value can be updated

accordingly. In Figure 4.13 and Figure 4.14, we present the incremental evaluation of a

solution after a swap operation. First, an initial solution x is presented in Figure 4.13. The
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(a) Calculation of the TurboMQ value of a solution x .
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𝑇𝑢𝑟𝑏𝑜𝑀𝑄′ = 𝑇𝑢𝑟𝑏𝑜𝑀𝑄 − 𝐶𝐹1 − 𝐶𝐹2 + 𝐶𝐹′1 + 𝐶𝐹′2 = 1.19

𝑥′

(b) Incremental evaluation of the TurboMQ value of a solution x ′, obtained after applying the oper-
ation x ′← Insert(x ,v1,m2,m1).

continued on the next page

Figure 4.12 Incremental evaluation of the TurboMQ value for a given solution after
performing an insert operation and a destruction operation.
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(c) Incremental evaluation of the TurboMQ value of a solution x ′′, obtained after applying the op-
eration x ′′←Destroy(x ′,m ′4,{v5,v9,v10},{m ′3,m ′3,m ′3}).

Figure 4.12 Incremental evaluation of the TurboMQ value of a given solution after
performing an insert operation and a destruction operation.

computation of the cohesion and coupling values for each module is shown in rectangu-

lar boxes filled with blue. The calculation of the FCB value is shown in a rectangular box

filled with green. Then, in Figure 4.14, we present a solution x ′, obtained after performing

the operation x ′ ← Swap(x ,v3,v4). As can be observed, only the coupling and cohesion

values of two modules (m ′1 and m ′2) are recalculated (presented in rectangular boxes filled

with blue), while the coupling and cohesion values of the rest of the modules remain un-

changed (presented in rectangular boxes filled with gray). Then, the FCB value is updated

accordingly.

Similarly, the incremental evaluation of the cohesion and coupling values of a solu-

tion (objectives 1 and 2 in the MCA and ECA problems) can be performed by storing the

coupling and cohesion values of each module. Regarding the size difference between the

smallest and the largest modules (objective 5 in ECA), the efficient evaluation is again

based on the storage of the size values of each module. After a move operation, the size of

the affected modules is updated. Finally, the number of modules (objective 4 in MCA and
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Figure 4.13 Calculation of the FCB value of a solution x .

ECA) and the number of isolated modules (objective 5 in MCA) are trivially calculated.

4.6.2 Identification of promising areas in the search space

Ideally, an approximate algorithm should be able to identify promising areas of the search

space, so that the optimal solution is found by exploring only a subset of solutions. The

narrower the search space explored, the faster the search process. Following this idea, we

present here a strategy to identify promising areas in the search space with the aim of

improving the efficiency of the search procedures proposed in previous sections.

This strategy is based on the following theorem, stated by Köhler et al.: “Let G(V ,E )

be an input MDG to the SMCP and let A(v) be the set of adjacent vertices of v ∈ V .

Suppose that in the optimal solution of the SMCP, all vertices in A(v) are assigned to at
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Figure 4.14 Incremental evaluation of the FCB value of a solution x ′, obtained after
applying the operation x ′← Swap(x ,v3,v4).

most two different modules mi and mj . Then, v is either assigned to mi or to mj ” [75].

Based on this theorem, we can reduce the size of the neighborhoods presented in Section

4.5 for the TurboMQ problem. In particular, we restrict the neighborhoods to consider only

operations that relocate vertices in modules where there is at least one vertex adjacent to

them. In Figure 4.15, we present an example to illustrate this behavior. In Figure 4.15(a),

we represent the possible insert operations to relocate vertex v4 in the solution x . As can

be observed, there are three possible insert operations, one for each module where vertex

v1 can be relocated to (m2,m3, and m4). On the right side, we calculate the change in

the TurboMQ value that would be obtained when performing any of the move operations.

As can be observed, only the first two insert operations (highlighted in green) would re-

sult in an improvement of the objective function. The third operation (highlighted in red)
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would result in a deterioration of the objective function. In Figure 4.15(b), we represent the

promising insert operations to relocate vertex v4. That is, operations that relocate vertex

v4 to a module where there is at least one vertex adjacent to v4. As can be observed, there

exist only two promising insert operations under the premise mentioned above. Again, on

the right side, we calculate the change in the TurboMQ value that would be obtained when

performing any of the move operations. As can be observed, the operation that resulted in a

deterioration of the objective function was regarded unpromising, since none of the vertices

in m4 was adjacent to v4. As a result, the move is not explored.

The aforementioned strategy, although designed for MQ, can be extended to the FCB,

coupling, and cohesion metrics. In the case of the coupling and cohesion metrics, it is trivial

to see that moving a vertex from a module where there are no adjacent vertices to a module

where there is at least one adjacent vertex always results in an improvement. Indeed, being

γ(v ,m) the sum of the weights of the edges that connect v to vertices that are located in

module m, then any move that relocates vertex vi from module ms to module mt results in

an improvement in both coupling and cohesion only if γ(v ,mt)> γ(v ,ms).

In the case of FCB, it is possible to find unpromising insert operations that do not

deteriorate the FCB value of the solution (only if the vertex to be relocated belongs to

the module with maximum cohesion). However, it is not possible to find a non-promising

insert operation that results in an improvement of the FCB value. Therefore, by exploring

only promising regions of the search space as described above, only non-improving move

operations are discarded.

The described strategy allows the algorithms to explore only promising regions of the

search space, reducing the size of some of the neighborhoods, and, therefore, enhancing

the efficiency of the search process. In particular, the complexity of exploring the neigh-

borhoods N1, N2, N3, and N5, proposed in Section 4.5, using this strategy, is reduced as

follows:

1. The first neighborhood (N1), described in Section 4.5.1, is based on insert operations.

Since promising moves only insert a vertex in adjacent modules, the complexity is

reduced from O(|V | · |M |) to O(|V | ·a), where a is the average number of adjacent

modules per vertex.
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(a) Evaluation of the TurboMQ value of the possible insert operations involving vertex v4 in solution
x .
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(b) Evaluation of the TurboMQ value of the promising insert operations involving vertex v4 in
solution x .

Figure 4.15 Identification of promising insert operations involving vertex v4 in solu-
tion x and evaluation of the TurboMQ value that results from the operations.
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2. The second neighborhood (N2), described in Section 4.5.1, is based on swap opera-

tions. Since promising moves only insert a vertex in adjacent modules, the complex-

ity of exploring this neighborhood is reduced from O(|V |2) to O(|V | ·a ·d), where

a is the average number of adjacent modules per vertex and d is the average number

of vertices per module. As the number of modules adjacent to any vertex cannot be

greater than the total number of modules (a ≤ |M |) and |V |= |M | ·d , then it is clear

that a ·d ≤ |V |. In practice, it is usually the case that a ·d < |V |, unless the graph is

fully connected.

3. The third neighborhood (N3), described in Section 4.5.2, is based on extraction op-

erations. In this case, since a promising move operation will only place a vertex in

a module together with adjacent vertices, the complexity of exploring this neighbor-

hood is reduced from O(V · (V − 1)+V · (V − 1) · (V − 2)) to O(|V | · q +V · q ·
(q − 1)), where q is the average number of adjacent vertices per vertex. Of course,

q ≤ |V |. Again, it is hardly ever the case that q = |V |.

4. The fifth neighborhood (N5), described in Section 4.5.3, is based on merge opera-

tions. In this case, the complexity of exploring this neighborhood is reduced from

O(|M | · |M−1|
2 ) to O(|M | · z2), where z is the average number of adjacent modules

per module (two modules are considered adjacent if at least one vertex of one module

is adjacent to one vertex of the other module). Of course, z ≤ |M |. Again, it is hardly

ever the case that z = |M |.

As can be noticed, the benefit of this strategy depends on the density of the graphs.

The more dense the graph, the higher the number of adjacent vertices per vertex and the

lower the number of non-promising moves discarded. On the contrary, the more sparse the

graph, the greater the reduction in the size of the neighborhoods. Nevertheless, in the case

of real software projects, this strategy is particularly useful, since dependency graphs are

frequently sparse, with densities ranging from 1.77 % to 21.52 % [98, 141]. Particularly, in

the dataset used in this work, the average number of vertices is 156.37, while the average

number of adjacent vertices per vertex is 10.22. Therefore, at least for this set of instances,

q ≪ |V |.
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The described strategy is suitable for identifying promising regions of the search space

when considering TurboMQ, FCB, coupling, and cohesion metrics. However, it is not ap-

plicable when considering the number of modules, the number of isolated modules, or the

size difference between the largest and smallest modules in a solution. Instead, for these

objectives, we propose a reduction of the search space to be explored by leveraging the

categorization of neighborhoods described in Section 4.5.

In the case of the number of modules, we only explore neighborhood structures where

the move operations are designed to increment the number of modules in the solution. That

is, we only explore neighborhoods N3 and N6, based on extraction and split operations.

In the case of the number of isolated modules, we only explore neighborhood structures

where the move operations are designed to decrease the number of modules in the solution.

That is, we only explore neighborhoods N4 and N5, based on destruction and merge oper-

ations. Moreover, we only explore move operations that destroy isolated modules.

Finally, in the case of the size difference between the largest and smallest modules in

a solution, we avoid exploring the second neighborhood structure, N2, since it is based on

swap operations, which do not alter the size of the modules. For the rest of the neighborhood

structures we only consider moves that affect modules with the largest or the smallest size

in the solution.

4.6.3 Analysis of the contribution of the guiding functions

The use of multiple conflicting criteria to evaluate efficient points in MOPs benefits an

accurate representation of the desirable properties of good efficient points. However, this

comes at a cost. The larger the number of objectives considered, the larger the number of

efficient points in the Pareto optimal solution [134]. In fact, the number of efficient points

in a Pareto optimal solution may be exponential with respect to the size of the problem

[41]. Furthermore, the number of objectives considered as guiding functions has an impact

on the computing time of MO-VNS-based approaches. As can be observed in Algorithm

11, presented in Section 4.4, the number of iterations through the first loop of the algo-

rithm (step 4) directly depends on the number of objectives considered (|R|). Indeed, the

algorithm explores the set of neighborhood structures N for each efficient point x ∈ SE



96 Chapter 4. Algorithmic proposal

considering each objective i ∈ R. The larger the set of objectives considered, the greater

the computing time needed by the procedure.

Usually, the objective function of a problem is used as the guiding function for the

search process. In that case, the criterion for improving efficient points is given by the

value of the objective function. However, the objective functions and the guiding functions

do not need to be the same. We refer to objective functions as the criteria used to evalu-

ate the quality of an efficient point, whereas guiding functions are used within the search

process to guide the search towards promising areas of the search space. For example, the

Variable Formulation Search methodology uses alternative functions to guide the search

when multiple solutions in the neighborhood have the same value of the objective function

[110].

Taking into account the aforementioned problems, we investigate the use of the objec-

tive functions proposed in the MCA (see Section 2.3) and ECA (see Section 2.4) problems

as guiding functions. In particular, the aim here is to reduce the number of guiding func-

tions used during the search. Ideally, the objective is to reduce the computing time of the

search process without reducing the quality of the solution found. However, this might

be complicated if the objective functions are conflicting. Therefore, a trade-off might be

needed.

In 2017, Yuan et al. proposed a methodology to reduce the number of objectives in

MOPs [140]. In particular, they tackled the task as an optimization problem with two ob-

jectives: (i) minimize the number of objective functions and (ii) minimize the error rate.

Given a set of non-dominated efficient points, they proposed three different measures to

calculate the error rate of each subset of objectives: δ , η , and γ . This measures are based

on the dominance structure of the Pareto front before and after reducing the set of objectives

or on the correlation among objectives.

Although Yuan et al. proposed an evolutionary algorithm to find good subsets of ob-

jectives, we consider that the number of objectives (5) in both MCA and ECA is not very

large. Therefore, we calculate the error rate measures for every possible subset of objec-

tives for both MCA and ECA. Then, the most promising subsets of objectives are tested

as guiding functions in preliminary experiments to study the trade-off between computing

time and solution quality when using a reduced set of objectives as guiding functions. The
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experiments are presented in Section 5.2.3. Note that the aim is to reduce the number of

objectives used as guiding functions, not the set of objectives used as evaluation functions.

At the end of the search process, the efficient points obtained are evaluated using the entire

set of objectives proposed in MCA or ECA.





Chapter 5

Experiments

In the area of operations research, the performance of an algorithm must be empirically

evaluated. In [14], an experiment is defined as “a set of tests run under controlled conditions

for a specific purpose: to demonstrate a known truth, to check the validity of a hypothesis,

or to examine the performance of something new”. Experiments designed to evaluate an

algorithm consist of solving a set of instances for a problem using an implementation of the

algorithm studied. The goal of each experiment must be clearly stated prior to performing

the experiment. Usually, experiments in this area are designed to either (i) analyze the

behavior of an algorithm and configure its free components or (ii) compare its performance

with other algorithms for a particular set of problems [14].

In this section, we present the experiments performed to analyze the performance of

the algorithms presented in this doctoral thesis. These experiments are divided into two

sections: first, in Section 5.2, we present some preliminary experiments designed to ana-

lyze and configure the proposed algorithms; then, in Section 5.3, the performance of the

proposed approaches is compared with those from the best algorithms available in the lit-

erature.

5.1 Dataset

For the computational experiments, we have used a set of 124 real software instances pro-

posed by previous works [104]. All the instances included in the dataset are real-world

99
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software projects, extracted from their public repositories. These instances are of varying

sizes. Once modeled as MDGs, these instances have between 2 and 1161 vertices and be-

tween 2 and 11722 edges. On average, these instances have 156.37 vertices (with a standard

deviation of 216.72) and 948.79 edges (with a standard deviation of 1751.86). In the work

where the dataset was proposed for the first time, the instances were divided into four dif-

ferent categories according to their size: 64 small instances (up to 68 vertices), 29 medium

instances (from 74 to 182 vertices), 18 large instances (from 190 to 377 vertices), and 13

very large instances (from 413 to 1161 vertices). In Appendix A, we describe in detail the

instances included in the dataset and their characteristics.

In Figure 5.1, we show the relationship between the number of vertices (on the horizon-

tal axis) and the number of edges (on the vertical axis) in the instances of the dataset. Each

instance is represented by a red dot. As can be observed, the number of edges increases

linearly as the number of vertices grows. We represent this trend with a dashed line. As the

dataset is composed of real software projects, this relation shows that software components

usually have a few dependencies on other components. As more components are added to

the projects, the number of dependencies grows linearly because each component depends

only on a few other components in the project. That is, the number of dependencies per

component remains constant as the graphs grow in size. If each component that was added

depended on all already existing components of the project, the number of edges would

grow exponentially. In Figure 5.2, we show the relationship between the number of ver-

tices (on the horizontal axis) and the density (on the vertical axis) of the instances in the

dataset. Again, each instance is represented by a red dot. As can be observed, due to the

number of edges per vertex being constant, the density of the graphs tends to be reduced

as the graphs grow in size. Although there are some exceptions, the dependency diagrams

of real software projects tend to be sparse, as shown in the aforementioned figures, a fact

that has already been pointed out in the related literature [98]. In this case, the instances in

the dataset have an average density of 8.83%, with a standard deviation of 11.65%. These

characteristics are of particular interest for the design of the advanced strategy presented

in Section 4.6.2 to reduce the size of neighborhood structures. Since that strategy relies on

the adjacency of vertices, the sparser the instances, the greater the reduction in the size of

the neighborhood structures.
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Figure 5.1 Number of vertices and edges of each instance in the dataset.
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5.2 Preliminary computational experiments

In this section, we present some preliminary experiments designed to configure and analyze

the proposed algorithmic approaches. In particular, experiments designed to analyze the

GRASP-VND approach are presented in Section 5.2.1, experiments designed to analyze

the GVNS approach are presented in Section 5.2.2, and experiments designed to analyze

the MO-GVNS approach are presented in Section 5.2.3.

5.2.1 GRASP-VND

In this section, we present the preliminary computational experiments performed to analyze

the GRASP-VND approach, which focuses on the TurboMQ problem. All the experiments

presented in this section have been executed on the same computer environment, a Mi-

crosoft Windows 10 Pro 10.0.19042 x64 with an AMD EPYC 7282 @ 2795 MHz CPU

with 8 cores and 8 GB RAM. The algorithm was implemented with Java OpenJDK 15.0.2.

For the preliminary experiments, 14 instances have been selected at random from the whole

dataset, following a similar distribution in terms of size. That is, for the reduced dataset, 8

instances have been selected from the small group, 2 instances from the medium group, 2

instances from the large group, and 2 instances from the very large category. In particular,

the instances included in the reduced dataset for the preliminary experiments are the fol-

lowing: apache ant taskdef, cia, gae plugin core, joe, jscatterplot, jtreeview, jxlsreader,

lwjgl-2.8.4, mod ssl, net-tools, nmh, regexp, star and wu-ftpd-1. The smallest instance in

the reduced dataset, regexp, has 14 vertices and 20 edges. The largest instance, apache ant

taskdef, contains 626 vertices and 2421 edges. The average number of vertices is 157.79,

with an average deviation of 184.86. The average number of edges is 838.43, with an aver-

age deviation of 1019.11. The density of the instances is between 0.62% and 21.18%, with

an average density of 7.40% and a standard deviation of 5.68%.
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Neighborhood structure △ Avg. F.O. Avg. CPUt (s)

N1 0.6258 <0.01
N2 0.0207 <0.01
N3 0.4663 0.04
N4 0.1133 0.01

Table 5.1 Contribution of exploring each neighborhood to the quality of the initial
solutions obtained by the constructive procedure.

Contribution of each neighborhood structure

The first preliminary experiment is designed to evaluate the contribution of exploring each

neighborhood structure to the performance of the algorithm. To do so, we analyze the re-

sults obtained by exploring each neighborhood structure within the GRASP-VND approach

in isolation. In particular, we design four different variants of the GRASP-VND method,

each exploring only one neighborhood structure (N1, N2, N3, or N4). Each method is run

for a hundred iterations per instance. In the end, we report the average quality difference

between the initial solution built by the constructive procedure and the best solution found

by the VND component. Importantly, we ensure that the initial solution built by the con-

structive procedure at each iteration is the same for all four variants, in order to perform a

fair comparison. In Table 5.1, we report the results obtained. In particular, for each neigh-

borhood structure, we report the average improvement achieved by the VND component

(△ Avg. F.O.) and the average computing time consumed (Avg. CPUt (s)). As can be ob-

served, the exploration of the neighborhood structures N1 and N3 yielded the best results,

with an average improvement of 0.6258 and 0.4663, respectively. Exploring the fourth

neighborhood structure, N4, resulted in a modest improvement of 0.1133. On the contrary,

exploring the neighborhood structure N2 resulted in a low improvement, with an average of

0.0207. Taking into account the results obtained, we decided to configure the GRASP-VND

algorithm to explore only neighborhood structures N1, N3, and N4.

Order of the neighborhoods

After analyzing the contribution of exploring each neighborhood structure to the quality of

the solutions in the previous section, we configured the algorithm to explore only N1, N3,
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Order Avg. F.O. Avg. Dev. (%) # Best Avg. CPUt (s)

N1,N3,N4 15.9545 <0.01% 12 6.23
N1,N4,N3 15.9549 <0.01% 11 5.78
N3,N1,N4 15.9537 0.02% 9 10.36
N3,N4,N1 15.9541 <0.01% 10 15.37
N4,N1,N3 15.9542 <0.01% 9 9.33
N4,N3,N1 15.9641 <0.01% 10 15.41

Table 5.2 Comparison of the results obtained with the GRASP-VND procedure with
different orderings of the proposed neighborhoods in the reduced dataset.

and N4. As mentioned previously, VND performs a systematic search within a set of neigh-

borhood structures. After successfully improving the best solution found, VND restarts the

search from the first neighborhood structure in the set, and this process is repeated until all

neighborhood structures have been explored without finding an improvement. Therefore,

the order in which the neighborhood structures are explored within the VND component

can have a considerable impact on the performance of the algorithm.

In this experiment, we investigate which ordering of the considered neighborhoods is

the best one for exploring the neighborhood structures. We configure six different variants

of the GRASP-VND algorithm, each exploring the neighborhood structures in a different

order. Then, each variant is run for a hundred iterations per instance. Again, to perform a

fair comparison, we ensure that every variant starts from the same set of initial solutions

for each instance.

In Table 5.2, we report the results obtained. For each variant, we report the average

quality of the best solutions found (Avg. F.O.), the average deviation of the best solution

found from the best solution found by any variant (Avg. Dev. (%)), the number of best

solutions found (# Best), and the average computing time consumed (Avg. CPUt (s)). As

can be seen, the differences in terms of quality are low. On the contrary, some orderings

resulted in a considerable increase in computing time. Due to the number of best solutions

found and the short computing time needed, we decided to configure the GRASP-VND

algorithm to explore the neighborhood structures in the following order: N1, N3, and N4.
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Stopping criterion

In optimization, a trade-off must be made between computing time and solution quality

[14]. In this experiment, we analyze the behavior of the algorithm in this regard and, ac-

cordingly, set a stopping criterion. Since the algorithm is a multistart procedure, a max-

imum number of iterations seems like a natural stopping criterion, although others (e.g.,

maximum computing time) could have been considered as well. Here, we execute the algo-

rithm with the configuration set in previous experiments. That is, GRASP-VND explores

neighborhood structures N1, N3, and N4, in this order. For the experiment, a maximum

number of 100 iterations per instance is set as the stopping criterion for the algorithm. At

the end of each iteration, the quality of the best solution found during the search process is

reported.

