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• Project “Metaheuŕısticas eficientes para la optimización en grafos”, funded by
Spanish Ministerio de Ciencia, Innovación y Universidades under grant ref. PGC2018-
095322-B-C22.
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Abstract

Optimization has been a constant concern throughout history, from ancient Greeks
seeking the most efficient way to organize cities to modern algorithms optimizing busi-
ness processes. The significance of optimization lies in its ability to solve complex
problems, enhance efficiency, and make informed decisions. Over centuries, optimiza-
tion has proven to be fundamental for human progress.

Nowadays, optimization has gained even greater importance across various fields,
owing to the increasing complexity of the challenges we face. From business logistics
to route planning in navigation, optimization has become an essential tool for tackling
ever-evolving issues. The ability to efficiently and accurately solve problems is crucial
in an increasingly interconnected world that heavily relies on technology.

To address these challenges, there are various methodologies in optimization,
including exact methods, approximations, genetic, and heuristic algorithms. These
approaches offer flexible and adaptive solutions for a variety of problems, enabling
researchers and professionals to find the best possible solution in different contexts.

This thesis focuses specifically on problems related to Social Network Analysis,
an area of study that has gained prominence in the digital age. Within this discipline,
various problems are identified, with particular attention directed towards the concept
of influence. The central problem involves selecting users within a social network in
a way that maximizes or minimizes influence on other users, considering potential
constraints such as maximum budgets.

Defining influence within the context of social networks presents a significant
challenge due to the diversity of available methods. The ability to strategically select
users has practical applications in marketing campaigns, disease eradication, and the
detection of misinformation campaigns. The complexity of these problems is exacer-
bated by the NP−hard nature of many of them, implying that finding exact solutions
is impractical for large social networks.

While approximate algorithms exist, in certain cases, it is crucial to have quick
and high-quality information, such as in disease detection. Therefore, this thesis focuses
on the use of heuristics and metaheuristics to address influence problems in social
networks. These approaches provide efficient and adaptable solutions, particularly in
situations where speed and precision are paramount.

This thesis proposes different heuristic and metaheuristic algorithms to address
the most widespread variants of influence problems in social networks. Various method-

xviii



ologies, such as Greedy Randomized Adaptive Procedure Search (GRASP) or Path
Relinking (PR), have been applied and evaluated on real-world networks to verify
their utility and applicability in these contexts. The results obtained surpass current
proposals in all studied variants of social network influence problems.
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Chapter 1

Introduction

This Doctoral Thesis unfolds within the field of optimization. In both informal and
scientific contexts, “optimization” is often synonymous with improvement. However,
in the scientific realm, it assumes a more precise definition: “the systematic process
of searching for the best solution to a given problem among a vast set of possibilities”.
More specifically, this document is focused on solving problems included in Social Net-
work Influence (SNI) from an optimization point of view. This chapter contextualizes
optimization on its fundamental principles and features and concludes with the presen-
tation of the central hypothesis and objectives that propel the research forward.

1.1 Optimization

Optimization, rooted in the human pursuit of improvement, has a rich historical
tapestry. In ancient Greece, mathematicians like Euclid grappled with optimization
questions embedded in their geometric studies. Around 300 BC, Euclid explored prob-
lems such as determining the minimal distance between a point and a line. Addition-
ally, his mathematical insights extended to proving that, among rectangles with a given
total length of edges, a square possesses the maximum area.

The formalization of optimization problems gained prominence in the 18th and
19th centuries with the advent of calculus and mathematical analysis. The pioneering
work in 1744 of Euler, Lagrange, and others provided a theoretical framework for de-
scribing and solving optimization problems [1], introducing the notion of a mathemati-
cal function. Lagrange’s formulation of constrained optimization, known as Lagrangian
optimization [2], marked a significant milestone in addressing problems subject to spe-
cific conditions.

As mathematical optimization advanced, real-world applications emerged, no-
tably in engineering and economics. The industrial revolution spurred the need for
optimizing manufacturing processes, and economists sought to maximize utility and
profit within constrained resources. This historical backdrop underscores the dual na-
ture of optimization—arising organically in practical challenges while simultaneously
evolving as a formal discipline.
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6 1.1. OPTIMIZATION

Fast forward to the 20th century, optimization became an integral part of oper-
ations research and management science. Linear Programming (LP) is arguably the
key base methodology in mathematical optimization as we know it today. LP was first
introduced by Leonid Kantorovich in 1939 [3] and then independently reintroduced by
George Dantzig in 1947 [4]. The simplex method, developed by George Dantzig in
1947 [5], revolutionized linear programming, making it applicable to a wide range of
practical problems. This period witnessed the transition from ad-hoc problem-solving
to systematic algorithmic approaches.

In the contemporary landscape of optimization, a myriad of methods have prolif-
erated, each catering to distinct problem domains and computational scenarios. Heuris-
tics [6], which offer efficient, though not necessarily optimal, solutions, provide a flexible
and practical approach to navigate combinatorial spaces. Metaheuristics [7], a more
advanced class of algorithms, guide the search process by intelligently balancing ex-
ploration and exploitation. Approximation methods [8] in optimization are techniques
that provide solutions that are close to the optimal solution without the guarantee of
being absolutely optimal. Genetic algorithms [9], inspired by natural selection pro-
cesses, demonstrate the efficacy of exploring solution spaces with a genetic-inspired
search strategy. Mathematical models and metaheuristics [10] continue to complement
each other (denoted matheuristics), creating a rich tapestry of methodologies to address
optimization challenges. In this dynamic era, the optimization community witnesses
a synthesis of classical algorithmic approaches with cutting-edge techniques, reflecting
the evolving nature of problem-solving strategies.

Figure 1.1 provides an overview of the number of research works aimed to solve
optimization problems published and indexed in the Web of Science directory per year,
focusing on the research areas of Computer Science, Mathematics, and Operations
Research Management Service 1.

Figure 1.1 illustrates the annual growth of optimization publications. The data
show a consistent increase in the number of publications over the years, signaling a
growing interest and relevance in research within this field. This pattern suggests
a heightened focus from the scientific community, underscoring the significance and
dynamism of optimization research.

Optimization problems

The definition of an Optimization Problem (OP) requires the concept of an objective
function, often referred to as a cost function, utility function, or criterion, which is a
mathematical expression that quantifies the performance, desirability, or effectiveness
of a solution. The objective function serves as the guiding criterion for evaluating and
comparing different solutions, helping in the systematic search for the optimal solution
to the given problem.

An OP can be defined as the minimization or maximization of the value of an

1The data was generated on 22/11/2023 and consist of 287880 articles https://www.
webofscience.com/wos/woscc/summary/e6f055d0-e484-45e6-bcba-5877a7793a49-b719e1f5/
sort-group-background-citingcount/1

https://www.webofscience.com/wos/woscc/summary/e6f055d0-e484-45e6-bcba-5877a7793a49-b719e1f5/sort-group-background-citingcount/1
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Figure 1.1: Number of published and indexed articles in Web of Science related to
optimization field.

objective function f(S), where S represents a solution in the set of feasible solutions
SS, those which satisfy every problem constraint [11]. The aim in optimization is
to either minimize or maximize this objective function, depending on the nature of
the problem—minimization when seeking the smallest value, and maximization when
pursuing the largest. Mathematically, the optimization problem can be succinctly
expressed as follows:

Minimize f(S)

subject to S ∈ SS (1.1)

When an optimization problem is addressed, the sought-after solution is termed
the optimal solution. This optimal solution, within the feasibility bounds, is charac-
terized by providing the minimum or maximum value for the objective function being
assessed, depending on whether the problem involves minimization or maximization,
respectively. Solving an optimization problem basically consists of finding the best
values of a set of decision variables in terms of an objective function while satisfying
some given constraints.

Figure 1.2 illustrates a possible graphical representation of a minimization opti-
mization problem, as well as the most relevant concepts presented so far. Specifically,
in this figure, the search space of an optimization problem is represented by the x-axis,
which also contains all feasible solutions to the problem. The y-axis represents the
value of the objective function associated with each of the solutions. As an example,
two solutions S and S⋆ are illustrated, where S⋆ is also the optimal solution to the
problem since there is no solution with a lower value of the objective function in the
search space.

The preceding figure elucidates key concepts in optimization problems. A shoul-
der denotes a region on the optimization landscape where the objective function un-
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Figure 1.2: Graphical representation of an optimization problem where the x-axis
represents the search space SS, and the y-axis represents the objective function value
of each solution s, s⋆ ∈ SS.

dergoes a gradual or slow change in value. Typically, it represents a flat or gently
sloping area where the function remains relatively constant before encountering a more
pronounced change, such as a peak or valley. Moreover, the visual representation high-
lights the global maximum, denoting the maximum optimal value. A local maximum
is a point in the solution space where the objective function attains a value equal to or
greater than the values at the surrounding points. However, note that a local maximum
does not imply that the value at that point is the global maximum of the function across
its entire domain, as depicted in the figure. Analogously, a local minimum follows a
similar definition, but pertains to a point where the objective function reaches a min-
imum value. Lastly, a flat local maximum characterizes a scenario in which solutions
yield nearly identical or similar objective function values, resulting in a relatively flat
or plateau-like region. This scenario indicates that the objective function has attained
its maximum possible values within the search space.

Optimization classification

The study of optimization has been conducted in various fields of study, with Math-
ematics and Computer Science being two of the most prominent ones. A traditional
categorization of the different optimization problems, based on the type of variables and
the mathematical expression of the objectives and constraints, divides Mathematical
Programming into three main areas: Linear Programming, where the variables are real
(continuous) numbers and the objectives and constraints are linear; Integer Linear Pro-
gramming, where the variables are integers in addition; and Non-Linear Programming,
where the variables are real numbers and there are no restrictions on the expression of
objectives and constraints. This classification assumes that the mathematical expres-
sion of the objectives and constraints is known, which is not always the case. Many
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real-world problems in industry and business are difficult to formulate mathematically
and they are challenging to solve because of their combinatorial nature.

Classifying optimization problems according to their computational complexity
is a common practice. This is done by measuring the time it takes for a machine to
solve the problem, usually using the Bachmann-Landau notation, also known as Big-O
notation. This notation defines the time required by an algorithm to solve a certain
problem in the worst case [12, 13, 14].

Using this notation, certain problems can be solved by an existing algorithm in
polynomial time. The time an algorithm needs to solve a problem is related to its
input, expressed as a polynomial function. This is denoted as O(nt), where t is the
highest exponent in the polynomial. Problems that meet this criterion are classified as
P problems, such as the Monte Carlo algorithm [15] introduced by Nicholas Metropolis
in 1947. Most combinatorial optimization problems cannot be solved in a reasonable
time, as no algorithm is known to obtain an optimal solution in polynomial time. These
problems are part of the NP set, with the P problems being a subset. Another subset
of NP problems is the NP-complete set, where no polynomial algorithm exists to
solve them, but a polynomial algorithm can verify if a solution solves the problem,
such as the Traveling Salesman Problem [16]. Finally, the NP-hard class includes all
problems that do not have a polynomial algorithm to verify if a given solution solves
the problem, for example the Social Network Influence Maximization Problem [17].

Heuristic and Metaheuristic methods in optimization

Heuristic methods [18] are a practical choice for quickly addressing problems, although
they do not guarantee an optimal solution. This is the primary distinction between ex-
act and heuristic methods. The exact algorithms are designed to find the best solution
for a given problem [19], while heuristic algorithms do not provide this assurance. The
main issue with exact algorithms is that many real-world problems are too complex
to solve, or no exact algorithm is known to solve them. On the other hand, the main
issue with heuristic algorithms is that they can easily become stuck in a local optimum
of the solution space.

Generally, they start with an empty solution, gradually adding individual com-
ponents (e.g., vertices, edges, variables) to eventually form a feasible solution. Among
these heuristic construction algorithms, greedy algorithms are particularly proficient
in producing high-quality solutions [20]. In a basic greedy construction, each step in-
volves adding a solution component based on the optimal value determined by a defined
heuristic function [21]. Despite the determinism of greedy construction, the importance
of solution diversity for a thorough exploration of the solution space cannot be ignored.
To address this, researchers have proposed semi-greedy heuristics [22] or incorporated
randomization into the construction process [23]. Multiple construction of solutions is
beneficial when the construction is not entirely deterministic, allowing exploration of
different points in the search space. This strategy is especially useful when the knowl-
edge gained from previous solutions helps generate subsequent solutions. However,
caution should be taken when repeatedly constructing solutions in scenarios where the
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initial construction steps are computationally intensive compared to the subsequent
steps, as it may not be time-efficient [21].

Figure 1.3 shows two figures related to constructive heuristic approaches. On the
one hand, Figure 1.3a shows a greedy solution. On the other hand, Figure 1.3b shows
multiple constructions with several generated solutions, where the one that minimizes
the objective function the most will be selected.

SS

f

(a) Solutions generated by single iteration
of constructive algorithm.

SS

f

(b) Solutions generated by a multi-start
constructive algorithm.

Figure 1.3: Two constructive methods on a solution search space.

Typically, the solution obtained through constructive procedures serves as a start-
ing point for improvement methods, such as local search [24, 25]. Local search begins
with a feasible solution and then attempts to replace it with a better solution from
a reduced set of solutions within the solution space. This subset of solutions, known
as a neighborhood, encompasses all solutions achievable by specific moves (or a set of
moves).

Figure 1.4 illustrates a single neighborhood with a solution S in the search space,
which could be generated by a heuristic approach. A local search will try to improve
this solution with two alternatives: the first improvement and the best improvement.
The former, when an improvement is found, is accepted, and the search continues with
this improvement, leading to the solution S1, which is a local minimum. The latter
is named best improvement, where all possibilities are explored before accepting a
solution as an improvement, the solution S2 is obtained, which is the global minimum.

Figure 1.5 displays two neighborhoods, represented by circles highlighted with
different shades of gray gradient. These circles represent the domain of achievable
solutions. Then, a solution S is depicted that belongs to a neighborhood different
from the previous figure, so it is not possible to reach the global minimum. To do
so, a neighborhood change can be performed, as shown in the solution S2. Through
a local search, the optimal solution S5 can be reached. The solutions S2, S3, and S4

show possible moves (new solutions that the local search can reach with a single move)
before reaching the global minimum.
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Figure 1.4: A local search with a solution representing a first-improvement and best-
improvement local search.

SS

f

S1

S

S5

S2

S3

S4

Figure 1.5: A neighbourhood change to achieve the global minimum through local
search moves.
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When dealing with large neighborhoods, termination criteria can be a significant
factor to consider. Furthermore, detecting when it is time to end an improvement pro-
cess to prevent over-exploring a region of the search space is a very effective strategy.
Other approaches suggest reduction techniques to reduce the number of solutions in a
neighborhood. The objective function is a key component of local search algorithms,
since it is calculated multiple times to evaluate solutions within a neighborhood. In
some cases, evaluating the objective function requires a long calculation time, thus,
researchers have developed different approaches to address this critical issue. For in-
stance, using approximations of the original objective functions or other simpler heuris-
tics with similar characteristics. In this dissertation, this problem is addressed through
an efficient or intelligent evaluation of the objective function, avoiding complete recal-
culation after a move (see Section 2.2.1). Another aspect to consider when applying
local search strategies is the influence or sensitivity of the initial solution. In some
cases, the quality of the final solution found by a local search algorithm can be highly
dependent on the initial solution used as a starting point. This implies that only a few
regions are explored, and it is necessary to introduce some diversity in the generated
solutions. Therefore, local search algorithms must be able to balance the need to ex-
plore new solutions with the need to exploit the current best solution. If the algorithm
focuses too much on exploitation, it may easily get stuck in a local optimum, while if
it focuses too much on exploration, it may waste time exploring bad-quality solutions.
This difficulty is closely related to the definition of a suitable neighborhood. In some
cases, it may be difficult to define an appropriate neighborhood for a given problem,
which can make it hard to use local search algorithms effectively.

Under this circumstance, metaheuristics emerge as a new kind of algorithms that
guide the heuristics during their search, with the aim of escaping from local optima and
improving the solutions found. The metaheuristic concept was introduced by Glover
in 1986 [7] and was defined as an “strategy that guides and modifies other heuristics
to explore solutions beyond local optimality”. In the same definition, Glover explains
that “the heuristics guided by such a meta-strategy may be high-level procedures or
may embody nothing more than a description of available moves for transforming one
solution into another, together with an associated evaluation rule”.

Attending to this definition, metaheuristics are considered as a set of approxi-
mated algorithms that guide the heuristic procedure exploration in a smart way, com-
bining intensification (exploitation) and diversification (exploration) of the search space
of the problem under solution. By the intensification, a limited but promising region
of the search space is explored, looking for improvements in the incumbent solution.
This procedure is traditionally associated with local search procedures. Regarding
exploration, a large region of the search space is explored with the aim of increase
the diversity among the solutions explored. Metaheuristics have been successfully ap-
plied in a large number of optimization problems, reaching high-quality solutions in a
reasonable computational time.

In this PhD Thesis, some of the most widely used metaheuristics have been stud-
ied to solve optimization problems. Some of them are as follows. Greedy Randomized
Adaptive Search Procedure (GRASP) [23, 26] and Path Relinking (PR) [27]. Con-
cretely, these metaheuristics are used to provide high-quality solutions to optimization
problem that belongs to the Stanford Network Analysis (SNA) family.
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1.2 Optimization problems in Social Network In-

fluence

Nowadays, millions of users are involved in Social Network (SN), growing exponentially
the number of active users. This growth is extended to the amount of behavioral data,
and, therefore, all classical network-related problems are becoming computationally
harder. SNs have become one of the most widely used sources of information, mainly
due to their ability to provide the user with real-time content. They are not only a new
form of communication, but also a powerful tool that can be used to gather information
related to relevant questions, for example: which is the favorite political party for the
upcoming elections, what are the most talked about movies of the past year, which is
the best-rated restaurant in a given area, etc. Extracting relevant information from
social networks is a topic of interest, mainly due to the enormous amount of potential
data available. However, traditional network analysis techniques are becoming obsolete
due to the exponential growth of social networks, in terms of the number of active users
and the relations among them.

The different areas within the Social Network Analysis family are illustrated in
Figure 1.6 [28].

Expert Finding

Behavior and 
Mood Analysis

Recommender Systems Link Prediction

Influence ProblemsOpinion Mining

Predicting Trust and 
Distrust among
Individuals

Community DetectionSNA

Figure 1.6: Social Network Analysis: Family of Problems.

A concise overview of the primary topics within the field of Social Network Anal-
ysis is provided in a clockwise direction: Predicting Trust and Distrust among Individ-
uals, involves developing models to forecast trust and distrust levels in social network
relationships. This aims to enhance our ability to anticipate the dynamics of interper-
sonal connections; Influence Problems, refers to the spread of information, behaviors,
or opinions across a social network, influencing the attitudes or actions of its nodes;
Community Detection, identifies groups or clusters of nodes within a social network
that exhibit higher connectivity among themselves than with the rest, unveiling the
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underlying structure and relationships; Link Prediction, forecasts future connections
between entities, utilizing network structure and historical interactions; Expert Find-
ing, identifies individuals with specific knowledge, skills, or expertise in a subject within
a social network; Recommender Systems, analyze user preferences to provide personal-
ized suggestions; Behavior and Mood Analysis, studies patterns related to user behavior
and emotional states in social networks; Opinion Mining, extracts subjective informa-
tion from social media or reviews to determine sentiments and opinions expressed by
individuals or groups.

Influence propagation plays an important role in the spread of information, opin-
ion, idea, innovation, rumor, or misinformation on a large scale [29]. This spreading
process has a huge practical importance in viral marketing [30, 31]. Consider the case
of promoting a brand by of a commercial house through online marketing, where the
goal is to attract the users for purchasing a particular product. The best way to do this
is to select a set of highly influential users and distribute them free samples. Many of
them will like the item and influence their neighbors to try the product. These newly
informed users will influence their neighbors. This cascading process will continue and,
ultimately, a large fraction of users will try for the product, leading to a significant
improvement in the earned revenue. Naturally, the number of free sample products
will be limited due to economic reasons. Hence, this process will be fruitful if the free
samples can be distributed among the highly influential users and the problem here
bottoms down to select influential users from the network.

SNs are used not only to spread positive information but also malicious infor-
mation. In general, research devoted to maximize the influence of positive ideas is
called Influence Maximization [32]. Thus, solving successfully this problem allows the
decision-maker to decide the best way to propagate information about products and/or
services. On the contrary, SNs can also be used to spread malicious information such
as derogatory rumors, disinformation, hate speech, or fake news. These examples mo-
tivate research about how to reduce the influence of negative information. This family
of problems is usually known as influence minimization [33, 34, 35].

There are different approaches to solve these problems: approximation algorithms
guarantee the worst-case bound for influence spread, but the main drawback is scal-
ability issues, which means, with the increase in the network size; heuristic solutions,
while lacking a worst-case bound on influence spread, often exhibit superior scalability
and improved running time compared to the approximation algorithms; metaheuristic
methods based on evolutionary computation techniques, also lack a worst-case bound
on influence spread; community-based solutions leverage community detection in the
underlying social network as an intermediate step to break down the problem into
the community level, enhancing scalability, but most algorithms in this category are
heuristic and do not provide a worst-case bound on influence spread.

A complete survey on Social Network Influence can be found in [36] where it is
stated that metaheuristics scarce in SNI. Finally, another recent survey states different
metaheuristic algorithms used in SNI [37].
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1.3 Hypothesis and objectives

After identifying the problems to be solved, the following hypothesis supports the
development of the research project.

The hypothesis proposed for the development of this Doctoral Thesis is aboard
since a point of view that SNI problems are NP-hard problems, with practical interest
in many scientific disciplines. Therefore, it is interesting to develop algorithms that can
generate high-quality solutions in a reasonable time. The scalability property required
since the real-word increase the number of data generated via SN.

Metaheuristic techniques are also proposed, which have been shown to be effec-
tive procedures when dealing with optimization problems. In particular, trajectory
metaheuristics constitute a subfamily of this type of techniques, characterized by con-
sidering more than one solution simultaneously and providing combination mechanisms
among them. Dispersed Search is a clear exponent of this type of metaheuristics. On
the other hand, the so-called trajectory metaheuristics start from an initial solution
and are capable of generating a trajectory in the solution space. Greedy Randomized
Adaptive Search Procedure (GRASP) is an example of a trajectory metaheuristic.

The proposed heuristic algorithm will be complemented with the metaheuristic
techniques best suited to the problem, in particular GRASP and PR will be considered.

To achieve the main objectives mentioned above, the following objectives must
be addressed:

• Study the state of the art of the problem, analyzing current algorithm proposals.

• Design and develop heuristic algorithms to solve problems related to the Social
Network Influence problems using different Influence Diffusion Models.

• Configure the parameters of the algorithm developed. The algorithms developed
must be configured to use the best parameters to achieve the best results. To
configure the parameters, you must conduct a preliminary experiment.

• Validate the heuristic algorithm. The algorithms will be experimentally compared
with the state-of-the-art algorithms to provide a fair comparison.

• Analyze the results obtained by the new algorithm and compare them versus the
state-of-the-art algorithms.

• Adapt the proposed algorithms to the real-known problems related to: pandemic
evolution containment, rumor, and fake news minimization, where the results will
be validated.

• Publish all the source code, instances, and results in public repositories to ease
further comparisons.

• The partial results will be submitted to JCR journals with review processes by
independent institutions. Thus, provide an expert evaluation to improve our
research and verify that it contributes to the academic area related to SNI.
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Throughout the dissertation, conclusions of the dissertation are presented in order
to confirm the previous hypothesis.

1.4 Memory structure

This document summarizes the research that has been conducted and is organized as
follows:

• Part I, the developed research is shown, describing the addressed problem, as well
as the followed methodology and the obtained results. Finally, the conclusions
derived from the work are exposed.

– Chapter 1, optimization research area, combinatorial Optimization Prob-
lems, heuristics and metaheuristics are described. The hypotheses and ob-
jectives for this work are also defined.

– Chapter 2, the Social Network Influence is presented, defining it in a detailed
way, explaining each of its variants.

– Chapter 3, the methodology applied to the previously described problem is
explained. The main metaheuristic and all the other techniques that lead
to the obtained results are exposed.

– Chapter 4, the obtained results for each variant of the problem and the main
contributions made are analyzed and discussed.

– Chapter 5, the conclusions derived from the research and possible future
work are presented.

• Part II the published articles associated with this Thesis are summarized and
gathered, together with information about the journal in which they are pub-
lished.

• Finally, Part III includes a brief summary of the dissertation in the native lan-
guage, Spanish.



Chapter 2

Social Network Influence Problem

This chapter introduces the classic Social Network Influence Problem. Then, most
extended Influence Diffusion Models (IDM) are presented, which are responsible of de-
termining when a user is influenced or not. Finally, for each problem, the objective
function, the goal of the problem, and an illustrative example of the evaluation of a
solution are described. In particular, the problems studied are: Social Network Influ-
ence Maximization (Section 2.3), Budgeted Influence Maximization (Section 2.4), and
finally, the Target Set Selection Problem (Section 2.5).

2.1 Social Network Influence Problems

The evolution and expansion of social networks have begun to attract the interest of
the scientific community in recent years. Due to this, numerous problems that are
difficult to solve with classical techniques have arisen, such as viral marketing [38],
disease propagation [39], misinformation [40], among others. The rationale behind this
is the exponential growth of users in the last decades. Figure 2.1 shows the number of
Internet users per year according to the number of users in millions.

The Social Network Analysis is usually divided into several research fields, each
of them focused in a different area. This thesis is focused on one of these sub-areas:
the Social Network Influence Maximization. This family of problems aims to find the
most influential users within a social network.

A social network is conformed with a set of users and the social interactions among
them. Then, the aim is to strategically choose users to optimize specific criteria, such
as maximizing or minimizing influence, meeting a certain budget, etc.

Social Networks are usually modeled as a graph G = (V,E) where the set of
nodes V represents the users and each relation between two users is modeled as a pair
(u, v) ∈ E, with u, v ∈ V indicating that user u is connected to or even can transmit
information to user v. Depending on the nature of the network, the graph can be
directed (if it is a one-way relation), weighted (if the users or relations have different
relevance), etc.

17
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Figure 2.1: Internet Users Timeline based on We Are Social company reports.

Information propagation is the phenomenon with which information moves from
one user to another through network relationships. In the literature, there are many
works that are interested in the study and/or simulation of this phenomenon. In fact,
many works [41, 42] studied the information propagation process to understand and
explain this phenomenon [43]. A diffusion model, also known as propagation model,
is a model that simulates and describes the entire propagation process and determines
which node in the network will receive the propagated message. A detailed discussion
on the most extended IDMs is presented in Section 2.2.

Most social networks have a high number of active users, becoming their analysis
a real challenge for academics and practitioners. The main drawback in SNI is related
to the evaluation of a solution, since solutions are usually evaluated with an IDM, and
IDMs require high computational effort. As stated before, this family of problems is
known to be NP-hard, and therefore an exact algorithm is not suitable to solve it
optimally in a reasonable computing time. The application of efficient metaheuristics
in the field of social networks will allow the community to have tools able to analyze
the influence of users in real time, which represents a very significant advance in this
field. The greedy selection function considers the redundancy between likely-influenced
nodes and does not include those reached by the already selected seed nodes to provide
a better estimation of the total spread. Some heuristics have been proposed as time-
saving solutions for greedy decisions: random, degree, and centrality [17].

Every day, online social networks collect a huge amount of data, and the influence
maximization process is time-consuming in some cases. Some real-world applications,
such as disease propagation analysis actions, play an important role where every minute
is crucial, as the spread can be exponential. The longer it takes to have a solution, the
higher the risk of affecting a larger number of people. Similarly, in the business world,
the planning of marketing campaigns requires from real-time information extracted
from the social network to analyze the effect of the political campaign. Moreover, in
the dynamic world of social networks, where trends change continuously, the ability to
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quickly find a solution is essential.

The increase in the interest of the scientific community in Social Network Influ-
ence have lead researchers to present a survey on this topic [36]. In that work, the
authors experimentally compared the results obtained by the most recent algorithms
such as approximation algorithms [44], heuristic solutions [17], community-based so-
lutions [45] and metaheuristic solutions [46], trying to solve Social Network Influence
Maximization Problem (SNIMP). They concluded by stating that metaheuristics are
scarce but interesting techniques in Social Network Influence. Finally, a recent survey
related to Social Network Influence with metaheuristics is presented in [37].

2.2 Influence Diffusion Models

The evaluation of the influence of a given seed set S over a network G requires the
definition of an Influence Diffusion Model (IDM) [47]. An IDM is responsible for mod-
eling how the information is transmitted through the network, thus indicating which
nodes are influenced. Each node has two states depending whether the information
has already influenced it (active) or not (inactive). The most extended IDMs in the
literature are: Independent Cascade Model (ICM) (see [17]), Weighted Cascade Model
(WCM) (see [17]), Linear Threshold Model (LTM) (see [17]) and Tri-Valency Model
(TV) (see [48]). All of them are based on assigning an influence probability to each
relational link in the SN, since a relation in a network does not necessarily mean that
a user influences another one in a certain period of time.

Since in every diffusion model the edges have a certain probability of influence,
it is not possible to perform a deterministic evaluation of the active nodes after the
propagation process has finished. Instead, a probabilistic method is usually considered
to evaluate the nodes influenced by a certain set of seeds. Algorithm 1 shows the Monte
Carlo algorithm, which is a well-known method used in the literature to estimate the
number of activated users. The algorithm requires four input parameters: the social
network G = (V,E), a seed of infected/activated users S, the number of iterations ev,
and, the IDM criteria represented by ψ.

The algorithm starts by initializing the set which stores the number of infected
users (step 1). It then performs a number of predefined iterations ev (steps 2 − 18),
finding in each iteration the influenced nodes by the given seed set S. Initially, the set
of nodes A⋆ reached by the initial seed set, S, is actually the seed set (step 3). Then,
the method iterates until no new nodes are influenced (steps 5-16). In each iteration of
the inner for-loop, the neighbors of each node reached in the previous one are traversed
(steps 8-12). For each neighbor, the specific IDM criteria ψ is performed and, if it is
valid, then the neighboring node becomes infected (steps 9-11). At the end, the set
of infected nodes is updated (step 14) as well as the nodes infected in the previous
iteration (step 15). Finally, the algorithm returns the mean number of infected nodes
among all the simulations performed (step 19). Notice that this value is considered
as the objective function to be optimized when solving a SNI problem. It is worth
mentioning that, as infection is an stochastic process, the ICM must be run several
times (ev in our case) to achieve an appropriate estimation.
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Algorithm 1 MonteCarlo(G = (V,E), S, ψ, ev)

1: I ← ∅
2: for i ∈ 1 . . . ev do
3: A⋆ ← S
4: A← S
5: while A ̸= ∅ do
6: B ← ∅
7: for v ∈ A do
8: for (u, v) ∈ E do
9: if ψ then
10: B ← B ∪ {u}
11: end if
12: end for
13: end for
14: A⋆ ← A⋆ ∪B
15: A← B
16: end while
17: I ← I + |A⋆|
18: end for
19: return I/ev

Numerous studies have extensively explored the most adequate number of iter-
ations in Monte Carlo simulations [49], since it should be large enough to be precise,
but small enough to avoid requiring large computing times. In the context of problems
related to social network influence, researchers performs ranging from 100 to 100000
iterations, reflecting the diversity in simulation [46, 50]. Some studies have introduced
alternative convergence criteria for Monte Carlo algorithms, such as Gaussian distribu-
tion fitting, Chebyshev Inequality Stopping Rule, Estimation of the Variance, among
others [49]. The motivation behind these studies lies in the recognition that specifying
a fixed number of iterations may lead to inaccuracies if chosen too small or result in
excessive computational burden if set too high. To address this, certain methods aim
to approximate the Monte Carlo algorithm [51], improving its efficiency and mitigating
the challenges associated with arbitrary iteration counts.

Lastly, some approaches proposed the parallelization of Monte Carlo simulation
[52], since each iteration performs independently. Figure 2.2 illustrates two approaches
to obtain activated nodes, both figures receive as input a social network with selected
seed set nodes (represented as black nodes). Figure 2.2a outlines the sequential method-
ology, where all iterations are executed consecutively and the activated nodes are col-
lectively returned at the end. Then Figure 2.2b illustrates the independent execution
of several iterations, with the activated nodes returned separately for each iteration.
Subsequently, an average is computed to derive the mean count of activated nodes.

These methods ensure a balance between computational time and quality in the
realm of social network analysis. The following sections will detail each of the IDMs
considered.



CHAPTER 2. SOCIAL NETWORK INFLUENCE PROBLEM 21

Average Activated
Nodes

Monte Carlo Simulation

Iterations

(a) Sequential

MC1 MC2 ... MCn

Average Activated
Nodes

(b) Parallel

Figure 2.2: Monte Carlo Simulation.

2.2.1 Independent Cascade Model

This model serves as a framework for simulating information cascades within social
networks [17, 53, 54], so that a node can only influence those to which it is directly
connected (see Algorithm 1). A vertex v is said to be active when it receives the in-
formation and accepts it. It is said to be inactive when it does not receive or rejects
the information. An inactive node becomes active if it receives and accepts the mes-
sage. A node, after been activated, can transmit information to its neighbor nodes
with activation probability pv,u ∈ [0, 1]. It is worth mentioning that transitions occur
exclusively from an inactive to an active state. Specifically, within the ICM, a node
denoted as v that becomes active at time t, has the chance to activate its neighbor
next time t+1. The activated node then generates a random number between [0, 1] for
each neighbor u. If and only if pv,u ≤ p the neighbor u will be activated. The diffusion
process continues until no other new nodes can be activated.

Figure 2.3 illustrates a social network composed of four nodes {v1, v2, v3, v4} and
three edges {(v1, v2), (v3, v2), (v3, v4)}, each number on the top of an edge corresponds
to an activation probability (generated by a random number between [0, 1]). Nodes
shaded in gray denote their activated status.

On the one hand, Figure 2.3a shows the initial step, where nodes v1 and v3
are activated. On the other hand, Figure 2.3b shows dashed lines denoting that the
relation has not activated a new node and a bold black line indicating that the node is
influenced. The ICM sets a fixed value of p for all edges, assuming a p value of 1% (in
this case, 0.01) commonly employed in the literature. There is only one node meeting
the criterion pv,u ≤ p, which is node v4. Since node v4 has not neighbors the process
ends, resulting in a total of 3 activated nodes.
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(b) Resulting SN in t+1.

Figure 2.3: Independent Cascade Influence Diffusion Model.

2.2.2 Weighted Cascade Model

The Weighted Cascade Model [17] considers that the probability of a user v for being
influenced by user u is proportional to the in-degree of user v, i.e., the number of
users that can eventually influence user v. That is to say, a node with large degree is
relatively hard to be activated by a single connection. Therefore, the probability of
influencing user v is defined as 1/din(v), where din(v) is the in-degree of user v. A node
will be activated if (1− 1/din(v)) ≤ r, given a randomly generated number r.

In the standard ICM, the probability of propagation between any two nodes is the
same. However, this assumption can be altered so that the probability of propagation is
related to the number of neighbors a node has. This implies that a popular individual
with many connections is more difficult to activate with a single neighbor, which is
a more realistic approach. If an individual receives input information from several
sources, then the probability of being influenced by just a single source should be
smaller than if it is influenced by several sources. The spread process is similar to
ICM, except that the propagation probability is dependent on the degree.

Figure 2.4 represents the same social network as previously stated. Notice that,
the edges have a form derived by the WCM model, which would be the activation
probability.
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(a) SN with 4 nodes and 4 relations.
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1

V1
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Time t+1

(b) Resulting SN in t+1.

Figure 2.4: Weighted Cascade Influence Diffusion Model.

Figure 2.4a represents the initial social network at time t where the same nodes
as before are activated. Then, the activation probability of edge (v1, v2) is denoted as
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1/din(v2) being din(v2) = 2. Therefore, all the relations to node v2 would result in the
activation probability of 1/2, so edge (v3, v2) also results in the activation probability
1/2. However, edge (v3, v4) is different, since node v4 only has an incident edge, so
the activation probability would be 1. Finally, assuming that r are: 0.6 for (v1, v2),
0.4 for (v3, v2) and 0 for (v3, v4), Figure 2.2b represents that which nodes have been
successfully activated, where v4 is activated (1 − 1/1 ≤ 0) and node v2 is activated
(1− 1/2 ≤ 0.6). Note that node v2 is activated just by one edge (v1, v2), as a random
number r is generated, it could not activate one edge with same probability. The total
number of activated nodes in the depicted example will be 4.

2.2.3 Linear Threshold Model

The Linear Threshold Model [17, 48] together with the Independent Cascade Model,
were the first simulation models used to simulate the information propagation process.
In the LTM, a weight ω(u, v) is associated to each edge (u, v) and a threshold θu to each
node u. A node u will be activated if the total weight between itself and its activated
neighbors is, at least, θu. More formally:

∑
v

ω(u, v) ≥ θu (2.1)

The depicted Figure 2.5 represents a similar social network as before. The rep-
resented social network 2.5a has a number in each vertex representing the threshold θ
and in each edge denoting the weight ω(u, v).
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(a) SN with 4 nodes and 4 relations.
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(b) Resulting Social Network in t+1.

Figure 2.5: Linear Threshold Model.

As can be observed in Figure 2.5b node v2 is activated. The reason behind this
is that node v2 has activated neighbors whose relations sum more than the threshold
at node v2, θv2 = 0.9, specifically ω(v1, v2) + ω(v3, v2) = 0.3 + 0.8 = 1.1 ≥ θv2 . The
remaining node v4 is not activated since the sum of its relations does not reach the
threshold value, i.e., 0.6 < 1.2, thus the total number of activated nodes is 3.
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2.2.4 Tri-Valency Model

The last model is called Tri-Valency Model and it was developed by [48]. This prop-
agation model randomly selects the edge probability from a set of probabilities p =
{1%, 0.1%, 0.001%}. The activated node v then generates a random number between
[0, 1] for each neighbor u. If and only if pv,u ≤ p the neighbor u will be activated. The
main objective in TV is to introduce variability in the strength of connections within
the model. These values represent different probabilities associated with the activation
of nodes through their edges. By incorporating this range of probabilities, the model
can simulate scenarios in which edges have varying degrees of impact on the diffusion
of influence through the network. This adds a layer of realism to the model, capturing
the diversity in the strength of connections observed in real-world social networks and
other complex systems.

Figure 2.6 includes two sub-figures. The former Figure 2.6a is related to the
values assigned to the different edges. The latter Figure 2.6b shows the selection of
random probabilities on each edge between the candidate values and the activated
nodes according to their relations.
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(a) SN with 4 nodes and 4 relations.
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(b) Resulting Social Network in t+1.

Figure 2.6: Tri-Valency Model.

The random probability associated with each edge is shown in bold in Figure 2.6b.
Then, just edge (v1, v2) meets the criteria pv,u ≤ p and activates node v2, so the total
number of active nodes is 3.

2.3 Social Network Influence Maximization Prob-

lem

The Social Network Influence Maximization Problem (SNIMP) is the first problem
considered in the framework of this Doctoral Thesis. It was initially formulated in [55]
and was later proven to be NP-hard for most ICMs in [47]. Given a SN with |V | = n
nodes where the edges (relational links) represent the spreading or propagation process
on that network, the task is to choose a seed node set S of size k < n (where k is an
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input parameter) with the aim of maximizing the number of nodes in the network that
are influenced by the seed set S.

In mathematical terms,

S⋆ ← argmax
S∈S

ICM (G,S, p, ev) (2.2)

where S is the set of all possible solutions (i.e., seed set setups with size k), p is the
probability of a user to be influenced, and ev is the number of iterations of the Monte
Carlo simulation used to run the ICM.

Figure 2.7 shows an example of an SN with 8 nodes and 9 directed edges, where
each pair (u, v) denotes that the user v may be influenced by u. Information represents
anything that can be passed across connected peers within a network. The influence
level given by a node is determined by the adoption or propagation process. Let us
consider k = 2 for this example graph.
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(a) S1 = {A, G}
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(b) S2 = {F, G}

Figure 2.7: SNIMP example with a SN with 8 nodes and 9 edges. Two feasible solutions
S1 and S2 are represented, each of them resulting in a different set of influenced users.

Figure 2.7a shows the solution S1 where the seed set is conformed with nodes A
and G. Without loss of generality, for this example it is assumed that p = 1 (i.e., all
the nodes are always infected by their neighbors). By simulating diffusion model we
can see how nodes C and H are directly influenced by node G. It is worth mentioning
that a leaf in a graph (node without neighbors) will not be able to activate any other
node but itself, as can be seen in the figure depicted with node A. After that, node
C influences node D. Different levels of influence are represented by a gray gradient
from black to white. Therefore, if we consider a single evaluation of the Monte Carlo
simulation, the objective function value of S1 is ICM (G,S1, p, 1) = 5. Figure 2.7b
depicts the solution S2 = {F,G}. Similarly to Figure 2.7a, a gray gradient indicates
the process of influence over the network, resulting in an objective function value of
ICM (G,S2, p, 1) = 8, since all nodes are influenced, being the optimal solution. Notice
that, following this evaluation, S2 is better than S1.

A promising starting point for such problems involves targeting nodes with higher
degrees (in-degree or out-degree). The reason behind that is that they have a large
number of neighbors to potentially activate [47]. It is worth mentioning that consid-
ering different communities is also crucial. Selection of all seed nodes from a single
community may be effective if it is densely populated. However, exploring nodes in
other communities can be valuable in alternative scenarios [45].
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In a real-world application, one notable field is marketing [56]. The goal of
marketing campaigns is to identify users, often referred to as influencers, who can
deliver the highest performance for the campaign. Given that the number of influencers
is limited and that they may share common followers, determining the most strategic
influencers becomes pivotal in reaching a larger audience. Activating more users could
increase sales, visibility, ad impressions, or brand generation.

2.4 Budgeted Influence Maximization Problem

The second problem addressed within this Doctoral Thesis is the Budgeted Influence
Maximization Problem (BIMP), originally defined in [57], which, instead of selecting
a fixed number of initial users, allows us to invest a certain budget in users of the SN,
considering that the cost of selecting users is not uniform. This variant is closer to real
SN than SNIMP. In BIMP, the traditional model of SN is still considered. However,
a function C : V → Z+ is introduced, which assign a non-uniform positive integer
cost to every user of the network. Additionally, an initial budget B is given, which is
the maximum investment that can be used to select nodes. Each selected node u will
decrease the available budget in C(u) units. Then, the BIMP consists of selecting a
set of seed nodes S⋆ that maximizes the information diffusion throughout the network
without exceeding the given budget B. More formally,

S⋆ ← argmax
S∈SS

ICM (G,S, p, ev) :
∑
u∈S

C(u) ≤ B (2.3)

where SS represents all possible combinations of seed sets that can be generated.

Figure 2.8 shows an SN similar to Figure 2.7. The SN consists of 8 nodes (where
each node has a number denoting the cost of activating it) and 9 directed edges. Let
us consider a budget of B = 10 for this example graph.
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(b) S2 = {B, E, G}

Figure 2.8: BIMP example considering a budget of 10 and an SN with 8 nodes and 9
edges. Two feasible solutions S1 and S2 are represented, each of them resulting in a
different set of influenced users.

Then, Figure 2.8a shows the solution S1 where the seed set is conformed by node
F. Since this node requires a budget of 9, no more nodes can be activated. Without loss
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of generality, for this example it is assumed that p = 1 (i.e., all the nodes are always
infected by their neighbors). By simulating diffusion model, we can see how nodes B, C
and E are directly influenced by node F . After that, node C influences node D. Finally,
both nodes B and E activate node A. Different levels of influence are represented by
a gray gradient from black to white. Therefore, if we consider a single evaluation of
the Monte Carlo simulation, the objective function value of S1 is ICM (G,S1, p, 1) = 6.
Figure 2.8b shows the solution S2 = {B,E,G}, with a total cost of 4 + 2 + 3 = 9. It
is worth mentioning that the BIMP problem has not fixed seed set size. Similarly to
Figure 2.8a, a gray gradient indicates the influence process over the network, resulting
in an objective function value of ICM (G,S2, p, 1) = 7. Notice that, following this
evaluation, S2 is better than S1. As can be derived from the problem, it is a good idea
to activate it when there are remaining nodes that the budget can afford.

The large amount of data and interest in SN have aroused the interest of both the
scientific community and companies in considering BIMP to optimize the spreading
process of a certain message, product, or idea to clients. Marketing agencies like
BrandWatch (see [58]) have limited budget by their clients and use this approach when
their customers need a commercial campaign based on a certain budget to determine
the most effective users to initialize the campaign.

2.5 Target Set Selection Problem

The third problem studied is the maximum effort-reward GAP Target Set Selection
(TSS), proposed by [59] and demonstrated to be NP-hard. TSS is somewhat similar
to SNIMP and BIMP since it also requires to select a seed set with the maximum
influence. The primary distinctions lie in the fact that, unlike the SNIMP, the TSS
does not entail a fixed number of nodes but each of these nodes has an effort cost.
This might initially suggest similarities with the BIMP, but a key disparity arises in
the manner in which node activation is propagated. TSS does not use a probabilistic
Monte Carlo-based method for influence propagation; instead, it adopts a deterministic
approach as influence propagation.

Given a SN and a maximum budget K, the TSS problem tries to find a subset
of users S ⊆ V whose effort does not exceed the maximum value K, with the aim of
maximizing the number of influenced users in the social network. Since the concept
of influencing can be ambiguous, it is necessary to perform some initial definitions to
clarify it.

Starting from a set of initially activated nodes S, this process consists of activating
all those non-activated nodes which are influenced by the activated ones. In the context
of TSS, the influence of a user is modeled by a rational influence function, denoted as
ψ : V × V → [0, 1] applied to all pairs of users, assessing how one user influences
another. Note that if two users u, v are not connected, then ψ(v, u) = 0. Without
loss of generality, a solution for the TSS is given by the set of initially activated nodes
S. Notice that this process is iteratively applied until no new nodes are activated.
Given a step t and a set of activated nodes St, the set of nodes which are activated
after applying a single iteration of the influence propagation process is denoted as St+1.
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The influence propagation process then stops when no new nodes are activated, i.e.,
St = St−1.

In TSS, each node has an associated effort to activate it, which is defined by the
function α : V → Z+, as well as a reward obtained when it is influenced or initially
activated which is defined by β : V → Z+. Thus, the effort α is only considered for
those nodes which are part of the set of the initially activated users S, and the reward
β is earned whether a user u is initially activated or subsequently activated by the set
of activated users. Another fact in TSS is that, when a node is activated at step t, it
remains activated through the entire influence propagation process. Let us denote xtv
as a binary variable which takes the value 1 if the node v is activated at step t and
0 otherwise (we refer the reader to [60] to a more detailed description of the model).
Then,

xt−1
v ≤ xtv, ∀v ∈ V, 1 ≤ t ≤ T (2.4)

where T indicates the maximum number of steps in the influence propagation process,
i.e., number of iterations in which new nodes are activated.

A solution S for the TSS is feasible if and only if the sum of the efforts of
the initially activated nodes is smaller than or equal to K, which is a constraint of
the problem, i.e.,

∑
v∈V α(v) · x0v ≤ K. The objective function for the TSS is then

evaluated as the sum of rewards obtained by the active nodes in the last iteration of
the influence propagation process. In mathematical terms,

TSS(S) =
∑
v∈V

β(v) · xTv (2.5)

Notice that evaluating the TSS is a computationally demanding procedure. In
particular, the computational complexity of this evaluation isO (n2) since it is necessary
to traverse all the nodes and, for each new activated node, it is required to traverse
again the set of nodes searching for new potential nodes to be activated. The TSS then
seeks for a solution S⋆ with the maximum objective function value. More formally,

S⋆ ← argmax
S∈SS

TSS(S) (2.6)

where SS represents the set of all feasible solutions, i.e., all possible combination of
nodes whose sum of effort is smaller than or equal to K.

Figure 2.9 depicts an example of the complete influence propagation process over
a network with 5 nodes and 10 edges. The solution under evaluation is conformed by
nodes C and E, i.e., S = {C, E}. Without loss of generality, let us suppose that the sum
of costs α(C) + α(E) is smaller than or equal to K.

Figure 2.9a shows the initial step t = 0, where the activated nodes are the ones
initially selected C and E, i.e., S = {C, E}. Then, in the first iteration of the influence
propagation process, depicted in Figure 2.9b, it is evaluated whether non-influenced
nodes A, B, and D are influenced or not. Starting with node A, it is necessary to evaluate
ψ(C, A) + ψ(E, A) = 0.8 + 0.1 = 0.9 < 1.0. Therefore, node A is not influenced in this
step. A similar evaluation is performed with node B, resulting in ψ(C, B) + ψ(E, B) =
0.2+0.3 = 0.5 < 1.0, indicating that node B is not activated. Finally, when performing
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Figure 2.9: Target Set Selection Influence propagation process over a network with 5
nodes and 10 edges, considering the solution S = {C, E}.

the evaluation of node D, we obtain ψ(C, B) + ψ(E, B) = 0.1 + 1.0 = 1.1 ≥ 1.0. Then,
after the first iteration, node D is included in the set of activated nodes, resulting in
S1 = {C, D, E}.

Since S0 ̸= S1, it is necessary to continue with the influence propagation pro-
cess. If we now evaluate the second iteration, Figure 2.9c, starting with node A,∑

v∈S1 ψ(v, A) = 0.8 + 0.1 + 0.3 = 1.2 ≥ 1.0. Then, node A will be included in the
set of activated nodes in the next iteration, S2. In the case of node B, the evaluation
is

∑
v∈S1 ψ(v, B) = 0.2 + 0.3 + 0.0 = 0.5 < 1.0, so the node B is not activated. After

this iteration, S2 = {A, C, D, E} ≠ S1, so an additional iteration is required. Figure 2.9d
illustrates the last iteration of the influence propagation process. In this case, it is only
required to evaluate node B, resulting in

∑
v∈S2 ψ(v, B) = 0.3+0.2+0.3+0.0 = 0.8 < 1.0.

Therefore, node B is not activated. Since no new nodes are included in the set of ac-
tivated nodes, i.e., S2 = S3, the influence propagation process stops in this iteration,
returning the reward associated to the activated nodes.

Although the main application of this problem is to increase the impact of ad-
vertising a product for a company [61, 62], there are several applications in different
fields. For instance, in politics, the Max-TSS can be used for reducing the impact of
fake news or misinformation from two opposite approaches: identifying the individuals
which are mostly spreading fake news through the network, or to boost those individ-
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uals which are transmitting reliable information [63]. Even more, this application is
closely related to disease control, since it has been proven that the diseases spreads
following the same model as information through Social Networks [64].

2.6 Real World Social Networks

The set of SNs considered in this paper have been entirely obtained from the most
relevant works found in the literature, in order to provide a fair comparison among the
analyzed algorithms.

Instance |N | |E| Ref. Instance |N | |E| Ref.

KNOKI 10 100 [65, 60] BKOFFC 40 1600 [65, 60]
KNOKM 10 100 [65, 60] BKHAMC 44 1936 [65, 60]
RDGAM 14 196 [65, 60] BKFRAC 58 3364 [65, 60]
RDPOS 14 196 [65, 60] Prision 67 4489 [65, 60]
RDHLP 14 196 [65, 60] email-Eu-core 1005 25571 [65, 66]
KAPFMU 15 225 [65, 60] facebook 4039 88234 [65, 67]
KAPFMM 15 225 [65, 60] ca-GrQc 5242 14496 [65, 68]
THURA 15 225 [65, 60] WikiVote 7115 103689 [69, 70]
THURM 15 225 [65, 60] Twitch EN 7126 35324 [65, 71]
NEWC [1...15] 17 289 [65, 60] LastFM 7624 27806 [65, 72]
DAVIS 18 252 [65, 60] cit-HepTh 9877 25998 [65, 73]
SAMPLK [1...3] 18 324 [65, 60] BlogCatalog3 10312 333983 [65, 73]
SAMPES 18 324 [65, 60] NetHEPT 15233 32235 [74, 75]
SAMPIN 18 324 [65, 60] ca-AstroPh 18772 198110 [69, 76]
KRACKAD [1...21] 21 441 [65, 60] ca-CondMat 23133 93497 [69, 76]
KRACKFR [1...21] 21 441 [65, 60] cit-HepPh 34546 421578 [69, 76]
ZACHE 34 1156 [65, 60] email-Enron 36692 183831 [69, 76]
ZACHC 34 1156 [65, 60] HC Twitter 54836 89059 [65]
BKTECC 34 1156 [65, 60] p2p-Gnutella31 62586 147892 [69, 76]
KAPFTI [1-2] 39 1521 [65, 60] Flixster 95969 484865 [74, 77]
KAPFTS [1-2] 39 1521 [65, 60] email-EuAll 265214 420045 [76, 78]

Table 2.1: Nodes and edges of the instances used in this thesis.

All of them are publicly available in: https://snap.stanford.edu/, http://
vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm and http://datasets.
syr.edu/datasets/BlogCatalog3.html. Relevant information about these instances
is collected in Table 2.1, where some papers in which each instance has been used are
included.

As shown in the previous Table 2.1, there are instances of diverse sizes, ranging
from 10 to more than 250000 nodes. This variability verify the algorithm’s scalability
and if it is suitable develop mathematical models. Additionally, these instances are de-
rived from well-known social networks, contributing to a comprehensive evaluation that
considers the algorithm’s performance across different network scales and structures.

https://snap.stanford.edu/
http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
http://datasets.syr.edu/datasets/BlogCatalog3.html
http://datasets.syr.edu/datasets/BlogCatalog3.html
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Lastly, the density (the number of existing connections divided by the total num-
ber of possible connections) and the different number of connected components in the
SNs are analyzed. Social networks with low densities often result in sparsely connected
networks, indicating that influence might require more time to propagate through the
network due to a lack of direct connections. The average density of the used SNs is
0.0032, suggesting that, as expected, SN have sparse connectivity. Regarding the num-
ber of connected components, the average is 1362 components. It is noteworthy that
some SN consist of a single component, as previous studies recommend selecting the
largest connected component within the social network. The instance with the largest
number of components present a total of 15837 connected components, showcasing a
range of SN with diversity in terms of components.
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Chapter 3

Methodology

This Doctoral Thesis proposes various heuristic and metaheuristic procedures to solve
the presented SNIMP. The use of heuristics allows us to find good solutions efficiently
when exact methods are not able to find feasible solutions or require too much compu-
tational time. Metaheuristics have been demonstrated to be an effective way of solv-
ing complex combinatorial optimization problems. Examples of metaheuristics include
GRASP or Path Relinking, among others. These algorithms are able to provide high-
quality solutions in a short amount of time.
At present, Metaheuristics have become a field of research that combines multiple dis-
ciplines such as Computer Science or Operations Research. This has been evidenced
by the numerous journal and conference papers, books, and conferences like the Meta-
heuristics International Conference (MIC). This chapter is devoted to the metaheuris-
tics used to solve the NP-hard problems discussed in Chapter 2. Specifically, we
will discuss algorithms based on Greedy Randomized Adaptive Search Procedure (Sec-
tion 3.1) and Path Relinking (Section 3.2).

3.1 Greedy Randomized Adaptive Search Proce-

dure

Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic frame-
work developed in the late 1980s [26] and formally introduced in Feo et al. [23]. We
refer the reader to [79, 80] for a complete review of the recent advances in this methodol-
ogy. Figure 3.1 shows a graphical representation of the different phases involved in the
GRASP methodology, offering a comprehensive overview of it. GRASP is a multi-start
framework divided into two distinct stages, where N iterations are performed. The first
is a greedy, randomized, and adaptive construction phase of a solution, left section of
the illustration. The second stage applies an improvement method to obtain a local
optimum with respect to a certain neighborhood, starting from the constructed solu-
tion, right section of the illustration shows the swaps movement between nodes. This
methodology is able to find a trade-off between the diversification of the randomized
construction phase and the intensification of the local search procedure, allowing the
algorithm to escape from local optima and perform a wider exploration of the search
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space. These two phases are repeated until a termination criterion is met, returning
the best global solution found during the search.

Constructive Phase Improvement Phase

Greedy Randomized Adaptive Search Procedure

Perform N iterations

Best Global Solution

gmin gmax

CL

RCL

Greedy function value Best Local Solution

Figure 3.1: GRASP framework.

Moreover, the pseudocode presented in Algorithm 2 provides a detailed view
of the main components of the GRASP framework. Without loss of generality, this
pseudocode is designed for a maximization problem.

Algorithm 2 GRASP(G = (V,E), α)

1: v ← rnd(V )
2: S← {v}
3: CL← V \ {v}
4: while not isFeasible(S ) do
5: gmin ← minu∈CL g(u)
6: gmax ← maxu∈CL g(u)
7: µ← gmax − α · (gmax − gmin)
8: RCL← v ∈ CL : g(v) ≥ µ
9: u← rnd(RCL)
10: S ← S ∪ {u}
11: CL← CL \ {u}
12: end while
13: S ← Improve(S )
14: return S

The algorithm starts by the constructive phase whose objective is to generate an
initial solution. In order to favor diversification, the first node included in the solution
S in the pseudocode depicted is selected at random from the set of nodes V (step 1)
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and included in the solution (step 2). Notice that this initial node can be selected
by greedy criteria. Then, all feasible nodes that can be included in the solution are
included in the Candidate List (CL) (step 3). In this example, it is assumed that all
nodes are feasible, so only the initial node must be removed from the set of possible
nodes to be incorporated. Then, the constructive method iteratively adds new elements
to the solution until it becomes feasible (steps 4-12). In each iteration, the minimum
and maximum value based on a greedy heuristic function is evaluated (steps 5-6).
Then, a threshold µ is calculated (step 7), which is required for creating the Restricted
Candidate List (RCL) with the most promising nodes (step 8). This threshold directly
depends on the value of the input parameter α, which is in the range [0, 1]. Notice that
this parameter indicates the greediness or randomness of the constructive procedure.
On the one hand, if α = 0, then the threshold is evaluated as gmax, becoming a totally
greedy algorithm (i.e. the RCL only includes the best choice in each iteration). On the
other hand, if α = 1 then µ = gmin, resulting in a completely random method (i.e. the
RCL includes every feasible choice in each iteration). Finally, the next node is selected
at random from the RCL (step 9), including it in the solution (step 10) and updating
the CL with the feasibles nodes (step 11).

Different strategies have been proposed to select the α value, including randomly
selecting it from a uniform distribution of discrete probability (in the general case) [81].

• Adapt the α value in response to the quality of the recently obtained solutions
(reactive GRASP) [82, 83].

• Select the α value from a non-uniform discrete descending distribution, where
there is a higher chance of selecting the best values [82, 84].

• Set the α value to a specific number (similar to the pure greedy selection) [85, 86].

This initial solution is not necessarily a local optimum, as there are numerous
random selections. This implies that the construction phase does not guarantee the so-
lution’s optimality with respect to a certain neighborhood structure. The second phase
of GRASP involves improving the solution generated by the constructive procedure in
each iteration with the aim of reaching a local (ideally global) optimum (step 13).
This phase usually enhances the initial solution, but it does not guarantee its optimal-
ity. However, experiments have shown that the quality is significantly improved. The
standard GRASP implementation uses a local search procedure for the improvement
phase.

This requires the definition and exploration of a neighborhood structure to move
to a neighbor that produces an improvement in the objective function. This movement
must keep the solution feasible, and the local improvement method is executed until
no better solutions can be found in the explored neighborhood.

In [87], several elements are identified as having a significant impact on local
search: the quality of the initial solution, the structure of the neighborhood, and the
search strategy.

• The neighborhood structure, that is recommended to be simple to avoid large
computational times.
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• The local optimization algorithm applied for the neighborhood. Depending on
the type of movement, the improvement methods can be classified into:

– First improvement, that consists of selecting the movement that leads to
the first neighbor that improves the incumbent solution.

– Best improvement, which evaluates all movements in the neighborhood and
selects the one with the highest profit.

While both alternatives yield similar quality solutions, the first method is more
common due to its lower computational effort. Empirical observations suggest
that the second option may lead GRASP to converge more frequently to non-
global optima.

• Evaluation of the greedy function of the candidates.

• The initial solution by itself. The objective is to build high-quality solutions to
minimize as much as possible this fact.

Figure 3.2 illustrates the search space after four iterations and the completion
of both phases. The figure showcases shaded areas with distinct patterns, each rep-
resenting a different neighborhood. Additionally, four points within the search space
are depicted, each resulting from the construction of the initial solution. Subsequently,
depending on whether a point resides in one neighborhood or another, the intended di-
rection of the local search is indicated by a line, assuming the objective of the problem
is to minimize. It is noteworthy that, as depicted in the figure, if two points are within
the same neighborhood both would converge to the same local minimum. The solution
returned in this scenario would be the global minimum, representing the minimum
across all local minima.

SS

f

Figure 3.2: Search space when GRASP metaheuristic is applied.

The improvement phase ends when there are no movements that lead to a better
solution. This termination condition ensures that the algorithm has iterated through
the available movements and has reached a point where additional iterations do not
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yield superior outcomes. The algorithm then performs multiple iterations, systemati-
cally selecting the best local solution from each iteration. This iterative process allows
for a thorough exploration of the search space.

3.2 Path Relinking

Path Relinking (PR) was originally presented as a framework for combining intensifi-
cation and diversification strategies in the context of Tabu Search [88]. PR relies on
the idea of connecting two high-quality solutions creating a path between them, with
the expectation of finding promising solutions during the exploration of the path. The
algorithm tries to iteratively include in the first solution, usually named as initial solu-
tion, attributes of the second solution, named as guiding solution. Both the initial and
the guiding solutions present a high quality, and, therefore, it is expected that the path
created between them explores new promising regions of the search space. Then, a path
is generated from origin to destination, traversing the search space. The combination
method in path relinking is based on the generation of the trajectory among solutions
in the search space. The way in which the path between the initiating solution (Si)
and the guiding solution (Sg) is built is by performing movements that try to reach Si

from Sg. The path is generated by gradually removing the attributes of the initiating
solution to introduce attributes that belong to the guiding solution. The goal is to find
a better solution than Si and Sg in the built trajectory between them.

To provide a more specific example of how Path Relinking works with a pair
of solutions (initiating solution and guiding solution), Figure 3.3 shows how the meta-
heuristic works when minimizing an objective function. The figure shows the trajectory
between the initiating solution and the guiding solution (gray color points) as it tra-
verses the search space and eventually finds a solution with a better objective function
value than the two from which it is based. In the particular example of the figure, in
a maximization problem S2 would be the best solution found, while in a minimization
problem S5 would be the chosen one.

The process of selecting the node to be removed and included in each iteration
can be performed randomly (Random Path Relinking) [89], greedily (Greedy Path
Relinking) [90], or in a more elaborated manner (Greedy Randomized Path Relinking)
[91]. Notice that both Greedy Path Relinking and Greedy Randomized Path Relinking
are more computationally demanding than Random Path Relinking. This is mainly
because they require to generate the complete set of feasible solutions in each step of
the path and also evaluate each one of them.

There are also various PR strategies designed to transition between paths, each
providing a distinct perspective on traversing the search space:

• Interior Path Relinking (IPR): creates a path that connects two high-quality fea-
sible solutions, exploring new solutions while traversing the path. The rationale
behind this is that if the initiating and guiding solutions are promising, then
there is a high probability of finding good solutions on the path that connects
them [92].
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Figure 3.3: Path Relinking path between two solutions in the search space.

• Exterior Path Relinking (EPR): follows the opposite idea of IPR by focusing on
the removal of nodes that are in both solutions, exploring different and diversified
solution sets. If the solutions in the efficient set are similar among them, then
the path created with IPR will be rather short, thus leading to a small number
of new solutions explored. This behavior results in maintaining the similarity
among the solutions in the efficient set. Then, it is necessary to include some
diversity in the search, to explore a different region of the search space [93].

• Reactive Path Relinking (RPR): combines both strategies previously described,
IPR and EPR. RPR analyzes the similarity between the initial and guiding solu-
tions to intensify or diversify the solution. Then, if the similarity between them
does not exceed a certain threshold, they are not different enough, and EPR is
applied to diversify. Otherwise, the IPR is applied to intensify the search, since
the initiating and guiding solutions are promising, there is a high probability of
finding good diverse solutions on the path that connects them [94]. This strategy
emerges as a related work from this doctoral thesis.

Algorithm 3 shows the pseudocode for the general IPR algorithm.

Algorithm 3 IPR(Si, Sg)

1: Sb ← ∅
2: while Si ̸= Sg do
3: add← Sg − Si

4: remove← Si − Sg

5: Si ← Si \ PRStrategy(remove)
6: Si ← Si ∪ PRStrategy(add)
7: if f(Si) is better than f(Sb) then
8: Sb ← Si

9: end if
10: end while
11: return Sb
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Two high-quality initial solutions are required: the initiating solution Si and the
guide solution Sg. The first step of the algorithm (step 1) defines the solution that
will store the best solution within the path that the algorithm will construct. Notice
that neither the initiating nor the guiding one will be considered as returning solution.
Then, while the initiating solution is different from the guiding solution (steps 2-10),
movements will be performed. To perform these movements, it is necessary to know
which elements should be added (step 3). In particular, all the elements belonging
to the guiding solution which are not already in the initiating one are considered.
Similarly, it is required to know which elements should be removed (step 4), that is, all
elements that are in the initiating solution but not in the guiding one. Once the set of
elements is obtained, one of these elements is removed according to the chosen strategy
(random or greedy) (step 5). In the same way, a node is added using the chosen strategy
(these can be different, and different combinations can also be tried to detect which one
works better experimentally) (step 6). Next, it is needed to check whether the current
solution on the path is better than the best solution during the path or not (steps 7-9).
In case the solution is better by evaluating the objective function (either lower in the
case of minimization or higher in the case of maximization), the current solution is
placed in the Sb variable (step 8). Once the guide solution is reached, the algorithm
ends and returns the best solution found during the path (without considering the
initial solution and the guide solution).