In Figure 5.3, we represent the results obtained in the aforementioned experiment. In

particular, we represent the average deviation (Avg. Dev. (%)) from the best solution found

in each iteration for each instance to the best solution found for each instance during the

entire search. We represent the average deviation for all instances in the preliminary dataset

with a solid black line. In addition, we represent the average deviation at each iteration for

the groups of small (blue dashed line), medium (green dash-dotted line), large (yellow long

dash-dot-dotted line), and very large (orange long dash line) instances separately. As can

be observed, the best solutions for the small and medium instances are already found in the

fifteenth iteration. On the contrary, the best solutions for the largest instances in the reduced

dataset are found in iteration 81 approximately. However, the improvement obtained after

ten iterations is quite small (<0.05%). The results obtained show that the proposed method

quickly converges to good solutions after ten iterations. Due to these results, in order to

find a balance between computing time and solution quality, we decide to set a stopping

criterion of twenty iterations per instance for the proposed approach.

Influence of the advanced strategies

Here, we conduct an experiment to analyze the impact of implementing the advanced strate-

gies described in Section 4.6 into the GRASP-VND procedure. In particular, we test the

influence of the incremental evaluation of TurboMQ (Section 4.6.1) and the reduction of
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Figure 5.3 Average deviation (%) of the best solution found by the algorithm at each
iteration to the best solution found after 100 iterations for each the instances of the
preliminary dataset.

the size of the neighborhood structures (Section 4.6.2). To analyze their impact, we execute

the algorithmic proposal with three different configurations: (i) without advanced strategies

in place; (ii) implementing the incremental evaluation of TurboMQ; and (iii) implementing

both the incremental evaluation and the reduction of the size of neighborhood structures.

For every variant of the algorithm, the neighborhood structures N1, N3, and N4 are explored

in that order, and the stopping criterion is set to a maximum of twenty iterations. Of course,

to ensure a fair comparison, every variant starts from the same set of initial solutions for

each instance.

In Table 5.3, we present the results obtained. For each variant, we report the average

quality of the best solutions found (Avg. MQ), the average deviation from the best solu-

tion found by each configuration to the best solution found by any of the configurations

(Avg. Dev.), the number of best solutions found (# Best), and the average computational

time (Avg. CPUt (s)). As can be observed, all variants achieved solutions of similar quality.
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Advanced strategies Avg. MQ Avg. Dev. # Best Avg. CPUt (s)

(i) None 15.9528 0.01% 12 147,632.44
(ii) IE 15.9528 0.01% 12 182.31
(iii) IE+RNS 15.9519 <0.01% 11 1.71

Table 5.3 Performance of the GRASP-VND procedure when implementing none of the
advanced strategies, denoted as “(i) None”, only the incremental evaluation, denoted
as “(ii) IE”, and both the incremental evaluation and the reduction of the size of the
neighborhood structures, “(iii) IE+RNS”.

However, the differences in terms of computational time are considerable. By implement-

ing the incremental evaluation of the objective function, the computational time is reduced

by three orders of magnitude, from 147,632.44 seconds on average to just 182.31 sec-

onds. That is, a reduction of 99.88% of the computational time is achieved. When both the

incremental evaluation and the reduction of the size of neighborhood structures are imple-

mented, the reduction of computational time is further improved, from 182.31 seconds to

just 1.71 seconds on average. That is, an additional reduction of 99.06% is achieved when

the second advanced strategy is also implemented.

Notice that there exists a slight difference in the quality of the solutions found by the

second and third configurations. This difference can be explained by the reduction in the

size of the neighborhood structures considered. Since a first improvement strategy is im-

plemented in the local search procedures within the VND component, the search patterns

differ when the neighborhood structures are different.

5.2.2 GVNS

In this section, we present the preliminary experiments devoted to analyze and configure the

GVNS method proposed in Section 4.3 for the FCB problem. To perform fair comparisons,

all experiments have been executed in the same computing environment: a Microsoft Win-

dows 10 Pro 10.0.19042 x64 operating system, with an AMD EPYC 7282 @ 2795 MHz

CPU with 8 cores and 8 GB RAM. Additionally, the proposed method has been imple-

mented in Java 17.0.1, using the Metaheuristic Optimization framewoRK (MORK) project

[90].
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For the preliminary experiments, 14 instances have been selected at random from the

whole dataset, following a similar distribution in terms of size. That is, for the reduced

dataset, 7 instances have been selected from the small group, 3 instances from the medium

group, 2 instances from the large group, and 2 instances from the very large category.

In particular, the instances included in the reduced dataset for the preliminary experiments

are the following: apache ant taskdef, gae plugin core, javacc, joe, jscatterplot, jtreeview,

jxlsreader, lwjgl-2.8.4, mod ssl, net-tools, nmh, regexp, star and wu-ftpd-1. The smallest

instance in the reduced dataset, regexp, has 14 vertices and 20 edges. The largest instance,

apache ant taskdef, contains 626 vertices and 2421 edges. The average number of vertices

is 166.00, with an average deviation of 181.65. The average number of edges is 876.79,

with an average deviation of 1002.60. The density of the instances is between 0.62% and

21.18%, with an average density of 6.68% and a standard deviation of 5.53%.

Contribution of each neighborhood structure

This first experiment is devoted to analyze the contribution of exploring each neighborhood

structure to the overall performance of the algorithm. To do so, we analyze the results

obtained by exploring each of the neighborhood structures in isolation within the GVNS

approach. In particular, we design four different variants of the GVNS procedure, each

exploring only one neighborhood structure (N1, N2, N3, N4, N5, or N6). Each method is

run for a hundred iterations per instance. Importantly, we ensure that the initial solution at

each iteration is the same for all four variants, in order to perform a fair comparison.

In Table 5.4, we report the results obtained. In particular, for each neighborhood struc-

ture, we report the category of the neighborhood (Category), as described in Section 4.5

(category 1 denotes neighborhoods that maintain the number of modules, category 2 de-

notes neighborhoods that increase the number of modules, and category 3 denotes neigh-

borhoods that reduce the number of modules); the average quality of the solutions found

(Avg. O.F.); and the average computing time consumed (Avg. CPUt (s)). In addition, we

include the average quality of the initial solutions for comparison purposes. As can be ob-

served, the exploration of the neighborhood structures N1 and N4 obtained the best results,

with an average solution quality of 0.6753 and 0.6824, respectively (let us remind the reader

that the objective is to minimize the value of the FCB objective function). Exploring the rest
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Neighborhood structure Category Avg. O.F. Avg. CPUt (s)

None - 0.9524 0.04
N1 1 0.6753 3.33
N2 1 0.8425 0.36
N3 2 0.8862 0.94
N6 2 0.9494 0.06
N4 3 0.6824 0.11
N5 3 0.8059 0.06

Table 5.4 Contribution of exploring different neighborhoods in isolation within the
GVNS procedure to the search process.

of the neighborhood structures resulted in a modest average quality. Regarding the com-

putational time, the exploration of the first neighborhood structure (N1) is the most costly,

with an average computing time of 3.33 seconds. Given the results obtained, we decided

to configure the algorithm to explore neighborhood structures N1 and N4. Moreover, since

the main idea of VNS is to explore multiple neighborhood structures, we decided to com-

plement the neighborhoods by configuring the algorithm to also explore N3, which is the

best neighborhood structure from the second category. Therefore, the algorithm is config-

ured to explore a neighborhood structure for each identified category, giving the algorithm

flexibility to reduce or increase the number of modules.

Order of the neighborhoods

In this section, we investigate which is the best ordering to explore the neighborhood struc-

tures. We study all possible orderings for the exploration of the neighborhood structures.

We configure six different variants of the GVNS algorithm, each exploring the neighbor-

hood structures in a different order. Again, to perform a fair comparison, we ensure that

every variant starts from the same initial solution for each instance. In Table 5.5, we report

the results obtained. For each possible order, we report the average quality of the best so-

lutions found by each variant (Avg. O.F.), the average deviation of the best solution found

by each variant from the best solution found by any variant (Avg. Dev. (%)), the number of

best solutions found (# Best), and the average computing time consumed (Avg. CPUt (s)).

As can be seen, although the differences in terms of quality are low, the last order (N4, N3,
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Order Avg. O.F. Avg. Dev. (%) # Best Avg. CPUt (s)

N1,N3,N4 0.6055 6.93 % 3 1.94
N1,N4,N3 0.6053 6.89 % 3 2.85
N3,N1,N4 0.6163 8.40 % 3 2.29
N3,N4,N1 0.6045 5.96 % 4 0.89
N4,N1,N3 0.6093 7.53 % 4 0.15
N4,N3,N1 0.5971 4.88 % 7 0.18

Table 5.5 Comparison of the results obtained with the GVNS algorithm with different
orderings of the proposed neighborhoods in the reduced dataset.

and N1) results in solutions of better quality, achieving a deviation of almost 4% less than

the worst ordering. Moreover, the time consumed is almost identical to that of the fastest

order tested. Due to these results, we decided to configure the GVNS algorithm to explore

the neighborhood structures in the following order: N4, N3, and N1. The results obtained in-

dicate that the ordering of neighborhood structures when multiple neighborhoods are used

is something worth exploring.

Comparison of shake procedures

The shake procedure within a GVNS method is devoted to introduce some diversification

into the search process. Within the shake procedure, a neighborhood structure is explored

stochastically. In this experiment, we analyze the performance of the GVNS method by

exploring different neighborhood structures in the shake procedure. In particular, we con-

figure three different variants of the algorithm. All variants explore the same set of neigh-

borhood structures within the VND component in the following order: N4, N3, and N1.

However, they differ in the neighborhood structure explored within the shake procedure:

the first variant explores the neighborhood structure N2, the second explores N6, and the

third explores N5.

Since the neighborhoods considered for the shake procedures are considerably differ-

ent (an operation in N2 affects two vertices, an operation in N5 affects all the vertices of

two modules, and an operation in N6 affects half of the vertices of a module), the magni-

tude of the perturbation performed in the solution, given the same value of k , might also
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Table 5.6 Comparison of different neighborhoods explored within the shake compo-
nent of the GVNS method. Each variant compared explores one of three neighborhood
structures (N2, N5, or N6) within the shake procedure and uses one of three values (10,
20, or 30) for the parameter kmax .

Avg. O.F. Avg. Dev. (%) # Best Avg. CPUt (s)
kmax 10 20 30 10 20 30 10 20 30 10 20 30
Shake1 0.57 0.56 0.56 0.37 0.15 0.15 12 13 13 3.79 4.86 6.31
Shake2 0.59 0.59 0.59 5.31 5.63 5.63 3 2 2 1.92 1.72 2.04
Shake3 0.57 0.57 0.57 1.41 1.73 1.73 5 3 3 8.29 18.56 31.46

be different. Therefore, for each variant, we test three different values for the parameter

kmax : 10, 20, and 30. Moreover, we adapt the size of the perturbation made by the shake

procedure to the size of the instance at hand. In particular, at each step of the algorithm,

the number of Swap moves performed by Shake1 is max(k ,(|V | ∗ k)/100). The num-

ber of Split moves performed by Shake2 is min(max(k ,(originalNumberOfModules ∗
k)/100),originalNumberOfModules). Finally, the number of Merge moves performed by

Shake3 is min(max(k ,(originalNumberOfModules ∗k)/100), originalNumberOfModules).

In Table 5.6, we present the results obtained in the comparison of different shake meth-

ods. For each variant tested and each value of kmax , we present the average quality of the

best solution obtained for each instance (Avg. O.F.), the average deviation from the best

solution found in the experiment (Avg. Dev. (%)), the number of instances for which the

best solution was obtained (# Best), and the average execution time consumed (Avg. CPUt

(s)). Note that the comparisons between the shake procedures were made independently

for each maximum value of kmax (i.e., the deviation and the best solutions were calculated

separately for kmax = 10, kmax = 20, and kmax = 30). It is worth mentioning that every

variant started from the same initial solution for each instance. As can be seen in the table,

the first variant, which explored N2 in the shake procedure, obtained the best results, out-

performing the other variants in terms of quality for each value of kmax tested. Therefore,

we configured the shake procedure within the GVNS method to explore the neighborhood

structure N2.
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Maximum value of k

Here, we perform an experiment devoted to analyze the performance of the GVNS method

with different values of the parameter kmax . Again, as in the previous experiment, the

GVNS method is configured to explore the neighborhoods N4, N3, and N1 within the VND

component, in this order. Moreover, the neighborhood structure N2 is explored within the

shake procedure. Then, the GVNS is configured to run for a maximum of 300 seconds for

each instance.

In Figure 5.4, we represent the average quality of the best solutions found by each

variant of the method at any time during the execution. As can be observed, six different

variants have been compared with the following values of kmax : 10, 20, 30, 40, 50, and

60. Depending on the time horizon considered, different values of kmax resulted in the

best performance. For instance, the method configured with kmax = 10 achieved the best

results in the first 50 seconds, while the method configured with kmax = 20 was the best

configuration in the time interval between 50 and 100 seconds. Finally, the method config-

ured with kmax = 30 was the best after 120 seconds. In this sense, the configuration of the

algorithm should be set according to the particular running context. Although kmax = 10

allowed the algorithm to improve solutions faster than other values, kmax = 30 achieved

better long-term performance. Therefore, we decided to set the value of kmax at 30 for the

configuration of the approach.

Stopping criterion

To find a balance between the quality of the solutions and the computational effort, it is nec-

essary to establish a stopping criterion in search algorithms. In this experiment, we analyze

different stopping criteria for the proposed GVNS method. We propose a stopping crite-

rion based on the number of iterations without improving the best solution found during

the search process. That is, the method is stopped after it gets stuck at a local optimum. In

particular, we compare four different values for the maximum number of iterations without

improvement: 5, 10, 15, and 20. The rest of the algorithm is configured with the parameters

selected in previous experiments: the shake procedure explores N2, kmax is set to 30, and

the VND approach explores the neighborhoods N4, N3, and N1, in that order.
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Figure 5.4 Comparison of the average quality of the best solution found for the in-
stances in the reduced dataset over time with different values of kmax .

In Table 5.7, we present the results obtained for each stopping criterion (Iterations with-

out improvement). As expected, a higher number of maximum iterations without improve-

ment allowed the method to spend more time exploring the search space. However, the

relative improvement obtained between consecutive configurations decreased as the num-

ber of maximum iterations increased. In fact, we barely observe an improvement in terms

of quality by increasing the number of maximum iterations without improving from 10 to

15, and the improvement is non-existent after increasing this number from 15 to 20. There-

fore, we decided to configure the stopping criterion of the proposed algorithm to stop the

search after 15 consecutive iterations without improving the best solution found.

Influence of the advanced strategies

In this experiment, we test the impact of the advanced strategies, presented in Section 4.6,

to the performance of the algorithm. For this experiment, we compare four variants of the

GVNS approach. The first variant does not implement any of the advanced strategies. The

second variant uses the efficient evaluation of the objective function, presented in Section



114 Chapter 5. Experiments

Table 5.7 Comparison of the results obtained by the GVNS method when configuring
the algorithm to stop after 5, 10, 15, or 20 iterations without improvement.

Iterations without improvement Avg. FCB Avg. dev. (%) # Best Avg. CPUt (s)
5 0.5509 0.27 % 10 30.42
10 0.5501 0.09 % 12 54.57
15 0.5496 0.00 % 14 87.07
20 0.5496 0.00 % 14 99.95

4.6.1. The third variant uses the reduction of the size of the neighborhood structures, pre-

sented in Section 4.6.2. Finally, the fourth variant uses both the efficient evaluation of the

objective function and the reduction of the size of the neighborhood structures. Again, the

rest of the parameters of the algorithm are configured as reported in previous experiments.

That is: the VND approach explores the neighborhoods N4, N3, and N1, in that order; the

shake procedure explores N2; kmax is set to 30; and the stopping criterion is set to 15 itera-

tions without improvement.

In Table 5.8, we present the results obtained for the comparison of the influence of dif-

ferent advanced strategies. For each variant, we report the average quality of the obtained

solutions (Avg. O.F.) and the average computing time used by the algorithm (Avg. CPUt

(s)). As can be seen, the use of any of the advanced strategies results in a considerable

reduction in computational effort of two orders of magnitude. In particular, the use of an

efficient evaluation (EE) reduced the time consumption of the algorithm from an average

of 89479.66 seconds to just 509.63 seconds, while the reduction of the size of the neigh-

borhoods (RN) reduced the time consumption from an average of 89479.66 seconds to just

250.59 seconds. When combining both strategies, the time consumption of the algorithm

is further reduced by two orders of magnitude to an average of 6.56 seconds. That is, four

orders of magnitude less than the time needed by the algorithm without any of the pro-

posed strategies. In light of the results obtained, we configure the GVNS method to use

both advanced strategies.

5.2.3 MO-GVNS

In this section, we perform some preliminary experiments devoted either to configure the

parameters or analyze the performance of the MO-GVNS method proposed in Section 4.4
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Table 5.8 Comparison of the performance of the GVNS method with different ad-
vanced strategies: None, efficient evaluation (EE), and reduction of the size of neigh-
borhoods (RN).

Advanced strategies Avg. O.F. Avg. CPUt (s)
None 0.5762 89479.66
EE 0.5762 509.63
RN 0.5703 250.59
EE+RN 0.5703 6.56

for the MCA and ECA problems. To perform the preliminary experiments, we use a subset

of the instances available in the dataset described in Section 5.1. In particular, ten instances

have been chosen from the aforementioned dataset: bison, bunch2, cia, crond, dot, forms,

jscatterplot, mailx, micq, and netkit-ftp. The average number of vertices is 45.60, with a

standard deviation of 16.87. The average number of dependencies is 196.60, with a standard

deviation of 74.36. The average density of the resulting MDGs of the instances is 11.57 %,

with a standard deviation of 5.31 %.

To analyze the quality of the sets of efficient points found by the algorithm, we use four

quality indicators commonly used in MOPs: Hypervolume (HV), Coverage (C), general-

ized spread (Spread), and Inverted Generational Distance plus (IGD+). Given a reference

front (R) and a set of efficient points (SE ), multi-objective quality indicators usually mea-

sure either the convergence (i.e., how close is SE to R) or the diversity (i.e., how well

distributed are the efficient points across the entire front) of the obtained set of efficient

points. The HV indicator, which is one of the most widely used indicators in the literature,

evaluates both the convergence and diversity. The higher its value, the better the front. In

contrast, the C and IGD+ indicators measure the convergence of the solution obtained to a

given reference front. In particular, C measures the percentage of efficient points in SE that

are dominated by the reference set R, while IGD+ measures the proximity of the efficient

points in SE to the efficient points in R. Finally, the Spread indicator measures the diversity

of the efficient points contained in SE . For C, IGD+, and Spread, the lower their value, the

better the quality of the front.

Note that for every quality indicator described above, a reference set is needed to eval-

uate a given solution. Ideally, the reference set would be the optimal Pareto front, but the
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optimal Pareto front is frequently unknown. In the following experiments, we use an ap-

proximate reference front, which is obtained by combining the Pareto fronts generated by

all the methods under comparison for each instance.

Comparison of shake procedures

In Section 4.4.2, we proposed four different shake procedures for the MO-GVNS approach.

Here, we perform an experiment devoted to compare the performance of the algorithm

when using each of the shake methods proposed. To perform the comparison, we configure

the algorithm as follows: the MO-VND component explores neighborhoods N1, N3, N2,

and N4, in that order; the stopping criterion is set to kmax = 5; in order to compare the

convergence of the proposed method over time with the different shake procedures, we do

not set a time limit in this experiment; finally, the objectives are tackled in the following

order within the MO-VND component: MQ, cohesion, coupling, number of modules and

number of isolated modules (in the case of MCA) / difference between the maximum and

minimum size of modules (in the case of ECA). Then, four variants of the MO-GVNS

method are compared, each one using a different shake procedure.

In Tables 5.9 and 5.10, we present the results obtained for both MCA and ECA, re-

spectively. For each shake procedure, we report the average computing time (CPUt (s)), the

average number of efficient points in the Pareto fronts obtained (PF size), the average hyper-

volume (HV), the average coverage (C), the average IGD+ (IGD+), and the average gener-

alized spread (Spread). As can be seen, the first shake procedure obtains solutions that have

better convergence to the approximate front, outperforming the other variants in three of the

four quality indicators compared. Although it consumes more time than the other variants,

this is due to the fact that the algorithm is able to explore a wider area of the search space

before reaching the stopping criterion. Therefore, we configure the MO-GVNS method to

use the first shake procedure, Shake 1, in the rest of the experiments.

Maximum value of k

In this section, we perform an experiment devoted to compare the performance of the algo-

rithm with different values of the parameter kmax . As a reminder, this parameter specifies
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Table 5.9 Comparison of different shake procedures for the MCA problem.

Shake CPUt (s) PF size HV C IGD+ Spread
Shake 1 21428.59 748.10 0.2903 0.1475 0.0024 0.5665
Shake 2 266.16 373.00 0.2687 0.6389 0.0202 0.5428
Shake 3 8722.78 671.00 0.2868 0.3585 0.0053 0.5755
Shake 4 15307.98 688.30 0.2888 0.2589 0.0034 0.5578

Table 5.10 Comparison of different shake procedures for the ECA problem.