PR has several variants that determine how the exploration of the search space
unfolds. Some of these well-known approaches in the literature are the following:

• Static Path Relinking (SPR): This is the classical form of path relinking, given an
ES, the method makes a simple path between two solutions, gradually exploring
the search space between them. The best solution generated in both paths un-
dergoes a local search method to enhance the overall outcomes [95]. The method
ends when every pair of solutions in the ES has been combined.

• Dynamic Path Relinking (DPR): DPR adapts the relinking strategy in real-time
on the basis of the algorithm’s evolution. The dynamic nature considers updating
the elite set, evaluating if the resulting solution is able to enter in the elite set
following a certain criterion. If so, it can serve as a guiding solution in subsequent
PR applications [79].

• Adaptive Path Relinking (APR): APR incorporates adaptability into the relink-
ing process to adapt to the specific characteristics of the problem or the evolution
of the algorithm [96]. APR departs from traditional PR implementations by con-
sidering multiple solutions simultaneously. It aims to identify, select, and system-
atically combine promising solution components encountered during the search,
providing a diversified and initial sampling of promising areas in the solution
space.

• Evolutionary Path Relinking (EP): Introduced by Resende and Werneck [97] as
a post-processing phase for ES. It is applied to each pair of solutions in ES.
Solutions obtained with this application of PR are considered candidates to be
included in the ES, and PR is applied again to them as long as new solutions are
included in the ES, contributing to the ongoing evolution of ES Solutions in the
ES evolve, analogously to the reference set in Scatter Search [98].
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In this Doctoral Thesis, PR combined with the GRASP [27] is used. In partic-
ular, SPR and DPR are considered. This methodology adapts the PR to the GRASP
improvement phase with the objective of obtaining high-quality solutions.



Chapter 4

Joint discussion of results

This Chapter shows a review of the results provided by the addressed problems in this
Thesis. The next sections explain the algorithm proposal, as well as a thorough com-
parison with the best method found in the literature for each problem. In every case, a
final table is presented, composed of the following metrics: Avg. denoting the average
objective function value in all instances, Dev. (%) that represents the average deviation
to the best known value, Time (s) that shows the average computation time required by
each algorithm, and finally, #Best which matches if the solution is the best solution or
#Optimal that counts the number of exact values found by the algorithm. Additionally,
all tables show highlighted in black the best results. This results are derived from Part II
where Section 4.1 addressed the results of the SNIMP, Section 4.2 studied the results
in the context of BIMP and finally Section 4.3 shows the results resulting from TSS.

4.1 Results on the Social Network Influence Maxi-

mization Problem

Richardson and Domingos [55] initially formulated the problem of selecting target
nodes in SNs. However, it was not until Kempe et al. [17] were the SNIMP was solved
formulating it as a discrete optimization problem later proving that it is NP-hard [47].

According to several surveys [36, 37], greedy and approximation algorithms are
proposed since this problem is showed as NP-hard problem. In Section 2.2 several
IDMs are explained being ICM one of the most extended IDMs. This probabilistic
method reports the average number of activated nodes in a propagation simulation.
The results of the SNIMP are published in a high-impact journal indexed in the JCR.
More details can be found in Chapter 6 in Part II.

The proposed algorithm to solve SNIMP is based on the GRASP methodology
[26] (see Section 3.1 for further details). Notice that, in the context of SNA, the local
search method is a rather computationally demanding procedure, since real SNs need
huge amount of nodes and edges, so highly scalable methods are required.

Surveys [36, 37] stated that metaheuristic algorithms are scarce in terms of SNI
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problems, so it is interesting to evaluate the behavior of a metaheuristic when deal-
ing with this hard combinatorial optimization problem. In particular, GRASP uses
the diversification versatility to reach high-quality solutions iteratively applying two
different phases: construction and local improvement.

The constructive phase is designed to generate an initial solution, and it is usually
guided by a greedy selection function which helps the constructive method to select
the next element to be included in the partial solution. The first node is selected at
random to favor diversification, and then the remaining nodes until reaching k elements
are selected by a greedy criterion. In this work, two greedy methods are studied: the
first is based on the local information of the neighbors, while the other is based on the
clustering coefficient [99]. All nodes are evaluated according this criterion, conforming
a candidate list CL. Then, a threshold µ = gmin +α · (gmax− gmin) is used to select the
most promising nodes from the CL, creating a RCL. This threshold depends directly
on the value of the input parameter α, which is in the range [0, 1]. Notice that this
parameter indicates the greediness or randomness of the constructive procedure. On
the one hand, if α = 0, then the threshold is evaluated as gmax, becoming a totally
greedy algorithm (i.e., the RCL only includes the best choice in each iteration). On
the other hand, if α = 1 then µ = gmin, resulting in a completely random method (i.e.,
the RCL includes every feasible choice in each iteration).

Then, when a feasible solution is obtained, the local search phase explores the
neighborhood conformed by all solutions that can be reached by performing a single
movement. The neighborhood of a solution S is defined as the set of solutions that can
be reached by performing a single move over S. In the context of SNIMP, we propose
a swap move Swap(S, u, v) where node u is removed from the seed set, being replaced
by v, with u ∈ S and v /∈ S. This swap move is formally defined as:

Swap(S, u, v) = S \ {u} ∪ {v}

Thus, the neighborhood Ns of a given solution S consist of the set of solutions
that can be reached from S by performing a single swap move. More formally,

Ns(S) = {Swap(S, u, v) ∀ u ∈ S ∧ ∀ v ∈ V \ S}

As stated, scalability is completely necessary in this work, and performing all
possible moves would result in a rather time consuming procedure. In order to reduce
the computational complexity of the search, a surrogate local search is proposed. This
work propose an intelligent neighborhood exploration strategy with the aim of reducing
the number of solutions explored within each neighborhood. This reduction in the size
of the search space is performed by exploring just a small fraction, δ, of the available
nodes for the swap node.

The selected IDM is, as in the previous method, the ICM algorithm with the
corresponding Monte Carlo simulation, performing 100 iterations with a probability of
influence of 0.01. These parameter values are the most extended ones in the related
literature. The number of seed nodes k to conform a solution is selected in the range
k = {10, 20, 30, 40, 50} as stated in [17, 70, 100], thus obtaining 7 · 5 = 35 different
problem instances (resulting from the combination of 7 networks and 5 seed set sizes).
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In order to analyze the quality of the proposed algorithm, a competitive testing
has been performed with the best methods found in the state of the art by considering
the complete set of 35 instances derived from the SNAP1 repository. Three algorithms
are considered: CELF [44], the well-known greedy hill-climbing algorithm; CELF++
[101], the improved version of CELF [44]; and PSO [102], the particle swarm opti-
mization algorithm which is considered the state of the art for social influence analysis
according to the recent experimental study developed in [36]. Table 4.1 collects the
final results obtained in this competitive testing. Notice that Avg. is not an integer
value since it is the average value of the 100 runs of the ICM in the Montecarlo sim-
ulation. A final row has been also included in this table (G.Avg.) with the average
values of the objective function and Time(s), computed across the set of 35 instances.

CELF CELF++ PSO GRASP
k Name Avg. Time (s) Avg. Time (s) Avg. Time (s) Avg. Time (s)

10

CA-AstroPh 157.60 2.51 171.81 9.40 169.85 232.40 187.47 8.28
CA-CondMat 35.73 0.67 35.73 2.15 33.40 4.60 36.15 2.56
Cit-HepPh 46.63 1.16 46.63 3.29 35.27 1.71 47.20 4.20
Email-Enron 383.95 25.23 469.63 87.68 465.24 1756.84 489.67 41.41
Email-EuAll 132.96 6.03 130.28 307.98 107.41 37.42 144.57 24.42
Wiki-Vote 108.50 0.39 108.50 1.00 92.16 16.40 109.10 6.32

p2p-Gnutella31 16.24 1.46 16.23 7.83 13.38 0.95 16.27 1.63

20

CA-AstroPh 222.63 2.69 234.36 9.76 222.92 889.79 259.25 18.53
CA-CondMat 59.72 0.66 59.87 2.13 45.46 8.67 61.05 6.00
Cit-HepPh 81.75 1.11 81.75 3.25 68.51 2.58 82.11 18.97
Email-Enron 451.24 25.71 547.96 88.47 544.57 4394.46 589.65 74.23
Email-EuAll 214.66 5.68 214.54 303.01 162.32 99.98 224.10 28.88
Wiki-Vote 162.49 0.49 162.49 1.45 141.66 41.44 165.32 26.03

p2p-Gnutella31 30.82 1.30 30.86 7.43 24.69 0.99 30.92 3.80

30

CA-AstroPh 266.77 2.85 276.69 10.48 259.90 1005.17 312.68 51.32
CA-CondMat 80.87 0.70 82.18 2.30 66.27 11.09 82.54 14.11
Cit-HepPh 113.39 1.16 113.39 3.45 86.22 3.69 113.63 42.30
Email-Enron 501.78 25.49 608.63 88.62 553.25 7594.67 652.48 140.71
Email-EuAll 277.40 5.86 275.36 298.66 212.84 183.58 281.30 59.58
Wiki-Vote 208.18 0.64 208.18 2.03 150.40 97.75 214.97 80.83

p2p-Gnutella31 44.75 1.24 44.81 7.42 35.30 1.34 44.81 6.08

40

CA-AstroPh 319.52 3.11 302.86 11.58 288.92 1492.82 360.34 66.97
CA-CondMat 100.96 0.76 101.80 2.54 75.61 17.40 104.38 16.37
Cit-HepPh 140.63 1.27 140.63 3.81 113.46 4.94 141.20 58.03
Email-Enron 549.64 25.95 658.38 92.09 634.58 9032.87 705.03 216.65
Email-EuAll 323.85 6.17 312.47 302.47 258.46 230.12 337.39 165.23
Wiki-Vote 246.02 0.83 246.02 2.83 182.88 115.05 252.15 34.60

p2p-Gnutella31 58.26 1.28 58.22 7.48 51.26 1.85 58.37 12.69

50

CA-AstroPh 361.51 3.50 338.28 13.11 340.54 2267.98 399.92 132.35
CA-CondMat 119.29 0.86 120.72 2.87 106.10 10.85 124.57 26.51
Cit-HepPh 165.47 1.38 165.47 4.26 126.77 6.35 166.77 65.20
Email-Enron 597.26 27.02 680.29 96.71 662.67 10063.47 744.38 157.26
Email-EuAll 361.51 6.68 357.43 304.03 258.15 321.81 375.03 161.59
Wiki-Vote 277.65 1.09 277.65 3.76 188.82 181.07 287.66 86.39

p2p-Gnutella31 71.80 1.34 71.90 7.76 64.63 2.74 72.08 17.42
G.Avg. 208.33 5.55 221.49 60.09 195.54 1146.71 236.37 39.04

Table 4.1: Competitive testing of the proposed GRASP algorithm with respect to the
best algorithms found in the literature: CELF, CELF++, and PSO. Best results are
highlighted with bold font.

First, the results obtained with PSO are highlighted, since it is ranking the last
one even being considered the state of the art for this problem. The rationale behind

1http://snap.stanford.edu/

http://snap.stanford.edu/
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this is that the original work [102] considers small size instances (from 410 to 15233
nodes) and the quality of the solutions provided by PSO deteriorates when the instance
size increases, as it can be derived from Table 4.1. Meanwhile, CELF and its improved
version CELF++ are able to reach better solutions, still being competitive with the
state-of-the-art algorithms. However, only CELF++ is able to match the best-known
solution in 1 instance (out of 35). Finally, the best results are obtained with the
proposed GRASP algorithm, which is able to reach the best solution found in all
the 35 instances. Furthermore, the computing time is smaller than the second best
algorithm, CELF++ (39.04 versus 60.09 seconds on average).

Analyzing the computing time required for each algorithm, it can be clearly seen
that CELF and CELF++, as completely greedy approaches, are not really affected
by increasing the size of the seed set. On the contrary, the computing time required
for PSO and GRASP is affected by the size of the seed set since larger k-values lead
the local improvement method to perform a larger number of iterations. However,
if a closer vision of the obtained results is taken with GRASP, it can be concluded
that the increase in the number of iterations and, therefore, in the computing time
allows the algorithm to reach better solutions. In the case of PSO, the increase of
computing time is even much more noticeable but it does not usually result in better
solutions, suggesting that the PSO algorithm is particularly suitable for solving small
size instances.

In order to validate these results, a non-parametric Friedman test has been con-
ducted for ranking all the compared algorithms. The p-value obtained, smaller than
0.0005, confirms that there are statistically significant differences among the algorithms.
The algorithms sorted by ranking are GRASP (1.00), CELF++ (2.44), CELF (2.79),
and PSO (3.77). Finally, it is performed the well-known non-parametric Wilcoxon
statistical test for pairwise comparisons, which answers the question: do the solutions
generated by both algorithms represent two different populations? The resulting p-
value smaller than 0.0005 when comparing GRASP with each other algorithm confirms
the superiority of the proposed GRASP algorithm. Therefore, GRASP emerges as one
of the most competitive algorithms for the SNIMP, being able to reach high-quality
solutions in small computing time.

4.2 Results on the Budgeted Influence Maximiza-

tion Problem

Companies can spend a specific budget in their marketing campaigns, which is not
modeled in the classic SNIMP. With the aim of including this feature, Nguyen [57]
formally defined the BIMP inspired by SNIMP, showing its NP-hardness based on
SNIMP. As it was aforementioned there are several IDM, this work uses: ICM, WCM
and TV.

Banerjee [36] published the latest survey in SIM, becoming one of the most rel-
evant research works in the area of influence maximization problems. The algorithm
named ComBIM proposed by [45] is considered the state of the art for BIMP. ComBIM
provides a community-based solution that provides the best results in the literature
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as far as our knowledge, so it will be considered as the algorithm to benchmark our
proposal. More details can be found in Chapter 7 in Part II.

The algorithmic proposal is based on Greedy Randomized Adaptive Search Proce-
dure (GRASP) methodology where a novel efficient and effective heuristic for selecting
the seed set in the constructive phase is designed. This greedy criterion, named gdist
leverages the node seed distribution, it prioritizes nodes that do not have selected
neighbors as a seed node, with the aim of reaching a larger number of non-influenced
users by exploring regions that have been mainly ignored until that point. In order to
do so, the value of a node is directly its degree, but penalizing it if some of its neighbor
nodes have already been selected. The penalization has been experimentally set by
halving the degree. More formally

gdist =

{
d+u if v /∈ S, ∀v ∈ N+

u
d+u
2

otherwise

Once the constructive phase ends a local search phase is performed. The main
difference with SNIMP is the budget (B), since in BIMP there is not an exact number of
nodes required. Then, a movement that removes one node and inserts another one may
result in an unfeasible solution which exceeds the available budget. The neighborhood
of a solution S is defined as the set of solutions that can be reached by performing a
single move over S. Then, it is necessary to define the move that will be considered
in the context of BIMP. Specifically, the move, named as Replace(S, u, P ), involves
removing node u from the solution and replacing it with the set of nodes in P , with
P ∈ V \ S. Notice that, in order to reach a feasible solution, the sum of the cost of
nodes in P must be smaller or equal than B + C(u) (since u will be removed, its cost
must not be taken into account). More formally,

Replace(S, u, P ) = S \ {u} ∪ P

Then, given a solution S, the neighborhood NR(S) is defined as the set of feasible
solutions that can be reached with a single Replace move. In mathematical terms,

NR(S) =

{
S ′ ← Replace(S, u, P ) ∀u ∈ S ∧ ∀P ∈ V \ S :

∑
p∈P

C(p) ≤ B + C(u)

}

Even considering an efficient implementation of the objective function evaluation,
the vast size of the resulting neighborhood makes the complete exploration of the
neighborhood not suitable for the BIMP. Therefore, number of evaluations that the
local search performs is limited with the aim of having a computationally efficient
method. It is worth mentioning that, if the number of iterations used in the IDMs
are limited, then it is interesting to firstly explore the most promising neighbors of the
considered neighborhood.

The parameters used are as follow: as it is customary in SIM problems, 100 Monte
Carlo simulations are performed on all IDMs models. The total budget B to conform a
solution is selected in the range B = {2000, 6000, 10000, 140000, 180000, 22000, 26000}
as stated in [45], thus obtaining 3 · 7 = 21 different problem instances for each IDM.
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Taking into account that 4 IDMs are considered, the total number of instances are
21 · 4 = 84. In order to analyze the quality of the proposed algorithm, a competitive
testing is performed with the best method found in the state of the art, ComBIM.
Table 4.2 collects the final results obtained in this competitive testing, for each IDM.

IDM Algorithm Avg. Time (s) Dev (%) #Best

ICM(1%)
ComBIM 8319.68 214.97 17.64% 0
GRASP 8872.61 117.06 0.00% 21

ICM(2%)
ComBIM 14467.65 215.31 6.49% 3
GRASP 14828.77 146.21 0.07% 18

WCM
ComBIM 2277.79 214.04 57.49% 0
GRASP 10087.08 97.80 0.00% 21

TV
ComBIM 1976.11 214.68 39.10% 0
GRASP 2677.58 69.65 0.00% 21

Summary
ComBIM 6760.31 214.75 30.18% 3
GRASP 9116.51 107.68 0.02% 81

Table 4.2: Competitive testing of the proposed GRASP algorithm with respect to state
of the art algorithm ComBIM. Best results are highlighted with bold font.

The results show how GRASP is able to obtain high-quality solutions (81 best
solutions out of 84), requiring half of the computing time (107.68 seconds vs 214.75
seconds). Although GRASP is able to outperform ComBIM in all IDMs considered,
the most remarkable results in terms of quality are obtained when using WCM and
TV. Specifically, ComBIM is able to reach the best solution just in three instances
when using ICM (2%). In this case, the deviation of GRASP is 0.07%, indicating that
it is really close to that best solution. In view of these results, GRASP emerges as one
of the most competitive algorithms for BIMP.

Finally, the well-known non-parametric Wilcoxon statistical test for pairwise com-
parisons is performed, which answers the question: do the solutions generated by both
algorithms represent two different populations? The resulting p-value smaller than
0.0001 when comparing GRASP with ComBIM confirms the superiority of the pro-
posed GRASP algorithm. In particular, GRASP is able to obtain 81 out of 84 positive
ranks, 3 negative ranks, and 0 ties.

4.3 Results on the Target Set Selection Problem

Finally, the latest solved problem is related to the family of Target Set Selection Prob-
lems where two variants can be distinguished: guaranteeing reaching the complete
network (or even a certain part of it) with the minimum number of initial users or
maximizing the number of users reached while not exceeding an initial budget. This
proposal focuses on solving the latter, which is usually named the maximum effort-
reward GAP Target Set Selection problem (Max-TSS), a NP-hard problem [59]. More
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details can be found in Chapter 8 in Part II.

Our proposal is related to Path Relinking to solve the Max-TSS problem [103].
Path Relinking requires from a method to generate high-quality and diverse solutions in
order to create promising paths during the search in both static and dynamic variants.
Although these solutions can be generated at random, it has been experimentally shown
in several works that designing a specific constructive and local improvement method
for the problem under consideration usually leads to better results [92, 104, 105, 106].

In the context of influence maximization problems, the Greedy Randomized
Adaptive Search Procedure has been shown to be an effective and efficient method
to generate them [69]. The constructive method proposed for Max-TSS problem fol-
lows the GRASP philosophy of diversification by avoiding totally greedy decisions.
With the aim of increasing diversity, the method selects the first node to be included
at random from the set of users V , initializing the solution under construction S. Then,
the CL is created with all the nodes but v. The constructive method iteratively adds
a node to the solution while the budget is not exceeded and the CL is not empty.
In each iteration, the minimum and maximum value of a certain greedy function are
computed. The aim of the greedy function is to evaluate how promising a candidate
is, and it is a key part of the constructive procedure. With this threshold, the RCL is
created, containing all the nodes whose greedy function value is larger than or equal
to the threshold µ, considering that they do not exceed the maximum budget. Once
the RCL is constructed, the next element is selected at random from it (since all the
nodes in RCL are promising) to favor diversity. The selected node is then added to the
incumbent solution, updating the CL by removing it.

The greedy function is traditionally considered in the GRASP literature, and it
consists of directly evaluating the objective function value if the node under evaluation
were added to the incumbent solution, i.e., it represents the direct contribution of the
node to the solution under construction. More formally,

gof(c, S)← TSS(S ∪ {c})

The main drawback is that the evaluation of the objective function for the Max-TSS is
a rather computationally demanding process, so a new greedy function is proposed with
the aim of reducing the computational effort of the evaluation, since it will be performed
in each iteration of the construction process. The second greedy function proposed,
named gdg(c, S), considers that the relevance of a node is directly proportional to its
degree. In other words, if a node is connected to several nodes, then it will probably
influence a large amount of its adjacent nodes. Then, this greedy function is evaluated
as the degree of the evaluated node:

gdg(c, S)← |u ∈ V : (c, u) ∈ E|

The second phase of GRASP consists of a local improvement method that finds
a local optimum starting from the initial solution. From the initial solution S, it is not
possible to add new nodes, since the constructive procedure stops when the maximum
budget is exceeded with any of the remaining nodes. Therefore, the proposed move
operator is defined in two steps: remove and add. In particular, the move operator
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removes a node from the solution and then iteratively adds nodes until the maximum
budget is reached.

In the context of TSS, the computational effort is a critical part of the algorithm,
so the first improvement method has been decided to be used with the aim of reducing
the computing time for performing a local search method. With the aim of avoid-
ing biasing the search, the neighborhood is explored at random, performing the first
movement that results in a better solution based on a move operator which removes a
node from the solution and replaces it with all the nodes that can be added without
exceeding the allowed budget.

With the aim of further reducing the computational effort of the local search
method, three improvements are proposed. The first improvement tries to escape cy-
cling the search by avoiding the exploration of already visited solutions. In order to do
so, each visited solution is associated with a unique number, i.e., hash code, evaluated
following a hash function. Then, every time a solution is visited, it is evaluated if its
corresponding hash code has not already been included in the set of visited solutions.
If so, the method undoes the move and continues with the next iteration, avoiding
repeating the exploration of the same region of the search space. The second improve-
ment is devoted to limit the nodes explored during the search, discarding those nodes
which will result in an unfeasible solution. Then, the candidate nodes to be added are
sorted with respect to their effort value in ascending order. Only those nodes whose
effort value is smaller than or equal to the available budget are explored. Additionally,
to favor diversity, the exploration is performed at random among all nodes that satisfy
this constraint. The objective of the last improvement is to reduce the computing time
required to evaluate the influence of a node by caching it. Specifically, the influence of
a node (i.e., those nodes that are affected by its activation), is calculated at the begin-
ning of the local search method. Then, every time a node is selected to be removed or
added to the solution, the influence of that node over the other nodes of the graph is
updated. As a result, it is not necessary to completely evaluate the objective function
in each iteration but to check the corresponding pre-calculated influence.

After that, SPR and DPR are used to improve the solution. Path Relinking
strategies require from a set of high-quality solutions, usually known as Elite Set, which
are combined. In the context of TSS, given two solutions Si and Sg to be combined,
the path-creation method designed for the Max-TSS problem iteratively removes nodes
belonging to Si but not to Sg, i.e., Si \ Sg, and includes nodes which are in Sg but not
in Si, i.e., Sg \ Si. The method stops when Si has completely become Sg and no more
nodes can be removed / added. Since the computational effort is a critical part of TSS,
Random Path Relinking has been selected which, additionally, increases the diversity
of the search. In the proposed method, every pair of solutions in the Elite Set are
combined.

The dataset used to perform the experiments was derived from the best algorithm
found in the literature to provide a fair comparison. This set of instances is conformed
with 82 instances derived from real-life social networks which have been extensively
used in social network analysis. The main drawback of this dataset is that the largest
network is conformed with 58 nodes, which might not be challenging enough considering
the current size of social networks. To mitigate this drawback, 8 additional instances
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have been added, with sizes ranging from 67 to 10312 nodes.

The best previous approach is an exact method which shows its limits when deal-
ing with larger and more complex instances. In order to evaluate the contribution of
our proposal, an additional metaheuristic algorithm for performing a comparison with
SPR and DPR has also been included. In particular, Simulated Annealing (SA) has
been selected, which is a metaheuristic based on the analogy between an optimization
process and a thermodynamic process known as annealing. It is a search method which
tries to escape from local optima allowing to explore worse solutions if those solutions
satisfy certain criteria. SA was originally proposed by Kirkpatrick et al. [107] and
it has been successfully applied in a wide variety of hard combinatorial optimization
problems. SA has been successfully applied in several works related to influence maxi-
mization problems [108, 109]. Additionally, the well-known CELF selection algorithm
[44], which has been widely used in the context of influence maximization problems
and, in particular, in Max-TSS [110], is included in the comparison. CELF is a greedy
procedure which leverages the submodularity property of the network to considerably
reduce the computational effort of the greedy hill-climbing algorithm. The main objec-
tive of this optimization is to scale to large problems, reaching near optimal placements.
This improvement makes CELF approximately 700 times faster than the original pro-
cedure. There exists several implementation of SA which are publicly available. For
this work, the one provided by Metaheuristic Optimization framewoRK (MORK) has
been selected [111], which has been tested over several hard optimization problems
[112, 113].

The results are divided into two different experiments. First of all, SPR and
DPR are evaluated when considering the set of original instances in which the exact
method is able to reach the optimal value. Table 4.3 shows the results obtained. As it
can be derived from the results, SPR performs slightly better than DPR in this set of
instances, being able to reach 79 out of 82 optimal solutions, while DPR reaches 76.
It is important to remark that the average deviation of both methods, smaller than
0.05, indicates that in those instances in which neither SPR nor DPR are able to reach
the optimal value, they stay really close to it. In order to confirm this hypothesis,
a pairwise non-parametric Wilcoxon statistical test between SPR and Gurobi solver
has been conducted, obtaining a p-value equal to 0.109, which indicates that, with a
confidence interval of 95%, there are not statistically significant differences between
those methods. Regarding the SA, it is worth mentioning that it is able to reach 76
out of 82 instances with a deviation of 4.86%, requiring negligible time such as SPR
and DPR. With respect to CELF, the algorithm requires from irrelevant computing
times as DPR, SPR and SA, but it only reaches 61 out of 82 optimal solutions, with a
deviation of 12.19%. From these results, two main conclusions can be obtained: SA is a
competitive algorithm for the Max-TSS, and the proposed DPR and SPR significantly
contribute to the quality of the obtained solutions, as it can be seen in the smaller
deviation with respect to the optimal value.

The last experiment is devoted to evaluate the performance of the proposed al-
gorithms and the Gurobi solver when considering the most challenging and realistic
instances. Table 4.4 shows the results obtained in the set of large instances. In this
case, the results are shown disaggregated, since it is conformed with 8 instances that
can be individually analyzed. It is worth mentioning that the Gurobi solver is only
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Algorithm Avg. Dev. (%) Time (s) #Optimal

Gurobi 45.38 0.00 117.14 82
DPR 44.34 2.58 0.01 76
SPR 44.54 1.82 0.01 79
SA 46.31 4.86 0.01 76

CELF 42.07 12.19 0.01 61

Table 4.3: Comparison of SPR, DPR, SA, CELF and Gurobi solver when considering
the original dataset in which Gurobi is able to reach the optimal value.

able to provide the optimal solution for 2 out of 8 instances derived from the new set
of complex instances marked with an asterisk in the corresponding instance name. For
the remaining instances, Gurobi is not even able to load the model in memory, which
highlights the need to consider metaheuristic algorithms for this set of challenging in-
stances. In particular, in those instances where Gurobi reaches the optimal value, SA,
SPR and DPR are also able to find it. However, CELF is not able to reach the optimal
value for these two instances. Additionally, for the instance EMAIL-EUCORE, Gurobi
requires almost 30h to find the optimal value, while SA requires 268s, DPR 262s and
SPR only 85s.

CELF SA

Instance Avg. Dev. (%) Time (s) #Best Avg. Dev. (%) Time (s) #Best

PRISON* 240 11.11 0.02 0 270 0.00 0.34 1
EMAIL-EU-CORE* 4672 1.79 22.71 0 4757 0.00 267.78 1
EGO-FACEBOOK 19462 0.00 3609.75 1 19462 0.00 1044.35 1

CA-GRQC 22487 5.05 12441.33 0 23684 0.00 5364.14 1
TWITCH EN 25060 0.22 16833.33 0 23853 5.03 5885.88 0
LASTFM ASIA 25005 0.00 26017.00 1 23000 8.02 6160.10 0
CA-HEPTH 44451 1.16 165624.79 0 44972 0.00 9105.73 1

BLOG CATALOG3 46732 0.00 44674.80 1 46418 0.67 8407.40 0

Summary 23514.13 2.23 33652.97 3 23302.00 1.71 4534.97 5

SPR DPR

Instance Avg. Dev. (%) Time (s) #Best Avg. Dev. (%) Time (s) #Best

PRISON* 270 0.00 0.07 1 270 0.00 0.16 1
EMAIL-EU-CORE* 4757 0.00 84.48 1 4757 0.00 262.59 1
EGO-FACEBOOK 19462 0.00 279.47 1 19462 0.00 769.70 1

CA-GRQC 23630 0.23 442.07 0 23684 0.00 2166.29 1
TWITCH EN 24853 1.06 680.77 0 25116 0.00 2230.12 1
LASTFM ASIA 24556 1.80 760.97 0 24780 0.90 2409.55 0
CA-HEPTH 44909 0.14 2140.92 0 44972 0.00 7743.06 1

BLOG CATALOG3 46595 0.29 1336.91 0 46692 0.09 8705.44 0

Summary 23629.00 0.44 715.71 3 23716.63 0.12 3035.87 6

Table 4.4: Comparison of CELF, SA, SPR and DPR over the set of largest and most
complex instances.

Analyzing the instances in which Gurobi is not able to even load the model,
SPR requires from smaller computing time than DPR in general, but it provides worse
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results in terms of quality. Regarding SA, it is able to provide competitive results in
these challenging instances. Specifically, SPR reaches the best solution in 3 out of 8
instances, SA reaches 5 out of 8 best solutions, and, finally, DPR reaches all the best
solutions but for two instances in which CELF is able to provide slightly better results.
It is worth mentioning that CELF requires from approximately five times the computing
time required by DPR, thus being DPR much more scalable for large scale networks.
In terms of deviation, CELF provides the worst results with a 2.23%, followed by SA
with 1.71%, but it is considerably larger than the one obtained by SPR and DPR.
Specifically, the average deviation obtained by SPR is considerably small (0.44%), and
DPR is able to reach a deviation of 0.12%. Since the deviation of DPR is really close to
0%, a pairwise non-parametric Wilcoxon statistical test has been conducted to evaluate
if there are statistically significant differences between SPR and DPR. The resulting
p-value of 0.04, smaller than 0.05, indicates that DPR is statistically better than SPR.
These results highlights the contribution of SPR and DPR to the state of the art of
Max-TSS.

As a conclusion, both SPR and DPR are able to provide promising solutions
for the TSS, each one of them being suitable for different situations. On the one
hand, if the computing time is a hard constraint, we do recommend considering SPR
since the quality of the solutions is not drastically worse. On the other hand, if the
maximum computing time is not a critical part of the problem, DPR is able to provide
better results in terms of quality. The proposed algorithms have been compared with
a Simulated Annealing implementation, which has been successfully applied in several
influence maximization problems, and with CELF, which is a widely used method
in the context of influence maximization and, particularly, in Max-TSS. The results
obtained highlight the appropriateness of designing a specific algorithm for solving the
TSS such as the proposal of this research.
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Chapter 5

Conclusions and future work

In this chapter, the conclusions of each variant of the problems tackled and general
future work of this Doctoral Thesis are presented. Section 5.1, shows the conclusions
of Social Network Influence Maximization Problem (SNIMP), Section 5.2 highlight the
conclusions related to Budgeted Influence Maximization Problem (BIMP) and finally
Section 5.3 remarks the main conclusions about Target Set Selection (TSS). Last Sec-
tion 5.4 presents the general future devised from this Doctoral Thesis related to Social
Influence Problems. It is worth mentioning that in each section a link to a repository
(with source code, instances, and results) is presented to ease further comparisons.

5.1 Conclusions on the Social Network Influence

Maximization Problem

In this paper a quick Greedy Randomized Adaptive Search Procedure (GRASP) al-
gorithm for solving the SNIMP has been presented. Two constructive procedures are
proposed, with the one based on the two-step neighborhood being more competitive
one than that based on the clustering coefficient. Furthermore, the idea of using local
information allows the algorithm to construct a complete solution in a small comput-
ing time. Then, a local search based on swap moves is presented. Since an exhaustive
exploration of the search space is not suitable for this problem, we propose an intel-
ligent neighborhood exploration strategy which limits the region of the search space
to be explored, focusing on the most promising areas. This rationale leads us to pro-
vide high-quality solutions in reasonable computing time, even for the largest instances
derived from real-world SNs commonly considered in the SNIMP area. Since the in-
telligent neighborhood exploration strategy is parameterized, if the computing time is
not a relevant factor, the region explored can be easily extended to find better solu-
tions, thus increasing the required computational effort. This fact makes the proposed
GRASP algorithm highly scalable. The results obtained are supported by Friedman
test and then the pairwise Wilcoxon test, confirming the superiority of the proposal
with respect to the classical and state-of-the-art solution procedures in the area.

This work was presented and published in the Journal of Ambient Intelligence
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and Humanized Computing (JCR Q2) entitled as A quick GRASP-based method for in-
fluence maximization in social networks [69]. The impact factor of this journal is 3.662,
located at 68/145 in the area of Computer Science, Artificial Intelligence and 73/164 in
Information Systems. The source code has also been made publicly available1 to ease
further comparison. It is worth mentioning that this research has also been presented
in: Parallel Problem Solving from Nature–PPSN XVI: 16th International Conference,
PPSN held in Leiden, The Netherlands from September 5-9 2020; International Con-
ference on Variable Neighborhood Search (ICVNS) held in Abu Dhabi, United Arab
Emirates from 22-24 Mar 2021; and XIX Conferencia de la Asociación Española para
la Inteligencia Artificial (CAEPIA 2021): avances en Inteligencia Artificial held in
Málaga from 22-24 Sep 2021. Further details and the complete manuscript can be
found in Chapter 6.

5.2 Conclusions on the Budgeted Influence Maxi-

mization Problem

An efficient, effective and scalable algorithm based on Greedy Randomized Adaptive
Search Procedure (GRASP) framework was developed. This framework can be con-
figured according to the time requirements. Scalability is achieved by using local in-
formation in constructive methods and avoiding an exhaustive search in local search
(selecting the most promising nodes). The results and the comparison with the pre-
vious algorithms are developed using three different IDMs for BIMP, considering the
probabilistic Monte Carlo algorithm for the evaluation of the objective function.

Finally, an infodemic case study is analyzed from the influence maximization per-
spective. Specifically, an instance is built based on 386384 tweets about the American
Health Care Act (AHCA). An experiment is performed, showing the superiority of
GRASP when comparing it with ComBIM in 21 out of 27 available instances. The
most influential users are analyzed, showing their relevance in the topic studied, being
most of them senators, comedians, writers, or newspapers.

Chapter 7 shows the accepted work entitled as An efficient and effective GRASP
algorithm for the Budget Influence Maximization Problem [65], in the Journal of Am-
bient Intelligence and Humanized Computing. This journal has an impact factor of
3.662, located at 68/145 in the area of Computer Science, Artificial Intelligence and
73/164 in Information Systems. As the previous work, to ease further comparisons
source code, instances and the complete results can be found publicly available in the
following link 2.

1https://grafo.etsii.urjc.es/SNIMP
2https://grafo.etsii.urjc.es/BIMP

https://grafo.etsii.urjc.es/SNIMP
https://grafo.etsii.urjc.es/BIMP
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5.3 Conclusions on the Target Set Selection prob-

lem

This work presents an algorithm based on Path Relinking [27] for solving the TSS
problem. The potential of GRASP coupled with a Path Relinking combination strategy
has been proven. Specially, regarding to the computing time required by the algorithm
to reach high-quality solutions, the proposal emerged as the best method in the state
of the art.

In particular, the main contributions of this work are as follows. Two different
variants of GRASP + Path Relinking have been proposed: Static Path Relinking and
Dynamic Path Relinking. Both SPR and DPR are able to provide promising solutions
for the TSS, each one of them being suitable for different situations. On the one hand,
if the computing time is a hard constraint, we do recommend considering SPR since the
quality of the solutions is not drastically worse. On the other hand, if the maximum
computing time is not a critical part of the problem, DPR is able to provide better
results in terms of quality.

It is worth mentioning that a Path Relinking path strategy (Reactive Path Re-
linking) was proposed and accepted in a related work in this thesis [94] (see Section 3.2).

Novel improvements to reduce the computational effort of the local search method:
escape from cycling the search by avoiding the exploration of already visited solutions
using hash function in solutions. Then, every time a solution is visited, it is evaluated
if its corresponding hash code has not already been included in the set of visited so-
lutions. The explored nodes are limited during the search, and discarding those nodes
which will result in an unfeasible solution. They are sorted with respect to their effort
value in ascending order. Then, only those nodes whose effort value is smaller than or
equal to the available budget are explored. The objective of the last improvement is to
reduce the computing time required to evaluate the influence of a node by caching it.

Experiments have shown that the combination of GRASP with PR results in
high-quality solutions. The efficient implementation of the algorithm and the quality
of applied heuristics allow the algorithm to overcome the previous work, supported by
statistical tests.

The incumbent work was published results in a publication, Dynamic Path Re-
linking for the Target Set Selection problem [114] in Knowledge-Based Systems which
has an impact factor of 8.800 and it is located at 19/145 in the field of Computer Sci-
ence, Artificial Intelligence. The full document is included in Chapter 8 of Part II, the
complete source code and instances are publicly available to ease further comparisons,
as well as the complete results3. It is worth mentioning that this research has also
been presented in the XL Congreso Nacional de Estad́ıstica e Investigación Operativa
(SEIO) held in Elche, Spain from 7-10 Nov 2023.

3https://grafo.etsii.urjc.es/TSS

https://grafo.etsii.urjc.es/TSS


56 5.4. FUTURE WORK

5.4 Future Work

During this thesis related to the analysis of influence maximization problems, several
future works have been found on different areas, such as follows: instances, diffusion
models and algorithmic proposals.

The main drawback during the research is the open access to the instances to
provide reproducibility against other proposals, all the works related to this doctoral
thesis are public in different repositories for their access. To improve scientific works,
researchers should facilitate the same. Nowadays through data mining techniques or
the use of APIs it is possible to get social networks, however sometimes it is unfeasible
to obtain a complete social network, society advances, data increases and the use of
static social networks is becoming outdated. The use of dynamic social networks in real
time is a field of research where adapting these algorithms is very interesting, this will
allow to execute marketing campaigns in real time varying according to the iterations
and being able to improve the results.

Current influence propagation models are one of the main drawbacks when eval-
uating algorithms. Studies take advantage of parallelization through algorithmic tech-
niques and it is a field of interest to reduce computational costs. Another way to
improve the current system would be to create more robust models to evaluate influ-
ence propagation. Currently models are approximations based mainly on structural
information that may fail to generate an accurate diffusion pattern. Pei et al. [115]
shows that the actual pattern of information propagation is likely to be affected by
factors such as human behavior, common preferences or beliefs, and social reinforce-
ment. Creating a model that evaluates diffusion that take these factors into account
can model more realistically.

Researchers [36, 37] shows that Metaheuristic algorithms and Deep Learning are
scarce in Social Influence Problems. One of the reasons for the use of current algorithms
is the structure of the network. Existing research essentially assumes that the network
structure is fixed and does not change over time. This can help in finding solutions, but
one can easily realize that more dynamic elements in the network structure can make
it more realistic to capture the actual interactions in real-world social networks. To be
successful in solving these problems, more attention should be paid to the efficiency
and scalability of the proposed methods. In practical terms, it will not be feasible for
a method to take longer to find a solution that maximizes the propagation of influence
than the time required for it to propagate, as there is a risk that by the time a solution
has been found the situation will have changed completely.

Nowadays, the proliferation of fake news and the spread of rumors are on the
rise, prompting a heightened interest in issues related to influence minimization. To-
ward the conclusion of this doctoral thesis, a research stay was conducted in Antwerp
(Belgium) with Professor Kenneth Sörensen. During this research stay, the problem
of influence minimization was addressed, which includes blockers (nodes that, when
receiving information, do not transmit it). A novel methodology using machine learn-
ing was employed, in which, given the characteristics of a solution, it is possible to
determine the features that make good solutions. This is particularly noteworthy as
it aligns with the objective of any heuristic. The study has yielded promising results,
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although it remains an ongoing work in progress. It is worth mentioning that it has
also been accepted in the 38th Annual Conference of the Belgian Operational Research
Society (ORBEL38) held in Antwerp, Belgium, from 8-9 Feb 2024.

Finally, SNI problems are growing due to the real-world use that is obtained from
them. This makes the problem interesting to both researchers and industry, having
a need for scalability and the need of fast and efficient algorithms, allows the use of
metaheuristic algorithms to be useful due to their particular characteristics.
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Abstract
The evolution and spread of social networks have attracted the interest of the scientific community in the last few years. 
Specifically, several new interesting problems, which are hard to solve, have arisen in the context of viral marketing, disease 
analysis, and influence analysis, among others. Companies and researchers try to find the elements that maximize profit, 
stop pandemics, etc. This family of problems is collected under the term Social Network Influence Maximization problem 
(SNIMP), whose goal is to find the most influential users (commonly known as seeds) in a social network, simulating an 
influence diffusion model. SNIMP is known to be an NP-hard problem and, therefore, an exact algorithm is not suitable for 
solving it optimally in reasonable computing time. The main drawback of this optimization problem lies on the computational 
effort required to evaluate a solution. Since each node is infected with a certain probability, the objective function value must 
be calculated through a Monte Carlo simulation, resulting in a computationally complex process. The current proposal tries 
to overcome this limitation by considering a metaheuristic algorithm based on the Greedy Randomized Adaptive Search 
Procedure (GRASP) framework to design a quick solution procedure for the SNIMP. Our method consists of two distinct 
stages: construction and local search. The former is based on static features of the network, which notably increases its effi-
ciency since it does not require to perform any simulation during construction. The latter involves a local search based on 
an intelligent neighborhood exploration strategy to find the most influential users based on swap moves, also aiming for an 
efficient processing. Experiments performed on 7 well-known social network datasets with 5 different seed set sizes confirm 
that the proposed algorithm is able to provide competitive results in terms of quality and computing time when comparing 
it with the best algorithms found in the state of the art.

Keywords  Information systems · Social networks · Influence maximization · Network science · Viral marketing · GRASP

1  Introduction

Nowadays, millions of users are involved in social networks 
(SNs), growing exponentially the number of active users. 
This growth is extended to the amount of behavioral data 

and, therefore, all classical network-related problems are 
becoming computationally harder. SNs can be defined as 
the representation of social interactions that can be used to 
study the propagation of ideas, social bond dynamics, dis-
ease propagation, viral marketing, or advertisement, among 
others (D’angelo et al. 2009; Klovdahl 1985; Barabási and 
Pósfai 2016; Reza et al. 2014).

SNs are used not only for spreading positive information 
but also malicious information. In general, research devoted 
to maximize the influence of positive ideas is called Influ-
ence Maximization (Nguyen Hung et al. 2016). Thus, solv-
ing successfully this problem allows the decision-maker 
to decide the best way to propagate information about 
products and/or services. On the contrary, SNs can be also 
used for the diffusion of malicious information like deroga-
tory rumors, disinformation, hate speech, or fake news. 
These examples motivate research about how to reduce the 
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influence of negative information. This family of problems 
is usually known as Influence Minimization (Khalil Elias 
et al. 2013; Luo et al. 2014; Xinjue et al. 2018; Qipeng et al. 
2015).

A SN is usually modeled with a graph G(V, E) where the 
set of nodes V represents the users and each relation between 
two users is modeled as a pair (u, v) ∈ E , with u, v ∈ V  
indicating that user u is connected to or even can transmit 
information to user v. Kempe et al. (2003) originally formal-
ized the influence model to analyze how the information 
is transmitted among the users of a SN. Given a SN with 
|V| = n nodes where the edges (relational links) represent 
the spreading or propagation process on that network, the 
task is to choose a seed node set S of size k < n with the aim 
of maximizing the number of nodes in the network that are 
influenced by the seed set S. This results in a combinatorial 
optimization problem known as the Social Network Influ-
ence Maximization problem (SNIMP).

The evaluation of the influence of a given seed set S 
requires the definition of an Influence Diffusion Model 
(IDM) (Kempe et  al. 2015). This model is responsible 
for deciding which nodes are affected by the information 
received from their neighboring nodes in the SN. The most 
extended IDMs are: Independent Cascade Model (ICM), 
Weighted Cascade Model (WCM), and Linear Threshold 
Model (LTM). All of them are based on assigning an influ-
ence probability to each relational link in the SN. ICM, 
which is one of the most used IDMs, considers that the influ-
ence probability is the same for each link, and it is usually a 
small probability, being 1% a widely accepted value. On the 
contrary, WCM considers that the probability of a user v for 
being influenced by user u is proportional to the in-degree 
of user v, i.e., the number of users that can eventually influ-
ence user v. Therefore, the probability of influencing user v 
is defined as 1∕din(v) , where din(v) is the in-degree of user v. 
The latter model, LTM, requires a specific activation weight 
for each link in the SN. Given those weights, a user will be 
influenced if and only if the sum of the weights of its neigh-
bors if larger than or equal to a given threshold. In this paper 
we consider the ICM since it is one of the most popular 
IDMs in the literature. In particular, ICM views influence as 
being transmitted through the network in a tree-like fashion, 
where the seed nodes are the roots.

The SNIMP then involves finding a seed set S, with 
|S| = k (where k is an input parameter), that maximizes 
the number of users influenced and, as a consequence, the 
spread of information through the network. In mathemati-
cal terms,

where S is the set of all possible solutions (i.e., seed set 
setups), p is the probability of a user to be influenced, and 

S⋆ ← argmax
S∈S

ICM(G, S, p, ev)

ev is the number of iterations of the Monte Carlo simulation 
used to run the ICM (see Sect. 3.1).

The SNIMP was initially formulated in Richardson et al. 
(2003) and it was later proven to be NP-hard for most IDMs 
in Kempe et al. (2015). As with many other NP-hard prob-
lems, heuristic and metaheuristic algorithms, such as greedy 
and evolutionary algorithms, have been considered to solve 
the problem by effectively exploring the solution space, 
avoiding the analysis of every possible subset of nodes 
(Banerjee et al. 2020).

This work presents a novel metaheuristic approach for 
dealing with the SNIMP, allowing us to find high qual-
ity solutions in short computing time. Our main goal is to 
design an efficient algorithm where the use of Monte Carlo 
simulation required for the IDM application is minimized, 
thus increasing the efficiency of the algorithm. To do so, we 
make use of the Greedy Randomized Adaptive Search Pro-
cedure (GRASP) framework, characterized for its efficiency 
when designing solutions for NP-hard combinatorial opti-
mization problems. Our procedure is based on two stages. 
On the one hand, a greedy constructive procedure based on 
the 2-step neighborhood which is randomized to diversify 
the search with the aim of exploring a wider portion of the 
solution space. On the other hand, we introduce an efficient 
local search method. Specifically, it relies on an intelligent 
neighborhood exploration strategy for finding local optima 
with respect to the constructed solutions. The proposed pro-
cedure is validated over a set of 35 instances widely used in 
the context of social influence maximization, and bench-
marked against both the classical methods based on greedy 
hill-climbing strategies (Goyal et al. 2011; Leskovec et al. 
2007) and the state-of-the-art solution procedure for SNIMP 
based on particle swarm optimization (Banerjee et al. 2020). 
The results obtained clearly demonstrate the efficacy of the 
proposed methodology.

The remainder of the work is structured as follows. 
Section 2 reviews the related literature, detailing the dif-
ferent approaches followed to deal with different problems 
derived from the social influence maximization. The pro-
posed approach is described in Sect. 3, where Sect. 3.1 intro-
duces the influence diffusion model selected in this research, 
Sect. 3.2 presents the construction method proposed for pro-
viding high quality initial solutions, and Sect. 3.3 describes 
the local search proposed for finding local optimum with 
respect to a given neighborhood structure. Section 4 presents 
the experimental results considering a public dataset which 
has been previously used for this task, divided into prelimi-
nary experiments devoted to adjust the search parameters 
(Sect. 4.1), and final experiments to perform a competitive 
testing to evaluate the quality of the proposal (Sect. 4.2). 
Finally, Sect. 5 draws some conclusions derived from this 
research.
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2 � Literature review

In this section, we introduce some related work about 
SNIMP and IDM as well as a brief survey of existing meth-
ods for solving this problem, either based on heuristics or 
computational intelligence algorithms.

Richardson et al. (2003) initially formulated the prob-
lem of selecting target nodes in SNs. However, Kempe et al. 
(2003) were the first to solve the SNIMP formulating it as 
a discrete optimization problem. It has been shown that 
the SNIMP is NP-hard (Kempe et al. 2015). Kempe et al. 
(2003) proposed a greedy hill-climbing algorithm with an 
approximation of 1 − 1∕e − � , being e the base of the natural 
logarithm and � any positive real number. This result indi-
cates that the algorithm is able to find solutions which are 
always within a factor of at least 63% of the optimal value 
under the three IDMs described in Sect. 1.

As a consequence of the computational effort required to 
evaluate the ICM, Kempe et al. (2003) also proposed sev-
eral greedy heuristics based on SN analysis metrics such 
as degree and closeness centrality (Stanley and Katherine 
1994). These methods only require one run of a Monte Carlo 
simulation to validate the single solution obtained using heu-
ristic functions, thus increasing the efficiency at the cost of 
a loss of efficacy. When the considered metric is the degree 
of the node, the algorithm is called high-degree heuristic.

Several extensions of those first greedy algorithms were 
later proposed. In particular, Leskovec et al. (2007) intro-
duced the Cost-Effective Lazy Forward (CELF) selection 
which exploited the submodularity property to significantly 
reduce the run time of the greedy hill-climbing algorithm, 
becoming over 700 times faster than the original procedure. 
The rationale is that the expansion of each node is computed 
a priori and it only needs to be recomputed for a few nodes. 
Meanwhile, Chen et al. (2009) used the concept of degree-
discount heuristics to optimize the high-degree heuristic. 
The greedy selection function considers the redundancy 
between likely influenced nodes and does not include those 
reached by the already selected seed nodes to provide a bet-
ter estimation of the total spread.

In Goyal et al. (2011) a new algorithm called CELF++ 
was proposed with the aim of improving the efficiency of 
the original CELF. It leans on the property of submodular-
ity of the spread function for IDM, avoiding unnecessary 
computations. According to the authors it is 35-55% faster 
than CELF.

A large number of works have been developed in the area 
since those first proposals (Şimşek and Kara 2018). Dif-
ferent kinds of heuristic and metaheuristic algorithms have 
been considered to solve the SNIMP. Table 1 summarizes 
the most recent approaches, including the algorithm type and 
the specific IDM considered.

Analyzing previous studies we can conclude that more 
complex metaheuristic approaches usually result in better 
solutions than simple greedy approaches. Yang and Weng 
(2012) proposed an Ant Colony Optimization (ACO) algo-
rithm based on a parameterized probabilistic model to 
address the SNIMP. They used the degree centrality, dis-
tance centrality, and simulated influence methods for deter-
mining the heuristic values.

Meanwhile, the method based on Simulated Annealing 
(SA) presented in Li et al. (2017) applied two heuristic meth-
ods to accelerate the convergence process of SA, along with 
a new method of computing influence spread to speed up the 
proposed algorithm. In Bucur et al. (2017), an Evolutionary 
Multi-objective Optimization (EMO) algorithm (Lamont 
et al. 2007) was proposed for SNIMP, where the two consid-
ered objectives were maximizing the influence of a seed set 
and minimizing the number of nodes in the seed set jointly.

As said before, some heuristics have been proposed as 
time-saving solutions for greedy decisions: random, degree, 
and centrality (Kempe et al. 2003). The random heuristic 
selects nodes randomly, without considering node influence, 
to form the seed set in the network. Degree and centrality 
heuristics derive from the definition of the node influence 
in SN analysis (Stanley and Katherine 1994). Degree cen-
trality heuristic usually produces less accurate results to the 
SNIMP. Alternatively, the high-degree heuristic targets the 
SNIMP by taking into account prior knowledge of the node’s 
neighbors (Chen et al. 2009).

Recently, a complete survey on SNIMP has been pre-
sented in Banerjee et al. (2020). In that work, authors experi-
mentally compare the results obtained by the most recent 
algorithms. The survey concludes that the particle swarm 
optimization approach by Gong et al. (2016) obtains the 
best results in the literature, so we will use that algorithm to 
benchmark our proposal. This survey has become one of the 
most relevant research in the area of influence maximization 
problems.

The aforementioned metaheuristic methods are able to 
obtain good results but usually require large computational 
times. Our proposal considers a method combining the use 
of heuristic functions and Monte Carlo simulations for limit-
ing the number of ICM evaluations that tries to balance the 
quality of the obtained solutions and the required comput-
ing time. With the aim of reducing the required comput-
ing time, we consider a GRASP, combining good heuristic 
solutions that are quickly generated and an efficient local 
search method which minimizes the number of Monte Carlo 
evaluations to further improve the initial solution. The use 
of GRASP in Graph Theory and Network Science has led 
to several successful research in the last years (Pérez-Peló 
et al. 2019, 2020; Gil-Borrás et al. 2020).
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3 � Algorithmic approach

The method presented in this work aims at finding high qual-
ity solutions in reasonable computing time. In order to do 
so, we propose a metaheuristic algorithm. Metaheuristics 
are one of the most extended techniques for solving hard 
optimization problems. They are able to guide the search in 
order to escape from local optima, with the goal of finding 
high quality solutions in a reduced computing time.

GRASP is a metaheuristic framework developed in the 
late 1980s Feo and Resende Mauricio (1989) and formally 
introduced in Feo and Resende Mauricio (1994). We refer 
the reader to Resende Mauricio et  al. (2010), Resende 
Mauricio and Celso (2013) for a complete survey of the 
last advances in this methodology. GRASP is a multi-start 
framework divided into two distinct stages. The first one is 
a greedy, randomized, and adaptive construction of a solu-
tion. The second stage applies an improvement method to 
obtain a local optimum with respect to a certain neighbor-
hood, starting from the constructed solution. This methodol-
ogy is able to find a trade-off between the diversification of 
the randomized construction phase and the intensification of 

the local search procedure, allowing the algorithm to escape 
from local optima and perform a wider exploration of the 
search space. These two phases are repeated until a termina-
tion criterion is met, returning the best solution found during 
the search.

3.1 � Influence diffusion model

Before defining the algorithmic proposal, it is necessary to 
provide a formal definition of the IDM considered in this 
work, which is the ICM introduced in Sect. 1. Due to the 
probabilistic nature of ICM, the most extended way of evalu-
ating the spread is by conducting a Monte Carlo simulation. 
However, even a single iteration of the simulation in ICM is 
rather time-consuming. Algorithm 1 shows the pseudocode 
of the Monte Carlo simulation to evaluate the spread of 
information through a SN named G given a seed set S. Spe-
cifically, it receives four input parameters: the graph which 
models the SN, a tentative solution, the probability of a user 
to be influenced, and the number of iterations of the corre-
sponding Monte Carlo simulation.

Table 1   Summary of the 
literature published for the 
SNIMP in the last 20 years

References Algorithm IDM

Kempe et al. (2003) Greedy ICM-LTM
Chen et al. (2009) Greedy ICM
Lappas et al. (2010) Dynamic Programming ICM
Goyal et al. (2011) Greedy ICM
Yang and Weng (2012) Ant Colony ICM
Nguyen and Zheng (2013) Greedy ICM
Jiaguo et al. (2014) Greedy ICM
Li et al. (2014) Greedy Polarity-Related-ICM
Liu et al. (2014) Greedy Latency Aware-ICM
Lee and Chung (2015) Greedy ICM
Song et al. (2015) Greedy ICM
Bucur and Iacca (2016) Genetic ICM
Gong et al. (2016) Particle Swarm ICM
Ok et al. (2016) Greedy Independent Poisson Clock
Tong et al. (2016) Greedy ICM
Zhang et al. (2016) Greedy LTM-ICM
Bucur et al. (2017) Multi-objective evolutionary ICM
Li et al. (2017) Simulated Annealing Polarity-Related-ICM
Peng et al. (2017) Greedy SI
Tong et al. (2017) Greedy ICM
Zhang et al. (2017) Genetic LTM
Bucur et al. (2018a) Multi-objective evolutionary ICM
Bucur et al. (2018) Multi-objective evolutionary ICM
Samadi et al. (2018) Mixed Integer Programming Partial Parallel Cascade
Liu et al. (2019) Evolutionary SIR epidemic spreading model
Salavati and Abdollahpouri (2019) Ant Colony ICM
Robles et al. (2020) Multi-objective evolutionary Viral marketing model
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Algorithm 1 ICM (G = (V,E), S, p, ev)

1: I ← ∅
2: for i ∈ 1 . . . ev do
3: A� ← S
4: A ← S
5: while A �= ∅ do
6: B ← ∅
7: for v ∈ A do
8: for (u, v) ∈ E do
9: if rnd(0, 1) ≤ p then

10: B ← B ∪ {u}
11: end if
12: end for
13: end for
14: A� ← A� ∪ B
15: A ← B
16: end while
17: I ← I + |A�|
18: end for
19: return I/ev

The algorithm starts by initializing the set which stores 
the number of infected users (step  1). It then performs a 
number of predefined iterations ev (steps 2 − 18 ), finding in 
each iteration which are the influenced nodes by the given 
seed set S. Initially, the set of nodes A⋆ reached by the initial 
seed set, S, is actually the seed set (step  3). Then, the method 
iterates until no new nodes are influenced (steps 5–16). In 
each iteration of the inner for-loop, the neighbors of each 
node reached in the previous one are traversed (steps 8–12). 
For each neighbor, a random number is generated. If this 
number is smaller than the probability of infection p, then 
the neighboring node becomes infected (steps 9–11). At the 
end, the set of infected nodes is updated (step 14) as well as 
the nodes infected in the previous iteration (step 15). Finally, 
the algorithm returns the mean number of infected nodes 
among all the simulations performed, i.e., I divided by ev 
(step 19). Notice that this value is considered as the objective 
function to be optimized when solving the SNIMP. That is, 
the seed set maximizing the spread value over the network 
would compose the optimal solution to the problem. It is 

Fig. 1   SN with 9 nodes and 13 
edges. Two feasible solutions S1 
and S2 are represented, each of 
them resulting in a different set 
of influenced users

worth mentioning that, as infection is a stochastic process, 
the ICM must be run several times (ev in our case) to achieve 
an appropriate estimation, thus resulting in a Monte Carlo 
simulation.

In order to illustrate the evaluation of a solution under the 
ICM, Fig. 1 shows an example of a SN with 9 nodes and 13 
directed edges, where each pair (u, v) denotes that the user 
v may be influenced by u. Information represents anything 
that can be passed across connected peers within a network. 
The influence level given by a node is determined by the 
adoption or propagation process. Let us consider k = 2 for 
this example graph.

Figure 1a shows solution S1 where the seed set is con-
formed with nodes C and G. Without loss of generality we 
will assume, for this example, that p = 1 (i.e., all the nodes 
are always infected by their neighbors). Simulating the dif-
fusion model we can see how nodes D, E, and H are directly 
influenced by the seed set. After that, node H influences node 
I. Different levels of influence are represented by a gray gra-
dient from black to white. Therefore, if we consider a single 
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evaluation of the Monte Carlo simulation, the objective func-
tion value of S1 is ICM(G, S1, p, 1) = 6 . Figure 1b depicts 
solution S2 = {�, �} . Similarly to Fig. 1a, a gray gradient 
indicates the process of influence over the network, resulting 
in an objective function value of ICM(G, S2, p, 1) = 9 , since 
all nodes are influenced. Notice that, following this evalua-
tion, S2 is better than S1 . However, it is important to remark 
that a single iteration for the Monte Carlo simulation is not 
significant, so we have decided to perform ev =100 evalua-
tions of the simulation as it is customary in the literature for 
the SNIMP (Bucur and Iacca 2016; Bucur et al. 2018). Addi-
tionally, we set p = 0.01 as stated in previous works Bucur 
and Iacca 2016; Kempe et al. 2003; Gong et al. 2016. Then, 
for the sake of simplicity, we refer to ICM(G, S, 0.01, 100) 
as ICM(G, S) in the remaining of the paper.

(RCL) with the most promising nodes (step 8). This thresh-
old directly depends on the value of the input parameter 
� , which is in the range [0, 1]. Notice that this parameter 
indicates the greediness or randomness of the constructive 
procedure. On the one hand, if � = 0 , then the threshold is 
evaluated as gmax , becoming a totally greedy algorithm (i.e., 
the RCL only includes the best choice in each iteration). On 
the other hand, if � = 1 then � = gmin , resulting in a com-
pletely random method (i.e., the RCL includes every feasi-
ble choice in each iteration). Since this parameter is tuned 
experimentally, we refer the reader to Sect. 4 to analyze the 
experiments performed to select the best value for � . Finally, 
the next node is selected at random from the RCL (step 9), 
including it in the solution (step 10) and updating the CL 
(step 11). The method ends when k elements are included in 
the seed set, returning the constructed solution S (step 13).

3.2 � Construction phase

The construction phase of GRASP is designed to generate 
an initial solution and it is usually guided by a greedy selec-
tion function which helps the constructive method to select 
the next elements to be included in the partial solution (see 
Algorithm 2).

In order to favor diversification, the first node to be 
included in the solution S is selected at random from the 
set of SN nodes V (step 1). The candidate list CL is created 
with all the nodes but v (step 2) and the node v is included 
as the only node in the initial solution S (step 3). Then, 
the constructive method iteratively adds new elements to 
the solution until it becomes feasible, being composed of 
k nodes (steps 4–12). In each iteration, the minimum and 
maximum value of the greedy heuristic function is evalu-
ated (steps 5–6). Then, a threshold � is calculated (step 7), 
which is required for creating the Restricted Candidate List 

The greedy heuristic function g used in steps 5-6 is one 
of the key features when designing a constructive proce-
dure in the context of GRASP. In this work we propose two 
different greedy functions to generate initial solutions. The 
first one, named gne , is a heuristic based on the first and 
second degree neighbors of a given node (usually known as 
2-step in SN analysis Stanley and Katherine 1994). Given 
a node u, its out-degree is defined as d+

u
= |N+

u
= | , where 

N+
u
= {w ∈ V ∶ (u,w) ∈ E} is the set of adjacent nodes to u.

Thus, the first greedy function calculates the sum of the 
out-degree of u plus the out-degree of its neighbors. This 
heuristic function is based on the two-hop area (Sen et al. 
2014) and three-degree theory (Christakis and Fowler 2009) 
hypothesis, indicating that there exists an intrinsic decay 
when increasing the maximum neighborhood level. More 
formally,

gne(u) = d+
u
+

∑

v∈N+
u

d+
v
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If we analyze this metric over the graph depicted in Fig. 1, 
the value of gne over vertex F, for instance, is evaluated as 
gne(�) = d+

�
+ d+

�
+ d+

�
= 2 + 2 + 2 = 6 . In order to reduce 

the computational effort of updating the value of this greedy 
function for each node, the method updates the value just 
for the affected nodes, which are those nodes to which the 
selected one is directly connected. For instance, in case of 
selecting node F, only nodes E and G must be updated, by 
subtracting the out-degree of the selected node F. This effi-
cient update mechanism allows the algorithm to minimize 
the relevance of those vertices that are directly influenced 
by one of the selected nodes.

The second greedy function, named gcc , considers the 
nodes clustering coefficient as a heuristic value. It estimates 
the likelihood that nodes in a graph tend to cluster together. 
In mathematical terms, the clustering coefficient is defined 
as (in a directed network):

It is worth mentioning that, to speed up this computation, 
every value is pre-calculated before the execution of the 
algorithm. We refer the reader to Watts and Strogatz (1998) 
for a detailed description of the implementation of this 
metric.

Let us illustrate how we can evaluate this value with an 
example. Considering again the SN depicted in Fig. 1, the 
evaluation of the clustering coefficient of node F is per-
formed as gcc =

|(�, �)|
d+
�
⋅ (d+

�
− 1)

=
1

2
= 0.5.

Given gne and gcc as greedy functions, we propose two 
different constructive procedures Cne and Ccc , each one based 
on a different greedy function. The impact and influence of 
each constructive procedure in the generated solutions will 
be deeply analyzed in Sect. 4.