Shake CPUt (s) PF size HV C IGD+ Spread
Shake 1 131874.37 1801.60 0.2667 0.1821 0.0024 0.5626
Shake 2 3626.04 989.30 0.2449 0.5905 0.0148 0.5313
Shake 3 39516.04 1587.90 0.2633 0.3293 0.0043 0.5583
Shake 4 101012.11 1758.50 0.2665 0.2181 0.0025 0.5546

the maximum value that the variable k can have during the search process. That is, the

magnitude of the perturbation to be made within the shake procedure. In particular, we

compare five different values for kmax : 1, 2, 3, 4, and 5. The rest of the configuration is the

same for each variant: the first shake procedure, Shake 1, is used; the MO-VND component

explores the neighborhoods N1, N3, N2, and N4, in this order; the stopping criterion is set

to kmax = 5; in order to compare the convergence of the proposed method over time with

the different shake procedures, we do not set a time limit in this experiment; finally, the

objectives are tackled in the following order within the MO-VND component: MQ, cohe-

sion, coupling, number of modules, and number of isolated modules (in the case of MCA)

/ difference between the maximum and minimum size of modules (in the case of ECA).

Then, four variants of the MO-GVNS method are compared, each using a different shake

procedure.

In Tables 5.11 and 5.12, we report the results obtained for MCA and ECA. For each

variant, we report the average computing time (CPUt (s)), the average number of efficient

points in the Pareto fronts obtained (PF size), the average hypervolume (HV), the average

coverage (C), the average IGD+ (IGD+), and the average generalized spread (Spread). In

addition to the aforementioned variants, we also introduce in the comparison the MO-VND

method used within the MO-GVNS to test the contribution of using a MO-GVNS schema
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Table 5.11 Comparison of different values of kmax for the MCA problem.

Method kmax CPUt (s) PF size HV C IGD+ Spread
MO-VND NA 10.94 291.09 0.2586 0.4092 0.0217 0.4835
MO-GVNS 1 5072.68 624.70 0.2853 0.2925 0.0034 0.5589
MO-GVNS 2 7919.36 664.30 0.2873 0.2049 0.0017 0.5605
MO-GVNS 3 12790.68 705.60 0.2888 0.1163 0.0006 0.5650
MO-GVNS 4 19008.96 737.80 0.2898 0.0336 0.0001 0.5657
MO-GVNS 5 21428.59 748.10 0.2903 0.0004 <0.0000 0.5665

Table 5.12 Comparison of different values of kmax for the ECA problem.

Method kmax CPUt (s) PF size HV C IGD+ Spread
MO-VND NA 26.42 435.90 0.2293 0.7394 0.0328 0.4566
MO-GVNS 1 22887.41 1528.40 0.2629 0.2682 0.0026 0.5534
MO-GVNS 2 42556.78 1641.70 0.2644 0.1675 0.0012 0.5590
MO-GVNS 3 69516.32 1702.60 0.2653 0.1040 0.0006 0.5584
MO-GVNS 4 111005.34 1773.80 0.2663 0.0316 0.0001 0.5597
MO-GVNS 5 131874.37 1801.60 0.2667 0.0025 <0.0000 0.5626

instead of just a MO-VND one. As can be observed, the combination of deterministic and

stochastic exploration performed by any of the MO-GVNS configurations improves the re-

sults obtained by the MO-VND, which only performs a deterministic exploration. Then,

the results obtained by the different MO-GVNS variants are similar. The higher the value

of kmax , the better the obtained solutions but the greater the computational effort. For both

problems, the configuration with kmax = 5 achieved the best results in terms of Hypervol-

ume, Coverage, and IGD+. However, the performance increase with respect to kmax = 4 is

the smallest in the comparison, so we did not try higher values of kmax . Normally, a larger

exploration usually achieves better results, but it is necessary to find a trade-off between

the quality of the solutions and the time consumed. Therefore, we selected kmax = 5 for the

following experiments, since it obtained the best results. However, in order to limit the run-

ning time of the algorithm, a combined stopping criteria based on the size of the instance

should be considered. We detail it later in Section 5.3.3.
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Table 5.13 Comparison of the results obtained with (Incremental) and without (Com-
plete) using the incremental evaluation strategy for the MCA problem.

Evaluation CPUt (s) PF size HV C IGD+ Spread
Complete 80457.50 748.10 0.2903 0.0000 0.0000 0.5665
Incremental 21428.59 748.10 0.2903 0.0000 0.0000 0.5665

Influence of the incremental evaluation

In this section, we conduct an experiment devoted to analyze the impact of using the effi-

cient evaluation strategy, described in Section 4.6.1, on the performance of the MO-GVNS

method. In particular, we configure two variants of the MO-GVNS method: one uses the

advanced strategy and the other does not. Again, the rest of the configuration is the same

for both variants compared: the first shake procedure, Shake 1, is used; the MO-VND com-

ponent explores the neighborhoods N1, N3, N2, and N4, in this order; the stopping criterion

is set to kmax = 5; in order to compare the convergence of the proposed method over time

with the different shake procedures, we do not set a time limit in this experiment; finally,

the objectives are tackled in the following order within the MO-VND component: MQ,

cohesion, coupling, number of modules, and number of isolated modules (in the case of

MCA) / difference between the maximum and minimum size of modules (in the case of

ECA).

In Tables 5.13 and 5.14, we present the results obtained for MCA and ECA. As can be

seen, the quality of the solutions obtained is the same for both variants. However, the use

of the incremental evaluation considerably reduces the computational time consumed by

the MO-GVNS method. In particular, when using the incremental evaluation, the compu-

tational time is reduced by 73.37% in the case of MCA and by 67.23% in the case of ECA.

Therefore, we include the efficient evaluation strategy in the configuration of the proposed

MO-GVNS algorithm.

Influence of the reduction of the size of neighborhood structures

In this section, we conduct an experiment devoted to analyze the impact of using the sec-

ond advanced strategy, described in Section 4.6.2, on the performance of the MO-GVNS
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Table 5.14 Comparison of the results obtained with (Incremental) and without (Com-
plete) using the incremental evaluation strategy for the ECA problem.

Evaluation CPUt (s) PF size HV C IGD+ Spread
Complete 402415.48 1801.60 0.2667 0.0000 0.0000 0.5626
Incremental 131874.37 1801.60 0.2667 0.0000 0.0000 0.5626

Table 5.15 Comparison of the results obtained with (Reduced) and without (Complete)
reducing the size of the neighborhoods for the MCA problem.

Size of neighborhoods CPUt (s) PF size HV C IGD+ Spread
Complete 67193.25 1216.20 0.3025 0.0869 0.0014 0.5551
Reduced 21428.59 748.10 0.2903 0.2885 0.0111 0.5665

method. This strategy consists of reducing the size of neighborhood structures. In par-

ticular, we configure two variants of the MO-GVNS method: one that uses the advanced

strategy and the other that does not. Again, the rest of the configuration is the same for both

variants compared: the first shake procedure, Shake 1, is used; the MO-VND component

explores the neighborhoods N1, N3, N2, and N4, in this order; the stopping criterion is set

to kmax = 5; in order to compare the convergence of the proposed method over time with

the different shake procedures, we do not set a time limit in this experiment; finally, the

objectives are tackled in the following order within the MO-VND component: MQ, cohe-

sion, coupling, number of modules, and number of isolated modules (in the case of MCA)

/ difference between the maximum and minimum size of modules (in the case of ECA).

In Tables 5.15 and 5.16, we present the results obtained for both MCA and ECA. As

can be seen, there are small differences in the quality of the solutions found by each variant.

This can be partially explained by the difference in the size of the neighborhoods explored.

Since the local search procedures within the MO-GVNS follow a first improvement ap-

proach, a different size of the neighborhood structures leads to different search patterns.

Regarding the computational effort, the use of the advanced strategy results in a notable

reduction of the computing time. In particular, the use of the strategy results in a reduction

of 68.11% and 45.13% of the time consumed for MCA and ECA, respectively. Therefore,

in light of the results obtained, we configure the MO-GVNS algorithm to use the reduction

of the size of the neighborhood structures.
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Table 5.16 Comparison of the results obtained with (Reduced) and without (Complete)
reducing the size of the neighborhoods for the ECA problem.

Size of neighborhoods CPUt (s) PF size HV C IGD+ Spread
Complete 240329.02 2288.50 0.2737 0.1161 0.0017 0.5504
Reduced 131874.37 1801.60 0.2667 0.2951 0.0078 0.5626

Contribution of the objectives as guiding functions

Given the nature of the proposed algorithm, the number of objectives considered as guid-

ing functions directly impacts the computational cost of the algorithm, since a new VND

is created for each of the objectives of the problem within the MO-VND component. A

guiding function is an objective function that is used to guide the search process. Normally,

the objective functions used to evaluate the quality of solutions are used as guiding func-

tions. However, there does not need to be an equivalence between both sets. Therefore,

it is interesting to analyze the impact of using the objectives proposed in both the MCA

and the ECA problems as guiding functions. Notice that in this case, we are not interested

in reducing the number of objectives of the problem, but rather the number of objectives

considered during the search process as guiding functions.

Recently, Yuan et al. [140] proposed a methodology to reduce the number of objec-

tives in MOPs. In particular, they proposed three different methods. Given a set of non-

dominated solutions, obtained by considering a particular set of objective functions, the

proposed methods calculate an error rate for each possible subset of objectives. Usually,

assuming that the objective functions are in conflict, the fewer the objectives considered,

the lesser the number of non-dominated efficient points in the evaluated set (and the higher

the error rate). The goal then is to find a trade-off between the error rate and the number

of objectives considered (both to be minimized). To calculate the error rate, the authors

proposed three different measures, δ , η , and γ , based on the dominance structure of the

front and the correlation between the objectives.

In this experiment, we analyze the error rates of all possible subsets of objectives for

the MCA and ECA problems. For the calculation of the error rates, we use the Pareto fronts

obtained by the proposed MO-GVNS for the preliminary dataset. In Tables 5.17 and 5.18,

we present the results obtained for both the MCA and ECA problems, respectively. For each
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Table 5.17 Comparison of the average error rates obtained by removing some of the
considered objectives in the MCA problem for the evaluation of the solutions.

Considered objectives Number of objectives Avg. error rate
1,2,3,4,5 5 <0.00%
1,3,4,5 4 <0.00%
2,3,4,5 4 <0.00%
1,2,3,4 4 21.97%
1,3,4 3 21.97%
2,3,4 3 21.97%
1,2,4,5 4 47.02%
1,4,5 3 47.02%
2,4,5 3 47.02%

Table 5.18 Comparison of the average error rates obtained by removing some of the
considered objectives in the ECA problem for the evaluation of the solutions.

Considered objectives Number of objectives Avg. error rate
1,2,3,4,6 5 0.00%
1,3,4,6 4 0.00%
2,3,4,6 4 0.00%
1,2,4,6 4 56.47%
1,4,6 3 56.47%
2,4,6 3 56.47%
1,2,3,4 4 62.89%
1,3,4 3 62.89%
2,3,4 3 62.89%

subset of objectives, we report the mean error rate, averaged among the set of instances, and

the three error measures δ , η , and γ . The different combinations of objectives studied are

sorted in ascending order depending on the average error rate obtained. Moreover, for the

sake of brevity, we have cropped the table, showing only the 10 best subsets of objectives

(i.e., those with the smallest error rates). As can be observed in Tables 5.17 and 5.18,

removing either coupling or cohesion results in an error rate close to 0% for both problems.

This can be explained because coupling and cohesion are antagonist objectives (coupling

can be calculated as the number of edges minus cohesion). Therefore, they do not seem to

be in conflict.
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Table 5.19 Comparison of the results obtained by considering different sets of objec-
tives as guiding functions for the MCA problem.

Guiding functions CPUt (s) PF size HV C IGD+ Spread
All 21428.59 748.10 0.2903 0.2066 0.0029 0.5665
All \ {Coupling} 17268.77 720.80 0.2893 0.2272 0.0028 0.5658
All \ {Cohesion} 17243.87 720.80 0.2893 0.2272 0.0028 0.5658
All \ {Isolated} 17210.76 705.50 0.2867 0.2748 0.0044 0.5706
All \ {Coupling, Isolated} 16750.98 703.70 0.2866 0.2673 0.0041 0.5777
All \ {Cohesion, Isolated} 16937.45 703.70 0.2866 0.2673 0.0041 0.5777
All \ {MQ} 6428.05 325.10 0.2644 0.4510 0.0288 0.5220
All \ {Coupling, MQ} 3131.02 287.60 0.2595 0.4859 0.0339 0.5005
All \ {Cohesion, MQ} 3085.88 287.60 0.2595 0.4859 0.0339 0.5005

As mentioned above, the goal is not to reduce the objectives used to evaluate the so-

lutions, but the number of objectives used as guiding functions during the search process.

Here, we compare the results obtained by the MO-GVNS method when considering only

a subset of the objectives. In particular, we consider the subsets of objectives that obtained

the lowest error rates in Tables 5.17 and 5.18. Notice that, regardless of the subset of ob-

jectives considered as guiding functions, all objectives are used to evaluate the solutions

obtained and the inclusion of efficient points in the Pareto front. In Tables 5.19 and 5.20,

we report the results obtained. As can be observed, considering only a subset of objectives

as guiding functions results in worse solutions in terms of quality. However, the difference

is sometimes very small (e.g., in the third decimal point). For example, not considering

coupling, cohesion, and/or the number of isolated modules for the MCA problem results in

an almost identical value for the hypervolume indicator. On the contrary, the computational

time consumed is reduced up to 21.83%. In the case of MQ, not considering it as a guiding

function results in a greater reduction in the quality of the solutions. In the case of ECA,

the results are similar. When not considering the coupling or the size difference between

the smallest and largest modules as guiding functions, the method achieves a reduction of

up to 32.10% in computational time consumed with just a small detriment to the quality of

the solutions.

Given the results obtained, to find a balance between quality and computational effort,

we configure our algorithm not to consider coupling and the number of isolated modules
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Table 5.20 Comparison of the results obtained by considering different sets of objec-
tives as guiding functions for the ECA problem.

Guiding functions CPUt (s) PF size HV C IGD+ Spread
All 131874.37 1801.60 0.2667 0.2035 0.0027 0.5626
All \ {Coupling} 99374.69 1779.70 0.2666 0.2340 0.0021 0.5608
All \ {Cohesion} 98563.21 1779.70 0.2666 0.2340 0.0021 0.5608
All \ {Diff} 89541.81 1506.10 0.2533 0.2897 0.0097 0.5520
All \ {Coupling, Diff} 68402.46 1489.90 0.2531 0.3140 0.0089 0.5551
All \ {Cohesion, Diff} 64126.70 1489.90 0.2531 0.3140 0.0089 0.5551
All \ {MQ} 24589.92 531.80 0.2377 0.4281 0.0471 0.5599
All \ {Coupling, MQ} 18796.65 486.10 0.2347 0.4153 0.0486 0.5423
All \ {Cohesion, MQ} 19078.99 486.10 0.2347 0.4153 0.0486 0.5423

(in the case of MCA) and coupling and the difference in size between the smallest and

largest modules (in the case of ECA) as guiding functions during the search process.

5.3 Comparison with the state of the art

In this section, we compare the performance of the best configurations of the proposed

algorithmic procedures with the performance of the best methods available in the literature

for each problem studied. In particular, the GRASP-VND method is compared with the

state of the art in Section 5.3.1, the GVNS method is compared with the state of the art in

Section 5.3.2, and the MO-GVNS method is compared with the state of the art in Section

5.3.3.

5.3.1 Comparison of the GRASP-VND procedure with the best meth-
ods for the MQ problem

Here, we compare the performance of the proposed GRASP-VND procedure with the per-

formance of the best method in the literature for the MQ problem, a LNS algorithm [104].

The GRASP-VND procedure has been configured in Section 5.2.1. In summary: the value

of α is set at random in each iteration; neighborhood structures N1, N3, and N4 are ex-

plored in that order; and a stopping criterion of a maximum of 20 iterations per instance
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is established. Moreover, the procedure implements two advanced strategies: an incremen-

tal evaluation of the objective function and a reduction in the size of the neighborhood

structures. Regarding the LNS procedure, we have executed the code as provided by the

original authors1. Both algorithms have been implemented with Java OpenJDK 15.0.2 and

executed in the same environment, a Microsoft Windows 10 Pro 10.0.19042 x64 with an

AMD EPYC 7282 @ 2795 MHz with 8 cores and 8 GB RAM.

In Table 5.21, we report the results obtained in the comparison. For each method, we

report the average quality of the solutions found (Avg. O.F.), the average deviation from

the best solution found by each method to the best solution found by any method (Avg.

Dev. (%)), the number of best solutions found (# Best), and the average computing time

(Avg. CPUt (s)). Moreover, we divided the results depending on the size of the instances,

reporting the results for small, medium, large, and very large instances separately. Finally,

the results for all instances are provided for an overall comparison. As can be observed,

the GRASP-VND procedure consistently outperforms the LNS methods in terms of av-

erage quality, average deviation, and number of best solutions found. That is, GRASP-

VND achieves better solutions than LNS. Regarding the computation time consumed by

each method, LNS is faster when tackling small, medium, and large instances. However,

GRASP-VND is faster when tackling very large instances. Overall, GRASP-VND is faster

on average than LNS.

Finally, we performed a Wilcoxon’s Signed Rank test over the obtained results to an-

alyze their significance. We applied the two-tailed version of the test with a significance

level of 0.01. The null hypothesis is that there is no difference in the quality of the re-

sults obtained, while the alternative hypothesis states that the solutions obtained by one of

the algorithms are significantly better than the solutions obtained by the other algorithm.

Since the test results in a p-value smaller than 0.01, the null hypothesis can be rejected.

Thus, according to the test, the difference in quality of the results obtained by the GRASP-

VND procedure and the results obtained by the LNS method is statistically significant with

p <0.01.

1The original code as published by the authors is available at the following URL:
https://bitbucket.org/marlonmoncores/unirio_lns_cms [104]

https://bitbucket.org/marlonmoncores/unirio_lns_cms
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Category Method Avg. O.F. Avg. Dev. (%) # Best Avg. CPUt (s)

Small
GRASP-VND 3.4757 0.00% 64 0.09
LNS [104] 3.4603 0.68% 35 0.02

Medium
GRASP-VND 12.9489 <0.01% 27 0.40
LNS [104] 12.9270 0.26% 10 0.33

Large
GRASP-VND 24.9043 0.02% 14 28.20
LNS [104] 24.8868 0.12% 5 4.95

Very large
GRASP-VND 63.1797 <0.01% 11 235.77
LNS [104] 63.1029 0.15% 2 338.87

All
GRASP-VND 15.0611 <0.01% 116 28.95
LNS [104] 15.0374 0.44% 52 36.33

Table 5.21 Comparison of the results obtained by the proposed GRASP-VND proce-
dure and the state-of-the-art LNS method [104] for the MQ problem.

5.3.2 Comparison of the GVNS procedure with the best methods for
the FCB problem

In this section, we compare the performance of the proposed GVNS method with the best

algorithm known in the literature for the FCB problem: the HGA proposed by Lifeng et al.

[105]. The comparison is made using a dataset of 124 real software instances, proposed in

the literature [104], as described in Section 5.1. Let us summarize the configuration of the

GVNS approach as described in the preliminary experiments: the shake procedure explores

N2; the parameter kmax is set to 30; the VND is configured to explore the neighborhoods

N4, N3, and N1, in that order; the stopping criterion is set to 15 consecutive iterations

without improving the best solution found; and the algorithm incorporates two advanced

strategies: the efficient evaluation of the objective function, introduced in Section 4.6.1, and

the reduction of the size of the neighborhood structures, introduced in Section 4.6.2.

All algorithms compared were executed in the same computing environment: a Mi-

crosoft Windows 10 Pro 10.0.19042 x64 operating system, with an AMD EPYC 7282 @

2795 MHz CPU with 8 cores and 8 GB RAM. The proposed method was implemented in

Java 17.0.1 and using the Metaheuristic Optimization framewoRK (MORK) project [90].

Unfortunately, the original implementation of the HGA algorithm is not publicly avail-

able. Instead, we implemented it as described by the original authors [105]. In particular,
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we implemented it twice: in Java 17.0.1, the same platform used to implement the GVNS

approach; and in Matlab (R2021b Update 1), where the authors of the HGA originally

implemented it. Interestingly, we found that our Matlab implementation was more efficient

than our Java implementation, since it took advantage of the fast calculation of matrix oper-

ations available on the platform, which is an important issue in the design of the algorithm.

Therefore, in the comparison, we used our Matlab implementation.

In Table 5.22, we report the results obtained. We present the results obtained for all in-

stances (All (124)) and divided into groups according to the size of the instances, following

the same distribution originally given by Marlon et al. [104]: instances with fewer than 79

vertices (Small), instances with fewer than 190 vertices (Medium), instances with fewer

than 400 vertices (Large), and instances with more than 400 vertices (Very large). For each

group of instances and algorithmic approach compared, we report the average quality of

the solutions found (Avg. O.F.), the average deviation from the best solution found in this

experiment for each instance by any of the methods compared (Avg. Dev.), the number of

instances for which the obtained solution was better or equal to the solution obtained by

the other method (# Best), and the average execution time consumed (Avg. CPUt (s)). As

can be observed, the GVNS approach obtained solutions of better quality, with less than a

0.01 % of deviation to the best solution found for each instance. In contrast, the solutions

found by the HGA had an average deviation of 32.96 %. Moreover, the GVNS obtained the

best results for all the instances, whereas the HGA method only obtained the best solutions

for 12 of the smallest instances in the dataset. Finally, it can be seen that GVNS was three

orders of magnitude faster than HGA. According to the Wilcoxon’s signed rank test, the

results are statistically significant with p <0.001.

5.3.3 Comparison of the MO-GVNS procedure with the best methods
for the MCA and ECA problems

In this section, we compare the performance of the proposed MO-GVNS method with

the best algorithms known in the literature for the MCA and ECA problems: a TA-ABC

recently proposed to tackle the MCA and ECA problems [8]; the NSGA-III [31]; the

Modified Pareto Envelop-Based Selection Algorithm (PESA2) [27]; and the Multi-Objective
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Size of instances Method Avg. O.F. Avg. Dev. (%) # Best Avg. CPUt (s)

Small (64)
GVNS 0.6448 0.00% 64 4.29
HGA [105] 0.7234 14.10% 12 27.56

Medium (29)
GVNS 0.5312 0.00% 29 23.89
HGA [105] 0.7215 46.67% 0 538.31

Large (18)
GVNS 0.5075 0.00% 18 103.73
HGA [105] 0.7555 54.05% 0 7,629.85

Very large (13)
GVNS 0.4901 0.00% 13 1084.09
HGA [105] 0.7842 65.97% 0 254,173.61

All (124)
GVNS 0.5821 0.00% 124 136.51
HGA [105] 0.7340 32.96% 12 27,894.91

Table 5.22 Comparison of the results obtained with the method proposed in this re-
search, GVNS, and the best known algorithm, HGA [105] for the FCB problem.

Evolutionary Algorithm based on Decomposition (MOEA/D) [147]. The comparison is

made using a dataset of 124 real software instances, proposed in the literature [104], as

described in Section 5.1. The configuration of the MO-GVNS approach, as described in

the preliminary experiments, is the following: the first shake procedure (Shake 1) is used;

the MO-VND component explores the neighborhoods N1, N3, N2, and N4, in this order;

the stopping criterion is set to kmax = 5; the method stops if it has reached a time of four

times the number of vertices of the instance at hand (tmax = 4 · |V |); the objectives are tack-

led in the following order within the MO-VND component for both MCA and ECA: MQ,

cohesion, and the number of modules. Finally, the algorithm incorporates two advanced

strategies: the efficient evaluation of the objective functions, introduced in Section 4.6.1,

and the reduction of the size of the neighborhood structures, introduced in Section 4.6.2.

In Table 5.23 and Table 5.24, we report the results obtained for both MCA and ECA,

respectively. As can be observed, the MO-GVNS method is able to obtain better solutions

than the other methods according to all the indicators reported. That is, the solutions ob-

tained by the MO-GVNS method achieve better convergence to the approximate reference

set and better distribution along the objective space. For some indicators, such as HV, C,

and IGD+, the difference is an order of magnitude. Moreover, the MO-GVNS method is the
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Method CPUt (s) PF size HV C IGD+ Spread

MO-GVNS 311.18 507.60 0.2213 0.0264 0.0443 0.5175
MOEA/D [147] 336.43 300.00 0.0982 0.5254 0.2184 0.6844
NSGA-III [31] 596.41 479.56 0.0937 0.2719 0.2587 0.5891
PESA2 [27] 643.16 99.63 0.0604 0.7335 0.3209 0.6994
TA-ABC [8] 1037.31 97.70 0.0277 0.2145 0.3991 0.8026

Table 5.23 Comparison of the proposed MO-GVNS with several state-of-the-art meth-
ods for the MCA problem.

Method CPUt (s) PF size HV C IGD+ Spread

MO-GVNS 311.16 520.64 0.1939 0.0122 0.0180 0.5614
MOEA/D [147] 345.06 300.00 0.0724 0.8010 0.3312 0.6032
NSGA-III [31] 745.81 209.56 0.0889 0.5918 0.3690 0.6777
PESA2 [27] 408.69 89.59 0.0443 0.7386 0.4777 0.7599
TA-ABC [8] 914.74 30.66 0.0284 0.3051 0.5132 0.8932

Table 5.24 Comparison of the proposed MO-GVNS with several state-of-the-art meth-
ods for the ECA problem.

fastest one, with an average of 311.18 seconds per instance, and the returned Pareto front

contains an order of magnitude more efficient points than the methods under comparison.
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Conclusions and future work

In this doctoral thesis, several problems proposed in the literature for the SMCP have been

studied. For each problem, we have proposed different heuristic algorithms and favorably

compared them with the best methods available in the state of the art. In Section 6.1, we

present the conclusions obtained in this doctoral thesis. Then, in Section 6.2, we outline

some open lines of future work that have been identified. Finally, in Section 6.3, we describe

the contributions made during the development of this doctoral thesis.

6.1 Conclusions

In the area of SBSE, the use of population-based algorithms is greatly extended and has

been shown to be efficient in this context. On the contrary, trajectory-based methods have

been little explored. Nevertheless, the use of trajectory-based algorithms, such as GRASP

or VNS, has been shown to be efficient for the SMCP. By leveraging some domain knowl-

edge in the design, trajectory-based algorithms can be used to obtain high-quality solutions

in very short computational times. In this doctoral thesis, three trajectory-based algorithms

have been proposed and compared favorably with the state-of-the-art methods available

for the SMCP, studying different problems. In particular, a GRASP-VND has been pro-

posed for the TurboMQ problem, a GVNS has been proposed for the FCB problem, and a

MO-GVNS has been proposed for the MCA and ECA problems.

The favorable results obtained support the hypothesis enunciated in this doctoral thesis.

131
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That is, that trajectory-based metaheuristics can obtain better results than population-based

methods for the optimization of the structure of software systems in terms of maintain-

ability. Furthermore, due to the general nature of the proposed strategies, we believe that

they can be adapted to improve the results of other problems, especially those related to

the SMCP. Moreover, several objectives were formulated to guide the research towards

the enunciated hypothesis. All the objectives formulated in this doctoral thesis have been

achieved. A review of the relevant literature is discussed in Chapter 3 of this doctoral thesis.

A definition of the problem and the representation of solutions is given in Chapter 2. The

dataset collected and used for the experiments is described in Section 5.1 and in Appendix

A. The reference state-of-the-art algorithms have been implemented and are included in the

comparisons presented in Section 5.3. The algorithmic procedures proposed in this doctoral

thesis are presented in Chapter 4. The configuration and behavior of these methods are de-

scribed in Section 5.2. The results and their analysis are presented in Section 5.3. Finally,

the contributions made during the development of this doctoral thesis are described in Sec-

tion 6.3. In summary, it seems that all the partial objectives have been achieved, and that

the results of this research have been of interest to the scientific community, since they have

been disseminated in different scientific venues.

Regarding the proposal of advanced strategies for the SMCP, four contributions of this

doctoral thesis can be outlined. An important contribution of this doctoral thesis is the

study and categorization of neighborhood structures for the SMCP problems. We realized

that neighborhood structures can be classified into one of three categories: neighborhoods

defined by operations that do not alter the number of modules; neighborhoods defined by

operations that increase the number of modules; and neighborhoods defined by operations

that reduce the number of modules. By including at least one neighborhood structure from

each category in the design of the algorithms, enough flexibility is ensured for the method

to successfully improve the initial solutions.

The second contribution made in this doctoral thesis in relation to advanced strategies is

the efficient evaluation of the quality metrics studied. Due to the nature of trajectory-based

algorithms, a partial evaluation of only the modified structure of the solution results in a

great reduction of the computing time. In this doctoral thesis, an efficient evaluation has

been proposed for each objective function studied. Moreover, the impact of these strategies
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has been shown to be very beneficial in the preliminary experiments.

The third of the contributions made in relation to advanced strategies is the reduction

in the size of neighborhood structures. There exist many moves in a search process that do

not improve a solution. In problems where the search space is very large, it is important to

identify promising areas to accelerate the search process. As shown in preliminary exper-

iments, the computing time of the proposed algorithms is greatly reduced by identifying

promising regions of the search space.

Finally, the fourth contribution in relation to advanced strategies is the analysis of guid-

ing functions. Frequently, the objective functions of an optimization problem are used as

guiding functions. However, no correspondence is necessary between the objective and the

guiding functions. Moreover, in MOPs, where several objective functions are considered,

using only a subset of them as guiding functions might result in a reduction of the com-

puting time with little loss of quality in the solutions obtained. In this doctoral thesis, we

have leveraged three methods originally proposed in the literature to reduce the number of

objective functions in MOPs to reduce the number of guiding functions. It should be noted

that the number of objective functions used to evaluate the solution is not reduced, but only

the guiding functions used during the search process.

In this doctoral thesis, we have studied four different variants of the SMCP: TurboMQ,

FCB, MCA, and ECA. The first two problems studied are mono-objective. These objective

functions have been largely studied in the literature and regarded as good quality metrics

to guide the optimization of the modularity of software projects. However, some concerns

have been raised regarding their ability to capture the different preferences of software

developers. Therefore, the study of software quality optimization through a multi-objective

optimization approach seems more suitable, since it allows the stakeholders to introduce

their subjective experience in the process. In particular, it allows developers to select an

organization among a set of high-quality solutions according to their personal preferences.

6.2 Future work

As mentioned above, trajectory-based algorithms have been little explored in the SBSE

literature in contrast to population-based approaches. Accordingly, in this doctoral thesis,
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we have focused on the design of trajectory-based methods. However, we believe that a

combination of both types of metaheuristic frameworks for the SMCP is worth consid-

ering. In this sense, trajectory-based methods could be used to ensure the intensification

role, additionally involving some domain knowledge in the design to perform an efficient

search. Similarly, exact methods have been little explored. Although the NP nature of the

problem makes it difficult to apply exact methods in practice, their combination with search

algorithms in matheuristic approaches is worth studying.

In relation to the study of other algorithmic approaches for the SMCP, it would be in-

teresting to analyze the performance of state-of-the-art algorithms that have been proposed

for different problems in the SMCP literature. This analysis could help identify common

parts and differences between different quality metrics, in addition to possible unexplored

transference of search strategies between different variants of the SMCP.

An additional line of future work is the integration of the algorithms proposed in the

SDLC of software projects. The small computing time shown by the proposed methods

allows them to be easily incorporated into integrated development environments. In this

context, the proposed methods could help software developers by providing them with

suggestions in real time. This would help developers improve the software quality of their

projects, either by implementing the suggested remodularizations or by learning from them.

Moreover, these methods could be implemented in software repositories as part of a quality

gate to ensure that a quality threshold of the contributed software is maintained.

In order to integrate the proposed approaches into the SDLC of software projects, we

believe that there is still work to be done in the search for the optimal set of objectives that

reflect the needs of software developers. Specifically, a balance needs to be maintained be-

tween the improvement of the quality of the code and the magnitude of the reorganization.

This balance is necessary to avoid losing experience and familiarity of software developers

with the project at hand. In this sense, it would be beneficial to introduce the minimization

of the number of changes to perform as part of a multi-objective approach.

Finally, following the directions given in the related literature [16], we believe that

SBSE can be used effectively as a learning tool to investigate common concepts in SE.

Accordingly, we consider that the proposed methods, by providing better solutions than

the best available algorithms in the state of the art, can allow software practitioners and
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researchers to thoughtfully inspect the concept of modularity and the objective functions

studied.

6.3 Contributions

During the development of this doctoral thesis, several publications and presentations have

been made in scientific journals and venues. In Figure 6.1, we present a chronological sum-

mary of the most relevant events related to this doctoral thesis. Each event is highlighted

with a different color, according to the following classification: the publication of research

articles in journals ranked in the Journal Citation Reports (JCR)1 or the Scientific Journal

Rankings (SJR)2 are highlighted in red ( ); presentations at conferences and workshops

are highlighted in green ( ); awards are highlighted in yellow ( ); research stays are high-

lighted in purple ( ); and events marking the beginning or end of this doctoral thesis are

highlighted in dark gray ( ).

As can be seen, the development of this doctoral thesis started in November 2020,

when the doctoral candidate joined the Ph.D. program of the Universidad Rey Juan Carlos

(URJC) and also joined the Group for Research in Algorithms For Optimization (GRAFO).

Then, in 2021, some preliminary findings were presented in the IV Workshop GRAFO and

in the national conference XIV Congreso Español de Metaheurı́sticas, Algoritmos Evolu-

tivos y Bioinspirados (MAEB) [142], which was held in Málaga, Spain. The research work

presented in the latter was awarded the best research article of the conference in the student

category. As a result, the URJC Excellence Award was also obtained later that year.

In 2022, part of the research was presented at the V Workshop GRAFO and at the

14th Metaheuristics International Conference (MIC), held in Ortigia-Syracuse, Italy. The

latter was published in Lecture Notes in Computer Science (LNCS), ranked in the third

quartile (Q3) in the SJR [144]. Moreover, a research article was published in the Journal

of Systems and Software, ranked in the second quartile (Q2) in JCR, titled: “An efficient

heuristic algorithm for software module clustering optimization” [141]. At the end of the

1https://jcr.clarivate.com/jcr/home
2https://www.scimagojr.com/journalrank.php

https://jcr.clarivate.com/jcr/home
https://www.scimagojr.com/journalrank.php
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Nov 2020

Jul 2021

IV Workshop GRAFO

Presentation about the Software Module 
Clustering Problem (SMCP).

Enrollment on the Ph.D. program

Joined Universidad Rey Juan Carlos (URJC) 
and the research group GRAFO.

Sep 2021

Award to the best student’s article

Received award to the best student’s research 
article at MAEB 2021.

Jun 2022

V Workshop GRAFO

Presentation about the SMCP. 

Jul 2022

International Conference

Presentation about the SMCP at the 14th 
Metaheuristics International Conference (MIC 
2022), in Italy. 

Aug 2022

JCR Article

Publication of a research article in the Journal of 
Systems and Software (Q2), titled: 
An efficient heuristic algorithm for software 
module clustering optimization.

Dec 2021

URJC Excellence Award

Awarded the certificate of excellence by the 
URJC.

2021

2022

National conference

Presentation about the SMCP at the XIV 

Congreso Español de Metaheurísticas,Algoritmos

Evolutivos y Bioinspirados (MAEB 2021)

continued on the next page

Figure 6.1 Timeline of the most relevant events associated with this doctoral thesis.
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International Research Stay

Research stay at the Université d’Angers, France, 
with Professor Jin-Kao Hao.

Nov 2022
III Winter School Workshop by Red HEUR

Presentation about the SMCP at the III Winter 
School organized by Red HEUR.

Feb 2023

SJR Article

Publication of a research article in Lecture Notes 
in Computer Science.

May 2023

SJR Article

Publication of a research article in Lecture Notes 
in Computer Science.

I Workshop OptiMAD

Presentation about the SMCP. 

Nov 2023

National conference

Presentation about the SMCP at the XL Congreso
Nacional de Estadística e Investigación Operativa.

2023

Mar 2023

Apr 2023

2024

Feb 2024

Deposit of the doctoral thesis

Deposit of the doctoral thesis for its review by 
the Academic Committee and any interested
doctor.

Mar 2024

Defense of the doctoral thesis

Public act of defense of the doctoral thesis.

VI Workshop GRAFO

Presentation about the SMCP. 

Apr 2024

JCR Article

Publication of a research article in Computers & 

Operations Research (Q2), titled: 

General variable neighborhood search for the 

optimization of software quality. 

Figure 6.1 Timeline of the most relevant events associated with this doctoral thesis.
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year, a presentation was made at the III Winter School Workshop, organized by Red HEUR,

in Burgos, Spain.

In 2023, a research article was published in LNCS [143]. In addition, an international

research stay was conducted at the Université d’Angers, in Angers, France. During this

three-month stay, the doctoral candidate had the honor of collaborating with Professor Jin-

Kao Hao. Finally, during 2023, three presentations were made. The first was made at the

I Workshop OptiMAD; the second was made at the VI Workshop GRAFO; and the third

was made at the national conference XL Congreso Nacional de Estadı́stica e Investigación

Operativa, held in Elche, Spain.

As can be observed, 2024 marks the end period of this doctoral thesis. During the

first semester of the year, a research article was published in the journal Computers &

Operations Research, ranked in the second quartile (Q2) in JCR, titled: “General Variable

Neighborhood Search for the optimization of software quality”. After that, the manuscript

of this doctoral thesis was deposited and the doctoral thesis was defended.

In summary, during the development of this doctoral thesis, several milestones have

been achieved, including the following:

• Articles published in journals indexed in the JCR:

1. J. Yuste, A. Duarte, and E. G. Pardo. An efficient heuristic algorithm for soft-

ware module clustering optimization. Journal of Systems and Software, 190:

111349, 2022.

2. J. Yuste, E. G. Pardo, and A. Duarte. General Variable Neighborhood Search for

the optimization of software quality. Computers & Operations Research, page

106584, 2024.

3. J. Yuste, E. G. Pardo, A. Duarte, and J. Hao. Multi-Objective General Variable

Neighborhood Search for Software Maintainability Optimization. Engineering

Applications of Artificial Intelligence, UNDER REVIEW.
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• Articles published in journals indexed in the SJR:

1. J. Yuste, E. G. Pardo, and A. Duarte. Variable neighborhood descent for soft-

ware quality optimization. In Metaheuristics International Conference, pages

531–536. Springer, 2022.

2. J. Yuste, E. G. Pardo, and A. Duarte. Multi-objective variable neighborhood

search for improving software modularity. In International Conference on Vari-

able Neighborhood Search, pages 58–68. Springer, 2022.

• Presentations at international conferences:

1. J. Yuste, E. G. Pardo, and A. Duarte. Variable neighborhood descent for soft-

ware quality optimization. In 14th Metaheuristics International Conference,

Ortigia-Syracuse, Italy. 2022, July 11-14.

• Presentations at national conferences:

1. J. Yuste, E. G. Pardo, and A. Duarte. Heurı́sticas para la mejora de la manteni-

bilidad de proyectos software. In XIX Conferencia de la Asociación Española

para la Inteligencia Artificial (CAEPIA 20/21), pages 581–586, 2021.

2. J. Yuste, E. G. Pardo, A. Duarte, and J. Hao. Optimización multiobjetivo en

problemas de calidad de software. In XL Congreso Nacional de Estadı́stica e

Investigación Operativa, Elche, Spain. 2023, November 7-10.

• Presentations at workshops:

1. J. Yuste, E. G. Pardo, and A. Duarte. Software Module Clustering Problem. In

IV Workshop GRAFO, Móstoles, Spain. 2021, July 14-15.

2. J. Yuste, E. G. Pardo, and A. Duarte. Software Module Clustering Problem. In

V Workshop GRAFO, Móstoles, Spain. 2022, June 2-3.

3. J. Yuste, E. G. Pardo, A. Duarte, and J. Hao. Optimización de la calidad de

los sistemas software: una aproximación multiobjetivo. In I OptiMad, Madrid,

Spain. 2023, May 25.
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4. J. Yuste, E. G. Pardo, and A. Duarte. Software Module Clustering Problem. In

VI Workshop GRAFO, Móstoles, Spain. 2023, May 30-31.

• International research stay:

1. Conducted at the Université d’Angers, in Angers, France, under the supervision

of Professor Jin-Kao Hao. An article was written as a result of this stay in

collaboration with Professor Jin-Kao Hao, which is currently under review in a

scientific journal.
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Appendix A

Dataset

In this section, we detail the instances contained in the dataset used in the experiments

of all the problems studied this doctoral thesis. The dataset is made up of 124 real soft-

ware instances proposed by previous works [104]. These instances are of varying sizes,

having between 2 and 1161 vertices and between 2 and 11722 edges. On average, these in-

stances have 156.37 vertices (with a standard deviation of 216.72) and 948.79 edges (with

a standard deviation of 1751.86). In the work where the dataset was proposed for the first

time, the instances were divided into four different categories according to their size: 64

small instances (up to 68 vertices), 29 medium instances (from 74 to 182 vertices), 18 large

instances (from 190 to 377 vertices), and 13 very large instances (from 413 to 1161 ver-

tices). Following this classification, we present the instances in four different tables: small

instances are presented in Table A.1, medium instances are presented in Table A.2, large

instances are presented in Table A.3, and very large instances are presented in Table A.4.

In each table, we report the number of vertices, the number of edges, and the density of all

instances.

Table A.1 Small instances contained in the dataset. These instances have a number of
vertices between 2 and 68.