3.3 � Local search phase

The second phase of GRASP involves improving the solu-
tion generated by the constructive procedure in each iteration 
with the aim of reaching a local (ideally global) optimum. 
In the context of GRASP, this phase can be accomplished 
by using simple local search procedures or more complex 
heuristics like Tabu Search or even a hybrid metaheuristic 
(Martí et al. 2018). The high complexity of the problem 
under consideration has led us to propose a low time con-
suming local search procedure.

Before defining a local search method, it is necessary to 
introduce the neighborhood to be explored. The neighbor-
hood of a solution S is defined as the set of solutions that can 

gcc(u) =
||{(v,w) ∈ E ∶ v,w ∈ N+

u
}||

d+
u
⋅ (d+

u
− 1)

be reached by performing a single move over S. In the con-
text of SNIMP, we propose a swap move Swap(S, u, v) where 
node u is removed from the seed set, being replaced by v, 
with u ∈ S and v ∉ S . This swap move is formally defined as:

Thus, the neighborhood Ns of a given solution S consist of 
the set of solutions that can be reached from S by performing 
a single swap move. More formally,

The next step to define the proposed local search procedure 
consists in indicating the way in which the neighborhood 
is explored. Even considering an efficient implementa-
tion of the objective function evaluation, the vast size of 
the resulting neighborhood, k ⋅ (n − k) , makes the complete 
exploration of the neighborhood not suitable for the SNIMP. 
Therefore, an intelligent neighborhood exploration strategy 
is presented with the aim of reducing the number of solu-
tions explored within each neighborhood. This reduction in 
the size of the search space is performed by exploring just a 
small fraction, � , of the available nodes for the swap node.

Since we are limiting the number of nodes considered in 
the local search approach, it is recommended to select the 
most promising ones to be involved in the swap moves. In 
the context of SNIMP, a node with a large out-degree can 
eventually influence a larger amount of nodes. Following 
this idea, we sort the candidate nodes to be included in the 
seed set in descending order with respect to their out-degree, 
while the candidate nodes to be removed from the seed set 
are sorted in ascending order with respect to their out-
degree. Sect. 4 details the impact of the number of selected 
nodes, determined by � , in the results obtained with the local 
search procedure.

Finally, we need to indicate which moves will be accepted 
during the search. In particular, two strategies are usually 
considered: Best Improvement and First Improvement 

Swap(S, u, v) = S ⧵ {u} ∪ {v}

Ns(S) = {Swap(S, u, v) ∀ u ∈ S ∧ ∀ v ∈ V ⧵ S}

Table 2   Nodes and edges of the instances used in this work

Instance Nodes Edges References

WikiVote 7115 103689 Bucur and Iacca (2016), Lawyer 
(2015)

ca-AstroPh 18772 198110 Liu et al. (2019), Lawyer (2015)
ca-CondMat 23133 93497 Liu et al. (2019), Lawyer (2015)
cit-HepPh 34546 421578 Liu et al. (2019), Lawyer (2015)
email-Enron 36692 183831 Liu et al. (2019)
p2p-Gnutella31 62586 147892 Liu et al. (2019), Lawyer (2015)
email-EuAll 265214 420045 Liu et al. (2019), Lawyer (2015)
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(Hansen and Mladenović 2006). On the one hand, the for-
mer explores, in each iteration, the complete neighborhood, 
moving to the best solution in it. On the other hand, the latter 
moves to the first solution that achieves an improvement in 
the objective function value, without requiring to explore 
the complete neighborhood. Due to the computational effort 
required to evaluate a solution for the SNIMP, we propose a 
First Improvement approach, which does not need to explore 
all the solutions in the neighborhood, thus reducing the num-
ber of objective function evaluations required and conse-
quently the overall run time.

Notice that the objective function evaluation consists 
in a Monte Carlo simulation, being the most computation-
ally demanding part of the proposed algorithm. For this 
reason, the proposed local search aims to limit the num-
ber of required simulations, thus leading to a more efficient 
procedure.

4 � Computational experiments and analysis 
of results

The aim of this section is to describe the computational 
experiments designed to evaluate the performance of the 
proposed algorithms and to analyze the obtained results. All 
the experiments have been performed in an Intel Core i7 (2.6 
GHz) with 8GB RAM and the algorithms were implemented 
using Java 9. The source code has also been made publicly 
available.1

The set of SNs considered in this paper have been entirely 
obtained from the most relevant works found in the lit-
erature, in order to provide a fair comparison among the 
analyzed algorithms. All of them are publicly available in 
Stanford Network Analysis Project (SNAP): https://​snap.​
stanf​ord.​edu/. Relevant information about these instances 

is collected in Table 2, where some papers in which each 
instance has been used are included.

First of all, it is important to indicate which values 
are used for the ICM algorithm with the corresponding 
Monte Carlo simulation. In all the experiments, as stated in 
Sect. 3.2, 100 simulations of the ICM are performed with a 
probability of influence of 0.01. These parameter values are 
the most extended ones in the related literature. The number 
of seed nodes k to conform a solution is selected in the range 
k = {10, 20, 30, 40, 50} as stated in Bucur and Iacca (2016), 
Kempe et al. (2003), Salavati and Abdollahpouri (2019), 
thus obtaining 7 ⋅ 5 = 35 different problem instances (result-
ing from the combination of 7 networks and 5 seed set sizes).

The experiments are divided into two parts: preliminary 
and final experimentation. The former (Sect. 4.1) refers to 
those experiments performed to select the best parameters 
to set up our algorithm, while the latter (Sect. 4.2) validates 
the best configuration, comparing it with the best methods 
found in the state of the art.

All the experiments developed report the following met-
rics: Avg., the average objective function value (i.e., the 
number of influenced nodes, in average, after 100 simula-
tions); Time (s), the average computing time required by the 
algorithm in seconds; Dev(%), the average deviation with 
respect to the best solution overall found in the experiment; 
and #Best, the number of times that the algorithm matches 
the best solution.

4.1 � Preliminary experimentation to setup the final 
GRASP method

The preliminary experimentation has been performed with a 
small set of 10 instances out of 35 to avoid overfitting. This 
selection comprises, approximately 30% of the global set 
and it provides enough variability in instances and values 
of k.

The first preliminary experiment is designed to find 
the best value for the � parameter in each of the proposed 
constructive procedures (see Sect. 3.2). Table 3 shows the 
detailed results for each constructive procedure when con-
sidering � = {0.25, 0.50, 0.75,RND} , where RND indicates 

Table 3   Results of the constructive procedure when generating 100 
solutions, considering different � values for both heuristic functions

Best results are highlighted with bold font

Heuristic � Avg. Time (s) Dev (%) #Best

C
ne

0.25 236.62 6.23 15.27 0
0.50 258.57 7.07 2.17 1
0.75 262.11 7.15 0.31 6
RND 262.38 6.55 0.11 8

C
cc

0.25 96.49 77.21 63.24 0
0.50 83.06 77.21 65.41 0
0.75 93.18 78.96 64.57 0
RND 95.04 77.21 63.24 0

Table 4   Influence of the number of nodes � explored in each itera-
tion of the local search procedure when coupled with the constructive 
procedure

Best results are highlighted with bold font

� Avg. Time (s) Dev. (%) #Best

10 272.28 47.28 0.89 5
20 272.46 43.20 0.56 8
30 274.42 101.31 0.51 4
40 273.72 69.17 0.54 4

1  https://​grafo.​etsii.​urjc.​es/​SNIMP.

CHAPTER 6. A QUICK GRASP-BASED METHOD FOR INFLUENCE
MAXIMIZATION IN SOCIAL NETWORKS 71



A quick GRASP‑based method for influence maximization in social networks﻿	

1 3

that the value of � is selected at random in each construc-
tion (thus allowing the algorithm for a higher and balanced 
search space diversification). The method is executed 100 
independent times per instance, returning the best con-
structed solution.

As it can be drawn from the table, the best results are con-
sistently provided by the greedy function based on the two-
step neighbors, Cne , both in quality and run time. In particu-
lar, the best results are obtained when considering � = RND , 

with 8 best solutions and 0.11% of average deviation. The 
small deviation value indicates that, even in the cases in 
which it is not able to reach the best solution, it remains 
really close to it. Besides, it is the second best choice in 
terms of run time, with a slight difference with respect to the 
best option. Therefore, we select Cne as the best constructive 
procedure with � = RND.

The second preliminary experiment is devoted to ana-
lyze the influence of the number of explored nodes in the 

Table 5   Competitive testing 
of the proposed GRASP 
algorithm with respect to the 
best algorithms found in the 
literature: CELF, CELF++, and 
PSO

Best results are highlighted with bold font

k CELF CELF++ PSO GRASP

Name Avg. Time (s) Avg. Time (s) Avg. Time (s) Avg. Time (s)

10 CA-AstroPh 157.60 2.51 171.81 9.40 169.85 232.40 187.47 8.28
CA-CondMat 35.73 0.67 35.73 2.15 33.40 4.60 36.15 2.56
Cit-HepPh 46.63 1.16 46.63 3.29 35.27 1.71 47.20 4.20
Email-Enron 383.95 25.23 469.63 87.68 465.24 1756.84 489.67 41.41
Email-EuAll 132.96 6.03 130.28 307.98 107.41 37.42 144.57 24.42
Wiki-Vote 108.50 0.39 108.50 1.00 92.16 16.40 109.10 6.32
p2p-Gnutella31 16.24 1.46 16.23 7.83 13.38 0.95 16.27 1.63

20 CA-AstroPh 222.63 2.69 234.36 9.76 222.92 889.79 259.25 18.53
CA-CondMat 59.72 0.66 59.87 2.13 45.46 8.67 61.05 6.00
Cit-HepPh 81.75 1.11 81.75 3.25 68.51 2.58 82.11 18.97
Email-Enron 451.24 25.71 547.96 88.47 544.57 4394.46 589.65 74.23
Email-EuAll 214.66 5.68 214.54 303.01 162.32 99.98 224.10 28.88
Wiki-Vote 162.49 0.49 162.49 1.45 141.66 41.44 165.32 26.03
p2p-Gnutella31 30.82 1.30 30.86 7.43 24.69 0.99 30.92 3.80

30 CA-AstroPh 266.77 2.85 276.69 10.48 259.90 1005.17 312.68 51.32
CA-CondMat 80.87 0.70 82.18 2.30 66.27 11.09 82.54 14.11
Cit-HepPh 113.39 1.16 113.39 3.45 86.22 3.69 113.63 42.30
Email-Enron 501.78 25.49 608.63 88.62 553.25 7594.67 652.48 140.71
Email-EuAll 277.40 5.86 275.36 298.66 212.84 183.58 281.30 59.58
Wiki-Vote 208.18 0.64 208.18 2.03 150.40 97.75 214.97 80.83
p2p-Gnutella31 44.75 1.24 44.81 7.42 35.30 1.34 44.81 6.08

40 CA-AstroPh 319.52 3.11 302.86 11.58 288.92 1492.82 360.34 66.97
CA-CondMat 100.96 0.76 101.80 2.54 75.61 17.40 104.38 16.37
Cit-HepPh 140.63 1.27 140.63 3.81 113.46 4.94 141.20 58.03
Email-Enron 549.64 25.95 658.38 92.09 634.58 9032.87 705.03 216.65
Email-EuAll 323.85 6.17 312.47 302.47 258.46 230.12 337.39 165.23
Wiki-Vote 246.02 0.83 246.02 2.83 182.88 115.05 252.15 34.60
p2p-Gnutella31 58.26 1.28 58.22 7.48 51.26 1.85 58.37 12.69

50 CA-AstroPh 361.51 3.50 338.28 13.11 340.54 2267.98 399.92 132.35
CA-CondMat 119.29 0.86 120.72 2.87 106.10 10.85 124.57 26.51
Cit-HepPh 165.47 1.38 165.47 4.26 126.77 6.35 166.77 65.20
Email-Enron 597.26 27.02 680.29 96.71 662.67 10063.47 744.38 157.26
Email-EuAll 361.51 6.68 357.43 304.03 258.15 321.81 375.03 161.59
Wiki-Vote 277.65 1.09 277.65 3.76 188.82 181.07 287.66 86.39
p2p-Gnutella31 71.80 1.34 71.90 7.76 64.63 2.74 72.08 17.42
G.Avg. 208.33 5.55 221.49 60.09 195.54 1146.71 236.37 39.04
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neighborhood for the local search phase. In particular, we 
have tested � = {10, 20, 30, 40} , being � the number of nodes 
explored in each local search iteration. Table 4 shows the 
influence that the number of nodes explored � has in the 
performance of the local search procedure. Notice that an 
independent local search is applied to each one of the 100 
constructed solutions, returning the best solution found 
overall.

The obtained results show that the best � value is 30, 
reaching the smallest deviation and the largest number of 
best solutions found, although in this case the results are 
more similar in every metric. However, it is more computa-
tionally demanding than the remaining values, being two or 
even three times slower than the other � values. Furthermore, 
� = 20 is the quickest variant (almost 2.5 times faster than 
� = 30 ) and it presents a very good performance: a promis-
ing average objective function value and average deviation 
with respect to the best value (272.46 versus 274.42 and 
0.56% versus 0.51%, respectively). For this reason, we select 
� = 20 as our design choice for the final algorithm.

It is important to remark the relevance of the introduced 
intelligent neighborhood exploration strategy in the perfor-
mance of the whole algorithm. Specifically, the best identi-
fied local search method (with � = 20 ) spends 26.03 seconds 
on solving the smallest instance (WikiVote), obtaining an 
objective function value of 165.32. If we do not consider 
the � parameter and execute an exhaustive local search, it 
needs 15793.09 seconds (i.e., more than 600 times longer) 
to find the local optima with a value of 165.59. We do not 
extend this experiment for the remaining instances since the 
computing time is unacceptable.

Having performed the preliminary experiments, we can 
conclude that the best results are obtained with the configu-
ration greedy function=gne , � = RND , and � = 20 . These 
parameter values will be used to set up the final version of 
the algorithm.

4.2 � Final experimentation to benchmark the final 
GRASP method with state‑of‑the‑art results

In order to analyze the quality of the proposed algorithm, we 
perform a competitive testing with the best methods found 
in the state of the art by considering the complete set of 35 
instances. In this experiment, three additional algorithms 
are considered: CELF (Leskovec et al. 2007), the well-
known greedy hill-climbing algorithm; CELF++ (Goyal 
et al. 2011), the improved version of CELF (Leskovec et al. 
2007); and PSO (Gong et al. 2016), the particle swarm opti-
mization algorithm which is considered the state of the art 
for social influence analysis according to the recent experi-
mental study developed in Banerjee et al. (2020). Table 5 
collects the final results obtained in this competitive testing, 
where we report for each method and instance the value of 

the objective function (Avg.) and the associated computing 
time in seconds (Time(s)). Notice that Avg. is not an integer 
value since it is the average value of the 100 runs of the 
ICM in the Montecarlo simulation. We have also included 
a final row in this table (G.Avg.) with the average values of 
the objective function and Time (s), computed across the set 
of 35 instances.

We would like to first highlight the results obtained with 
PSO, since it is ranking the last one even being considered 
the state of the art for this problem. The rationale behind 
this is that the original work (Gong et al. 2016) considers 
small size instances (from 410 to 15233 nodes) and the qual-
ity of the solutions provided by PSO deteriorates when the 
instance size increases, as it can be derived from Table 5. 
Meanwhile, CELF and its improved version CELF++ are 
able to reach better solutions, still being competitive with 
the state-of-the-art algorithms. However, only CELF++ is 
able to match the best-known solution in 1 instance (out of 
35). Finally, the best results are obtained with the proposed 
GRASP algorithm, which is able to reach the best solution 
found in all the 35 instances. Furthermore, the computing 
time is smaller than the second best algorithm, CELF++ 
(39.04 versus 60.09 seconds on average).

As can be observed in Table 5, CELF is able to provide 
high quality solutions in small computing time. In order 
to further analyze these results, we conduct an additional 
experiment to compare our constructive procedure (i.e., only 
using the first stage of the GRASP procedure and not consid-
ering the application of the local search) with CELF. In this 
case, the average objective function for Cne is 227.83, which 
compares favorably to the result achieved with CELF, which 
is 208.33. In both cases, the computing time is approxi-
mately 6 seconds.

Analyzing the computing time required for each algo-
rithm, we can clearly see that CELF and CELF++, as com-
pletely greedy approaches, are not really affected by increas-
ing the size of the seed set. On the contrary, the computing 
time required for PSO and GRASP is affected by the size 
of the seed set since larger k-values lead the local improve-
ment method to perform a larger number of iterations. How-
ever, if we take a closer vision of the results obtained with 
GRASP, we can conclude that this increase in the number 
of iterations and, therefore, in the computing time allows the 
algorithm to reach better solutions. In the case of PSO, the 
increase of computing time is even much more noticeable 
but it does not usually result in better solutions, suggesting 
that the PSO algorithm is particularly suitable for solving 
small size instances.

In order to validate these results, we have conducted a 
non-parametric Friedman test for ranking all the compared 
algorithms. The p-value obtained, smaller than 0.0005, con-
firms that there are statistically significant differences among 
the algorithms. The algorithms sorted by ranking are GRASP 
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(1.00), CELF++ (2.44), CELF (2.79), and PSO (3.77). We 
finally perform the well-known non-parametric Wilcoxon 
statistical test for pairwise comparisons, which answers 
the question: do the solutions generated by both algorithms 
represent two different populations? The resulting p-value 
smaller than 0.0005 when comparing GRASP with each 
other algorithm confirms the superiority of the proposed 
GRASP algorithm. Therefore, GRASP emerges as one of 
the most competitive algorithms for the SNIMP, being able 
to reach high quality solutions in small computing time.

5 � Conclusions

In this paper a quick GRASP algorithm for solving the 
SNIMP has been presented. Two constructive procedures are 
proposed, with the one based on the two-step neighborhood 
being more competitive one than that based on the clustering 
coefficient. Furthermore, the idea of using local information 
allows the algorithm to construct a complete solution in a 
small computing time. Then, a local search based on swap 
moves is presented. Since an exhaustive exploration of the 
search space is not suitable for this problem, we propose an 
intelligent neighborhood exploration strategy which limits 
the region of the search space to be explored, focusing on 
the most promising areas. This rationale leads us to pro-
vide high quality solutions in reasonable computing time, 
even for the largest instances derived from real-world SNs 
commonly considered in the SNIMP area. Since the intel-
ligent neighborhood exploration strategy is parameterized, 
if the computing time is not a relevant factor, the region 
explored can be easily extended to find better solutions, 
thus increasing the required computational effort. This fact 
makes the proposed GRASP algorithm highly scalable. The 
results obtained are supported by Friedman test and then the 
pairwise Wilcoxon test, confirming the superiority of the 
proposal with respect to the classical and state-of-the-art 
solution procedures in the area.

In our future work, we plan to study the adaptation of 
techniques developed in this work to influence minimiza-
tion problems. This adaptation can be useful for minimiz-
ing the impact of fake news and monitor those users which 
can eventually transmit misinformation through the network 
(Wei-Neng et al. 2019; Wang et al. 2017).
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Abstract
Social networks are in continuous evolution, and its spreading has attracted the interest of both practitioners and the scientific 
community. In the last decades, several new interesting problems have aroused in the context of social networks, mainly 
due to an overabundance of information, usually named as infodemic. This problem emerges in several areas, such as viral 
marketing, disease prediction and prevention, and misinformation, among others. Then, it is interesting to identify the most 
influential users in a network to analyze the information transmitted, resulting in Social Influence Maximization (SIM) prob-
lems. In this research, the Budget Influence Maximization Problem (BIMP) is tackled. BIMP proposes a realistic scenario 
where the cost of selecting each node is different. This is modeled by having a budget that can be spent to select the users of 
a network, where each user has an associated cost. Since BIMP is a hard optimization problem, a metaheuristic algorithm 
based on Greedy Randomized Adaptive Search (GRASP) framework is proposed.

Keywords  Information systems · Social networks · Budget Influence maximization · Viral marketing · GRASP

1  Introduction

The continuous growth of social networks is increasing the 
data generated by active users exponentially in such a way 
that problems related to social networks are becoming a chal-
lenging task for traditional algorithms. A Social Network 
(SN) is defined as a set of social interactions among users 
with the aim of transmitting ideas, propagation of diseases, 
misinformation detection, or viral marketing, among others 
(see Reza et al. 2014; Barabási and Pòsfai 2016; Bello-Orgaz 
et al. 2017; Chen et al. 2020; Tretiakov et al. 2022).

The massive information available nowadays hinders the 
task of differentiating real from false information. Most of 
the research related to detecting fake news and misinforma-
tion are based on the analysis of the publication content and 
context-oriented methods, mainly tackled from the Natural 

Language Processing area. This research is focused on iden-
tifying the most influential users in a Social Network, which 
may help the algorithms to identify if the source of a piece 
of information has credibility or not (Noguera-Vivo et al. 
2023).

Traditionally, an SN is represented by a graph G = (V ,E) , 
where the users are modeled as the set of nodes V and the 
relation between two users u, v ∈ V  is modeled as an edge 
(u, v) ∈ E . If there is a relation between two users, then 
information can be transmitted between them, following 
one of the Influence Diffusion Models (IDM) which will be 
described in Sect. 3. Since information can be transmitted 
in several ways depending on the social network analyzed, 
or the nature of the relations, Kempe et al. (2003) proposed 
two different models of information spreading, which have 
led to a wide variety of new models in the last years.

This paper is intended to deal with a problem in the fam-
ily of Social Influence Maximization (SIM). It is assumed 
that if in an SN there exists a relation between two users, 
then the information can be transmitted from one to another. 
Without loss of generality, the objective of each variant of 
SIM is to find a set S of users to start the diffusion of infor-
mation with the aim of maximizing the scope of the informa-
tion in terms of the number of users influenced. In the con-
text of infodemics, identifying these users will allow other 
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algorithms to elucidate if it is relevant to analyze the veracity 
of the information due to the capacity to spread of the user.

The most common variant is named as Social Network 
Influence Maximization Problem (SNIMP). The objective in 
this problem is to select a set of k nodes, with k < n , in such 
a way that the number of nodes in the network which are 
influenced is maximum. This problem has been widely stud-
ied in the literature (see Gong et al. 2016; Lozano-Osorio 
et al. 2021).

However, this variant is not even close to the real SN 
behavior. In particular, if a company is trying to spread 
information of their product through the network, the cost 
of selecting one or another user is not uniform, i.e., some 
users, which are usually known as influencers, will require a 
larger budget to be selected than any other anonymous user. 
The rationale behind this is that the influencer guarantees a 
larger spreading of the information than the anonymous user.

This paper deals with the Budgeted Influence Maximi-
zation Problem (BIMP), originally defined in Nguyen and 
Zheng (2013), which, instead of selecting a fixed number 
of initial users, allows us to invest a certain budget in users 
of the SN, considering that the cost of selecting users is not 
uniform. Notice that this variant is closer to real SN than 
SNIMP. In BIMP, the traditional model of SN is still con-
sidered, defining a network as a graph G = (V ,E) , where V is 
the set of users and E the set of relations among them. How-
ever, a function C ∶ V → ℤ+ is introduced, which assign a 
non-uniform positive integer cost to every user of the net-
work. Additionally, an initial budget B is given, which is the 
maximum investment that can be used to select nodes. Each 
selected node u will decrease the available budget in C(u) 
units. Then, the BIMP consists of selecting a set of seed 
nodes S⋆ that maximizes the information diffusion through-
out the network without exceeding the given budget B. More 
formally,

where �� represents all possible combinations of seed sets 
that can be generated, and IDM is one of the Influence Dif-
fusion Models presented in Sect. 3.

The large amount of data and interest in SN have aroused 
the interest of both the scientific community and companies 
in considering BIMP for optimizing the spreading process 
of a certain message, product, or idea to clients. Marketing 
agencies like BrandWatch (see Hayes et al. 2021) use this 
approach when their customers need a commercial campaign 
based on a certain budget to determine the most effective 
users to initialize the campaign. Last years, a wide vari-
ety of works related to infodemics are focused on pandemic 
prediction and vaccination discussions (Chen et al. 2020; 
Bello-Orgaz et al. 2017). The results on BIMP will be able 

S⋆ ← argmax
S∈��

IDM(G, S) ∶ ∑
u∈S

C(u) ≤ B

to identify the most influential users in this context, with the 
aim of validating their credibility when spreading informa-
tion and their scope.

In the original definition of BIMP (Nguyen and Zheng 
2013), an approximation algorithm is presented which guar-
antees an approximation ratio of 1 − 1∕

√
e is presented. 

Additionally, they proposed a directed acyclic graph-based 
heuristic for this problem. This problem has been widely 
studied mainly due to its practical applications. We refer 
the reader to Sect. 2 for a detailed review of the literature 
about BIMP. The main contributions of this research are the 
following:

–	 A solution framework based on the Greedy Randomized 
Adaptive Search Procedure methodology.

–	 A novel efficient and effective heuristic for selecting the 
seed set in the constructive phase. This heuristic is exper-
imentally compared with the best previous approaches to 
show its contribution.

–	 Three influence diffusion models are tested, instead of 
just one IDM as in the previous research, showing the 
robustness of the proposal.

–	 A scalable algorithm for solving BIMP. Since SNs 
are exponentially growing, it is necessary to provide a 
highly-scalable algorithm able to deal with eventually 
large SNs.

–	 A comparison of the proposed algorithm with the best 
methods found in the literature using three publicly avail-
able social network datasets which were originally con-
sidered in previous works.

–	 A real-life instance directly related to infodemics is gen-
erated based on tweets retrieved from the publicly avail-
able dataset called Tweetsets in the area of Healthcare.

–	 A public repository1 with the developed code to ease fur-
ther comparisons.

The remainder of the work is structured as follows. Sec-
tion 2 reviews the related literature, detailing the differ-
ent approaches followed to deal with different problems 
derived from SIM. Then, Sect.  3 introduces the most 
extended IDMs in the literature, which are also used in this 
research. The proposed approach is described in Sect. 4, 
where Sect. 4.1 presents the construction method to pro-
vide high-quality initial solutions, and Sect. 4.2 describes 
the proposed local search to find local optima with respect 
to a given neighborhood structure. Section 5 presents the 
experimental results considering a public dataset which 
has been previously used for this task in order to have a fair 
comparison, divided into preliminary experiments, which 
are devoted to adjust the search parameters (Sect. 5.1), 

1  https://​grafo.​etsii.​urjc.​es/​BIMP.

CHAPTER 7. AN EFFICIENT AND EFFECTIVE GRASP ALGORITHM FOR
THE BUDGET INFLUENCE MAXIMIZATION PROBLEM 79



An efficient and effective GRASP algorithm for the Budget Influence Maximization Problem﻿	

1 3

and final experiments, with the aim of performing a com-
petitive testing to evaluate the quality of the proposal 
(Sect. 5.2). An infodemic case study is developed based 
on Healthcare tweets in Sect. 5.3. Finally, Sect. 6 draws 
some conclusions derived from this research.

2 � Literature review

The problem of selecting target nodes in SNs to spread 
information was introduced by Richardson et al. (2003) 
proposing the first problem formulation. Kempe et  al. 
(2003) presented a heuristic approach to solve the SNIMP, 
and in Kempe et al. (2015) proved that SNIMP is NP
-hard.

Nguyen and Zheng (2013), formally defined the BIMP 
inspired by SNIMP, showing its NP-hardness based on 
SNIMP. They developed an approximation algorithm which 
guarantees an approximation ratio of 1 − 1∕

√
e , being e the 

base of the natural logarithm. Most of the heuristic propos-
als for BIMP are inspired by the original algorithms for 
SNIMP, mainly due to its similarities and the computational 
effort required to evaluate the IDM. Kempe et al. (2003) 
presented several greedy heuristics with an approximation 
of 1 − 1∕e − � , where � is any positive real number. When 
the considered greedy function of the heuristic is the degree 
of the node, the algorithm is called high-degree heuristic. 
Based on the node degree idea, Chen et al. (2010) proposed 
a new greedy function to optimize the high-degree heuris-
tic, such as the greedy selection function considering the 
redundancy between likely influenced nodes, but discarding 
those reached by the already selected seed nodes, in order to 
provide a better estimation of the total spread.

Han et al. (2014) proposed a set of heuristics for optimiz-
ing BIMP by considering influential nodes and cost-effective 
nodes to increase both accuracy and effectiveness. Later on, 
Guney et al. (2015) proposed a sample average approxima-
tion method for BIMP, which is able to reach almost near 
optimal solutions.

Banerjee et al. (2020) published the latest survey in SIM, 
becoming one of the most relevant research works in the 
area of influence maximization problems. The algorithm 
named ComBIM proposed by Banerjee et al. (2019) is con-
sidered the state of the art for BIMP. ComBIM provides a 
community-based solution that provides the best results in 
the literature as far as our knowledge, so it will be consid-
ered as the algorithm to benchmark our proposal. Recently, 

Lozano-Osorio et  al. (2021) proposed a new heuristic 
method for selecting the seed set in the context of SNIMP. 
This work adapts this heuristic with the aim of evaluating 
the performance of the proposal over a different variant of 
the same family of problems.

3 � Influence diffusion model

The evaluation of the influence of a given seed set S over 
a network G requires the definition of an Influence Diffu-
sion Model (IDM). An IDM is responsible for deciding 
which nodes are affected or influenced by the informa-
tion received from their neighbors in the SN. The most 
extended IDMs in the literature are: Independent Cascade 
Model (ICM) (see Kempe et al. 2003; Goyal et al. 2011), 
Weighted Cascade Model (WCM) (see Kempe et al. 2003), 
and Tri-Valency Model (TV) (see Granovetter 1978). All 
of them are based on assigning an influence probability to 
each relational link in the SN, since a relation in a network 
does not necessarily implies that a user influence another 
one in a certain period of time.

–	 ICM, which is one of the most used IDMs, considers that 
the influence probability is the same for each link.

–	 WCM considers that the probability of a user v for being 
influenced by user u is proportional to the in-degree of 
user v, i.e., the number of users that can eventually influ-
ence user v. Therefore, the probability of influencing user 
v is defined as 1∕din(v) , where din(v) is the in-degree of 
user v.

–	 TV select the edge probability randomly from the set of 
probabilities (1%, 0.1%, 0.001%).

Following the recommendations of the literature and, 
more specifically, the state of the art for BIMP, the three 
aforementioned IDMs are evaluated in this work. The only 
IDM that requires for an input parameter is ICM, where 
the probability values are set to 1% and 2%, as stated in 
Banerjee et al. (2019).

Due to the probabilistic nature of the IDM, the most 
extended way of evaluating the spread is by conducting 
a Monte Carlo simulation (MC). However, even a single 
iteration of the simulation model is rather time-consuming 
when considering large graphs derived from SN. Algo-
rithm 1 shows the pseudocode of the Monte Carlo simula-
tion used to evaluate the spread of information through 
an SN named G given a certain seed set S. Specifically, it 
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receives four input parameters: the graph which models 
the SN, G; a solution, S; the IDM used to select the diffu-
sion probability of a node to be influenced, IDM; and the 
number of repetitions r performed to avoid the impact of 
randomness.

The algorithm starts by initializing the total number 
of infected users (step 1). Then, the algorithm performs 
a number of predefined simulations r (steps 2–18), find-
ing in each iteration which are the influenced nodes start-
ing from the given seed set S. Initially, the set of nodes A⋆ 
reached by the initial seed set, S, is actually the seed set 
(step 3). Then, the method iterates until no new nodes are 
influenced (steps 5–16). In each iteration of the inner for-
loop, the method evaluates the IDM for each node directly 
related to a recently influenced node (steps 8–12). For each 
neighbor, a random number is generated. If this number 
is smaller than the probability of infection p that is deter-
mined by the IDM used, then it is considered that the neigh-
bor becomes infected (steps 9–11). At the end, the set of 
the nodes infected in the previous iteration (step 14) that 
are not just analyzed as well as infected nodes is updated 
(step 15). Finally, the algorithm returns the average number 
of infected nodes among all simulations performed (step 19). 
Notice that this value is considered as the objective function 
to be optimized when solving the BIMP or, generally, any 
SIM problem. Therefore, the seed set which maximizes the 
spread value over the network would compose the optimal 
solution to the problem. It is worth mentioning that, as infec-
tion is a stochastic process, the IDM must be executed a 
considerably large number of iterations to achieve an appro-
priate estimation, thus resulting in a Monte Carlo simulation.

4 � Algorithmic approach

The proposed algorithm follows the Greedy Randomized 
Adaptive Search Procedure (GRASP) methodology, which 
was originally introduced by Feo and Resende (1989) and 
formally defined in Feo et al. (1994). We refer the reader 
to Resende Mauricio et al. (2010), Resende Mauricio and 
Ribeiro (2013) for a complete survey of the last advances 
in this methodology.