Instance |V | |E | Density

squid 2 2 100.00%

small 6 5 16.67%

143
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compiler 13 32 20.51%

random 13 30 19.23%

regexp 14 20 10.99%

jstl 15 20 9.52%

lab4 15 18 8.57%

netkit-ping 15 15 7.14%

nss ldap 15 16 7.62%

nos 16 52 21.67%

lslayout 17 43 15.81%

boxer 18 29 9.48%

netkit-tftpd 18 23 7.52%

sharutils 19 36 10.53%

mtunis 20 57 15.00%

spdb 21 17 4.05%

xtell 22 57 12.34%

bunch 23 62 12.25%

ispell 24 103 18.66%

netkit-inetd 24 25 4.53%

nanoxml 25 64 10.67%

ciald 26 64 9.85%

jodamoney 26 102 15.69%

Modulizer 26 66 10.15%

bootp 27 75 10.68%

jxlsreader 27 73 10.40%

sysklogd-1 28 74 9.79%

telnetd 28 81 10.71%

crond 29 112 13.79%

netkit-ftp 29 95 11.70%

rcs 29 163 20.07%

seemp 30 61 7.01%

dhcpd-2 31 122 13.12%
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cyrus-sasl 32 100 10.08%

tcsh 32 105 10.58%

micq 33 156 14.77%

apache zip 36 86 6.83%

star 36 89 7.06%

bison 37 179 13.44%

cia 38 185 13.16%

stunnel 38 97 6.90%

minicom 40 257 16.47%

mailx 41 331 20.18%

dot 42 255 14.81%

screen 42 292 16.96%

slang 45 242 12.22%

slrn 45 323 16.31%

net-tools 48 183 8.11%

graph10up49 49 1650 70.15%

wu-ftpd-1 50 230 9.39%

joe 51 540 21.18%

hw 53 51 1.85%

imapd-1 53 298 10.81%

wu-ftpd-3 54 278 9.71%

udt-java 56 227 7.37%

javaocr 58 155 4.69%

dhcpd-1 59 571 16.69%

icecast 60 650 18.36%

pfcda base 60 197 5.56%

servletapi 61 131 3.58%

php 62 191 5.05%

bunch2 65 151 3.63%

forms 68 270 5.93%
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Table A.2 Medium instances contained in the dataset. These instances have a number
of vertices between 74 and 182.

Instance |V | |E | Density

jscatterplot 74 232 4.29%

jxlscore 79 330 5.36%

elm-2 81 683 10.54%

jfluid 81 315 4.86%

grappa 86 295 4.04%

elm-1 88 941 12.29%

gnupg 88 601 7.85%

inn 90 624 7.79%

bash 92 901 10.76%

jpassword 96 361 3.96%

bitchx 97 1653 17.75%

junit 99 276 2.84%

xntp 111 729 5.97%

acqCIGNA 114 179 1.39%

bunch 2 116 364 2.73%

exim 118 1255 9.09%

xmldom 118 209 1.51%

cia++ 124 369 2.42%

tinytim 129 564 3.42%

mod ssl 135 1095 6.05%

jkaryoscope 136 460 2.51%

ncurses 138 682 3.61%

gae plugin core 139 375 1.95%

lynx 148 1745 8.02%

javacc 153 722 3.10%

lucent 153 103 0.44%

JavaGeom 171 1445 4.97%
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incl 174 360 1.20%

jdendogram 177 583 1.87%

xmlapi 182 413 1.25%

Table A.3 Large instances contained in the dataset. These instances have a number of
vertices between 190 and 377.

Instance |V | |E | Density

jmetal 190 1137 3.17%

graph10up193 193 9190 24.80%

dom4j 195 930 2.46%

nmh 198 3262 8.36%

pdf renderer 199 629 1.60%

Jung graph model 207 603 1.41%

jung visualization 208 919 2.13%

jconsole 220 859 1.78%

pfcda swing 248 885 1.44%

jml-1.0b4 267 1745 2.46%

jpassword2 269 1348 1.87%

notelab-full 293 1349 1.58%

Poormans CMS 301 1118 1.24%

log4j 305 1078 1.16%

jtreeview 320 1057 1.04%

bunchall 324 1339 1.28%

JACE 338 1524 1.34%

javaws 377 1403 0.99%

Table A.4 Very large instances contained in the dataset. These instances have a number
of vertices between 413 and 1161.
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Instance |V | |E | Density

swing 413 1513 0.89%

lwjgl-2.8.4 453 1976 0.97%

res cobol 470 7163 3.25%

ping libc 481 2854 1.24%

y base 556 2510 0.81%

krb5 558 3793 1.22%

apache ant taskdef 626 2421 0.62%

itextpdf 650 3898 0.92%

apache lucene core 738 3726 0.69%

eclipse jgit 909 5452 0.66%

linux 916 11722 1.40%

apache ant 1085 5329 0.45%

ylayout 1161 5770 0.43%
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Resumen en castellano

Los sistemas software son un elemento crucial del dı́a a dı́a en las sociedades modernas. La

informática ha revolucionado el mundo en las últimas décadas y es previsible que continúe

haciéndolo en el futuro. A medida que los sistemas software se vuelven más sofisticados y

complejos, comprenderlos se vuelve cada vez más difı́cil. Además, los sistemas software

están normalmente en continua evolución, sufriendo modificaciones para adaptarse a las

necesidades de los usuarios, añadir nuevas funcionalidades, corregir fallos, etc. Estas con-

tinuas modificaciones hacen que los sistemas se deterioren con el tiempo, propiciando la

aparición de errores en el código. Según estudios recientes, los sistemas software de baja

calidad provocaron costes de hasta 2,08 trillones de dólares en 2020, contando únicamente

los Estados Unidos de América [77]. Más aun, los errores de código pueden resultar en

situaciones catastróficas, como ocurrió en el lanzamiento del satélite Ariane 5 en 1996

[135], el aterrizaje de Mars Polar Lander en 1999 [5] o el error en Starliner en 2019 [92].

Search-Based Software Engineering (SBSE) es un área de investigación cuyo objetivo

es resolver algunos de los problemas citados anteriormente. En particular, este campo de

investigación se centra en la resolución de tareas de Ingenierı́a del Software (SE, del inglés

Software Engineering) abordándolas como problemas de optimización. En este sentido, el

objetivo en SBSE es mejorar la calidad de los sistemas software.

En esta tesis doctoral, se estudia el Software Module Clustering Problem (SMCP), una

familia de problemas de optimización enmarcada en el área de SBSE. En particular, se es-

tudian cuatro problemas distintos del SMCP y se proponen tres algoritmos heurı́sticos para

149
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su resolución. Además, se proponen cuatro estrategias avanzadas para mejorar la eficiencia

de los algoritmos propuestos.

La estructura de este apéndice es la siguiente. En la Sección B.1, se presenta la moti-

vación del problema. En la Sección B.2, se describe la metodologı́a seguida. En la Sección

B.3, se formulan la hipótesis y los objetivos de esta tesis doctoral. En la Sección B.5, se

presenta un resumen del estado del arte del problema. En la Sección B.6, se describen los

métodos heurı́sticos propuestos para resolver los problemas estudiados, ası́ como las es-

trategias avanzadas diseñadas. En la Sección B.7, se recogen los resultados obtenidos en la

comparación de las propuestas algorı́tmicas con los algoritmos de referencia en el estado

del arte. Finalmente, en la Sección B.8, se recogen las conclusiones y los trabajos futuros

identificados.

B.1 Motivación

El desarrollo software es una tarea compleja. Según un informe reciente sobre proyectos

software desarrollados entre 2011 y 2015, tan solo el 56% de los proyectos software estu-

diados obtuvieron la satisfacción del cliente [1]. Estos resultados, además, fueron especial-

mente preocupantes para los proyectos de mayor tamaño, de los que solo entre el 6% y el

11% se completaron con éxito. Según el informe, “la complejidad es una de las principales

razones para el fracaso de los proyectos” [1].

El ciclo de vida de un proyecto software contiene todas las actividades realizadas para

crear o mantener el sistema desde que se concibe hasta que se descataloga [61]. Para rea-

lizar código de calidad, es aconsejable seguir una aproximación estructurada, conocida

como Ciclo de Vida del Desarrollo Software (SDLC, del inglés Software Development

Life-Cycle). Un SDLC es un marco de trabajo donde se definen las etapas, actividades

y procesos relacionados con el ciclo de vida de un proyecto software, su ordenación y

los criterios de transición entre los mismos [61]. En un SDLC, se pueden diferenciar dos

etapas de manera muy generalizada: el desarrollo del software y su mantenimiento. En la

etapa de desarrollo, los requisitos se transforman en acciones que crean un elemento del

sistema [61]. El mantenimiento software, por otra parte, se centra en proveer al sistema

de un soporte efectivo para que continúe dando servicio [61]. Esto incluye modificaciones
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para corregir o prevenir fallos, mejorar el sistema o adaptarlo a cambios en el entorno [13].

Aunque a menudo se estima que la fase de mantenimiento es menos importante que la fase

de desarrollo [34, 82], lo cierto es que el mantenimiento es la fase más costosa de un SDLC,

llegando a alcanzar el 80% de los costes totales del proyecto [22]. Además, la mayor parte

de los esfuerzos en esta fase se dedican a la comprensión del código ya existente [103].

Según la International Organization for Standardization (ISO), la calidad de un sis-

tema software se define por ocho atributos: funcionalidad, fiabilidad, eficiencia, usabilidad,

seguridad, compatibilidad, mantenibilidad y portabilidad [64]. En este contexto, la man-

tenibilidad se define como “el grado de efectividad y eficiencia con el que un producto o

sistema puede modificarse” [64]. Del mismo modo, la mantenibilidad de los proyectos se

define por cinco caracterı́sticas relacionadas entre sı́: modularidad, reusabilidad, analizabi-

lidad, modificabilidad y testabilidad. Dado que la mantenibilidad de un sistema afecta a la

facilidad con la que se podrá modificar a lo largo del tiempo, es un aspecto crucial para el

éxito a largo plazo de los sistemas software [42].

Uno de los principales problemas a la hora de mantener un sistema es comprenderlo

[23, 103]. Históricamente, el software se ha dividido en componentes para facilitar la com-

prensión y modificación de cada componente de manera independiente. No obstante, con-

forme los sistemas han ido creciendo, ha surgido la necesidad de organizar estos compo-

nentes en módulos o paquetes [6]. Esta organización, sin embargo, no se realiza de manera

aleatoria, sino teniendo en cuenta el concepto de modularidad. En este contexto, la modu-

laridad se define como el conjunto de “atributos software que proveen a la estructura de

componentes altamente independientes” [63]. En una estructura modular, los componentes

en un mismo módulo están muy relacionados entre sı́ (alta cohesión) y poco relacionados

con los componentes de otros módulos (bajo acoplamiento). Dependiendo del contexto, es

posible encontrar diferentes nociones de lo que es un componente software (un fichero, una

clase, un paquete, etc.). Del mismo modo, en algunos contextos, los términos “módulo” y

“componente” se emplean como sinónimos, ya que su distinción aún no está estandarizada

[63]. En este documento utilizaremos el término “componente” para referirnos a elemen-

tos individuales (ficheros y clases) y el término “módulo” para referirnos a colecciones de

componentes (paquetes o carpetas).

Debido a las relaciones entre modularidad y mantenibilidad con la calidad software y
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el coste de los sistemas, es de vital importancia para el éxito a largo plazo de los proyectos

software organizar el código siguiendo una estructura modular. En este contexto, el SMCP

es un problema de optimización que busca la optimización de la modularidad software. La

principal motivación de esta tesis doctoral es reducir los costes de mantenimiento y mejorar

la calidad software mediante el diseño y la implementación de estrategias heurı́sticas para

el SMCP.

B.2 Metodologı́a

El primer uso recogido del término “investigación” data de 1577, con el significado de

“búsqueda diligente o cuidadosa” [2]. En general, la investigación se puede definir como

el “trabajo sistemático y creativo realizado para incrementar el conocimiento [...] y para

encontrar nuevas aplicaciones del conocimiento disponible” [106]. De cualquier modo, la

investigación ha de realizarse siguiendo una metodologı́a que permita realizar un trabajo

sistemático. En este sentido, existen varias actividades comúnmente aceptadas como parte

de un proceso de investigación: observación, formulación de hipótesis, experimentación,

análisis de los datos y extracción de conclusiones. Primero, se realiza una observación, cuyo

comportamiento se intenta explicar mediante la formulación de una hipótesis. Después, se

diseñan y realizan experimentos para validar o rechazar la hipótesis formulada. Una vez

que se han realizado los experimentos, es necesario analizar los datos obtenidos y extraer

conclusiones. Normalmente, este proceso es iterativo. El análisis de los datos puede dar

lugar a nuevas observaciones y/o hipótesis.

Aunque la metodologı́a de investigación es bien conocida en general, algunos detalles

difieren dependiendo del área de estudio. En el área de investigación heurı́stica, dado que es

un área experimental, el proceso cientı́fico se puede extender como se muestra en la Figura

B.1. Como se puede ver en el diagrama de actividad mostrado, se presentan diez actividades

distintas. En primer lugar, se realiza un estudio del problema y de sus caracterı́sticas (paso

1). Después, se realiza un estudio de los algoritmos e instancias de referencia en el estado

del arte (paso 2). A continuación, se formula una hipótesis (paso 3). Seguidamente, se

diseña (paso 4) e implementa una propuesta algorı́tmica (paso 5) para apoyar o refutar la

hipótesis. A continuación, se realiza un proceso de experimentación con los algoritmos
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implementados. Normalmente, los experimentos computacionales con algoritmos se rea-

lizan para analizar el comportamiento del algoritmo o comparar su rendimiento con otros

algoritmos de referencia para el mismo problema [14]. El primer tipo de experimentación

se realiza en el paso 6, mientras que el segundo se realiza en el paso 8. En ambos casos,

tras haber realizado los experimentos, se analizan los datos obtenidos (pasos 7 y 9). Estos

análisis pueden llevar a la reformulación de la hipótesis o a la modificación del diseño del

algoritmo, dando lugar a un proceso iterativo. Finalmente, los resultados obtenidos deben

ser publicados para compartir los hallazgos relevantes con la comunidad cientı́fica (paso

10). Además, dada la naturaleza experimental del área, el artı́culo cientı́fico debe contener

detalles suficientes para permitir la reproducibilidad de los experimentos.

B.3 Hipótesis y objetivos

En esta tesis doctoral, el objetivo es estudiar el SMCP para diseñar e implementar algorit-

mos de optimización que mejoren los resultados obtenidos por los métodos del estado del

arte para la mejora de la mantenibilidad de proyectos software. En este sentido, se formula

la siguiente hipótesis:

“La estructura de los proyectos software se puede mejorar mediante el modelado de la

mantenibilidad software como un problema de optimización y la implementación de meta-

heurı́sticas trayectoriales, que pueden obtener soluciones de mayor calidad que las meta-

heurı́sticas poblacionales actualmente presentes en el estado del arte mediante el diseño

de estrategias eficientes”.

Para alcanzar el objetivo principal, se enuncian los siguientes objetivos parciales:

• Revisar la literatura del SMCP. Es necesario estudiar la literatura disponible sobre

el SMCP para: (1) entender el problema y su motivación; (2) identificar lı́neas de

investigación en el área; (3) identificar los algoritmos y las instancias de referencia;

y (4) estudiar las diferentes ventajas e inconvenientes de las estrategias propuestas

para el problema.

• Estudiar el modelado del problema. Un análisis de las caracterı́sticas del problema
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Figura B.1 Diagrama de actividad UML [62] de la metodologı́a seguida durante el
desarrollo de esta tesis doctoral.
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y la representación de la estructura de los sistemas software puede propiciar el diseño

de algoritmos y estrategias eficientes para su resolución.

• Recoger un conjunto relevante de instancias para el problema. Para poder vali-

dar experimentalmente las propuestas algorı́tmicas y compararlas con los métodos

del estado del arte, es importante utilizar un conjunto de instancias aceptadas por la

comunidad para el problema. Idealmente, las instancias han de ser reales.

• Implementar los algoritmos de referencia del estado del arte. Para poder validar

las propuestas algorı́tmicas, es necesario compararlas con los métodos del estado del

arte. Además, para realizar una comparación justa y adecuada, es necesario que todos

los algoritmos comparados se ejecuten en el mismo entorno. Por ello, es necesario

implementar los algoritmos del estado del arte.

• Diseñar e implementar métodos basados en metaheurı́sticas trayectoriales. Es-

tos algoritmos de optimización se diseñarán teniendo en cuenta las caracterı́sticas del

problema y sus variantes.

• Parametrizar los algoritmos propuestos. En el diseño de los algoritmos, se debe

mantener un equilibrio entre la generalización del método para abordar distintos

problemas y la especificidad de su diseño para el problema estudiado. Normalmente,

los algoritmos heurı́sticos incluyen ciertos parámetros que pueden ser ajustados para

modificar su comportamiento. Estos parámetros, si existen, deben ser analizados y

ajustados utilizando un conjunto de instancias representativo de las instancias del

problema y distinto (en la medida de lo posible) del conjunto de instancias utilizado

en la comparación con otros algoritmos.

• Analizar el comportamiento de los métodos propuestos. El comportamiento de los

algoritmos propuestos debe ser analizado para estudiar su velocidad de convergencia,

su habilidad para escapar de óptimos locales, su robustez, la contribución de los

distintos componentes del método a los resultados obtenidos, etc.

• Comparar los algoritmos propuestos con los mejores métodos disponibles en el
estado del arte. Esta comparación debe realizarse empleando un conjunto relevante
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de instancias. Además, debe ser reproducible y realizarse sobre el mismo entorno

computacional.

• Analizar los resultados obtenidos. Los datos obtenidos de la experimentación deben

ser analizados para validar las hipótesis formuladas. Este análisis, además, puede des-

embocar en experimentos adicionales o mejoras en el diseño de los algoritmos.

• Documentar el proceso y extraer conclusiones. El proceso debe ser documen-

tado en detalle para comunicar los hallazgos encontrados a la comunidad cientı́fica.

Además, el documento resultante tiene que permitir la reproducibilidad de los expe-

rimentos.

• Publicar los resultados tras un proceso de revisión por pares. Los resultados

obtenidos deben enviarse a conferencias y/o revistas relevantes para someterse a un

proceso de revisión por pares y, si son aceptables, ser publicados.

B.4 Definición del problema

En los problemas de SMCP, los proyectos software se representan normalmente mediante

un grafo de dependencias (MDG, del inglés Module Dependency Graph). Un MDG es un

grafo dirigido con pesos que representa las dependencias entre distintos componentes de

un sistema software. Formalmente, un MDG se define como un grafo G = (V ,E ,W ),

donde V representa el conjunto de vértices del grafo, E representa el conjunto de aristas

entre vértices y W representa los pesos de las aristas en E . En este contexto, los vértices

representan componentes del sistema software, mientras que las aristas representan depen-

dencias entre componentes y los pesos representan la fuerza de esas dependencias. En la

Figura B.2, se muestra un MDG de un proyecto software ficticio. Como puede observarse,

este proyecto tiene diez componentes. El componente uno, representado por el vértice v1,

tiene dos dependencias con el componente dos, representado por el vértice v2. Por ello,

la arista que conecta v1 con v2 tiene asociado un peso igual a dos. De manera similar, se

representan las dependencias del resto de componentes del sistema.

Dado un MDG, una solución para un problema de SMCP se representa mediante una
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Figura B.2 Representación gráfica de la estructura de un proyecto software en un
MDG. Por facilidad de lectura, solo se representan los pesos mayores que uno.

agrupación de los vértices del grafo en módulos. Formalmente, una solución es un con-

junto M = {m1,m2, ...,mn} de subconjuntos disjuntos y no vacı́os de vértices en V ,

donde n representa el número de módulos y 1 ≤ n ≤ |V |. En la Figura B.3 se repre-

senta una posible solución para el MDG representado en la Figura B.2. Como puede ob-

servarse, los componentes se han agrupado en tres módulos: m1, m2, y m3. En particular,

m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3} y m3 = {v5,v9,v10}.

En la literatura, se han propuesto distintas variantes del SMCP que estudian diferentes

métricas de calidad. En las siguientes secciones, se describen algunos de los problemas más

relevantes para esta tesis doctoral. En particular, Modularization Quality se presenta en la

Sección 2.1, Function of Complexity Balance se presenta en la Sección 2.2, Maximizing

Cluster Approach se presenta en la Sección 2.3 y Equal-size Cluster Approach se presenta

en la Sección 2.4.
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Figura B.3 Representación gráfica de una posible solución para un proyecto software
ficticio presentado en la Figura B.2, donde los vértices se han dividido en tres módulos:
m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3}, and m3 = {v5,v9,v10}.

B.4.1 Modularization Quality

Modularization Quality (MQ) es una familia de métricas de calidad propuestas para los

problemas del SMCP por primera vez en 1998. En este conjunto de métricas, la calidad de

una estructura se mide como un balance entre la cohesión y el acoplamiento de la misma.

En particular, se busca maximizar la cohesión y minimizar el acoplamiento. Aunque existen

varias funciones objetivo, en esta tesis doctoral nos centramos en la métrica más extendida

de la familia MQ: TurboMQ [95]. De aquı́ en adelante, utilizaremos los términos MQ y

TurboMQ indistintamente para referirnos a TurboMQ.