GRASP is a multistart metaheuristic, divided into two 
distinct phases: construction and local improvement. The 
first phase consists of a greedy, random, and adaptive con-
struction of a solution, in order to provide a promising 
starting point. The second phase consists of a method to 
locally improve the constructed solution to a local opti-
mum with respect to a given neighborhood.

A recent proposal by Lozano-Osorio et al. (2021) uses 
GRASP method to solve SNIMP, since GRASP method-
ology is able to find a trade-off between diversification 
in the stochastic construction phase and the intensifica-
tion of the local search process, enabling the algorithm 
to escape from local optima and perform a wider search 
space exploration.

These two phases are repeated until a termination cri-
terion is met. Notice that this criterion makes the algo-
rithm scalable to eventually large social networks, since 
the termination criterion can be tuned to perform a smaller 
number of iterations.

In the context of BIMP, a novel heuristic for select-
ing the most promising nodes in the construction phase 
is proposed. Additionally, the local improvement phase 
considers a move based on the replacement of nodes and it 
can be limited to avoid large computing times without sig-
nificantly deteriorating the quality of the solutions found.

4.1 � Construction phase

The purpose of the GRASP construction phase is to gener-
ate a promising initial solution in a short computing time. 
In order to do this, the construction phase is usually guided 
by a greedy selection function, which helps the construc-
tive method to select the most promising elements to be 
included in the partial solution (see Algorithm 2). It is 
worth mentioning that, in the context of BIMP, the com-
putational effort required to evaluate the greedy function 
value should be minimal, since the size of the social net-
works might lead the algorithm to be extremely slow when 
a solution is constructed.
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The algorithm starts by randomly selecting the first node 
to be included in the solution S at random from the set of 
nodes V (steps 1–2). The random selection of the first ele-
ment to be included in the solution is customary in GRASP 
since it favors diversification. When selecting the first node 
v, the available budget is decremented with the cost of v, 
C(v) (step 3) The candidate list CL is then created with all 
nodes whose cost is smaller than the available budget B 
which are not already in the solution S (step 4). Then, the 
constructive method iteratively adds new elements to the 
solution until no candidate nodes with a cost smaller than B 
are available to be selected (steps 5–14). In each iteration, 
the minimum and maximum value of the greedy heuristic 
function is evaluated (steps 6–7). Since the greedy function 
is a key feature of GRASP, hereinafter each greedy function 
considered is described. Then, a threshold � is calculated 
(step 8), which is required for creating the Restricted Can-
didate List (RCL) with the most promising nodes (step 9). 
This threshold directly depends on the value of the input 
parameter � , with 0 ≤ � ≤ 1 . Notice that this parameter 
indicates the greediness or randomness of the constructive 
procedure. On the one hand, if � = 0 , then the threshold 
is evaluated as gmax , becoming a totally greedy algorithm 
(i.e., the RCL only includes those nodes with the maximum 
greedy function value). On the other hand, if � = 1 then 
� = gmin , resulting in a completely random method (i.e., the 
RCL includes every candidate node whose cost is smaller 
than the available budget). Since this parameter is experi-
mentally tuned, we refer the reader to Sect. 5 to analyze the 
effect of different values for the � parameter in the final algo-
rithm. Then, the next node is selected at random from the 
RCL (step 10), including it in the solution under construc-
tion (step 11), updating the budget by reducing it with the 
cost of the selected node (step 12). The CL is also updated 
(step 13) in the same way as (step 4), being candidate nodes 
whose associated cost is smaller than the remaining budget. 

The method ends when no more elements can be included 
in the seed set (i.e., there is no candidate node whose cost is 
smaller than the available budget), returning the constructed 
solution S (step 15).

As it was aforementioned, the greedy heuristic function g 
used in steps 6–7 is one of the key features when designing 
a constructive procedure in the context of GRASP. In par-
ticular, this greedy function must select the most promising 
nodes without requiring large computing times. In this work, 
we adapt two existing greedy functions originally proposed 
for SNIMP, and propose a novel one to analyze its perfor-
mance against the well-established ones.

The first greedy function, named gdeg , consid-
ers the out-degree of a node as heuristic value. Given 
a node u, let us define out-degree as d+

u
= |N+

u
| , where 

N+
u
= {v ∈ V ∶ (u, v) ∈ E} In mathematical terms,

The second greedy function, named g2step , was originally 
used for SNIMP (Lozano-Osorio et al. 2021). It is a heuristic 
based on the first and second degree neighbors of a given 
node, usually known as 2-step neighbors in the context of 
SN analysis (Stanley and Katherine 1994). The evaluation 
of this greedy function over a certain node u can be formally 
defined as:

Additionally, this work proposes a novel heuristic, named 
gdist which leverages the node seed distribution. This method 
prioritizes nodes that do not have selected neighbors as a 
seed node, with the aim of reaching a larger number of non-
influenced users by exploring regions that have been mainly 
ignored until that point. In order to do so, the greedy func-
tion value of a node is directly its degree, but penalizes it 
if some of its neighbor nodes have already been selected. 
The penalization has been experimentally set by halving the 
degree. More formally

Let us illustrate the behavior of each proposed greedy heu-
ristic function with an example of SN with 7 nodes and 8 
relations, depicted in Fig. 1. The value of each heuristic 
function is presented close to each node.

Figure 1a shows the evaluation of gdeg and g2step , since 
both of them result in the same solution. In the case of gdeg , 
the first selected node is 4, since it is the node with the larg-
est degree. Then, node 1 is selected as the one with the sec-
ond largest degree. This seed set is able to directly influence 
up to three nodes, reducing the possibility of influencing 

gdeg(u) = d+
u

g2step(u) = d+
u
+

∑
v∈N+

u

d+
v

gdist =

{
d+
u
if v ∉ S, ∀v ∈ N+

u
d+
u

2
otherwise
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nodes 6 and 7. In particular, there will be a possibility of 
influencing nodes 6 and 7 if and only if node 5 is influenced. 
The same behavior can be seen when considering g2step : the 
first selected node is 4, which presents the largest value and, 
then, node 1 is selected. Finally, Fig. 1b shows the resulting 
solution when considering gdist heuristic. In this case, the 
first node is selected with respect to its degree, resulting in 
node 4. Then, the heuristic value of the nodes directly con-
nected to node 4 is evaluated as their degree reduced by half, 
while the heuristic value of non-directly connected nodes 
still remains as their degree. Then, the second node selected 
is 6, which presents the largest value for gdist . Notice that, in 
this example, both gdeg and g2step reports the same solution, 
although the value of each greedy function is different. How-
ever, the idea of penalizing those nodes connected to already 
selected ones, used in gdist , lead the constructive procedure 
to reach a better solution. The impact and the influence of 
each greedy constructive procedure will be deeply analyzed 
in Sect. 5.

4.2 � Local improvement

The second phase of GRASP is responsible for locally 
improving each solution generated by the constructive pro-
cedure with the aim of reaching a local (ideally global) opti-
mum. In the context of GRASP, this phase can be accom-
plished by using a simple local search procedure or a more 
complex heuristic (even a complete metaheuristic) like Tabu 
Search (see Martí et al. 2018). The elevated complexity of 
the problem under consideration has led us to propose a 
simple yet effective local search procedure to reduce the 
computational effort required.

Before defining a local search method, it is necessary to 
introduce the neighborhood to be explored. The neighbor-
hood of a solution S is defined as the set of solutions that 
can be reached by performing a single move over S. Then, 
it is necessary to define the move that will be considered 
in the context of BIMP. Specifically, the move, named as 
Replace(S, u,P) , involves removing node u from the solution 
and replacing it with the set of nodes in P, with P ∈ V ⧵ S . 
Notice that, in order to reach a feasible solution, the sum of 
the cost of nodes in P must be smaller or equal than B + C(u) 
(since u will be removed, its cost must not be taken into 
account). More formally,

Then, given a solution S, the neighborhood NR(S) is defined 
as the set of feasible solutions that can be reached with a 
single Replace move. In mathematical terms,

Having defined the neighborhood which will be explored in 
the local search, the next step consists of defining the way in 
which the neighborhood NR(S) is explored. Even considering 
an efficient implementation of the objective function evalu-
ation, the vast size of the resulting neighborhood makes the 
complete exploration of the neighborhood not suitable for 
the BIMP. Therefore, we limit the number of evaluations that 
the local search performs with the aim of having a compu-
tationally efficient method. It is worth mentioning that, if 
the number of iterations Ψ is limited, then it is interesting to 
firstly explore the most promising neighbors of the consid-
ered neighborhood. Therefore, an intelligent neighborhood 
exploration strategy is presented.

Hansen and Mladenović (2006) performed an empirical 
study on the well-known Traveling Salesman Problem to 
compare first and best improvement strategies in the con-
text of local search. The authors conclude that both strate-
gies present similar results in terms of quality, but the first 
improvement approach is faster when considering random-
ness in the constructive phase. Following their recommenda-
tions and due to the computational effort required to evaluate 

Replace(S, u,P) = S ⧵ {u} ∪ P

NR(S)=
�
S�←Replace(S,u,P) ∀u∈S∧∀P∈V⧵S∶∑p∈P C(p)≤B+C(u)

�

(a) Solution S1 = {1, 4}, considering gdeg and
g2step heuristic, which may influence up to three
nodes: 2, 3, and 5.

(b) Solution S2 = {4, 6}, considering the gdist

heuristic, which may influence all nodes: 1, 2, 3,
5 and 7.

Fig. 1   Evaluation of the three considered heuristic functions to select 
the initial seed set over a SN with 7 nodes and 8 relations

CHAPTER 7. AN EFFICIENT AND EFFECTIVE GRASP ALGORITHM FOR
THE BUDGET INFLUENCE MAXIMIZATION PROBLEM 83



An efficient and effective GRASP algorithm for the Budget Influence Maximization Problem﻿	

1 3

a solution for the BIMP, we propose a first improvement 
approach. This strategy does not need to explore all solu-
tions in the neighborhood for each iteration, thus reducing 
the number of objective function evaluations required and 
consequently the overall run time.

The proposed strategy filters the nodes that are involved 
in every iteration of the local search method. In particular, 
the nodes considered for removal from the solution S are 
selected at random, but the ones to be later included are 
selected by their contribution to the objective function value 
if they are included in the incumbent solution. Notice that 
evaluating the contribution requires performing a Monte 
Carlo simulation, which is rather time consuming. With the 
aim of reducing the computational effort of this evaluation, 
a single Monte Carlo execution is performed, i.e., the value 
of r in Algorithm 1 is an input parameter of the local search 
method named Δ (see Sect. 5.1 where an experiment to ana-
lyze the performance of r value is is done). Furthermore, in 
order to increase the efficiency, the Monte Carlo simulation 
is not performed from scratch. Instead, since the solution 
has already been evaluated, the influenced nodes are known. 
Then, to evaluate the contribution of inserting a new node v 
in the solution, it is only required to evaluate which are the 
new nodes influenced by v, resulting in an efficient way of 
estimating the contribution of including v in the incumbent 
solution. Then, the candidate nodes to be included are those 
with the largest contribution to the objective function value. 
The number of candidates to be evaluated is determined by 
the maximum number of evaluations Ψ (see Sect. 5.1 where 
an experiment with different Ψ values is carried out). The 
pseudocode of the local search LS is shown in Algorithm 3.

The method starts by creating the set of nodes whose 
removal is tested (step 1). In particular, it consists of a ran-
dom set of Ψ nodes extracted from the nodes which are not 
already in the solution. If the number of available nodes 
is smaller than Ψ , then all nodes are candidates. For each 
candidate node (steps 2–10), the available number of evalua-
tions is decremented (step 3) and, then, the set of most prom-
ising nodes to be included P⋆ is created as those maximizing 

the contribution to the objective function value if included in 
the solution satisfying the cost constraint when removing u 
from S (step 4). Once both the candidate node to be removed 
u and the set of most promising nodes to be included P⋆ 
are selected, the Replace move is performed, resulting in a 
neighbor solution S′ (step 5). Then, S is updated if S′ results 
in a better solution (step 7), restarting the search since the 
local search method follows a first improvement strategy 
(step 8). The method ends returning the best solution found 
during the search (step 11).

5 � Computational experiments and analysis 
of results

The aim of this section is to describe the computational 
experiments designed to evaluate the performance of the 
proposed algorithms and to analyze the obtained results. All 
experiments have been performed in an Intel Core i7-9750 H 
(2.6 GHz) with 16GB RAM and the algorithms were imple-
mented using Java 17 and the Metaheuristic Optimization 
framewoRK2 (MORK) 10, designed to facilitate the imple-
mentation of algorithms for solving NP-hard problems. The 
source code of the proposed methods has also been made 
publicly available.3

The set of SNs considered in this paper has been entirely 
obtained from the best algorithm found for BIMP in the lit-
erature, to provide a fair comparison among the analyzed 
algorithms. All of them are publicly available in Stanford 
Network Analysis Project (SNAP).4 The datasets used were 
the Epinions dataset (Richardson et al. 2003; Xu et al. 2016) 
which consists of 75879 nodes and 508837 edges, the data-
set HepTh with 27770 nodes, and 352807 edges and finally 
CondMat which has 23133 and 93497 edges (Leskovec et al. 
2007).

Since this research is designed for improving the analysis 
of users in an infodemics context, we have generated a real-
life instance with tweets related to a health case published 
about the announcement of the American Health Care Act 
(AHCA) in 2017. The new dataset contains 54836 nodes 
and 89059 edges (we refer the reader to Sect. 5.3 for a more 
detailed description about this instance).

Table  1 shows the following details of the datasets 
used: number of nodes in the largest connected-com-
ponent (|LCC|), total number of connected-components 

2  https://​github.​com/​rmart​insan​ta/​mork/.
3  https://​grafo.​etsii.​urjc.​es/​BIMP.
4  https://​snap.​stanf​ord.​edu/.
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(TC) and average out degree for all nodes (more formally 
1

n

∑n

i=1
(deg(vi))).

It is worth mentioning that the original SNs derived from 
SNAP do not have any weight in the nodes. In the context 
of BIMP, every node has an associated cost to be selected, 
so it is necessary to perform this assignment. With the aim 
of having a fair comparison, we contact the authors of the 
previous work for their exact cost assignment and the source 
code to execute the algorithm in the same platform. Unfor-
tunately, we did not receive any response, so we implement 
their algorithm carefully following the detailed description 
provided in the manuscript (Banerjee et al. 2019). Addition-
ally, we generate a random uniform cost for each node fol-
lowing the suggestions of the previous authors. In order to 
ease further comparisons, we have made publicly available 
the exact instances used in this work.

First of all, it is important to indicate the number of 
repetitions performed in the Monte Carlo simulation. 
As it is customary in SIM problems, 100 Monte Carlo 
simulations are performed on all IDMs models. The total 
budget B to conform a solution is selected in the range 
B = {2000, 6000, 10000, 140000, 180000, 22000, 26000} as 
stated in Banerjee et al. (2019), thus obtaining 3 ⋅ 7 = 21 dif-
ferent problem instances for each IDM. Taking into account 
that 4 IDMs are considered as described in Sect. 3, the total 
number of instances are 21 ⋅ 4 = 84.

The experiments are divided into two parts: preliminary 
and final experimentation. The former (Sect. 5.1) refers to 
those experiments performed to select the best parameters 
to set up our algorithm, while the latter (Sect. 5.2) validates 
the best configuration, comparing it with the best method 
found in the state of the art.

All experiments developed report the following perfor-
mance metrics: Avg., the average of the number of influ-
enced nodes; Time (s), the average execution time of the 
algorithm measured in seconds; Dev (%), the average devia-
tion with respect to the best solution found in the experi-
ment, evaluated as fbest−fa

fbest
⋅ 100. , where fbest is the objective 

function of the best solution found in the experiment and fa 
is the objective function value of the best solution found by 
the algorithm; and finally, #Best, the number of times that 
the algorithm matches the best solution in the experiment. 
Tables report a summary to provide a global view of each 

algorithm by averaging the results obtained along all the 
considered instances. Individual results per instance are 
included in the public repository, where the code is also 
available.

5.1 � Preliminary experimentation to setup the final 
GRASP method

In the preliminary experiments, 6 representative SNs are 
evaluated with each IDM, resulting in 24 instances. The set 
of preliminary instances comprehends the 28% of the total 
set of 84 instances. This selection of instances is done to 
avoid overfitting in the model.

The purpose of the first preliminary experiment is to 
obtain the best greedy heuristic function together with the 
value of � . For this purpose, all greedy heuristic methods, 
gdeg , g2step , and gdist , have been analyzed when considering 
� = (0.25, 0.50, 0.75,RND) . Notice that � = RND indicates 
that a random value in the range 0-1 is selected for each 
construction. The GRASP method used 50 iterations in all 
experiments.

Table 2 collects the final results from this competitive 
testing. Notice that Avg. is not an integer value since it is 
the average value of the 100 repetitions of the Monte Carlo 
simulation.

As it can be drawn from the table, the best results are 
consistently provided by the greedy function based on the 
new heuristic procedure, gdist . In particular, the best results 
are obtained when considering � = RND , with 10 best solu-
tions and 0.81% of average deviation. The small deviation 
value indicates that, even in the cases in which it is not able 
to reach the best solution, it remains really close to it. It 
is worth mentioning that the heuristic g2step , which is the 

Table 1   Metrics of the used datasets

Instance Nodes Edges |LCC| TC ADPN

soc-Epinions1 75879 405740 75877 2 10.69
HC Twitter 54836 89059 47257 3060 3.25
CA-CondMat 23133 93497 21363 567 8.08
CA-HepT 9877 25998 8638 429 5.26

Table 2   Results of the constructive procedure when generating 50 
solutions, considering different � values for every heuristic function

Best results are highlighted with bold font

Greedy function � Avg. Time (s) Dev (%) #Best

gdist 0.25 3446.91 14.96 0.87 6
0.50 3430.71 14.67 2.06 4
0.75 3346.41 14.00 7.14 1
RND 3462.20 14.67 0.81 10

gdeg 0.25 3337.21 9.77 5.54 2
0.50 3338.72 9.38 5.73 2
0.75 3332.81 9.06 6.96 0
RND 3417.53 9.68 3.44 6

g2step 0.25 3146.76 9.60 11.92 0
0.50 3158.04 9.20 12.28 0
0.75 3172.05 9.38 11.60 0
RND 3246.42 9.72 9.05 0
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best greedy function in the context of SNIMP in Lozano-
Osorio et al. (2021), produces the worst values in the con-
text of BIMP, independently of the selected �-value. This 
result highlights the relevance of proposing new heuristics 
for this problem. Regarding the computing time, although 
gdist requires slightly larger computing times on average, 
the difference with the other greedy heuristic functions are 
negligible. Therefore, we select gdist as the best constructive 
procedure with � = RND.

The next experiment is devoted to analyze the effect of the 
maximum number of iterations Ψ in the local search phase 
in terms of quality and computing time. Figure 2 shows the 
improvement when increasing the value of Ψ . Notice that the 
quality of the solutions significantly improves upon reaching 
Ψ = 500 . At that point, the search seems to stagnate and no 
considerable improvement is found, thus leading us to select 
Ψ = 500 for the local search phase.

The third preliminary experiment is devoted to analyze 
the contribution of the local search phase in the complete 
GRASP algorithm. In order to do so, the constructive pro-
cedure considering gdist and � = RND is executed and com-
pared with the complete GRASP framework. The results are 
shown in Table 3.

As it can be derived from the results, the local search 
requires twice the computational time than the construc-
tive procedure isolatedly, on average, in each IDM. This 
increase is justified since it is able to reach a considerably 
better solution, as it can be seen in the large average devia-
tion values presented by the constructive procedure without 
local search. In particular, the average deviation is 9.96% on 
average, reaching a maximum value of 39.75% in the case of 
TV. Notice that, in the case of TV, the random selection of 
the probability of being influenced affects on the obtained 
results, being ICM and WC are more robust in the compari-
son. Regarding the number of best solutions found, it can 
be seen how the local search phase is able to improve the 
initial solutions, since the constructive procedure is not able 
to reach any best value.

Having performed the preliminary experiments, the best 
results are obtained with the following values: the greedy 
heuristic function selected is gdist , the parameter of the con-
structive procedure is set to � = RND , the maximum num-
ber of evaluations is Ψ = 500 , and the number of Monte 
Carlo simulations is set to Δ = 10 in the local search (this 
value has been set since no significant differences have been 
found testing different values in the range [10,100]). These 
parameter values will be used to set up the final version of 
the algorithm.
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Fig. 2   Analysis of the effect of the value of Ψ in the local search 
phase

Table 3   Results of the GRASP algorithm when generating 50 solu-
tions, considering � = RND versus the constructive procedure exe-
cuted isolatedly

Best results are highlighted with bold font

IDM Method Avg. Time (s) Dev (%) #Best

ICM(1%) gdist 3379.44 18.79 15.62 0
GRASP 4005.01 31.95 0.00 9

ICM(2%) gdist 7246.65 26.98 7.94 0
GRASP 7872.00 62.43 0.00 9

WC gdist 2477.73 15.24 4.81 0
GRASP 2603.01 21.07 0.00 9

TV gdist 615.81 8.85 39.75 0
GRASP 1022.11 12.11 0.00 9

Summary gdist 3461.23 17.47 9.96 0
GRASP 3844.21 31.89 0.00 36

Table 4   Competitive testing of the proposed GRASP algorithm with 
respect to state of the art algorithm ComBIM

Best results are highlighted with bold font

IDM Algorithm Avg Time (s) Dev (%) #Best

ICM(1%) ComBIM 8319.68 214.97 17.64% 0
GRASP 8872.61 117.06 0.00% 21

ICM(2%) ComBIM 14467.65 215.31 6.49% 3
GRASP 14828.77 146.21 0.07% 18

WC ComBIM 2277.79 214.04 57.49% 0
GRASP 10087.08 97.80 0.00% 21

TV ComBIM 1976.11 214.68 39.10% 0
GRASP 2677.58 69.65 0.00% 21

Summary ComBIM 6760.31 214.75 30.18% 3
GRASP 9116.51 107.68 0.02% 81
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5.2 � Competitive testing

In order to analyze the quality of the proposed algorithm, a 
competitive testing is performed with the best method found 
in the state of the art, ComBIM, by considering the complete 
set of 84 instances.

Table 4 collects the final results obtained in this competi-
tive testing, where for each IDM the same metrics as in the 
preliminary experimentation are reported: Avg., Time (s), 
Dev(%), and #Best.

The results show how GRASP is able to obtain high-
quality solutions (81 best solutions out of 84), and this val-
ues are obtained in half of the computing time (107.68 s vs 
214.75 s). Although GRASP is able to outperform ComBIM 
in all IDMs considered, the most remarkable results in terms 
of quality are obtained when using WC and TV. Specifi-
cally, ComBIM is able to reach the best solution just in three 
instances when using ICM (2%). In this case, the deviation 
of GRASP is 0.07%, indicating that it is really close to that 
best solution. In view of these results, GRASP emerges as 
one of the most competitive algorithms for BIMP.

We finally perform over all instances the well-known 
non-parametric Wilcoxon statistical test for pairwise com-
parisons, which answers the question: do the solutions 
generated by both algorithms represent two different popu-
lations? The resulting p-value smaller than 0.0001 when 
comparing GRASP with ComBIM confirms the superiority 
of the proposed GRASP algorithm. In particular, GRASP is 
able to obtain 81 out of 84 positive ranks, 3 negative ranks, 
and 0 ties. Therefore, GRASP emerges as one of the most 
competitive algorithms for the BIMP, being able to reach 
high-quality solutions in small computing times.

5.3 � An infodemic case study

This section shows an infodemic case study, based on tweets 
retrieved from the George Washington University’s publicly 
available dataset called Tweetsets (Wrubel et al. 2020). 
Existing tweets where a user shares a tweet, that means that 
the user has been influenced by the original tweet, are used 
to build this instance. The tweetset used is related to info-
demics in the area of Healthcare, related to the announce-
ment of the American Health Care Act (AHCA) in 2017. 
This dataset consists of 386384 tweets, where 284131 are 
retweets. The original dataset contains all the identifiers of 
the tweets and, in order to generate this instance, we have 
retrieved it from Twitter, resulting in 96705 tweets. Notice 
that 187426 tweets have been removed from Twitter due 
to fake news filters or suspended accounts (Tretiakov et al. 
2022). The final dataset has 54836 users, 96705 tweets, and 
2060 components, where the largest component has 47257 
nodes. The available budget for BIMP is generated follow-
ing the same procedure of the previous instances: a random 

uniform cost is generated for each node. In order to compare 
our proposal, a competitive testing if performed.

Table 5 shows the results resulting from the comparison 
of GRASP and ComBIM over this case study. As it can be 
derived, GRASP obtains 21 best solutions out of 28, requir-
ing less than four times the computing time from ComBIM 
(72.08 vs 318.98 s). ComBIM method performs better with 
the ICM influence diffusion model than WC and TV, show-
ing the same behavior as in the previous instances. On the 
contrary, our method adapts to each IDM due to the evalua-
tion of the objective function with the Monte Carlo simula-
tion. We perform the Wilcoxon non-parametric statistical 
test resulting in a p-value smaller than 0.0001, confirming 
that GRASP is statistically better than ComBIM.

Having selected the most influential users with GRASP, 
it is necessary to analyze who are those users and how they 
are related to the context under evaluation. For this purpose, 
a word cloud has been constructed so that the weight of a 
user is directly proportional to the times that it has selected 

Table 5   Competitive testing of the proposed GRASP algorithm with 
respect to state-of-the-art algorithm ComBIM

Best results are highlighted in bold font

IDM Algorithm Avg Time (s) Dev (%) #Best

ICM(1%) ComBIM 6621.69 318.91 0.65% 1
GRASP 6663.23 42.39 0.04% 6

ICM(2%) ComBIM 12833.06 319.01 0.00% 6
GRASP 12722.24 55.70 0.86% 1

WC ComBIM 23898.77 319.32 23.09% 0
GRASP 31267.49 95.12 0.00% 7

TV ComBIM 1845.83 318.69 17.48% 0
GRASP 2247.41 95.12 0.00% 7

Summary ComBIM 11299.84 318.98 10.31% 7
GRASP 13225.09 72.08 0.22% 21

Fig. 3   Most influential users in the HC Twitter dataset detected by 
GRASP over different IDM
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by GRASP as an influential user (seed node) for each IDM. 
This weight determines the size of the font used in the word 
cloud.

Figure  3 highlighted the most influential users. For 
instance, SenBobCasey is an US senator from the Demo-
cratic Party which was really active in the context of Health 
Care; krassenstein is the social account of an famous inde-
pendent investigative journalist focused on detecting hate 
in infomedics; robinthede and GeorgeTakei are writers and 
famous comedians who published some viral jokes about 
this context; and thehill, which is an American newspaper 
and political journalism website published in Washington 
D. C. since 1994. All these accounts were really active with 
the Health Care proposal (both supporting or opposing it), 
with more than 9 million followers as a whole. This result 
suggests that the information spread by these users should 
be carefully analyzed mainly due to the high impact of 
diffusion.

6 � Conclusions

In this paper, an efficient and effective GRASP algorithm for 
solving the BIMP has been presented. Three different diffu-
sion models are used for BIMP considering the probabilistic 
algorithm Monte Carlo for the evaluation of the objective 
function.

Three greedy heuristic functions have been proposed for 
generating the initial solutions of GRASP. The first one is 
based on the two-step neighborhood, recently published in 
a problem of the same family, with the aim of analyzing 
how it adapts to a similar problem. The second one is based 
on the degree of each node and, finally, a new heuristic that 
penalizes those nodes whose neighbors have been already 
selected as a seed node is proposed, with the aim of expand-
ing to new regions in the graph. Furthermore, the idea of 
using local information allows the algorithm to construct a 
complete solution in small computing time.

The local search method proposed is based on a new 
move named Replace, whose objective is to remove a seed 
node replacing it with the most promising ones. To make a 
scalable algorithm, and to avoid an exhaustive search which 
is not suitable for this problem, the local search is limited 
and can be configured according to the time requirements.

Comparing the presented GRASP algorithm versus the 
best algorithm found in the state of the art, GRASP obtained 
the best solution in 81 out of 84 available instances by 
requiring half of the computing time. The results reported 
are supported by the well-known pairwise Wilcoxon statis-
tical test, confirming the superiority of the proposal with 
respect to the classical and state-of-the-art solution proce-
dures for the BIMP.

Finally, an infodemic case study is analyzed from the 
influence maximization perspective. Specifically, an instance 
is built based on 386384 tweets about the American Health 
Care Act (AHCA). An experiment is performed, showing 
the superiority of GRASP when comparing it with Com-
BIM in 21 out of 27 available instances. The most influen-
tial users are analyzed, showing their relevance in the topic 
studied, being most of them senators, comedians, writers, 
or newspapers.
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a b s t r a c t

This research proposes the use of metaheuristics for solving the Target Set Selection (TSS) problem.
This problem emerges in the context of influence maximization problems, in which the objective is
to maximize the number of active users when spreading information throughout a social network.
Among all the influence maximization variants, TSS introduces the concept of reward of each user,
which is the benefit associated to its activation. Therefore, the problem tries to maximize the reward
obtained among all active users by selecting an initial set of users. Each user has also associated an
activation cost, and the total sum of activation costs of the initial set of selected users cannot exceed
a certain budget. In particular, two Path Relinking approaches are proposed, comparing them with the
best method found in the state of the art. Additionally, a more challenging set of instances are derived
from real-life social networks, where the best previous method is not able to find a feasible solution.
The experimental results show the efficiency and efficacy of the proposal, supported by non-parametric
statistical tests.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The evolution of Social Networks has been in continuous
growth in the last years. Nowadays, almost everyone frequently
uses one or more Social Networks for both posting and gathering
information. Due to the relevance of Social Networks in several
contexts, such as politics, marketing, or disease control, among
others, scientists and practitioners have put all their efforts in
designing and developing algorithms to automatically analyze
and collect the most relevant information from them.

Among all the different problems that emerge from Social
Network Analysis, this research is focused on Influence Maxi-
mization Problems. This is a large family of hard combinatorial
optimization problems where it is necessary to select a set of
users from a Social Network with the aim of maximizing the
spread of information throughout the network. In particular, this
study is focused on the Target Set Selection Problem in which,
given a certain budget, it is necessary to select a subset of users
whose total cost is smaller than the given budget, with the aim of
maximizing the reach of information dissemination through the
network.

∗ Corresponding author.
E-mail addresses: isaac.lozano@urjc.es (I. Lozano-Osorio),

andrea.oliva@urjc.es (A. Oliva-García), jesus.sanchezoro@urjc.es
(J. Sánchez-Oro).

URLs: https://grafo.etsii.urjc.es/en/author/isaac-lozano-osorio/
(I. Lozano-Osorio), https://grafo.etsii.urjc.es/en/author/andrea-oliva-garcia/
(A. Oliva-García), https://jesussanchezoro.github.io/ (J. Sánchez-Oro).

In the context of Target Set Selection Problem (TSS), there are
two main variants: guaranteeing reaching the complete network
(or even a certain part of it) with the minimum number of initial
users or maximizing the number of users reached while not
exceeding an initial budget. This proposal is focused on solving
the latter, which is usually named Max-TSS.

Although the main application of this problem is to increase
the impact of advertising a product for a company [1,2], there
are several applications in different fields. For instance, in politics,
the Max-TSS can be used for reducing the impact of fake news
or misinformation from two opposite approaches: identifying the
individuals which are mostly spreading fake news through the
network, or to boost those individuals which are transmitting
reliable information [3]. Even more, this application is closely re-
lated to disease control, since it has been proven that the diseases
spreads following the same model as information through Social
Networks [4].

In this work, a metaheuristic algorithm based on a combina-
tion of Greedy Randomized Adaptive Search Procedure
and Path Relinking is presented with the aim of providing high-
quality solutions for the Max-TSS in reasonable computing times
when considering large real-life Social Networks. Metaheuris-
tics were originally defined by [5] as ‘‘a high-level problem-
independent algorithmic framework that provides a set of
guidelines or strategies to develop heuristic optimization algo-
rithms’’. In the last decades, metaheuristics have become one of
the most extended approximate type of algorithms for solving
hard and complex combinatorial optimization problems. These
are robust algorithms which are able to provide high-quality

https://doi.org/10.1016/j.knosys.2023.110827
0950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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solutions in reasonable computing times. However, they cannot
guarantee the optimality of the solution. Therefore, they are
recommended when it is not possible to compute the optimal
solution with an exact algorithm. This algorithm is tested with
large-scale graphs derived from real social networks, analyzing
the contribution of each part of the algorithm. This analysis will
allow researchers and practitioners to select and adapt some
parts of the proposed algorithm to other related problems. One of
the main issues when dealing with Target Set Selection consists
of getting stuck in local optima. The algorithm based on Dynamic
Path Relinking proposed in this research is able to escape from
local optima by creating a path between two high-quality solu-
tions, which will lead the algorithm to explore a wider portion
of the search space. In particular, Dynamic Path Relinking will be
able to identify the most promising subsets of influential users
and strategically combine them in a path to generate new diverse
and high-quality solutions.