En primer lugar, para calcular el valor de MQ de una solución, es necesario definir los

conjuntos de aristas entre vértices pertenecientes a distintos módulos (aristas intermódulo)

y los conjuntos de aristas entre vértices pertenecientes a un mismo módulo (aristas in-

tramódulo). Formalmente, las aristas intermódulo entre un par de módulos mi y mj se

definen de la siguiente manera:
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Inter(mi ,mj ) = {(u,v) ∈ E : u ∈ mi ∧v ∈ mj

⋃
(u,v) ∈ E : u ∈ mj ∧v ∈ mi}. (B.1)

De manera similar, las aristas intramódulo de un módulo mi se definen de la siguiente

manera:

Intra(mi) = {{u,v} ∈ E : u,v ∈ mi}. (B.2)

Una vez definidos los términos de aristas intra- e intermódulo, podemos describir cómo

se calcula el valor de MQ de una solución. Para ello, primero es necesario calcular el factor

de modularidad de cada módulo de la solución. Este factor, denominado CF , se calcula

para cada módulo mi de la siguiente manera:

CFi =


0 si µi = 0

2µi
2µi+∑

n
j=1
j ̸=i

(εi ,j )
si µi ̸= 0. (B.3)

donde εi ,j representa la suma de los pesos de las aristas que conectan vértices pertenecientes

al módulos mi con vértices pertenecientes al módulo mj y µi representa la suma de los pe-

sos de las aristas entre vértices que pertenecen al módulo mi . Formalmente:

εi ,j = ∑
(u,v) ∈ Inter(mi ,mj )

w(u,v). (B.4)

µi = ∑
u,v ∈ Intra(mi )

w(u,v). (B.5)

A continuación, el valor de MQ de una solución se calcula como la suma de los factores de

modularidad de los módulos en la solución. Formalmente:

TurboMQ =
n

∑
i=1

CFi . (B.6)

Como puede observarse, la complejidad de calcular el valor de MQ para una solución

es O(|E |). Por último, cabe destacar que el objetivo es maximizar el valor de MQ.
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𝜀1,2 =  + 4 = 5

𝜀1,3 =  +  = 4
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 ⋅ 4

 ⋅ 4 + 5 + 4
=

8

 7

𝑇𝑢𝑟𝑏𝑜𝑀𝑄 = 𝐶𝐹1 + 𝐶𝐹2 + 𝐶𝐹3
= 0.47 + 0.57 + 0.44 =  .48

𝜇2 = 4
𝜀2,1 =  + 4 = 5

𝜀2,3 =  
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 ⋅ 4 + 5 +  
=

8
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𝜇3 =  
𝜀3,1 =  +  = 4

𝜀3,2 =  

𝐶𝐹3 =
 ⋅  

 ⋅  + 4 +  
=
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9

Figura B.4 Cálculo del valor de TurboMQ para una solución para el proyecto presen-
tado en la Figura B.2 con tres módulos: m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3}, and
m3 = {v5,v9,v10}.

En la Figura B.4, se representa la evaluación del valor de MQ de la solución repre-

sentada en la Figura B.3. Al lado de cada módulo, se recogen los valores de intraconectivi-

dad e interconectividad del módulo en cuestión, ası́ como su factor de modularidad. Para

el módulo m1, µ1 = 4, ya que existen cuatro aristas con peso igual a uno que conectan

vértices pertenecientes al módulo m1 ((v4,v6),(v4,v7),(v7,v8) y (v8,v7)). De manera

similar, ε1,2 = 5, ya que existe una arista con peso igual a uno que conecta un vértice

perteneciente al módulo m1 con un vértice perteneciente al módulo m2 ((v4,v1)) y una

arista con peso igual a cuatro que conecta un vértice perteneciente al módulo m1 con un

vértice perteneciente al módulo m2 ((v4,v3)). Por ello, CF1 = 2·4
2·4+5+4 = 8

17 = 0.47. El

resto de los factores de modularidad se calculan de manera similar. Finalmente, la calidad

de la solución se calcula como TurboMQ = CF1 +CF2 +CF3 = 1.48.
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B.4.2 Function of Complexity Balance

El problema FCB (del inglés Function of Complexity Balance) se propuso como una al-

ternativa a MQ con el objetivo de reducir el número de módulos aislados (módulos con un

solo vértice o componente) [105]. Formalmente, el valor de FCB de una solución se calcula

de la siguiente manera:

FCB =

C + max
mi ∈ M

(µi)

T
, (B.7)

donde C representa el acoplamiento de la solución y µi representa la cohesión del módulo

mi . En particular, C se calcula de la siguiente manera:

C =
k−1

∑
i=1

k

∑
j=i+1

εi ,j . (B.8)

Por otro lado, el valor µi se calcula como se ha descrito en la Ecuación B.5. Finalmente,

T se calcula como la suma de los pesos de todas las aristas de la solución. Como puede

observarse, el valor de T es una constante independiente de la organización del grafo en

módulos. Formalmente,

T = ∑
e=(u,v) ∈ E

wu,v . (B.9)

Esta constante se utiliza para normalizar el valor de FCB entre cero y uno, permitiendo la

comparación de la calidad de soluciones para distintos proyectos software. En el caso de

FCB, el objetivo es minimizar el valor de la métrica.

En la Figura B.5, se representa la evaluación de FCB para la solución presentada en la

Figura B.3. Al lado de cada módulo, se representa su cohesión. Para el módulo m1, µ1 = 4,

ya que existen cuatro aristas con peso igual a uno que conectan vértices pertenecientes al

módulo m1 ((v4,v6),(v4,v7),(v7,v8) y (v8,v7)). El acoplamiento del proyecto (C ) es

igual a diez, ya que existen tres aristas con peso igual a uno que unen vértices pertenecientes

a módulos distintos ((v4,v1),(v5,v3) y (v5,v6)), una con peso igual a cuatro ((v4,v3))

y otra con peso igual a tres ((v8,v9)). La constante T es igual a veinte, la suma de los
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𝜇1 = 4

1. 𝐶 =  + 4 +  +  +  =  0

2. 𝑇 = 𝜇1 + 𝜇2 + 𝜇3 + 𝐶 = 4 + 4 +  +  0 =  0

3. 𝐹𝐶𝐵 =
𝐶+max 𝜇𝑖

𝑇
=

𝐶+𝜇1

𝑇
=

10+4

20
= 0.7

𝜇2 = 4

𝜇3 =  

Figura B.5 Cálculo del valor de FCB para una solución para el proyecto presentado
en la Figura B.2 con tres módulos: m1 = {v4,v6,v7,v8}, m2 = {v1,v2,v3} y m3 =
{v5,v9,v10}.

pesos de todas las aristas. Finalmente, la calidad de la solución se puede calcular como

FCB = C+max (µi )
T = 14

20 = 0.7.

B.4.3 Maximizing Cluster Approach

Cuando el principio de máxima cohesión y mı́nimo acoplamiento se lleva al extremo, la

mejor solución posible consiste en agrupar todos los componentes en el mismo módulo.

Sin embargo, una solución como la descrita es trivial y no deseable. En la práctica, existen
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otros objetivos que deben considerarse simultáneamente para la mejora de la mantenibili-

dad de un proyecto software. En 2011, Praditwong et al. plantearon dos problemas multiob-

jetivo para mejorar la mantenibilidad de proyectos software [121]. Esta propuesta perseguı́a

dos ventajas: (1) diferentes objetivos en conflicto reflejan de manera más acertada los de-

seos de los desarrolladores de software y (2) proporcionar un conjunto de soluciones no

dominadas a los decisores permite la introducción de la experencia y preferencias de los

desarrolladores en el proceso.

El primer problema que plantearon se conoce como MCA (del inglés Maximizing Clus-

ter Approach). Este problema considera cinco objetivos:

1. Acoplamiento. El primer objetivo consiste en la minimización del acoplamiento del

sistema (véase la Ecuación B.8).

2. Cohesión. El segundo objetivo consiste en la maximización de la cohesión de la

arquitectura. Formalmente, la cohesión se calcula como:

Cohesion =
n

∑
i=1

µi , (B.10)

donde µi se calcula como se describe en la ecuación B.5.

3. TurboMQ. El tercer objetivo consiste en la maximización de MQ (véase la Ecuación

2.9).

4. Número de módulos. El cuarto objetivo consiste en la maximización del número de

módulos. Este valor es igual a n.

5. Número de módulos aislados. Finalmente, el quinto objetivo considera la mini-

mización del número de módulos aislados (módulos que contienen un solo vértice).

En la Figura B.6, se representa la evaluación de los objetivos de MCA para la solución

representada en la Figura B.3. Al lado de cada módulo, se detalla su cohesión. Para el

módulo m1, µ1 = 4, ya que existen cuatro aristas con peso igual a uno que conectan vértices

pertenecientes a m1 ((v4,v6),(v4,v7),(v7,v8) y (v8,v7)). El acoplamiento del proyecto

(C ) es igual a diez, ya que existen tres aristas con peso igual a uno que unen vértices
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𝜇1 = 4
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3. 𝑇𝑢𝑟𝑏𝑜𝑀𝑄 =  .48
4. 𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑚ó𝑑𝑢𝑙𝑜𝑠 =  
5. 𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑚ó𝑑𝑢𝑙𝑜𝑠 𝑎𝑖𝑠𝑙𝑎𝑑𝑜𝑠 = 0

𝜇2 = 4

𝜇3 =  

Figura B.6 Cálculo de los valores de los objetivos del problema MCA para una
solución para el proyecto presentado en la Figura B.2 con tres módulos: m1 =
{v4,v6,v7,v8}, m2 = {v1,v2,v3} y m3 = {v5,v9,v10}.

pertenecientes a módulos distintos ((v4,v1),(v5,v3) y (v5,v6)), una con peso igual a

cuatro ((v4,v3)) y otra con peso igual a tres ((v8,v9)). La cohesión de la solución también

es igual a diez, ya que µ1 = 4, µ2 = 4 y µ3 = 2. El valor de TurboMQ es igual a 1.48,

tal y como se describió en la Figura 2.5. El número de módulos en la solución es igual a

tres. Finalmente, como no hay ningún módulo que contenga solo un vértice, el número de

módulos aislados es igual a cero.
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B.4.4 Equal-size Cluster Approach

En el mismo trabajo que proponı́a MCA, se propuso el problema ECA (del inglés Equal-

size Cluster Approach). ECA considera cinco objetivos diferentes. Los primeros cuatro

son comunes a MCA: acoplamiento, cohesión, TurboMQ y el número de módulos. Sin

embargo, el quinto objetivo, la minimización del número de módulos aislados, se sustituye

por la minimización de la diferencia de tamaño entre el módulo más grande y el módulo

más pequeño de la solución. En este contexto, el tamaño de un módulo es igual al número

de vértices pertenecientes a dicho módulo. Debido a las similitudes entre MCA y ECA,

estos dos problemas se suelen estudiar juntos.

En la Figura B.7, se calculan los valores de los objetivos de ECA para la solución

representada en la Figura B.3. Al lado de cada módulo, se detalla su cohesión. Para el

módulo m1, µ1 = 4, ya que existen cuatro aristas con peso igual a uno que conectan vértices

pertenecientes a m1 ((v4,v6),(v4,v7),(v7,v8) y (v8,v7)). El acoplamiento del proyecto

(C ) es igual a diez, ya que existen tres aristas con peso igual a uno que unen vértices

pertenecientes a módulos distintos ((v4,v1),(v5,v3) y (v5,v6)), una con peso igual a

cuatro ((v4,v3)) y otra con peso igual a tres ((v8,v9)). La cohesión de la solución también

es igual a diez, ya que µ1 = 4, µ2 = 4 y µ3 = 2. El valor de TurboMQ es igual a 1.48, tal

y como se describió en la Figura 2.5. El número de módulos en la solución es igual a tres.

Finalmente, la diferencia de tamaño entre el módulo más grande (m1, con cuatro vértices)

y el módulo más pequeño (m3, con tres vértices) es igual a uno.

B.5 Estado del arte

Uno de los primeros usos del término SBSE data de 2001, cuando Mark Harman y Bryan F.

Jones afirmaron que SBSE era un campo emergente de investigación y que esperaban “ver

un desarrollo dramático del área” [54]. Más de 20 años después, en 2023, el Simposio de

SBSE (SSBSE, del inglés Symposium on Search Based Software Engineering) celebraba

su decimoquinta edición [10]. Solo en sus primeras once ediciones, el simposio ya habı́a

recibido contribuciones de más de 290 autores de 25 paı́ses diferentes [25]. Las contribu-

ciones de la comunidad de SBSE a revistas cientı́ficas también ha sido significativa en las
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𝜇1 = 4

1. 𝐴𝑐𝑜𝑝𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜 =  + 4 +  +  +  =  0
2. 𝐶𝑜ℎ𝑒𝑠𝑖ó𝑛 = 𝜇1 + 𝜇2 + 𝜇3 = 4 + 4 +  =  0
3. 𝑇𝑢𝑟𝑏𝑜𝑀𝑄 =  .48
4. 𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑚ó𝑑𝑢𝑙𝑜𝑠 =  
5. Diferencia

máx. 𝑦 𝑚í𝑛. 𝑡𝑎𝑚𝑎ñ𝑜 𝑑𝑒 𝑚ó𝑑𝑢𝑙𝑜𝑠 = 4 −  =  

𝜇2 = 4

𝜇3 =  

Figura B.7 Cálculo de los valores de los objetivos del problema ECA para una solución
para el proyecto presentado en la Figura B.2 con tres módulos: m1 = {v4,v6,v7,v8},
m2 = {v1,v2,v3} y m3 = {v5,v9,v10}.

últimas décadas. Solo en España, más de 145 autores de más de 19 instituciones diferentes

han publicado resultados sobre distintos problemas del área [125].

En el área de SBSE, existen diferentes familias de problemas de optimización que sur-

gen en multitud de actividades de SE a lo largo del SDLC, desde la gestión del proyecto y

la priorización de requisitos a la generación de casos de prueba o la corrección automática

de código. En este contexto, el SMCP es una familia de problemas de optimización cuyo

objetivo es encontrar la mejor organización posible del código de un proyecto software

en términos de modularidad. En la Tabla B.1 y en la Tabla B.2, se presenta un resumen

cronológico de trabajos que han estudiado el SMCP. La primera tabla recoge trabajos que



Appendix B. Resumen en castellano 167

estudian variantes monoobjetivo del problema, mientras que la segunda tabla recoge traba-

jos que estudian variantes multiobjetivo del SMCP. Por cada trabajo mostrado en la tabla,

se recogen el año de publicación, la referencia al trabajo en cuestión, el problema estudia-

do y la metaheurı́stica o estrategia en la que se basa el método propuesto en el trabajo.

Además, las propuestas basadas en métodos poblacionales se han coloreado con fondo

verde , mientras que las propuestas basadas en métodos trayectoriales se han coloreado

con fondo rojo .

Como se puede observar en la Tabla B.1, la primera aproximación al SMCP fue pro-

puesta por Mancoridis et al. en 1998 [89]. En el trabajo citado, los autores propusieron un

problema conocido como MQ (del inglés Modularization Quality). En este problema, la

modularidad de un proyecto se mide como un balance entre el acoplamiento y la cohesión

de su estructura. Este ha sido el problema más estudiado en el SMCP. Aún ası́, algunos au-

tores han identificado aspectos mejorables en MQ y han propuesto problemas alternativos,

entre los que cabe destacar FCB (del inglés Function of Complexity Balance) [105].

Dado que el proceso de modularización realizado por los desarrolladores frecuente-

mente incluye cierta subjetividad [16], otros autores han preferido abordar el problema

desde un enfoque multiobjetivo. En este sentido, un enfoque multiobjetivo ofrece, princi-

palmente, dos ventajas: (1) diferentes objetivos en conflicto pueden reflejar la modularidad

de un sistema de manera más acertada que una sola métrica, y (2) la presentación de un

conjunto de soluciones de calidad a un decisor (por ejemplo, un desarrollador software)

puede permitir que los interesados prioricen ciertas métricas sobre otras, dependiendo de

sus preferencias. En este contexto, las propuestas más estudiadas y aceptadas en la literatura

son las publicadas por Praditwong et al. en 2011 [121]: MCA (del inglés Maximizing Clus-

ter Approach) y ECA (del inglés Equal-size Cluster Approach).

Independientemente de las variantes estudiadas, existen multitud de propuestas algorı́t-

micas en la literatura para resolver problemas del SMCP. Es importante mencionar que

algunos de los problemas de SMCP son NP-completos [18]. Por lo tanto, los métodos exac-

tos no son adecuados salvo para instancias muy pequeñas [95]. En su lugar, los algoritmos

aproximados son más convenientes [25, 55, 129]. En general, como se puede observar en

la tabla, los métodos poblacionales se han utilizado con mayor frecuencia para resolver es-

tos problemas. Sin embargo, algunos autores han destacado la ausencia de metaheurı́sticas
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trayectoriales eficientes como ILS (del inglés Iterative Local Search) o VNS (del inglés

Variable Neighborhood Search) en la literatura [129]. En este sentido, algunas propuestas

recientes han optado por utilizar métodos trayectoriales, obteniendo comparaciones favo-

rables con el estado del arte, como LNS (del inglés Large Neighborhood Search) [104],

VNS [144, 143] o GRASP (del inglés Greedy Randomized Adaptive Search Procedure)

[141].
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Table B.1 Resumen cronológico de propuestas para problemas monoobjetivo pertenecientes al SMCP.

Problemas monoobjetivo

Año Referencia MQ DQCQ MS CCCS MNCC EOF FCB LCC

1998 [89] HC - - - - - - -

1999 [88] HC - - - - - - -

[37] GA - - - - - - -

2001 [94] NAHC , SAHC - - - - - - -

2002 [96] SAHC - - - - - - -

2005 [85] HC , GAHC - - - - - - -

2006 [97] GA , HC - - - - - - -

2008 [98] SA - - - - - - -

2009 [3] - SA - - - - - -

[87] HGA - - - - - - -

2011 [120] GA - - - - - - -

2014 [116] ILS - - - - - - -

[86] FA - - - - - - -

2016 [56] - - HC , GA , MAEA - - - - -

[65] E-CDGM - - - - - - -

[68] GA - - - - - - -

[133] EoD - - - - - - -

2017 [57] MAEA - - - - - - -

[7] - - - HS - - - -

[73] HC - - - - - - -
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Table B.1 Resumen cronológico de propuestas para problemas monoobjetivo pertenecientes al SMCP.

Problemas monoobjetivo

Año Referencia MQ DQCQ MS CCCS MNCC EOF FCB LCC

2018 [123] - - - - PSO - - -

[104] LNS - - - - - - -

2019 [66] - - - - - GA - -

2020 [105] - - - - - - HGA -

2021 [119] - - - - - - - GMA

2022 [141] GRASP-VND - - - - - - -

[144] - - - - - - VND -

2024 [145] - - - - - - GVNS -
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Table B.2 Resumen cronológico de propuestas para problemas multiobjetivo pertenecientes al SMCP.

Problemas multiobjetivo

Año Referencia MCA, ECA SSH MFMC IFF E-MCA, E-ECA MOF

2011 [121] GA - - - - -

2015 [99] - NSGA-III - - - -

2016 [78] MHypEA - - - - -

2017 [59] - - HC - - -

2018 [128] - - - IEC - -

[8] TA-ABC - - - - -

[24] - - - - MaABC -

2019 [67] - - - - - EoD

2022 [9] GA - - - - -

[122] - - - - GLMPSO -

[143] MO-VND - - - - -
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B.6 Propuestas algorı́tmicas

En esta tesis doctoral, se proponen tres algoritmos para problemas del SMCP. El primer

algoritmo, diseñado para el problema MQ, está basado en la metodologı́a GRASP (del

inglés Greedy Randomized Adaptive Search Procedure) [43, 44], donde la búsqueda lo-

cal se sustituye por un procedimiento VND (del inglés Variable Neighborhood Descent)

[50]. El método consta de tres componentes: un preprocesado de las instancias, un proce-

dimiento constructivo y un procedimiento VND. En primer lugar, el algoritmo realiza un

preprocesado de la instancia, en el que el tamaño del grafo de entrada se reduce. La cali-

dad del grafo resultante es igual que la del grafo de entrada. A continuación, el algoritmo

procede a construir y mejorar soluciones. En el procedimiento constructivo, el método

comienza generando una solución vacı́a. De manera iterativa, se procede a añadir vértices a

la solución anterior utilizando un mecanismo semivoraz. Para ello, se propone una función

voraz que evalúa la proximidad de los vértices a la solución parcial en cada iteración.

Finalmente, la solución inicial obtenida por el procedimiento constructivo se mejora en un

esquema VND, que explora tres vecindades distintas. El método propuesto es un método

multiarranque. Por lo tanto, el proceso de construcción y mejora de soluciones se lleva a

cabo repetidas veces. Una vez que termina, el método GRASP-VND devuelve la mejor

solución encontrada a lo largo del proceso de búsqueda.

El segundo método propuesto, diseñado para el problema FCB, se basa en la metodologı́a

GVNS (del inglés General Variable Neighborhood Search) [50]. Este método consta de

dos componentes: un mecanismo de diversificación llamado shake y un procedimiento de

mejora VND. El mecanismo shake introduce una perturbación en una solución dada. El ob-

jetivo de este mecanismo es escapar de óptimos locales para diversificar la búsqueda en el

espacio de soluciones. Cuantas más iteraciones se realizan sin mejorar la mejor solución en-

contrada, mayor es la magnitud de la perturbación introducida por el procedimiento shake.

Finalmente, para construir la solución inicial, se propone un constructivo aleatorio.

El tercer método propuesto, diseñado para los problemas MCA y ECA, se basa en la

metodologı́a MO-VNS (del inglés Multi-Objective Variable Neighborhood Search) [39].

Esta metodologı́a extiende las ideas de Variable Neighborhood Search (VNS) [100] para

abordar problemas multiobjetivo. En particular, se propone un procedimiento basado en
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MO-GVNS (del inglés Multi-Objective General Variable Neighborhood Search). Para la

construcción de la solución inicial, se propone un constructivo aglomerativo basado en las

ideas de Path Relinking [52]. Este constructivo genera un conjunto de puntos eficientes

no dominados entre sı́ al recorrer el espacio de objetivos entre dos soluciones triviales. El

procedimiento constructivo, se puede extender a otras funciones voraces distintas de la uti-

lizada y además se puede extender para utilizar un criterio semivoraz. Para el procedimiento

de perturbación de las soluciones (MO-Shake), se proponen cuatro métodos distintos, com-

binando estrategias voraces y aleatorias. Finalmente, las soluciones se mejoran mediante

un procedimiento MO-VND, que extiende el esquema VND a problemas multiobjetivo.