The main contributions of this research can be summed up as
follows:

• A constructive procedure based on a novel heuristic is pro-
posed, being able to generate feasible solutions in small
computing times.
• The proposed local search is optimized by reducing the

evaluation of the objective function, which is the most com-
putationally demanding part of the algorithm.
• Dynamic Path Relinking is proposed with the aim of creating

paths between high-quality solutions and compared with
the classical Static Path Relinking, Simulated Annealing and
Cost-Effective Forward selection.
• The dataset of instances has been extended with real-life

networks where the previous methods are not able to pro-
vide a solution in reasonable computing times.

Rest of the manuscript is structured as follows. Section 2
shows the related work with Target Set Selection Problem; Sec-
tion 3 formally defines the Target Set Selection Problem; Section 4
thoroughly describes the algorithmic proposal and all the com-
ponents designed; Section 5 presents a detailed computational
experimentation to evaluate the contribution of each compo-
nent and test the proposal with the best previous algorithm;
and, finally, Section 6 draws some conclusions derived from the
research, as well as highlights some future research lines.

2. Related work

In this section, we introduce some related work about TSS
as well as a brief survey of existing methods for solving this
problem, either based on exact methods, approximation methods,
heuristics or computational intelligence algorithms.

Richardson et al. [6] initially formulated the problem of select-
ing target nodes in SNs. The TSS was originally proposed in [7],
where it was proven to be NP-hard, and the authors proposed
a polynomial-time approximation algorithm for a probabilistic
variant of the problem.

Kempe et al. [7] proposed three influence diffusion models
that play an important role in understanding the diffusion phe-
nomenon: the independent cascade model (ICM), the weighted
cascade model (WCM), and the linear threshold model (LTM). In
subsequent researches, several proofs of NP-hardness were pro-
posed [4,8–11], all of them supported by approximation results
for specific types of network topologies [12,13].

The research on Social Network Influence problems has been
focused on finding exact methods under restricted conditions. In
particular, the TSS has been tackled from both exact [14–17], and
heuristic perspectives [18,19].

The fact that the TSS problem when considering LTM as a
diffusion model can be described as a hard combinatorial opti-
mization problem has attracted the attention of both academic
and practitioners. In fact, the problem can be stated as an Integer
Linear Programming (ILP) problem, which is able to solve small
problem instances. Two models have been proposed: a time-
dependent ILP [20], which derives instantly from the definition,
and a time-independent one [14].

While the previous results are certainly of interest, allowing
researchers to extract information about graph properties which
are a key part of the complexity of the problem, all of them deal
with exactly solving the problem. This also holds for variations
of the problem, such as the latency-bounded TSS (which aims to
activate all the nodes of a graph in a bounded number of rounds),
for which recent research is focused on exact methods for specific
cases or making use of certain properties [21–23].

Additionally, some variants with specific constraints derived
from real applications have also been considered, tackled with
evolutionary metaheuristics [24,25]. Swarm intelligence algo-
rithms have been applied to a multi-objective problem dealing
with maximizing the spread of influence of a set while mini-
mizing its size [26]. An evolutionary algorithm (EA) was applied
in [19] to a variant of the TSS problem that was tackled in this
research.

Ravelo et al. [24] proposed a new TSS variant denoted as the
maximum effortreward GAP Target Set Selection problem (Max-
TSS), a new NP-hard version. To the best of our knowledge [27,
28], the best approach for solving the Max-TSS is based on binary
linear models and Lagrangian relaxations, which are solved by dy-
namic programming algorithms [19]. With the aim of improving
the bounds, authors embed the dynamic programming algorithms
in subgradient methods, which are used to generate feasible
solutions for the problem. In the research, the authors highlight
that their heuristic is able to reach near-optimal solutions in
almost all the considered instances. Although the approach is able
to find optimal solutions, its main drawback relies on the size of
real-life networks. In the original work, authors optimally solved
instances up to 58 nodes, while current social networks usually
have more than 1000 nodes. With the aim of evaluating the limits
of the exact proposal, this work tests the previous exact approach
with graphs derived from real social networks such as Twitch or
LastFM, among others.

Several works stated that metaheuristics scarce in the Social
Network Influence Problems [25,27]. The use of Path Relinking in
Graph Theory and Network Science has led to several successful
research in the last years [29–31].

3. Problem definition

As it was aforementioned, the objective of the Target Set
Selection Problem (TSS) is to find the most influential nodes in
a social network. Let us define a social network as a graph G =
(V , E) where the set of vertices V , with |V | = n, represents the
users of the social network and the set of edges E, with |E| = m,
is conformed with pairs (u, v), with u, v ∈ V , indicating that there
is any kind of relation between users u and v. Then, given a social
network modeled as a graph G = (V , E) and a maximum budget
K , the TSS problem tries to find a subset of users S ⊆ V whose
effort does not exceed the maximum value K , with the aim of
maximizing the number of influenced users in the social network.
Since the concept of influencing can be ambiguous, it is necessary
to perform some initial definitions to clarify it.

First of all, it is necessary to define how a node can potentially
influence another one. In the context of TSS, the influence of a
user follows a rational influence function ψ : V × V → [0, 1]
over every pair of users. This function measures the influence of
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a user over another one. Notice that if two users u, v are not
connected, then ψ(v, u) = 0. Then, a set of activated users St
influences a non-activated user u if and only if the sum of the
potential influence of all users in St is larger than or equal to 1,
i.e.,

∑
v∈St ψ(v, u) ≥ 1. This rational influence function was given

by several authors [8–10,19] and it tries to model a behavior in
which if several users simultaneously influence a certain user,
then it will be activated. The specific value of the function is
determined by [19], and it is based on the number of interactions
among users, i.e., the larger the number of interactions, the larger
the function value. We denote St as the set of activated users in
a certain iteration t . This model suggest a different approach to
the well-known Influence Diffusion Models which requires from
smaller computing times than probabilistic methods which are
rather time consuming to obtain robust solutions.

Having defined the process of influencing a node given a set of
activated nodes, it is necessary to define the influence propaga-
tion process. Starting from a set of initially activated nodes S, this
process consists of activating all those non-activated nodes which
are influenced by the activated ones. Without loss of generality,
a solution for the TSS is given by the set of initially activated
nodes S. Notice that this process is iteratively applied until no
new nodes are activated. Given a step t and a set of activated
nodes St , the set of nodes which are activated after applying a
single iteration of the influence propagation process is denoted
as St+1. The influence propagation process then stops when no
new nodes are activated, i.e., St = St−1.

In TSS, each node has an associated effort to activate it, which
is defined by the function α : V → Z+, as well as a reward
obtained when it is influenced or initially activated which is
defined by β : V → Z+. Thus, the effort α is only considered
for those nodes which are part of the set of the initially activated
users S, and the reward β is earned whether a user u is initially
activated or subsequently activated by the set of activated users.
Another fact in TSS is that, when a node is activated at step
t , it remains activated through the entire influence propagation
process. Let us denote xtv as a binary variable which takes the
value 1 if the node v is activated at step t and 0 otherwise (we
refer the reader to [19] to a more detailed description of the
model). Then,

xt−1v ≤ xtv, ∀v ∈ V , 1 ≤ t ≤ T

where T indicates the maximum number of steps in the influence
propagation process, i.e., number of iterations in which new
nodes are activated.

A solution S for the TSS is feasible if and only if the sum of the
efforts of the initially activated nodes is smaller than or equal to
K , which is a constraint of the problem, i.e.,

∑
v∈V α(v) · x

0
v ≤ K .

The objective function for the TSS is then evaluated as the sum of
rewards obtained by the active nodes in the last iteration of the
influence propagation process. In mathematical terms,

TSS(S) =
∑
v∈V

β(v) · xTv

Notice that evaluating the TSS is a computationally demanding
procedure. In particular, the computational complexity of this
evaluation is O

(
n2

)
since it is necessary to traverse all the nodes

and, for each new activated node, it is required to traverse again
the set of nodes searching for new potential nodes to be activated.
The TSS then seeks for a solution S⋆ with the maximum objective
function value. More formally,

S⋆ ← argmax
S∈SS

TSS(S)

where SS represents the set of all feasible solutions, i.e., all
possible combination of nodes whose sum of effort is smaller than
or equal to K .

Fig. 1 depicts an example of the complete influence propa-
gation process over a network with 5 nodes and 10 edges. The
solution under evaluation is conformed by nodes C and E, i.e., S =
{C, E}. Without loss of generality, let us suppose that the sum of
costs α(C)+ α(E) is smaller than or equal to K .

Fig. 1(a) shows the initial step t = 0, where the activated
nodes are the ones initially selected C and E, i.e., S = {C, E}. Then,
in the first iteration of the influence propagation process, de-
picted in Fig. 1(b), it is evaluated whether non-influenced nodes
A, B, and D are influenced or not. Starting with node A, it is
necessary to evaluate ψ(C, A)+ψ(E, A) = 0.8+ 0.1 = 0.9 < 1.0.
Therefore, node A is not influenced in this step. A similar evalu-
ation is performed with node B, resulting in ψ(C, B)+ψ(E, B) =
0.2 + 0.3 = 0.5 < 1.0, indicating that node B is not activated.
Finally, when performing the evaluation of node D, we obtain
ψ(C, B) + ψ(E, B) = 0.1 + 1.0 = 1.1 ≥ 1.0. Then, after the
first iteration, node D is included in the set of activated nodes,
resulting in S1 = {C, D, E}.

Since S0 ̸= S1, it is necessary to continue with the influence
propagation process. If we now evaluate the second iteration,
Fig. 1(c), starting with node A,

∑
v∈S1 ψ(v, A) = 0.8 + 0.1 +

0.3 = 1.2 ≥ 1.0. Then, node A will be included in the set of
activated nodes in the next iteration, S2. In the case of node B, the
evaluation is

∑
v∈S1 ψ(v, B) = 0.2+0.3+0.0 = 0.5 < 1.0, so the

node B is not activated. After this iteration, S2 = {A, C, D, E} ̸= S1,
so an additional iteration is required. Fig. 1(d) illustrates the last
iteration of the influence propagation process. In this case, it is
only required to evaluate node B, resulting in

∑
v∈S2 ψ(v, B) =

0.3 + 0.2 + 0.3 + 0.0 = 0.8 < 1.0. Therefore, node B is not
activated. Since no new nodes are included in the set of activated
nodes, i.e., S2 = S3, the influence propagation process stops in
this iteration, returning the reward associated to the activated
nodes.

4. Algorithmic approach

This work presents an algorithm based on Path Relinking
(PR) [32] for solving the TSS problem. Path Relinking was origi-
nally presented as a framework for combining intensification and
diversification strategies in the context of Tabu Search [33]. PR re-
lies on the idea of connecting two high-quality solutions creating
a path between them, with the expectation of finding promising
solutions during the exploration of the path. The algorithm tries
to include in the first solution, usually named as initial solution,
attributes of the second solution, named as guiding solution. Both
the initial and the guiding solutions present a high quality and,
therefore, it is expected that the path created between them
explores new promising regions of the search space. It has been
traditionally combined with Greedy Randomized Adaptive Search
Procedure (GRASP) since Laguna and Marti [34] adapted PR to
increase the intensification phase of GRASP. There are two main
PR strategies extended in the literature: Static PR and Dynamic
PR. In this work, both strategies are tested in the context of
TSS. First of all, it is necessary to design a specific path-creation
method between two solutions in the context of TSS. Given two
solutions Si and Sg , which are initial and guiding solutions, the
objective is to create a path from Si to Sg by removing attributes
from the initial solution which are not present in the guiding
one, and replacing them with attributes which are in the guiding
solution but not in the initial one.

The path-creation method designed for the TSS problem iter-
atively removes nodes belonging to Si but not to Sg , i.e., Si \ Sg ,
and includes nodes which are in Sg but not in Si, i.e., Sg \ Si. The
process of selecting the node to be removed and included in each
iteration can be performed randomly (Random Path Relinking),
greedily (Greedy Path Relinking), or in a more elaborated manner

3
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Fig. 1. Influence propagation process over a network with 5 nodes and 10 edges, considering the solution S = {C, E}.

Fig. 2. Example of a path between solutions Si = {B, G, I} and Sg = {D, A, C, F}.

(Greedy Randomized Path Relinking). Notice that both Greedy
Path Relinking and Greedy Randomized Path Relinking are more
computationally demanding than Random Path Relinking. This
is mainly because they require to generate the complete set of
feasible solutions in each step of the path, and also evaluate
each one of them. Since the computational effort is a critical part
of TSS, we have selected Random Path Relinking (RPR) which,
additionally, increases the diversity of the search. Fig. 2 shows a
possible path between the initial solution Si = {B, G, I}, with an
objective function value of TSS(Si) = 21, and the guiding solution
Sg = {D, A, C, F}, with an objective function value of TSS(Sg ) = 23.

The path starts by selecting the elements which need to be
included during the path as Sg \ Si = {D, A, C, F}, since Si and Sg
do not have any element in common. Then, it is required to select
those elements which will be removed during the path creation,
which are Si \ Sg = {B, G, I}. Then, in each iteration, an element
is removed from the incumbent solution, and a new element is
included in the solution if the maximum allowed budget K is
not exceeded. Since Random Path Relinking is considered, the

element to be removed and the one to be included is selected
at random.

In the path created in the figure, the first step generates the
solution S1 = (Si \ {B})∪ {D} = {D, G, I}, resulting in an objective
function value of 19. In the next step, solution S2 is created by
removing node G, S2 = S1 \ {G} = {D, I}, with an objective
function value of 15. Notice that, in this case, no new element is
included in the incumbent solution, assuming that, in this point,
the available budget would be exceeded. Then, S3 is generated as
S3 = (S2 \ {I}) ∪ {A} = {D, A}, with an objective function value of
16. At this point, there are no nodes to be removed from solution
S3, i.e., S3 \ Sg = ∅. However, there are still nodes to be included,
selecting in this stage node C, resulting in S4 = S3∪{C} = {D, A, C}
with an objective function value of 17. In the last step, the guiding
solution is reached by including the last node F, finishing the
path. It is worth mentioning that none of the solutions created
during the path are necessarily a local optimum with respect to
any neighborhood. Therefore, the local search method described
in Section 4.3 is applied to the best solution found in the path (ties
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are broken randomly), excluding the initial and guiding solutions,
i.e., S1 in the figure. Once the path creation has been described,
it is necessary to present the Path Relinking variants considered
in this work. In particular, two of the most extended variants
have been studied: Static Path Relinking (see Section 4.1) and
Dynamic Path Relinking (see Section 4.2). The proposed algorithm
will leverage the path creating of Path Relinking to select the
most promising subsets of influential users of two different so-
lutions and combine them to generate an eventually better set of
influential users.

4.1. Static path relinking

Static Path Relinking (SPR) [35] is the most basic version of
Path Relinking. SPR requires from an Elite Set (ES) of high quality
and diverse solutions that can be generated either at random or
by using a more elaborated procedure. In this problem, the ES is
generated by using the GRASP algorithm presented in Section 4.3
which balances intensification and diversification. The number of
solutions generated will be discussed later in the experimental
results section (Section 5). Then, the ES is conformed with the
best solutions found with GRASP. Again, the size of the ES is a
parameter of the algorithm which will be adjusted in Section 5.
Finally, all the solutions in the ES are combined with the Random
Path Relinking method. Algorithm 1 shows the pseudocode of the
method.

Algorithm 1 SPR(G = (V , E),∆, δ)

1: P ← ∅
2: for i = 1 . . .∆ do
3: S ← Construct(G)
4: S ′ ← Improve(S)
5: if S ′ /∈ P then
6: P ← P ∪ {S ′}
7: end if
8: end for
9: ES← SelectBest(P, δ)

10: Sb ← argmaxS∈ES TSS(S)
11: for i = 1 . . . δ − 1 do
12: for j = i+ 1 . . . δ do
13: S ← RPR(ESi, ESj)
14: S ′ ← Improve(S)
15: if TSS(S ′) > TSS(Sb) then
16: Sb ← S ′
17: end if
18: end for
19: end for
20: return Sb

The method starts by creating the initial population of solu-
tions P (step 1). Then, SPR iterates until generating a set of ∆
solutions (steps 2–8). In each iteration, a solution is generated
(step 3) and then improved (step 4) using the constructive and
local search methods presented in Section 4.3. The generated
solution is then added to the initial population if and only if it
has not been explored yet (steps 5–7).

The Elite Set ES is generated with the δ most promising so-
lutions of P (step 9), and the best solution found is initialized
(step 10). Then, all the solutions in the ES are combined using
the Random Path Relinking method (step 13). The combined
solution is later improved (step 14) and compared with the best
solution found so far, updating it if necessary (steps 15–17). The
method ends returning the best solution found during the search
(step 20).

The analysis of computational complexity of SPR can be di-
vided into two different phases: the one corresponding to GRASP

phase (steps 2–8) and the one corresponding to the path cre-
ation itself (steps 11–19). The complexity of the GRASP phase
is detailed in Section 4.3. The complexity of the second phase is
evaluated as O

(
δ · δ ·

(
n+ n3 log n+ n2

+ n2
))
. In particular, the

first two δ factors indicate the loops in steps 11 and 12. Then, the
complexity of RPR is O(n) since, in the worst case (two completely
different solutions), it will perform n iterations. Then, the com-
plexity of the local search is O

(
n3 log n

)
as stated in Section 4.3

and, finally, the complexity of comparing two solutions is O
(
n2

)
for each solution evaluation. Therefore, the final complexity of
this method is O

(
δ2 · n3 log n

)
.

4.2. Dynamic path relinking

Dynamic Path Relinking (DPR) [36] avoids the generation of
a complete population of solutions and then combine them by
dynamically creating new solutions and paths between them.
In particular, the method starts by creating the ES with a fixed
number of solutions created with GRASP, which is in continuous
evolution during the process. Algorithm 2 details the proposed
Dynamic Path Relinking method.

Algorithm 2 DPR(G = (V , E),Γ , γ )

1: ES← ∅
2: for i = 1 . . .Γ do
3: S ← Construct(G)
4: S ′ ← Improve(S)
5: if S ′ /∈ ES then
6: ES← ES ∪ {S ′}
7: end if
8: end for
9: for i = 1 . . . γ do

10: S ← Construct(G)
11: S ′ ← Improve(S)
12: PS← {S ′}
13: for SES ∈ ES do
14: SC ← RPR(SES, S ′)
15: S ′C ← Improve(SC )
16: PS← PS ∪ {S ′C }
17: end for
18: UpdateES(ES, PS)
19: end for
20: Sb ← argmaxS∈ES TSS(S)
21: return Sb

Similarly to SPR, DPR starts by creating the Elite Set ES (steps
1–8). However, contrary to SPR, the ES is initialized with the
first Γ solutions generated by applying the constructive and local
improvement methods. Then, for a fixed number of iterations
γ (which is an input parameter of DPR), a new solution S ′ is
constructed and improved (steps 10–11). The set PS will contain
all the new solutions explored during the current iteration, and it
is initialized with solution S ′ (step 12). The method then iterates
over every solution SES ∈ ES (steps 13–17), creating a path from
SES to the newly generated solution S ′ using RPR (step 14). The
best solution found in the path is then improved and added to PS
(steps 15–16). Once all the paths have been created, the method
UpdateES(ES, PS) tries to insert every generated solution into the
Elite Set (step 18). In particular, if the solution under evaluation
SP is better than the worst solution found in the ES, then SP is
included in the ES, replacing the most similar solution to SP of
the ES among those with worse objective function value than Sp
(i.e., the one with the minimum distance to SP ).

In this point, it is important to define a distance metric be-
tween two solutions. Since the solution representation for the TSS
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is a set of nodes, the distance between two solutions S1 and S2 is
measured as the number of different nodes. More formally,

d(S1, S2) = |S1 \ S2| + |S2 \ S1|

The algorithm ends with the best solution included in the Elite
Set, which is also the best solution found in the search (step 21).

Having described the proposal, it is interesting to highlight
the dynamic feature of this variant of Path Relinking. In the
case of SPR, the initial set of solutions is generated and then
combined, but the new solutions found in the path are never
considered neither as initial nor guiding solutions. However, DPR
dynamically generates new solutions which are considered in
future paths, thus leading to a wider exploration of the search
space. Section 5 will detailedly analyze the effect of this dynamic
feature on the quality of the solutions found.

The computational complexity of this method is evaluated
similarly to SPR. The first phase, which generates the ES, has the
same complexity as GRASP, O

(
Γ · n3 log n

)
. In the second phase,

the dynamic feature of DPR increases the complexity since the lo-
cal search is performed in each iteration, resulting in a final com-
plexity of O

(
γ ·

(
n+ n3 log n+ Γ ·

(
n+ n3 log n

)))
, which can be

reduced to O
(
γ · Γ ·

(
n3 log n

))
.

4.3. GRASP

Path Relinking requires from a method to generate high-
quality and diverse solutions in order to create promising paths
during the search in both static and dynamic variants. Although
these solutions can be generated at random, it has been ex-
perimentally shown in several works that designing a specific
constructive and local improvement method for the problem
under consideration usually leads to better results [29–31,37].
In the context of influence maximization problems, the Greedy
Randomized Adaptive Search Procedure (GRASP) has been shown
to be an effective and efficient method to generate them [38].

GRASP is a trajectory-based metaheuristic originally proposed
in [39], and formally defined in [40]. The metaheuristic is di-
vided into two well-differenced phases: construction and local
improvement. The key part of GRASP is the construction method,
which is able to generate not only high-quality solutions but
also diverse ones. Then, the local improvement method is re-
sponsible for finding a local optimum with respect to the initial
solution. These two phases are iteratively applied until a certain
termination criterion is reached, which is usually a maximum
number of iterations. Notice that the computational complexity
of GRASP directly depends on the complexity of the constructive
procedure and the local search method, resulting in the maximum
complexity between both of them.

Fig. 3 shows a general view of the main advantages of this
metaheuristic. In particular, Fig. 3(a) shows the performance of a
completely greedy algorithm, including the local search method.
In this case, solution S1 is generated and, then, the local search
is able to reach a local optimum with respect to the consid-
ered neighborhood. However, the method stagnates in the local
optimum, and it is not able to escape from it.

The advantage of GRASP is shown in Fig. 3(b). In this case, the
construction phase of GRASP generates seven diverse and high-
quality solutions instead of a single one. The diversification of
GRASP increases the probability of reaching different regions of
the search space. In the graphical example, this diversification
finds solutions S6 and S7 which are not the best initial solutions
(indeed, S6 is the worst initial solution in terms of quality), but the
application of the local search method ends in a better solution
than the one found with the greedy approach.

Constructive method
The constructive method proposed for TSS problem follows

the GRASP philosophy of diversification by avoiding totally greedy
decisions. Algorithm 3 shows the pseudocode of the proposed
method.

Algorithm 3 Construct(G = (V , E), K , ω)
1: v← Random(V )
2: S ← {v}
3: CL← V \ {v}
4: while

∑
v∈S α(v) ≤ K and CL ̸= ∅ do

5: gmin ← minc∈CL g(c, S)
6: gmax ← maxc∈CL g(c, S)
7: µ← gmax − ω · (gmax − gmin)
8: RCL← {c ∈ CL : g(c) ≥ µ ∧

∑
v∈S α(v)+ α(c) ≤ K }

9: v← Random(RCL)
10: S ← S ∪ {v}
11: CL← CL \ {v}
12: end while
13: return S

The algorithm requires from three input parameters: the input
SN, G = (V , E); the maximum allowed budget, K , and the
parameter that controls the greediness/randomness of the search,
ω. Notice that in the GRASP literature this parameter is usually
referred as α. However, we have changed the notation to avoid
confusion with the effort of a node, which is named as α.

With the aim of increasing diversity, the method selects the
first node to be included at random from the set of users V
(step 1), initializing the solution under construction S (step 2).
Then, the candidate list CL is created with all the nodes but v
(step 3). The constructive method iteratively adds a node to the
solution while the budget is not exceeded and the candidate
list is not empty (steps 4–12). In each iteration, the minimum
and maximum value of a certain greedy function are computed
(steps 5–6). The aim of the greedy function is to evaluate how
promising a candidate is, and it is a key part of the constructive
procedure. The proposed greedy functions will be described be-
low. Then, a threshold µ is evaluated in order to establish a limit
to consider whether a node is promising or not, which depends on
the value of gmin and gmax. Notice that the threshold completely
depends on the value of the input parameter ω ∈ [0, 1]. In
particular, if ω = 0, then µ = gmax and the method becomes
completely greedy, while if ω = 1, then µ = gmin and the method
is totally random. Having this in mind, it is important to find
a balance between randomness and greediness, so the value of
this input parameter will be adjusted in the experiments (see
Section 5.1). With this threshold, the restricted candidate list RCL
is created (step 8), containing all the nodes whose greedy function
value is larger than or equal to the threshold µ, considering
that they do not exceed the maximum budget. Once the RCL is
constructed, the next element is selected at random from it (since
all the nodes in RCL are promising) to favor diversity (step 9). The
selected node is then added to the incumbent solution (step 10),
updating the CL by removing it (step 11). Finally, the method
returns the constructed solution S (step 13). The computational
complexity of this method is O (n · O(g)), where O(g) indicates the
complexity of the considered greedy function.

Having defined the constructive procedure, it is necessary to
present the considered greedy functions. Specifically, two dif-
ferent greedy functions are evaluated in this research. The first
greedy function is traditionally considered in the GRASP litera-
ture, and it consists of directly evaluating the objective function
value if the node under evaluation were added to the incumbent
solution. More formally,

gof (c, S)← TSS(S ∪ {c})
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Fig. 3. Comparison between a greedy construction with local search and GRASP algorithm.

which has a computational complexity of O
(
n2

)
since it is directly

the complexity of the objective function evaluation.
However, as it was stated in Section 3, the evaluation of

the objective function for the TSS is a rather computationally
demanding process, so a new greedy function is proposed with
the aim of reducing the computational effort of the evaluation,
since it will be performed in each iteration of the construction
process.

The second greedy function proposed, named gdg (c, S), con-
siders that the relevance of a node is directly proportional to its
degree. In other words, if a node is connected to several nodes,
then it will probably influence a large amount of its adjacent
nodes. Then, this greedy function is evaluated as the degree of
the evaluated node:

gdg (c, S)← |u ∈ V : (c, u) ∈ E|

with a computational complexity of O(1) since it only requires to
evaluate the degree of a node.

Therefore, the constructive method considering gof has a com-
putational complexity of O

(
n3

)
, while considering gdg reduces

its complexity to O (n). Both greedy functions will be tested in
Section 5.1.

Local search
The solution generated with the constructive procedure is not

necessarily a local optimum with respect to any neighborhood.
For that reason, the second phase of GRASP consists of a local
improvement method that finds a local optimum starting from
the initial solution. In order to define a local search method,
it is necessary to establish three main components: the move
operator, the neighborhood explored, and the order in which it
is explored.

Starting from the initial solution S, it is not possible to add
new nodes, since the constructive procedure stops when the
maximum budget is exceeded with any of the remaining nodes.
Therefore, the proposed move operator is defined in two steps:
remove and add. In particular, the move operator removes a
node from the solution and then iteratively adds nodes until the
maximum budget is reached:

move(S, u, V , K )

= (S \ {u}) ∪

⎧⎨⎩v ∈ V \ (S ∪ {u}) :
∑

s∈S∪{u}

α(s)+ α(v) ≤ K

⎫⎬⎭
Having defined the move operator, the next step to propose

a local search method is to define the neighborhood that will be
explored during the search. In the case of TSS, the neighborhood is
defined as the set of solutions that can be reached by performing
a single move operator. More formally,

N(S)← {S ′ ← move(S, u, V , K ) ∀u ∈ S}

Finally, it is necessary to indicate the order in which the
neighborhood is explored. There are two main search strategies
in local search methods: the first and best improvement. The
former performs the first move that leads to an improvement in
the current neighborhood, while the latter explores the complete
neighborhood, performing the move that results in the best so-
lution of the neighborhood. Best improvement is usually more
computationally demanding than the first improvement, since it
requires to explore the complete neighborhood in each iteration,
although they have been shown to provide similar results for
several combinatorial optimization problems [41,42].

In the context of TSS, the computational effort is a critical part
of the algorithm, so we have decided to use the first improvement
method with the aim of reducing the computing time to perform
a local search method. With the aim of avoiding biasing the
search, the neighborhood is explored at random, performing the
first movement that results in a better solution.

To sum up, the local search method, denoted as Standard
Local Search (SLS), follows a first improvement strategy based on
a move operator which removes a node from the solution and
replaces it with all the nodes that can be added without exceeding
the allowed budget. The computational complexity of a single
iteration of SLS is O

(
|S| · n · n2

)
= O

(
n4

)
since for each element

in S, it tries to perform the move operator with a non-selected
node and, finally, it requires to evaluate the resulting solution
to check if an improvement is found, which has a complexity of
O

(
n2

)
as stated in Section 3.

With the aim of further reducing the computational effort
of the local search method, three improvements are proposed,
resulting in an Advanced Local Search (ALS). The first improve-
ment tries to escape from cycling the search by avoiding the
exploration of already visited solutions. In order to do so, each
visited solution is associated with a unique number, i.e., hash
code, evaluated following a hash function. Then, every time a
solution is visited, it is evaluated if its corresponding hash code
has not already been included in the set of visited solutions. If
so, the method undoes the move and continues with the next
iteration, avoiding repeating the exploration of the same region
of the search space.

The second improvement is devoted to limit the nodes ex-
plored during the search, discarding those nodes which will result
in an unfeasible solution. In order to do so, the candidate nodes to
be added are sorted with respect to their effort value in ascending
order. Then, only those nodes whose effort value is smaller than
or equal to the available budget are explored. Additionally, to
favor diversity, the exploration is performed at random among
all nodes that satisfy this constraint.

The objective of the last improvement is to reduce the com-
puting time required to evaluate the influence of a node by
caching it. Specifically, the influence of a node (i.e., those nodes
that are affected by its activation), is calculated at the beginning
of the local search method. Then, every time a node is selected to
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be removed or added to the solution, the influence of that node
over the other nodes of the graph is updated. As a result, it is not
necessary to completely evaluate the objective function in each
iteration but to check the corresponding pre-calculated influence.

In order to evaluate the optimization of ALS with respect
to SLS, the computational complexity of ALS is calculated. In
this case, the traversed nodes are sorted with a complexity of
O (n log n) in each iteration. The last improvement reduces the
complexity of evaluating a solution, from O

(
n2

)
to O(n), since

it only requires to traverse the nodes once for updating the
value of ψ . Therefore, the final complexity of this method is
O (|S| · n log n · n) = O

(
n3 log n

)
. It is worth mentioning that this

complexity refers to the worst case which, in the case of ALS, is
hard to reach, since the second improvement limits the number
of nodes explored during the search.

5. Results

This section is devoted to providing a detailed analysis of the
performance of the proposed algorithm. In particular, the section
is divided into two different subsets of experiments: preliminary
and final. The former is designed to select the best configura-
tion for the proposed algorithms in terms of components and
parameter values, while the latter performs a competitive testing
with the best algorithm found in the literature to analyze the
efficiency and efficacy of the proposal. All experiments have been
performed on an AMD EPYC 7282 16-core virtual CPU with 32 GB
of RAM, using Java 17. All instances and source codes have been
made publicly available at https://grafo.etsii.urjc.es/TSS.

The dataset used to perform the experiments has been derived
from the best algorithm found in the literature to provide a fair
comparison. This set of instances is conformed with 82 instances
derived from real-life social networks which have been exten-
sively used in social network analysis. The main drawback of this
dataset is that the largest network is conformed with 58 nodes,
which might not be challenging enough considering the current
size of social networks. To mitigate this drawback, we have added
8 additional instances, with sizes from 67 to 10,312 nodes. The
size of each instance is included in Table 8 in Appendix.

Given a node v, its effort α(v) and reward β(v) is also given
by the instance. The value of the effort and the reward for the
original instances have been directly derived from the original
dataset. For the new instances, we would like to thank the authors
for kindly sending us the code [19] to calculate all the required
parameters to generate the instance. Following this definition,
the users with larger influence has a larger associated reward.
Regarding the effort, those users which are easily influenced has
a smaller effort.

5.1. Preliminary results

The preliminary experiments are designed to adjust the pa-
rameters of the proposal and to select the best configuration of
elements to be included in the algorithm. The experiments have
been designed to incrementally configure the algorithm following
a sequential design. Although a full-factorial experimentation
may better adjust the parameters, it has been shown that the
results are usually equivalent [43].