Todos los métodos anteriormente propuestos incluyen un componente VND o MO-VND

que explora de manera sistemática un conjunto de estructuras de vecindad para mejorar

una solución dada. En esta tesis doctoral, además, se proponen seis estructuras de vecin-

dad distintas, basadas en operaciones de inserción (N1), intercambio (N2), extracción (N3),

destrucción (N4), combinación (N5) y división (N6).

Para mejorar la eficiencia de las propuestas algorı́tmicas, se proponen cuatro estrate-

gias avanzadas. En primer lugar, se realiza una categorización de las estructuras de vecin-

dad para el problema. En particular, se han identificado tres categorı́as de vecindades: (1)

vecindades cuyas operaciones no están diseñadas para alterar el número de módulos de la

solución, (2) vecindades cuyas operaciones están diseñadas para aumentar el número de

módulos en la solución y (3) vecindades cuyas operaciones están diseñadas para reducir el

número de módulos en la solución. Siguiendo esta clasificación, las vecindades N1 y N2

pertenecen a la primera categorı́a, las vecindades N3 y N6 pertenecen a la segunda categorı́a

y las vecindades N4 y N5 pertenecen a la tercera categorı́a. La utilización de al menos una

vecindad de cada categorı́a dota a los algoritmos propuestos de flexibilidad para aumentar,

disminuir o mantener el número de módulos en una solución dada.

La segunda estrategia propuesta consiste en una evaluación eficiente de las funciones

objetivo. Dado que las metaheurı́sticas trayectoriales se basan en la mejora gradual de una

solución o conjunto de soluciones mediante pequeñas modificaciones, una factorización de

la función objetivo para evaluar parcialmente las soluciones reduce considerablemente el

tiempo de cómputo de la calidad de estas.
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La tercera estrategia propuesta consiste en identificar regiones prometedoras del espa-

cio de búsqueda. Como consecuencia, se reduce el tamaño de las estructuras de vecindad

propuestas, disminuyendo el esfuerzo computacional de los algoritmos propuestos al evitar

explorar soluciones no prometedoras.

La cuarta y última estrategia propuesta en este tesis doctoral consiste en analizar la

contribución de las funciones guı́a utilizadas durante el proceso de búsqueda. Dado que

el procedimiento MO-GVNS propuesto mejora una solución considerando cada objetivo

por separado, la reducción del número de objetivos explorados en el proceso de búsqueda

reduce el tiempo computacional empleado por el algoritmo. No obstante, la reducción de

las funciones guı́a también implica una reducción de la calidad de las soluciones obtenidas.

Por ello, se estudia la reducción del número de funciones guı́a para encontrar un equilibrio

entre coste computacional y calidad de las soluciones. Es importante destacar que lo que se

busca es reducir el número de funciones guı́a, no el número de funciones objetivo utilizadas

para evaluar las soluciones.

B.7 Resultados

Para evaluar las propuestas algorı́tmicas descritas en la sección anterior, se ha empleado un

conjunto de 124 instancias de proyectos software reales. Estas instancias han sido recogidas

y empleadas anteriormente en la literatura para el SMCP. En el conjunto de instancias, se

pueden encontrar grafos con tamaños dispares, desde grafos con 2 vértices y 2 aristas hasta

grafos con 1161 vértices y 5770 aristas. De media, las instancias tienen 156.37 vértices y

948.79 aristas. En el trabajo en el que este conjunto de instancias se propuso por primera

vez, las instancias se dividieron en cuatro grupos dependiendo de su tamaño: 64 instancias

pequeñas (de hasta 68 vértices), 29 instancias medianas (de 74 a 182 vértices), 18 instancias

grandes (de 190 a 377 vértices) y 13 instancias muy grandes (de 413 a 1161 vértices).

Además, como es habitual en el SMCP, los grafos son poco densos.

En primer lugar, se han realizado una serie de experimentos para analizar el compor-

tamiento de las propuestas algorı́tmicas descritas en este trabajo y configurar sus parámetros.

Posteriormente, se ha comparado el rendimiento de los métodos propuestos con los mejores

algoritmos disponibles en el estado del arte para cada uno de los problemas estudiados. Para
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Método F.O. Dev. (%) # Best (124) CPUt (s)

GRASP-VND 15,0611 <0,01% 116 28,95
LNS [104] 15,0374 0,44% 52 36,33

Tabla B.3 Comparación de los resultados obtenidos con el método GRASP-VND pro-
puesto y el método LNS [104] del estado del arte para el problema MQ.

garantizar comparaciones justas, todos los resultados en cada experimento se han obtenido

ejecutando los algoritmos en el mismo entorno.

En la Tabla B.3, se muestran los resultados obtenidos en la comparación del método

GRASP-VND con el estado del arte para el problema MQ. Para cada método, se muestra

el valor medio de la función objetivo MQ (F.O.), la desviación media con respecto a la

calidad de la mejor solución encontrada por cualquiera de los dos métodos (Dev. (%)), el

número de instancias para las que cada método ha encontrado una solución igual o mejor

que el otro método (# Best) y el tiempo consumido de media (CPUt (s)). Como puede

verse, GRASP-VND obtiene mejores soluciones que el estado del arte en menos tiempo,

con una desviación media menor al 0,01% y encontrando soluciones iguales o mejores que

las del estado del arte en 116 de las 124 instancias. Además, según los resultados del test

de Wilcoxon, la diferencia de los resultados es estadı́sticamente significativa con p <0.01.

En la Tabla B.4, se muestran los resultados obtenidos en la comparación del método

GVNS con el estado del arte (HGA [105]) para el problema FCB. Para cada método, se

muestra el valor medio de la función objetivo (F.O.), la desviación media con respecto a la

calidad de la mejor solución encontrada por cualquiera de los dos métodos (Dev. (%)), el

número de instancias para las que cada método ha encontrado una solución igual o mejor

que el otro método (# Best) y el tiempo consumido de media (CPUt (s)). Como puede

verse, GVNS obtiene mejores soluciones que el estado del arte en menos tiempo. Además,

según los resultados del test de Wilcoxon, la diferencia de los resultados es estadı́sticamente

significativa con p <0.001.

Finalmente, en la Tabla B.5 y en la Tabla B.6, se muestran los resultados obtenidos en

la comparación del método MO-GVNS con el estado del arte para los problemas MCA

y ECA, respectivamente. Para cada método, se muestra la media del tiempo consumido

(CPUt (s)), el tamaño de los frentes de Pareto obtenidos (Tamaño FP), el hipervolumen
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Método F.O. Dev. (%) # Best (124) CPUt (s)

GVNS 0,5821 0,00% 124 136,51
HGA [105] 0,7340 32,96% 12 27.894,91

Tabla B.4 Comparación de los resultados obtenidos con el método GVNS y el método
HGA del estado del arte [105] para el problema FCB.

Método CPUt (s) Tamaño FP HV C IGD+ Spread

MO-GVNS 311,18 507,60 0,2213 0,0264 0,0443 0,5175
MOEA/D [147] 336,43 300,00 0,0982 0,5254 0,2184 0,6844
NSGA-III [31] 596,41 479,56 0,0937 0,2719 0,2587 0,5891
PESA2 [27] 643,16 99,63 0,0604 0,7335 0,3209 0,6994
TA-ABC [8] 1037,31 97,70 0,0277 0,2145 0,3991 0,8026

Tabla B.5 Comparación del método MO-GVNS con los algoritmos de referencia en el
estado del arte para el problema MCA.

(HV), el porcentaje de puntos eficientes dominados (C), la distancia al frente de referencia

(IGD+) y la diversidad de los puntos eficientes (Spread). Para obtener los indicadores de

calidad mencionados, se ha utilizado un frente aproximado de referencia obtenido mediante

la unión de todos los frentes generados por los distintos algoritmos de la comparación.

Como puede verse, MO-GVNS obtiene mejores soluciones que el estado del arte en menos

tiempo. Además, los frentes de Pareto contienen un mayor número de soluciones.

Método CPUt (s) Tamaño FP HV C IGD+ Spread

MO-GVNS 311,16 520,64 0,1939 0,0122 0,0180 0,5614
MOEA/D [147] 345,06 300,00 0,0724 0,8010 0,3312 0,6032
NSGA-III [31] 745,81 209,56 0,0889 0,5918 0,3690 0,6777
PESA2 [27] 408,69 89,59 0,0443 0,7386 0,4777 0,7599
TA-ABC [8] 914,74 30,66 0,0284 0,3051 0,5132 0,8932

Tabla B.6 Comparación del método MO-GVNS con los algoritmos de referencia en el
estado del arte para el problema ECA.
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B.8 Conclusiones y trabajos futuros

En esta tesis doctoral, se han estudiado cuatro problemas distintos del SMCP: MQ, FCB,

MCA y ECA. Los dos primeros problemas son monoobjetivo, mientras que los dos últimos

presentan un enfoque multiobjetivo. Para abordar estos problemas, se han propuesto tres

algoritmos basados en metaheurı́sticas trayectoriales: un método basado en GRASP-VND,

un método basado en GVNS y un método basado en MO-GVNS. Los algoritmos pro-

puestos incluyen un procedimiento constructivo semivoraz, un procedimiento constructivo

voraz para generar conjuntos de soluciones en las variantes multiobjetivo, distintos meca-

nismos de perturbación de las soluciones y seis estructuras de vecindad distintas.

Una contribución importante de esta tesis doctoral es el estudio y la clasificación de

las estructuras de vecindad para los problemas del SMCP. Tras analizar distintas vecin-

dades, nos dimos cuenta de que estas se pueden clasificar en tres categorı́as: (1) vecindades

cuyas operaciones no están diseñadas para alterar el número de módulos de la solución,

(2) vecindades cuyas operaciones están diseñadas para aumentar el número de módulos en

la solución y (3) vecindades cuyas operaciones están diseñadas para reducir el número de

módulos en la solución. La exploración de al menos una vecindad de cada categorı́a dota a

los métodos propuestos de flexibilidad para aumentar, disminuir o mantener el número

de módulos en una solución dada. De las seis estructuras de vecindad propuestas, dos

pertenecen a la primera categorı́a, dos a la segunda y dos a la tercera.

La segunda estrategia avanzada consiste en una evaluación eficiente de las funciones

objetivo estudiadas. Debido a la naturaleza de las metaheurı́sticas trayectoriales, basadas

en la mejora gradual de las soluciones mediante pequeñas modificaciones, la factorización

de las funciones objetivo permite realizar evaluaciones parciales y acelerar los métodos

propuestos.

La tercera estrategia propuesta consiste en una identificación de regiones prometedoras

del espacio de búsqueda. En un proceso de búsqueda, existen muchos movimientos que no

mejoran la solución. En problemas en los que el espacio de búsqueda es muy grande, es

importante identificar regiones prometedoras para acelerar el proceso. De esta manera, se

reduce el tamaño de las estructuras de vecindad exploradas y se reduce el esfuerzo com-

putacional de los algoritmos propuestos.
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La cuarta estrategia propuesta consiste en un análisis de la contribución de las funciones

guı́a utilizadas durante el proceso de búsqueda. Esta reducción permite disminuir el tiempo

computacional empleado por el método MO-GVNS propuesto. No obstante, la reducción

de las funciones guı́a conlleva una reducción de la calidad de las soluciones obtenidas,

por lo que es necesario encontrar un equilibrio entre coste computacional y calidad de las

soluciones. Es importante destacar que lo que se busca es reducir el número de funciones

guı́a, no el número de funciones objetivo utilizadas para evaluar las soluciones.

Finalmente, los métodos propuestos se han comparado favorablemente con los mejores

algoritmos disponibles en el estado del arte, obteniendo mejores soluciones con un menor

coste computacional. Por lo tanto, se puede afirmar que los resultados obtenidos apoyan

la hipótesis enunciada en esta tesis doctoral: que las metaheurı́sticas trayectoriales pueden

obtener mejores resultados que los métodos poblacionales para la optimización de la es-

tructura de sistemas software en términos de modularidad. Además, junto a la hipótesis de

partida, se formularon diversos objetivos parciales que se han cumplido a lo largo de esta

tesis doctoral. En la Sección B.5, se puede encontrar una revisión del estado del arte del

SMCP. La definición de los problemas y la representación de las soluciones se pueden en-

contrar en la Sección B.4. El conjunto de instancias obtenido se describe en la Sección B.7

y, más detalladamente, en el apéndice A. Los algoritmos de referencia del estado del arte

se han implementado y los resultados obtenidos se incluyen en la comparación descrita en

la Sección B.7. Los algoritmos propuestos se describen en la Sección B.6. Por brevedad,

los resultados de estos experimentos no se han recogido en este apéndice, pero se pueden

encontrar en la Sección 5.2 de esta tesis doctoral. La comparación con los mejores algorit-

mos disponibles para cada problema estudiado se describe en la Sección B.7. Finalmente,

las contribuciones realizadas durante el desarrollo de esta tesis doctoral se recogen en la

Sección B.9. En resumen, se puede considerar que se han cumplido todos los objetivos

parciales enunciados en esta tesis doctoral. Además, los resultados obtenidos parecen ser

de interés para la comunidad cientı́fica, ya que han sido publicados en diferences foros

cientı́ficos.

En trabajos futuros, serı́a interesante explorar la hibridación de metaheurı́sticas trayec-

toriales con metaheurı́sticas poblaciones. Más aun, aunque la naturaleza del problema hace
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que no sea posible utilizar algoritmos exactos para instancias de gran tamaño, serı́a intere-

sante explorar la combinación de métodos exactos y metaheurı́sticas en algoritmos de tipo

matheuristic.

En relación al estudio de los diferentes algoritmos propuestos para el SMCP, una

lı́nea de trabajo futuro consiste en comparar el rendimiento de estos métodos en distin-

tas variantes del problema. Este análisis podrı́a ayudar a identificar componentes comunes

y diferencias entre las distintas métricas, ası́ como posibles transferencias de estrategias de

búsqueda entre distintas variantes del problema.

Otra lı́nea de trabajo futuro es la integración de los métodos propuestos en el SDLC de

proyectos software. En particular, el bajo coste computacional de los métodos analizados

permitirı́a su inclusión en entornos de desarrollo integrados o plataformas de integración

continua. En este sentido, los desarrolladores se podrı́an beneficiar de sugerencias para

reestructurar los proyectos en tiempo real. No obstante, para integrar los métodos pro-

puestos en el SDLC de proyectos software, serı́a beneficioso mantener un equilibrio entre

la mejora de la calidad del código y la magnitud de los cambios. Este balance evitarı́a que

los desarrolladores perdieran la familiaridad que tienen con el sistema en cuestión. En este

sentido, se podrı́a explorar la introducción en un enfoque multiobjetivo de la minimización

de los cambios en el código.

B.9 Contribuciones

Durante el desarrollo de esta tesis doctoral, se han realizado diversas publicaciones y

presentaciones en foros cientı́ficos. En la Figura B.8, se presenta una cronologı́a que con-

tiene los eventos más relevantes con relación a esta tesis doctoral. Cada evento se ha desta-

cado con un color diferente dependiendo de la siguiente clasificación: los artı́culos de inves-

tigación publicados en revistas clasificadas en el ránking JCR1 (del inglés Journal Citation

Reports) o en el ránking SJR2 (del inglés Scientific Journal Rankings) se destacan en color

rojo ( ); presentaciones realizadas en congresos y talleres se destacan en color verde ( );

1https://jcr.clarivate.com/jcr/home
2https://www.scimagojr.com/journalrank.php

https://jcr.clarivate.com/jcr/home
https://www.scimagojr.com/journalrank.php
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los premios y reconocimientos se destacan en color amarillo ( ); las estancias de investi-

gación se destacan en color morado ( ); por último, los eventos que marcan el inicio o el

final del desarrollo de esta tesis doctoral se destacan en color gris oscuro ( ).

Como se puede observar, el desarrollo de esta tesis doctoral comenzó en noviembre

de 2020, cuando el autor se unió al programa de doctorado de la Universidad Rey Juan

Carlos (URJC). Al mismo tiempo, el autor entraba a formar parte del grupo de investigación

GRAFO (del inglés Group for Research in Algorithms For Optimization). En 2021, algunos

hallazgos preliminares fueron presentados en el IV Workshop GRAFO y en el XIV Con-

greso Español de Metaheurı́sticas, Algoritmos Evolutivos y Bioinspirados (MAEB) [142],

que se celebró en Málaga, España. El trabajo presentado en esta conferencia nacional fue

reconocido con el premio al mejor artı́culo de investigación de la conferencia en la cate-

gorı́a de estudiantes. Como resultado, el autor de esta tesis doctoral recibió el premio de

excelencia de la URJC más tarde ese mismo año.

En 2022, parte de la investigación de esta tesis doctoral fue presentada en el V Work-

shop GRAFO y en la decimocuarta edición del congreso internacional MIC (del inglés

Metaheuristics International Conference), celebrada en Siracusa, Italia. Los resultados pre-

sentados en esta conferencia internacional se publicaron en LNCS (del inglés Lecture Notes

in Computer Science) [144], una revista clasificada en el tercer cuartil (Q3) del ránking SJR.

Además, en ese mismo año, se publicó un artı́culo de investigación en la revista Journal of

Systems and Software, clasificada en el segundo cuartil (Q2) del ránking JCR, con el tı́tulo:

“An efficient heuristic algorithm for software module clustering optimization” [141]. A fi-

nales de 2022, se realizó una presentación en la tercera edición de la Escuela de Invierno

organizada por la Red HEUR, en Burgos, España.

En 2023, se publicó un segundo artı́culo en LNCS [143]. Además, se realizó una es-

tancia internacional en la Université d’Angers, en Angers, Francia. Durante esta estancia

de tres meses de duración, el autor de esta tesis doctoral tuvo el honor de colaborar con

el profesor Jin-Kao Hao. Como resultado de esta colaboración, se realizó un artı́culo de

investigación que se encuentra actualmente en proceso de revisión en una revista clasifi-

cada en el ránking JCR. Finalmente, durante el año 2023, se realizaron tres presentaciones.

La primera se realizó en el I Workshop OptiMAD, celebrado en Madrid, España; la se-

gunda se realizó en el VI Workshop GRAFO; y la tercera se realizó en el XL Congreso
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NOV 2020

JUL 2021

IV Workshop GRAFO

Presentación sobre el Software Module Clustering 

Problem (SMCP).

Matrícula en el programa de doctorado

Unión a la Universidad Rey Juan Carlos (URJC) 

y al grupo de Investigación GRAFO.

SEP 2021

Premio al mejor artículo de estudiantes

Premio al mejor artículo de investigación en la 

categoría de estudiantes en MAEB 2021.

JUN 2022

V Workshop GRAFO

Presentación sobre el SMCP. 

JUL 2022

International Conference

Presentación sobre el SMCP en 14th 

Metaheuristics International Conference 

(MIC 2022), en Italia. 

AGO 2022

Artículo en JCR

Publicación de un artículo en Journal of Systems 

and Software (Q2), titulado: 

An efficient heuristic algorithm for software 

module clustering optimization.

DIC 2021

Premio de excelencia URJC

Premio de excelencia de la URJC.

2021

2022

Conferencia nacional

Presentación sobre el SMCP en el XIV Congreso 

Español de Metaheurísticas, Algoritmos 

Evolutivos y Bioinspirados (MAEB 2021)

continúa en la siguiente página

Figura B.8 Cronologı́a de los eventos más relevantes relacionados con esta tesis doc-
toral.
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Estancia de investigación internacional

Estancia de investigación en la Université 

d’Angers, Francia, con el profesor Jin-Kao Hao.

NOV 2022
III Escuela de Invierno de la Red HEUR

Presentación sobre el SMCP en la III Escuela de 

Invierno organizada por la Red HEUR.

FEB 2023

Artículo en SJR

Publicación de un artículo de investigación en

Lecture Notes in Computer Science.

MAY 2023

Artículo en SJR

Publicación de un artículo de investigación en

Lecture Notes in Computer Science.

I Workshop OptiMAD

Presentación sobre el SMCP. 

NOV 2023

Conferencia nacional

Presentación en el XL Congreso Nacional de 

Estadística e Investigación Operativa.

2023

MAR 2023

ABR 2023

2024

FEB 2024

Depósito de la tesis doctoral

Depósito de la tesis doctoral para su revisión por 

la Comisión Académica y cualquier doctor 

interesado.

MAR 2024

Defensa de la tesis doctoral

Acto público de defensa de la tesis doctoral.

VI Workshop GRAFO

Presentación sobre el SMCP. 

ABR 2024

Artículo en JCR

Publicación de un artículo en Computers & 

Operations Research (Q2), titulado: 

General variable neighborhood search for the 

optimization of software quality. 

Figura B.8 Cronologı́a de los eventos más relevantes relacionados con esta tesis doc-
toral.
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Nacional de Estadı́stica e Investigación Operativa, en Elche, España.

Durante el último año de desarrollo de esta tesis doctoral, 2024, se publicó un artı́culo

de investigación en la revista Computers & Operations Research, clasificada en el segundo

cuartil (Q2) del ránking JCR, con el tı́tulo: “General Variable Neighborhood Search for

the optimization of software quality”. Además, durante el primer semestre de este año, se

depositó la memoria de esta tesis doctoral y se defendió la misma.

A modo de resumen, se han realizado las siguientes contribuciones durante el desarrollo

de esta tesis doctoral:

• Artı́culos publicados en revistas indexadas en el JCR:

1. J. Yuste, A. Duarte y E. G. Pardo. An efficient heuristic algorithm for software

module clustering optimization. Journal of Systems and Software, 190: 111349,

2022.

2. J. Yuste, E. G. Pardo y A. Duarte. General Variable Neighborhood Search

for the optimization of software quality. Computers & Operations Research,

106584, 2024.

3. J. Yuste, E. G. Pardo, A. Duarte y J. Hao. Multi-Objective General Variable

Neighborhood Search for Software Maintainability Optimization. Engineering

Applications of Artificial Intelligence, EN REVISIÓN.

• Artı́culos publicados en revistas indexadas en el SJR:

1. J. Yuste, E. G. Pardo y A. Duarte. Variable neighborhood descent for software

quality optimization. En Metaheuristics International Conference, páginas 531-

536. Springer, 2022.

2. J. Yuste, E. G. Pardo y A. Duarte. Multi-objective variable neighborhood search

for improving software modularity. En International Conference on Variable

Neighborhood Search, páginas 58–68. Springer, 2022.
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• Presentaciones en conferencias internacionales:

1. J. Yuste, E. G. Pardo y A. Duarte. Variable neighborhood descent for software

quality optimization. En 14th Metaheuristics International Conference, Sira-

cusa, Italia. 11-14 de julio, 2022.

• Presentaciones en conferencias nacionales:

1. J. Yuste, E. G. Pardo y A. Duarte. Heurı́sticas para la mejora de la mantenibili-

dad de proyectos software. En XIX Conferencia de la Asociación Española para

la Inteligencia Artificial (CAEPIA 20/21), Málaga, España, páginas 581–586.

22-24 de septiembre, 2021.

2. J. Yuste, E. G. Pardo, A. Duarte y J. Hao. Optimización multiobjetivo en pro-

blemas de calidad de software. En XL Congreso Nacional de Estadı́stica e In-

vestigación Operativa, Elche, España. 7-10 de noviembre, 2023.

• Presentaciones en talleres:

1. J. Yuste, E. G. Pardo y A. Duarte. Software Module Clustering Problem. En IV

Workshop GRAFO, Móstoles, España. 14-15 de julio, 2021.

2. J. Yuste, E. G. Pardo y A. Duarte. Software Module Clustering Problem. En V

Workshop GRAFO, Móstoles, España. 2-3 de junio, 2022.

3. J. Yuste, E. G. Pardo, A. Duarte y J. Hao. Optimización de la calidad de los

sistemas software: una aproximación multiobjetivo. En I OptiMad, Madrid,

España. 25 de mayo, 2023.

4. J. Yuste, E. G. Pardo y A. Duarte. Software Module Clustering Problem. En VI

Workshop GRAFO, Móstoles, España. 30-31 de mayo, 2023.

• Estancia internacional de investigación:

1. Realizada en la Université d’Angers, en Angers, Francia, bajo la supervisión

del profesor Jin-Kao Hao. Un artı́culo se realizó durante esta estancia en cola-

boración con el profesor Jin-Kao Hao. A fecha de escritura de esta memoria, el
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artı́culo mencionado se encuentra en proceso de revisión en una revista clasifi-

cada en el ránking JCR.
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[19] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the relationships

between design measures and software quality in object-oriented systems. Journal

of systems and software, 51(3):245–273, 2000.

[20] S. Cavero, E. G. Pardo, and A. Duarte. A general variable neighborhood search for

the cyclic antibandwidth problem. Computational Optimization and Applications,

pages 1–31, 2022.

[21] S. Cavero, E. G. Pardo, A. Duarte, and E. Rodriguez-Tello. A variable neighborhood

search approach for cyclic bandwidth sum problem. Knowledge-Based Systems,

246:108680, 2022.

[22] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. Shi. Why is it important to mea-

sure maintainability and what are the best ways to do it? In 2017 IEEE/ACM 39th In-

ternational Conference on Software Engineering Companion (ICSE-C), pages 377–

378. IEEE, 2017.

[23] J. C. Chen and S. J. Huang. An empirical analysis of the impact of software develop-

ment problem factors on software maintainability. Journal of Systems and Software,

82(6):981–992, 2009.

[24] J. K. Chhabra. Many-objective artificial bee colony algorithm for large-scale soft-

ware module clustering problem. Soft Computing, 22(19):6341–6361, 2018.

[25] T. E. Colanzi, W. K. Assunção, S. R. Vergilio, P. R. Farah, and G. Guizzo. The sym-

posium on search-based software eengineering: Past, present and future. Information

and Software Technology, 127:106372, 2020.



190 BIBLIOGRAPHY

[26] T. E. Colanzi, S. R. Vergilio, I. M. Gimenes, and W. N. Oizumi. A search-based

approach for software product line design. In Proceedings of the 18th International

Software Product Line Conference-Volume 1, pages 237–241, 2014.

[27] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates. PESA-II: Region-based

selection in evolutionary multiobjective optimization. In Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO 2001), pages 283–290, 2001.

[28] G. A. Croes. A method for solving traveling-salesman problems. Operations Re-

search, 6(6):791–812, 1958.

[29] G. B. Dantzig. Linear programming. Operations research, 50(1):42–47, 2002.

[30] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated

sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel

Problem Solving from Nature PPSN VI: 6th International Conference Paris, France,

September 18–20, 2000 Proceedings 6, pages 849–858. Springer, 2000.

[31] K. Deb and H. Jain. An evolutionary many-objective optimization algorithm using

reference-point-based nondominated sorting approach, part I: solving problems with

box constraints. IEEE Transactions on Evolutionary Computation, 18(4):577–601,

2013.

[32] K. Deep and M. Thakur. A new crossover operator for real coded genetic algorithms.

Applied mathematics and computation, 188(1):895–911, 2007.

[33] K. Deep and M. Thakur. A new mutation operator for real coded genetic algorithms.

Applied mathematics and Computation, 193(1):211–230, 2007.

[34] S. Dekleva. Delphi study of software maintenance problems. In Proceedings Confer-

ence on Software Maintenance 1992, pages 10–11. IEEE Computer Society, 1992.

[35] M. Di Penta. SBSE meets software maintenance: Achievements and open problems.

In International Symposium on Search Based Software Engineering, pages 27–28.

Springer, 2012.



BIBLIOGRAPHY 191

[36] M. Di Penta, M. Harman, and G. Antoniol. The use of search-based optimization

techniques to schedule and staff software projects: an approach and an empirical

study. Software: Practice and Experience, 41(5):495–519, 2011.

[37] D. Doval, S. Mancoridis, and B. S. Mitchell. Automatic clustering of software sys-

tems using a genetic algorithm. In STEP’99. Proceedings Ninth International Work-

shop Software Technology and Engineering Practice, pages 73–81. IEEE, 1999.

[38] A. Duarte, J. J. Pantrigo, and M. Gallego. Metaheurı́sticas. Madrid: Dykinson, 2007.

[39] A. Duarte, J. J. Pantrigo, E. G. Pardo, and N. Mladenovic. Multi-objective vari-

able neighborhood search: an application to combinatorial optimization problems.

Journal of Global Optimization, 63(3):515–536, 2015.

[40] F. Y. Edgeworth. Mathematical psychics: An essay on the application of mathematics

to the moral sciences. Number 10. C. Kegan Paul and Co, London, 1881.

[41] M. Ehrgott. Multicriteria Optimization, volume 491. Springer Science & Business

Media, 2005.

[42] S. Ergasheva and A. Kruglov. Software Development Life Cycle early phases and

quality metrics: A Systematic Literature Review. In Journal of Physics: Conference

Series, volume 1694, page 012007. IOP Publishing, 2020.

[43] T. A. Feo and M. G. Resende. A probabilistic heuristic for a computationally difficult

set covering problem. Operations research letters, 8(2):67–71, 1989.

[44] T. A. Feo and M. G. Resende. Greedy Randomized Adaptive Search Procedures.

Journal of global optimization, 6(2):109–133, 1995.

[45] F. Ferrucci, M. Harman, and F. Sarro. Search-based software project management.

Software project management in a changing world, pages 373–399, 2014.

[46] C. A. Floudas and P. M. Pardalos. Encyclopedia of optimization. Springer Science

& Business Media, 2008.



192 BIBLIOGRAPHY

[47] F. Formica, T. Fan, and C. Menghi. Search-based software testing driven by auto-

matically generated and manually defined fitness functions. ACM Transactions on

Software Engineering and Methodology, 2022.
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based method for influence maximization in social networks. Journal of Ambient

Intelligence and Humanized Computing, 14(4):3767–3779, 2023.

https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report/
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report/


196 BIBLIOGRAPHY

[85] K. Mahdavi. A clustering genetic algorithm for software modularisation with a

multiple hill climbing approach. PhD thesis, Brunel University, UK, 2005.

[86] A. S. Mamaghani and M. Hajizadeh. Software modularization using the modified

firefly algorithm. In 2014 8th. Malaysian Software Engineering Conference (My-

SEC), pages 321–324. IEEE, 2014.

[87] A. S. Mamaghani and M. R. Meybodi. Clustering of software systems using new

hybrid algorithms. In 2009 Ninth IEEE International Conference on Computer and

Information Technology, volume 1, pages 20–25. IEEE, 2009.

[88] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering

tool for the recovery and maintenance of software system structures. In Proceedings

IEEE International Conference on Software Maintenance-1999 (ICSM’99). ‘Soft-

ware Maintenance for Business Change’ (Cat. No. 99CB36360), pages 50–59. IEEE,

1999.

[89] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner. Using

automatic clustering to produce high-level system organizations of source code. In

6th International Workshop on Program Comprehension (IWPC’98), pages 45–52.

IEEE, 1998.

[90] R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, and J. M. Colmenar. A prac-

tical methodology for reproducible experimentation: an application to the double-

row facility layout problem. Evolutionary Computation, pages 1–35, 2022.

[91] R. Martı́, P. M. Pardalos, and M. G. Resende. Handbook of heuristics. Springer

Publishing Company, Incorporated, 2018.

[92] M. McFall-Johnsen. Catastrophic software errors doomed Boeing’s airplanes

and nearly destroyed its NASA spaceship. Experts blame the leadership’s

‘lack of engineering culture’. Technical report, Business Insider, 2020. URL:

https://www.businessinsider.com/boeing-software-errors-

jeopardized-starliner-spaceship-737-max-planes-2020-2.

Accessed 12 Sep. 2023.

https://www.businessinsider.com/boeing-software-errors-jeopardized-starliner-spaceship-737-max-planes-2020-2
https://www.businessinsider.com/boeing-software-errors-jeopardized-starliner-spaceship-737-max-planes-2020-2


BIBLIOGRAPHY 197

[93] P. McMinn. Search-based software testing: Past, present and future. In 2011 IEEE

Fourth International Conference on Software Testing, Verification and Validation

Workshops, pages 153–163. IEEE, 2011.

[94] B. Mitchell, M. Traverso, and S. Mancoridis. An architecture for distributing the

computation of software clustering algorithms. In Proceedings Working IEEE/IFIP

Conference on Software Architecture, pages 181–190. IEEE, 2001.

[95] B. S. Mitchell. A Heuristic Search Approach to Solving the Software Clustering

Problem. PhD thesis, Drexel University, USA, 2002. AAI3039424.

[96] B. S. Mitchell and S. Mancoridis. Using heuristic search techniques to extract design

abstractions from source code. In Proceedings of the 4th Annual Conference on

Genetic and Evolutionary Computation, pages 1375–1382, 2002.

[97] B. S. Mitchell and S. Mancoridis. On the automatic modularization of software sys-

tems using the bunch tool. IEEE Transactions on Software Engineering, 32(3):193–

208, 2006.

[98] B. S. Mitchell and S. Mancoridis. On the evaluation of the Bunch search-based

software modularization algorithm. Soft Computing, 12(1):77–93, 2008.

[99] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and

A. Ouni. Many-objective software remodularization using NSGA-III. ACM Trans-

actions on Software Engineering and Methodology (TOSEM), 24(3):1–45, 2015.
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Inteligencia Artificial (CAEPIA 20/21), pages 581–586, 2021.

[143] J. Yuste, E. G. Pardo, and A. Duarte. Multi-objective variable neighborhood search

for improving software modularity. In International Conference on Variable Neigh-

borhood Search, pages 58–68. Springer, 2022.

[144] J. Yuste, E. G. Pardo, and A. Duarte. Variable neighborhood descent for software

quality optimization. In Metaheuristics International Conference, pages 531–536.

Springer, 2022.

[145] J. Yuste, E. G. Pardo, and A. Duarte. General variable neighborhood search for the

optimization of software quality. Computers & Operations Research, page 106584,

2024.

[146] S. H. Zanakis and J. R. Evans. Heuristic “optimization”: Why, when, and how to use

it. Interfaces, 11(5):84–91, 1981.

[147] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based on

decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731,

2007.

[148] E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In

International conference on parallel problem solving from nature, pages 832–842.

Springer, 2004.



Glossary

A
Advanced strategy, 86, 105, 113, 132

Analysis of guiding functions, 95, 121, 133

Categorization of neighborhoods, 75, 76,

79, 82, 132

Incremental evaluation, 86, 87, 89, 119, 125,

132

Promising regions in the search space, 90,

119, 125, 133

Approximate algorithms, 11, 34, 90

Artificial Bee Colony, 37, 38, 42, 43, 127, 171

B
Basin of attraction, 12

C
Cluster Factor, 73, 86, 87

Cohesion, 20, 23, 24, 26–29, 32, 33, 41, 87, 89,

92, 95, 116, 161, 163–165

Complexity class, 34, 134

Constraints, 8

Constructive procedure, 11, 66, 69–72

Coupling, 20, 21, 23, 25–27, 29, 32, 33, 87, 89,

92, 95, 116, 161, 163, 165

Coverage, 115–117, 119–121, 123, 124, 128

D
Decision variables, 8, 9

Destruction operation, 82, 89, 95

Dominance, 10

E
Efficient point, 58, 69–72, 95, 96, 115, 129

Equal-size Cluster Approach, 18, 27, 29, 33,

37, 38, 42, 45, 68, 69, 75, 89, 90, 96,

97, 116, 117, 119, 121, 124, 127, 128,

131, 133, 157, 165, 166

Exact algorithms, 11, 134

Extraction operation, 79, 95

F
Feasible solutions, 8

Function of Complexity Balance, 18, 23–26, 33,

35, 36, 38, 40, 41, 45, 66, 75, 87, 89–

92, 95, 126, 131, 133, 157, 161, 162

G
Generalized Spread, 43, 115–117, 119–121, 123,

124

Genetic Algorithm, 34, 35, 37, 40, 41, 169, 171

Global optimum, 12

Graph, 17, 94

Greedy Randomized Adaptive Search Procedure,

203



204 GLOSSARY

34, 36, 45–48, 59, 63, 102, 103, 105,

124–126, 131, 170

H
Heuristics, 11, 12

Hybrid Genetic Algorithm, 34–36, 38, 40, 41,

126–128, 169, 170

Hypervolume, 43, 115–117, 119–121, 123, 124,

128

Hypothesis and objectives, 13

I
IGD, 43

IGD+, 115–117, 119–121, 123, 124, 128

Insert operation, 76, 87, 89, 91–93

L
Large Neighborhood Search, 34, 38–40, 124–

126

Lehman’s laws of software evolution, 5

Local optimum, 12, 46, 50, 58, 112

Local search, 11, 46, 47

M
Maximizing Cluster Approach, 18, 26–28, 33,

37, 38, 42, 45, 68, 69, 75, 89, 90, 96,

97, 116, 117, 119, 121, 123, 127, 128,

131, 133, 157, 162–165

Merge operation, 84, 95

Metaheuristics, 12, 34

Methodology, 12, 13

Modularity, 6, 7, 32

Modularization Quality, 18, 20, 22–24, 27, 33,

35, 36, 39, 40, 70, 92, 116, 157, 158

BasicMQ, 20, 22, 23, 33

Cluster Factor, 22, 159

Inter-connectivity, 20, 21

Intra-connectivity, 20, 21

TurboMQ, 20, 22, 23, 27, 29, 33, 38, 45,

59, 61, 70, 86–89, 91–93, 95, 102, 105,

124, 131, 133, 158, 160, 163–165

Module Dependency Graph, 17–20, 22, 24, 25,

28, 29, 71

Motivation, 4

Multi-Objective optimization, 9, 10

N
Neighborhood, 11, 50, 56, 58, 72, 75, 76, 78,

79, 81, 82, 84, 86, 91, 92, 95, 103,

106, 108, 109, 119, 121, 124, 132

O
Objective function, 8, 9, 12, 72

Objective space, 9, 70, 72, 128

Optimization, 7

Combinatorial optimization, 9, 10

Continuous optimization, 9

Decision variables, 86

Discrete optimization, 9

Optimization algorithm, 10, 13

Optimization problems, 8, 9, 31

P
Pareto front, 69, 115, 129

Pareto optimal solution, 10

Population-based methods, 15, 34, 133



GLOSSARY 205

R
Research, 12, 13

S
Search space, 12, 70, 92

Search-Based Software Engineering, 3, 4, 23,

31, 32, 131, 134, 149, 165, 166

Shake, 72

SMCP, 4, 7, 13, 15, 17, 18, 20, 26, 32–34, 38,

75, 90, 131–134, 149, 152, 153, 158,

166, 167, 169, 170, 172, 174, 177, 179

Software Development Life-Cycle, 4, 5, 31, 32,

134, 150, 151, 166, 179

Software Engineering, 3, 26, 31, 134, 149, 166

Software maintenance, 5

Split operation, 81, 95

State of the art, 13, 15, 16

Swap operation, 78, 87, 95

Symposium on Search-Based Software Engi-

neering, 31

T
Trajectory-based methods, 15, 86, 131–133

V
Variable Neighborhood Search, 34, 45, 46, 49–

52, 54–56, 59, 64, 66, 75, 131

Basic Variable Neighborhood Search, 50,

53, 66

General Variable Neighborhood Search, 45,

50, 54, 55, 66, 69, 72, 102, 107–113,

119, 121, 124, 126–128, 131

Multi-Objective General Variable Neighbor-

hood Search, 45, 56, 57, 68, 69, 72,

102, 114, 116, 124, 127, 128, 131

Multi-Objective Shake, 56, 57, 72, 116

Multi-Objective Variable Neighborhood De-

scent, 34, 37, 56–58, 69, 75, 117, 128,

171

Multi-Objective Variable Neighborhood Search,

45, 46, 54–56, 69, 95

Shake, 50, 53–55, 57, 73, 110, 112

Variable Neighborhood Descent, 34, 36, 45,

50, 53–55, 58, 59, 64, 66, 67, 102, 103,

105, 124–126, 131, 170

Vector of objectives, 9, 10

Very Large Scale Neighborhood search, 38

W
Wilcoxon’s Signed Rank test, 125, 127








	Acknowledgments
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms
	I PhD Dissertation
	Introduction
	Motivation
	Optimization
	Optimization problems
	Optimization methods

	Research methodology
	Hypothesis and objectives

	Problem definition
	Modularization Quality
	BasicMQ
	TurboMQ

	Function of Complexity Balance
	Maximizing Cluster Approach
	Equal-size Cluster Approach

	Literature review
	Large Neighborhood Search for the MQ problem
	Hybrid Genetic Algorithm for the FCB problem
	Two-Archive Artificial Bee Colony for the MCA and ECA problems

	Algorithmic proposal
	Fundamentals of the algorithmic methodologies
	Greedy Randomized Adaptive Search Procedure
	Variable Neighborhood Search
	Multi-Objective Variable Neighborhood Search

	Algorithmic proposal for the MQ problem
	Preprocessing reduction phase
	Constructive phase
	Variable Neighborhood Descent

	Algorithmic proposal for the FCB problem
	Constructive procedure
	Variable Neighborhood Descent

	Algorithmic proposal for the MCA and ECA problems
	Constructive procedure
	Multi-Objective Shake
	Multi-Objective Variable Neighborhood Descent

	Neighborhood structures
	Neighborhood structures defined by operations that do not alter the number of modules
	Neighborhood structures defined by operations that increase the number of modules
	Neighborhood structures defined by operations that reduce the number of modules

	Advanced strategies
	Incremental evaluation of the objective functions
	Identification of promising areas in the search space
	Analysis of the contribution of the guiding functions


	Experiments
	Dataset
	Preliminary computational experiments
	GRASP-VND
	GVNS
	MO-GVNS

	Comparison with the state of the art
	Comparison of the GRASP-VND procedure with the best methods for the MQ problem
	Comparison of the GVNS procedure with the best methods for the FCB problem
	Comparison of the MO-GVNS procedure with the best methods for the MCA and ECA problems


	Conclusions and future work
	Conclusions
	Future work
	Contributions


	II Appendix
	Dataset
	Resumen en castellano
	Motivación
	Metodología
	Hipótesis y objetivos
	Definición del problema
	Modularization Quality
	Function of Complexity Balance
	Maximizing Cluster Approach
	Equal-size Cluster Approach

	Estado del arte
	Propuestas algorítmicas
	Resultados
	Conclusiones y trabajos futuros
	Contribuciones

	Bibliography
	Glossary

	Página en blanco
	Página en blanco
	Página en blanco
	Página en blanco