With the aim of avoiding overfitting, the preliminary experi-
ments are performed over a subset of 18 representative instances,
which is a 20% of the complete set of 90 instances. All the exper-
iments report the following metrics: Avg., the average objective
function value; Dev. (%), the average deviation with respect to
the best solution found in the experiment; Time (s), the average
computing time required to execute the algorithm measured in
seconds; and, # Best, the number of times that the algorithm

Table 1
Comparison of the two proposed greedy functions when considering different
values for ω.
Constructive ω Avg. Dev. (%) Time (s) #Best

gof

0.25 47.28 4604.56 400.07 15
0.50 46.94 3985.67 400.04 15
0.75 44.61 7259.96 400.03 14
RND 45.00 5435.67 400.04 15

gdg

0.25 3530.56 1.08 160.89 15
0.50 3551.00 2.06 137.62 12
0.75 3571.39 1.37 121.09 14
RND 3637.94 0.40 122.42 17

Table 2
Comparison between the two proposed local search strategies.
Algorithm Avg. Dev. (%) Time (s) #Best

SLS 3546.22 0.95 1202.26 16
ALS 3828.61 0.00 285.79 18

reaches the best solution found in the experiment. Notice that in
the tables in which the optimal value is known, # Best is replaced
by # Optima.

The first experiment is designed to select the greedy function
to be considered in the constructive phase of GRASP, as well
as to select the best value for the ω parameter, which controls
the greediness of the construction. In particular, greedy functions
gof and gdg are tested, each one of them considering the values
ω = {0.25, 0.50, 0.75, RND}, with a fixed number of 100 itera-
tions. Table 1 shows the results obtained by each combination
of parameters. Notice that the maximum time allowed to each
constructive is set to 3600 s.

The most remarkable thing about the results is that the greedy
function based on the objective function value, gof , consistently
produces drastically worse results than the ones provided by gdg .
The rationale behind this is the inclusion of more challenging
instances, in which gof only generates a small number of solutions
in the maximum allowed time, thus resulting in low-quality
solutions.

If we now analyze the results obtained by gdg , the computing
time is clearly smaller than gof , being able to solve all the in-
stances without reaching the maximum allowed time. It is worth
mentioning that the differences in computing time among the
ω values are negligible. The best results in terms of quality are
obtained with ω = RND, with the smallest deviation (0.40%)
and the largest number of best solutions found (17 out of 18).
Therefore, we select gdg and ω = RND for the constructive
procedure.

The second experiment is designed for evaluating the per-
formance of ALS with respect to SLS. Since the SLS is rather
computationally demanding, the maximum allowed computing
time is set to three hours per instance (10,800 s). Table 2 shows
the results obtained when comparing both local search strategies.

Analyzing the quality of the local search methods, both are
equivalent when considering the smallest instances. However, the
differences appear when including the most challenging ones. In
this case, SLS is not able to finish, so it is not able to reach the best
solution in 2 out of 18 instances. Regarding the computing time,
ALS is more than four times faster than SLS. Therefore, we select
ALS for the remaining experiments as the local search method.

Having configured the constructive and local search methods,
the next experiment is devoted to establishing the size of the
initial population, ∆, and the Elite Set, δ, for the SPR. In order
to do so, we have fixed δ = 10 and vary ∆ in the range [10, 50]
with a step of 10. Table 3 shows the results obtained.

It can be derived from the results that even considering the
smallest initial population of ∆ = 10 results in high-quality so-
lutions. However, it can be seen how the efficacy of the algorithm
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Table 3
Comparison of different sizes for the initial population of Static Path
Relinking when fixing the Elite Set size to δ = 10.
∆ Avg. Dev. (%) Time (s) #Best

10 3799.50 0.51 86.61 15
20 3845.00 0.59 94.93 15
30 3845.61 0.01 115.51 17
40 3846.78 0.00 165.64 18
50 3846.78 0.00 206.36 18

Table 4
Comparison of GRASP isolated and coupled with SPR to analyze the contribution
of each part of the algorithm.
Algorithm Avg. Dev. (%) Time (s) #Best

GRASP 3637.94 1.97 122.42 15
SPR 3846.78 0.00 165.64 18

Table 5
Comparison between different size of the Dynamic Path Relinking Elite Set and
the new solutions.
Γ γ Avg. Dev. (%) Time (s) #Best

10 10 3842.78 25.05 192.66 16
10 20 3846.78 0.00 417.30 18
20 10 3846.78 0.00 411.66 18
20 20 3846.78 0.00 1098.50 18

increases with the size of the initial population, stagnating when
∆ = 40. In particular, ∆ = 50 provides the same results but
requires almost 30% more computing time. Therefore, we select
∆ = 40 for the final configuration of SPR. We have performed
the same experimentation for the value of δ fixing the initial
population size to ∆ = 40, but there are no differences in quality
among the different values. For this reason, we have selected an
Elite Set size of δ = 10.

Having selected the best GRASP configuration, i.e., constructive
method using the greedy function gdg and ALS as a local search,
and the best SPR configuration, i.e., initial population size of
40, it is necessary to analyze the contribution of SPR to GRASP.
In order to do so, an experiment is performed comparing the
results obtained by GRASP isolated and then coupled with SPR.
The results are shown in Table 4.

As expected, SPR is able to reach all the best solutions of
the experiments, with a deviation of 0%. Furthermore, it does
not considerably increase the computing time, being an efficient
method for the TSS. On the contrary, GRASP fails to reach 3 out
of 18 best solutions, remaining at a deviation of nearly 2% with
respect to the solution found by SPR. These results confirms the
contribution of SPR to the final algorithm.

The last preliminary experiment is designed to configure the
dynamic variant of Path Relinking, DPR. In this case, there are two
input parameters to adjust: Γ , the size of the Elite Set, and γ ,
the number of new solutions generated to combine with each
solution of the Elite Set. The tested values are Γ = {10, 20}
and γ = {10, 20}, evaluating all possible combinations of these
values. The results are shown in Table 5.

As expected, the computing time increases drastically with
the size of the Elite Set and the initial population. However,
the quality does not vary when considering pairs (∆, δ) =
{(10, 20), (20, 10), (20, 20)}. The combination (10, 10) can be di-
rectly discarded due to the large deviation of 25% provided.
Therefore, we select the configuration that provides the smallest
computing time, which is ∆ = 20 and δ = 10.

5.2. Final results

Since the dataset has been increased with more complex and
challenging instances, it is necessary to establish a time limit for

Table 6
Comparison of SPR, DPR, SA, CELF and Gurobi solver when considering the
original dataset in which Gurobi is able to reach the optimal value.
Algorithm Avg. Dev. (%) Time (s) #Optimal

Gurobi 45.38 0.00 117.14 82
DPR 44.34 2.58 0.01 76
SPR 44.54 1.82 0.01 79
SA 46.31 4.86 0.01 76
CELF 42.07 12.19 0.01 61

the exact algorithm. If the Gurobi solver reaches that time limit,
it returns the best solution found so far, which is not necessarily
the optimal value. In particular, the time limit given to the Gurobi
solver is set to 108 000 s (approximately 30 h).

The best previous approach is an exact method which shows
its limits when dealing with larger and more complex instances.
In order to evaluate the contribution of our proposal, we have also
included an additional metaheuristic algorithm for performing a
comparison with SPR and DPR. In particular, we have selected
Simulated Annealing (SA), which is a metaheuristic based on the
analogy between an optimization process and a thermodynamic
process known as annealing. It is a search method which tries to
escape from local optima allowing to explore worse solutions if
those solutions satisfy certain criteria. SA was originally proposed
by Kirkpatrick et al. [44] and it has been successfully applied in a
wide variety of hard combinatorial optimization problems. SA has
been successfully applied in several works related to influence
maximization problems [45,46].

Additionally, the well-known Cost-Effective Lazy Forward
(CELF) selection algorithm [47], which has been widely used in
the context of influence maximization problems and, in par-
ticular, in TSS [48], is included in the comparison. CELF is a
greedy procedure which leverages the submodularity property
of the network to considerably reduce the computational effort
of the greedy hill-climbing algorithm. The main objective of this
optimization is to scale to large problems, reaching near optimal
placements. This improvement makes CELF approximately 700
times faster than the original procedure.

There exists several implementation of SA which are pub-
licly available. For this work, we have selected the one provided
by the Metaheuristic Optimization FramewoRK [49], which has
been tested over several hard optimization problems [50,51] SA
requires from several parameters, which has been set to the
values recommended in the literature. The parameters used are:
cooldown (C), which indicates the temperature variation, is set
to 0.98; the initial temperature (Ti), which represents the worst
value that can be found in the neighborhood, set to 100 000; the
maximum number of iterations (I), set to 100; and the neighbor-
hood considered during the search, which is based on the move
operator defined in this work. The complexity of this implemen-
tation is divided into the construction phase and the proper SA
algorithm. The complexity of the constructive phase is equal to
GRASP complexity described in Section 4.3, while the complexity
of SA is evaluated as O

(
Ti · I · n2

)
. We refer the reader to [52] to

a deeper analysis of the complexity of SA.
The results are divided into two different experiments. First

of all, SPR and DPR are tests when considering the set of original
instances in which the exact method is able to reach the optimal
value. Table 6 shows the results obtained.

As it can be derived from the results, SPR performs slightly
better than DPR in this set of instances, being able to reach 79 out
of 82 optimal solutions, while DPR reaches 76. It is important to
remark that the average deviation of both methods, smaller than
0.05, indicates that in those instances in which neither SPR nor
DPR are able to reach the optimal value, they stay really close
to it. In order to confirm this hypothesis, we have conducted a
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Table 7
Comparison of CELF, SA, SPR and DPR over the set of largest and most complex instances.
Instance CELF SA

Avg. Dev. (%) Time (s) #Best Avg. Dev. (%) Time (s) #Best

PRISON* 240 11.11 0.02 0 270 0.00 0.34 1
EMAIL-EU-CORE* 4672 1.79 22.71 0 4757 0.00 267.78 1
EGO-FACEBOOK 19462 0.00 3609.75 1 19462 0.00 1044.35 1
CA-GRQC 22487 5.05 12441.33 0 23684 0.00 5364.14 1
TWITCH_EN 25060 0.22 16833.33 0 23853 5.03 5885.88 0
LASTFM_ASIA 25005 0.00 26017.00 1 23000 8.02 6160.10 0
CA-HEPTH 44451 1.16 165624.79 0 44972 0.00 9105.73 1
BLOG_CATALOG3 46732 0.00 44674.80 1 46418 0.67 8407.40 0

Summary 23514.13 2.23 33652.97 3 23302.00 1.71 4534.97 5

Instance SPR DPR

Avg. Dev. (%) Time (s) #Best Avg. Dev. (%) Time (s) #Best

PRISON* 270 0.00 0.07 1 270 0.00 0.16 1
EMAIL-EU-CORE* 4757 0.00 84.48 1 4757 0.00 262.59 1
EGO-FACEBOOK 19462 0.00 279.47 1 19462 0.00 769.70 1
CA-GRQC 23630 0.23 442.07 0 23684 0.00 2166.29 1
TWITCH_EN 24853 1.06 680.77 0 25116 0.00 2230.12 1
LASTFM_ASIA 24556 1.80 760.97 0 24780 0.90 2409.55 0
CA-HEPTH 44909 0.14 2140.92 0 44972 0.00 7743.06 1
BLOG_CATALOG3 46595 0.29 1336.91 0 46692 0.09 8705.44 0

Summary 23629.00 0.44 715.71 3 23716.63 0.12 3035.87 6

pairwise non-parametric Wilcoxon statistical test between SPR
and Gurobi solver, obtaining a p-value equal to 0.109, which
indicates that, with a confidence interval of 95%, there are not
statistically significant differences between those methods. Re-
garding the SA, it is worth mentioning that it is able to reach 76
out of 82 instances with a deviation of 4.86%, requiring negligible
time such as SPR and DPR. With respect to CELF, the algorithm
requires from negligible computing times as DPR, SPR and SA, but
it only reaches 61 out of 82 optimal solutions, with a deviation of
12.19%. From these results, we can obtain two main conclusions:
SA is a competitive algorithm for the TSS, and the proposed DPR
and SPR significantly contribute to the quality of the obtained
solutions, as it can be seen in the smaller deviation with respect
to the optimal value.

The last experiment is devoted to evaluate the performance of
the proposed algorithms and the Gurobi solver when considering
the most challenging and realistic instances. Table 7 shows the
results obtained in the set of large instances. In this case, we show
the results disaggregated, since it is conformed with 8 instances
that can be individually analyzed.

It is worth mentioning that the Gurobi solver is only able to
provide the optimal solution for 2 out of 8 instances derived from
the new set of complex instances marked with an asterisk in
the corresponding instance name. For the remaining instances,
Gurobi is not even able to load the model in memory, which high-
lights the need to consider metaheuristic algorithms for this set
of challenging instances. In particular, in those instances where
Gurobi reaches the optimal value, SA, SPR and DPR are also able
to find it. However, CELF is not able to reach the optimal value
for these two instances. Additionally, for the instance EMAIL-EU-
CORE, Gurobi requires almost 30 h to find the optimal value, while
SA requires 268 s, DPR 262 s and SPR only 85 s.

Analyzing the instances in which Gurobi is not able to even
load the model, SPR requires from smaller computing time than
DPR in general, but it provides worse results in terms of quality.
Regarding SA, it is able to provide competitive results in these
challenging instances. Specifically, SPR reaches the best solution
in 3 out of 8 instances, SA reaches 5 out of 8 best solutions, and,
finally, DPR reaches all the best solutions but for two instances in
which CELF is able to provide slightly better results. It is worth
mentioning that CELF requires from approximately five times the

computing time required by DPR, thus being DPR much more
scalable for large scale networks. In terms of deviation, CELF
provides the worst results with a 2.23%, followed by SA with
1.71%, but it is considerably larger than the one obtained by SPR
and DPR. Specifically, the average deviation obtained by SPR is
considerably small (0.44%), and DPR is able to reach a deviation of
0.12%. Since the deviation of SPR is really close to 0%, we conduct
a pairwise non-parametric Wilcoxon statistical test to evaluate
if there are statistically significant differences between SPR and
DPR. The resulting p-value of 0.04, smaller than 0.05, indicates
that DPR is statistically better than SPR. These results highlights
the contribution of SPR and DPR to the state of the art of TSS.

6. Conclusions

This research presents two different Path Relinking
approaches for solving the Target Set Selection problem. In par-
ticular, the Static Path Relinking variant is compared with the
Dynamic Path Relinking variant over a set of challenging in-
stances derived from real-life social networks. Both methods are
compared with the best approach found in the literature, which
is an exact algorithm implemented in the Gurobi commercial
solver. In the comparison, the limits of the exact approach are
shown, being unable to even load the most complex instances,
while SPR and DPR are able to provide high-quality solutions in
reasonable computing time. Additionally, a complexity analysis
has been included for each algorithm with the aim of analyzing
the computational effort required to execute each one of them.

As a conclusion, both SPR and DPR are able to provide promis-
ing solutions for the TSS, each one of them being suitable for
different situations. On the one hand, if the computing time is
a hard constraint, we do recommend considering SPR since the
quality of the solutions is not drastically worse. On the other
hand, if the maximum computing time is not a critical part of the
problem, DPR is able to provide better results in terms of quality.

The proposed algorithms have been compared with a Sim-
ulated Annealing implementation, which has been successfully
applied in several influence maximization problems, and with
CELF, which is a widely used method in the context of influence
maximization and, particularly, in TSS. The results obtained high-
light the appropriateness of designing an specific algorithm for
solving the TSS such as the proposal of this research.
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Table 8
Size of each instance considered in this work.
ID Datasets N ID Datasets N

1 Knoke Bureaucracies
KNOKI

10 73 Zachary Karate Club
ZACHE

34

2 Knoke Bureaucracies
KNOKM

10 74 Zachary Karate Club
ZACHC

34

3 Roethlisberger & Dickson Bank
RDGAM

14 75 Bernard & Killworth Technical
BKTECC

34

4 Roethlisberger & Dickson Bank
RDPOS

14 76–77 Kapferer Tailor Shop
KAPFTI1 and KAPFTI2

39

5 Roethlisberger & Dickson Bank
RDHLP

14 78–79 Kapferer Tailor Shop
KAPFTS1 and KAPFTS2

39

6 Kapferer Mine
KAPFMU

15 80 Bernard & Killworth Office
BKOFFC

40

7 Kapferer Mine
KAPFMM

15 81 Bernard & Killworth Ham Radio
BKHAMC

44

8 Thurman Office
THURA

15 82 Bernard & Killworth Fraternity
BKFRAC

58

9 Thurman Office
THURM

15 83 Gagnon & Macrae Prision 67

10–24 Newcomb Fraternity
NEWC1...NEWC15

17 84 email-Eu-core network 1005

25 Davis Southern Club Women
DAVIS

18 85 Social circles: Facebook 4039

26–28 Sampson Monastery
SAMPLK1...SAMPLK3

18 86 General Relativity and
Quantum Cosmology
collaboration network

5242

29 Sampson Monastery
SAMPES

18 87 Twitch EN 7126

30 Sampson Monastery
SAMPIN

18 88 LastFM Asia Social Network 7624

31–51 Krackhardt Office css
KRACKAD1...KRACKAD21

21 89 High Energy Physics
Theory collaboration network

9877

52–72 Krackhardt Office css
KRACKFR1...KRACKFR21

21 90 BlogCatalog3 10312

The successful application of Path Relinking metaheuristic to
TSS lead us to propose several future lines of research. First
of all, it would be interesting to evaluate the Path Relinking
proposal over the opposite problem: minimization of information
spreading, which is interesting in topics such as misinformation
diffusion or disease control, among others. Another interesting
line of research is the adaptation of Path Relinking to other
well-known influence maximization problems, such as Budgeted
Influence Maximization or Influence Spectrum Problem.
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Appendix

This Appendix shows the detailed size of each considered
social network in Table 8. In particular, each instance is associ-
ated with an identification number (column ID), a name (column
Datasets), and the number of nodes (column N). The subset of
instances used in the preliminary experiments are those high-
lighted in bold font, specifically: [2, 5, 10, 20, 24, 31, 38, 43, 47,
51, 57, 65, 70, 75, 78, 82, 86, 89].

Instances with ID from 1 to 82 are directly derived from the
best method found in the literature [19]. The remaining instances,
which will also be included in our public repository https://
grafo.etsii.urjc.es/TSS, have been derived from the following social
network repositories:

• Instance 83: Same repository as the original dataset, http:
//vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
• Instances from 84 to 89: SNAP dataset, https://snap.stanford.

edu/data/
• Instance 90: BlogCatalog, http://datasets.syr.edu/datasets/

BlogCatalog3.html
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Resumen en castellano





Caṕıtulo 9

Resumen en castellano

Este caṕıtulo sigue la siguiente estructura. La Sección 9.1 introduce los problemas de
influencia en redes sociales, a continuación, en la Sección 9.2 se aborda la metodoloǵıa
empleada durante esta tesis, en la Sección 9.3 se presentan los objetivos y la hipótesis
planteada en esta tesis doctoral, seguidamente en la Sección 9.4 se recogen los resultados
más relevantes de esta investigación para, finalmente, en la Sección 9.5 concluir con las
principales conclusiones.

Este anexo se incluye debido al art́ıculo 22 de la Normativa Reguladora de los
Estudios de Doctorado de la Universidad Rey Juan Carlos, aprobada en Consejo de
Gobierno de 07/06/2019.

9.1 Antecedentes

La optimización ha sido una preocupación constante a lo largo de la historia, desde
los antiguos griegos que buscaban la manera más eficiente de organizar las ciudades,
hasta los modernos algoritmos que optimizan procesos empresariales. La importancia
de la optimización radica en su capacidad para resolver problemas complejos, mejorar
la eficiencia y tomar decisiones informadas. A lo largo de los siglos, se ha demostrado
que la optimización es fundamental para el progreso humano.

En la actualidad, la optimización ha cobrado una importancia aún mayor en di-
versos campos, gracias a la creciente complejidad de los problemas que enfrentamos.
Desde la loǵıstica empresarial hasta la planificación de rutas en la navegación, la op-
timización se ha convertido en una herramienta esencial para enfrentar desaf́ıos en
constante evolución. La capacidad de resolver problemas de manera eficiente y precisa
es crucial en un mundo cada vez más interconectado y dependiente de la tecnoloǵıa.

Para abordar estos desaf́ıos, existen diversas metodoloǵıas en el campo de la
optimización, como los métodos exactos, las aproximaciones y los algoritmos genéticos
y heuŕısticos. Estos enfoques ofrecen soluciones flexibles y adaptativas para una
variedad de problemas, permitiendo a los investigadores y profesionales encontrar la
mejor solución posible en diferentes contextos.
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Esta tesis se enfoca espećıficamente en problemas relacionados con el análisis de
redes sociales, un área de estudio que ha ganado relevancia en la era digital. Dentro de
esta disciplina, se identifican diversos problemas, y la atención se centra especialmente
en el concepto de influencia. El problema central consiste en seleccionar usuarios dentro
de una red social de manera que maximicen o minimicen la influencia sobre otros
usuarios, considerando posibles restricciones, como presupuestos máximos.

Definir la influencia en el contexto de las redes sociales presenta un desaf́ıo sig-
nificativo debido a la diversidad de métodos disponibles. La capacidad de seleccionar
usuarios estratégicos tiene aplicaciones prácticas en campañas de marketing, en la
erradicación de enfermedades y en la detección de campañas de desinformación. La
complejidad de estos problemas se acentúa por la naturaleza NP de muchos de ellos,
lo que implica que encontrar soluciones exactas es impracticable en grandes redes so-
ciales.

Aunque existen algoritmos aproximativos, en ciertos casos es fundamental contar
con información rápida y de alta calidad, como en la detección de enfermedades. Por
lo tanto, esta tesis se centra en el uso de heuŕısticos y metaheuŕısticos para abordar
problemas de influencia en redes sociales. Estos enfoques proporcionan soluciones efi-
cientes y adaptables, especialmente en situaciones donde la velocidad y la precisión son
fundamentales.

En este contexto, la influencia en redes sociales surge como uno de los proble-
mas que está aumentando su popularidad en la actualidad y es el tema principal que
concierne a esta Tesis.

9.2 Metodoloǵıa

La metodoloǵıa usada en esta Tesis Doctoral se basa en el método cient́ıfico [116].
Esta metodoloǵıa busca validar nuevos conocimientos siguiendo unos determinados pa-
sos: observación, hipótesis, experimentación, medición, falsabilidad, reproducibilidad,
revisión por pares y publicación.

El método cient́ıfico es muy utilizado y se aplica a muchas áreas. En el ámbito
de la optimización heuŕıstica y en esta Tesis Doctoral se ha utilizado como gúıa para
proponer soluciones basadas en algoritmos heuŕısticos y algoritmos metaheuŕısticos.
Determinar si una propuesta algoŕıtmica es mejor que el estado del arte debe hacerse
de una manera justa. Para evaluar un procedimiento metaheuŕıstico desde un punto de
vista objetivo en [117] se proponen tres pasos: diseño de la experimentación, ejecución
y documentación de los resultados.

El diseño experimental busca definir los objetivos de los experimentos, mostrando
las instancias (diferentes situaciones para cada uno de los problemas abordados) que se
usarán para validar el algoritmo propuesto. Es recomendable usar las mismas instancias
propuestas en los trabajos anteriores del estado del arte. De esa manera, la comparación
entre el algoritmo propuesto y los métodos previos es más objetivo y justo.

Una vez diseñado el experimento, debemos conocer los indicadores de rendimien-
to del algoritmo. Para validar los resultados del algoritmo, los resultados son tratados
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estad́ısticamente para su análisis. En los métodos de optimización exacta, la eficien-
cia en términos de tiempo de ejecución es el indicador principal. Sin embargo, para
evaluar el rendimiento de los procedimientos heuŕısticos y metaheuŕısticos deben con-
siderarse otros indicadores: calidad de la solución, esfuerzo computacional y robustez
del algoritmo [118, 119].

Finalmente, la interpretación de los resultados obtenidos muestra los resultados
y realiza un análisis siguiendo los objetivos definidos. Para poder realizar una compa-
ración justa y es importante en el área cient́ıfica que los experimentos se tengan en
un mismo entorno informático de experimentación. La interpretación de los resultados
debe ser expĺıcita y basarse en los objetivos definidos y las medidas de rendimiento
consideradas.

Para cumplir el método cient́ıfico en este ámbito, la reproducibilidad de los expe-
rimentos es algo importante. Para ello, se ha documentado todas las decisiones tomadas
en los dos primeros pasos y se han publicado los resultados de la investigación en re-
positorios públicos de fácil acceso de cara a facilitar futuras comparaciones.

9.3 Hipótesis y objetivos

La hipótesis propuesta para el desarrollo de esta Tesis Doctoral se sustenta desde el
punto de vista de que los problemas de influencia en redes sociales son problemas
NP—dif́ıciles, con interés práctico en muchas disciplinas cient́ıficas. Por tanto, es in-
teresante desarrollar algoritmos que puedan generar soluciones de alta calidad en un
tiempo razonable. La escalabilidad es fundamental debido al tamaño de las redes so-
ciales del mundo real.

También se proponen técnicas metaheuŕısticas, que han demostrado ser proce-
dimientos eficaces a la hora de abordar problemas de optimización. En particular,
las metaheuŕısticas trayectoriales constituyen una subfamilia de este tipo de técnicas,
caracterizadas por considerar más de una solución simultáneamente y proporcionar
mecanismos de combinación entre ellas. La búsqueda dispersa es un claro exponente
de este tipo de metaheuŕısticas. Por otro lado, las metaheuŕısticas trayectoriales par-
ten de una solución inicial y son capaces de generar una trayectoria en el espacio de
solución. Greedy Randomized Adaptive Search Procedure (GRASP) es un ejemplo de
metaheuŕıstica trayectorial.

El algoritmo heuŕıstico propuesto se complementará con las técnicas metaheuŕısti-
cas que mejor se adapten al problema, en particular se considerarán Greedy Randomi-
zed Adaptive Search Procedure y Path Relinking.

Para alcanzar los principales objetivos mencionados anteriormente, se deben abor-
dar los siguientes objetivos:

• Estudiar el estado del arte del problema, analizando las propuestas algoŕıtmicas
actuales.

• Diseñar y desarrollar algoritmos heuŕısticos para resolver problemas relacionados
con los problemas de influencia en redes sociales, utilizando diferentes modelos
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de difusión de la influencia.

• Configurar los parámetros de los algoritmos desarrollados. Los algoritmos desa-
rrollados deben configurarse con el fin de utilizar los mejores parámetros y lograr
los mejores resultados. Para configurar los parámetros, se deben realizar experi-
mentos preliminares.

• Validar el algoritmo heuŕıstico. Los algoritmos se compararán experimentalmente
con los mejores algoritmos en cada problema para proporcionar una comparación
justa.

• Analizar los resultados obtenidos por el nuevo algoritmo y compararlos frente a
los mejores algoritmos.

• Adaptar los algoritmos propuestos a los problemas reales conocidos relacionados
con: contención de la evolución de pandemias, minimización de rumores y noticias
falsas, donde se validarán los resultados.

• Publicar todo el código fuente, instancias y resultados en repositorios públicos
para facilitar futuras comparaciones.

• Los resultados parciales serán enviados a revistas JCR con procesos de revisión
por parte de instituciones independientes. De esta manera se obtendrá una eva-
luación experta para mejorar nuestra investigación y verificar que aporte al área
académica relacionada con influencia en redes sociales.

9.4 Resultados

Esta sección muestra una revisión de los resultados arrojados por los problemas abor-
dados en esta Tesis. Las siguientes secciones explican la propuesta del algoritmo, aśı
como una comparación exhaustiva con el mejor método encontrado en la literatura
para cada problema. En todos los casos se presenta una tabla final compuesta por las
siguientes métricas: Pro., que denota el valor promedio de la función objetivo en todos
los casos; Des. (%), que representa la desviación promedio al valor mejor conocido;
Tiempo (s), que muestra el tiempo promedio de cálculo requerido por cada algorit-
mo; #Mejor, que coincide si la solución es la mejor solución u #Óptimo, que cuenta
el número de valores exactos encontrados por el algoritmo. Además, todas las tablas
muestran resaltados en negro los mejores resultados. Estos resultados se derivan de la
Parte II donde la Sección 9.4.1 muestran los resultados del SNIMP, la Sección 9.4.2
estudia los resultados en el contexto de BIMP y, finalmente, Sección 9.4.3 resume los
resultados derivados del TSS.

9.4.1 Resultados del problema de maximizar la influencia en
redes sociales

Richardson y Domingos [55] formularon inicialmente el problema de la selección de
nodos objetivo en SNs. Sin embargo, no fue hasta Kempe et al. [17] que se resolvió el
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SNIMP formulándolo como un problema de optimización discreto, demostrando pos-
teriormente que es NP-dif́ıcil [47].

De acuerdo con varios trabajos de resumen [36, 37], algoritmos voraces y de apro-
ximación se proponen, ya que este problema se mostró como un problema NP-dif́ıcil.
En la Sección 2.2 se explican varios modelos de propagación de la influencia (IDMs),
siendo el modelo independiente por cascada (ICM) uno de los IDMs más extendidos.
Este método probabiĺıstico muestra el número medio de nodos activados en una simu-
lación de propagación. Los resultados obtenidos sobre este problema se han publicado
en una revista de alto impacto indexada en el JCR. Se pueden encontrar más detalles
en el Caṕıtulo 6 de la Parte II.

El algoritmo propuesto para resolver SNIMP se basa en la metodoloǵıa GRASP
[26] (véase la Sección 3.1 para más detalles). Obsérvese que, en el ámbito de las redes
sociales, el método de búsqueda local es un procedimiento bastante exigente desde
el punto de vista computacional, ya que las redes sociales reales necesitan una gran
cantidad de nodos y aristas, por lo que se requieren métodos altamente escalables.

La fase constructiva en este problema se ha diseñado para generar una solución
inicial y suele estar guiada por una función de selección voraz que ayuda al método
constructivo a seleccionar el siguiente elemento que se incluirá en la solución parcial.
El primer nodo se selecciona al azar para favorecer la diversificación, y luego los nodos
restantes hasta llegar a k elementos se seleccionan mediante un criterio voraz. En este
trabajo se estudian dos métodos voraces: el primero se basa en la información local
de los vecinos, mientras que el otro se basa en el coeficiente de clustering [99]. Todos
los nodos son evaluados según este criterio, conformando una lista de candidatos (CL).
A continuación, se establece un umbral µ = gmı́n + α · (gmáx − gmı́n) que se utiliza
para seleccionar los nodos más prometedores de la CL, creando una lista de candida-
tos restringida (RCL). Este umbral depende directamente del valor del parámetro de
entrada α, que está en el rango [0, 1]. Nótese que este parámetro indica la avaricia o
aleatoriedad del procedimiento constructivo. Por un lado, śı α = 0, entonces el um-
bral se evalúa como gmáx, convirtiéndose en un algoritmo totalmente voraz (es decir, la
RCL solo incluye la mejor opción en cada iteración). Por otro lado, si α = 1 entonces
µ = gmı́n, resultando un método totalmente aleatorio (es decir, la RCL incluye cada
elección factible en cada iteración).

A continuación, cuando se obtiene una solución factible, la fase de búsqueda local
explora la vecindad conformada por todas las soluciones que pueden alcanzarse reali-
zando un único movimiento. La vecindad de una solución S se define como el conjunto
de soluciones que se pueden alcanzar realizando un único movimiento sobre S. En el
contexto de SNIMP, proponemos un movimiento de intercambio donde el nodo u se
elimina del conjunto de semillas, siendo sustituido por v, con u ∈ S y v /∈ S. Este
movimiento de intercambio se define formalmente como:

Intercambio(S, u, v) = S \ {u} ∪ {v}

Aśı, la vecindad Ns de una solución dada S consiste en el conjunto de soluciones
que se pueden alcanzar desde S realizando un único movimiento de intercambio. Más
formalmente,
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Ns(S) = {Intercambio(S, u, v) ∀ u ∈ S ∧ ∀ v ∈ V \ S}

Como se ha dicho, la escalabilidad es totalmente necesaria en este trabajo, y
realizar todos los movimientos posibles daŕıa lugar a un procedimiento que llevaŕıa
bastante tiempo. Para reducir la complejidad computacional de la búsqueda, se propo-
ne una búsqueda local surrogada. Este trabajo propone una estrategia inteligente de
exploración de vecindarios con el objetivo de reducir el número de soluciones explora-
das dentro de cada vecindario. Esta reducción del tamaño del espacio de búsqueda se
realiza explorando solo una pequeña fracción, δ, de los nodos disponibles para el nodo
de intercambio.

El IDM seleccionado es, como en el mejor trabajo anterior, el algoritmo ICM con
la correspondiente simulación Monte Carlo, realizando 100 iteraciones con una proba-
bilidad de influencia de 0.01. Estos valores de los parámetros son los más extendidos en
la literatura relacionada. El número de nodos semilla k para conformar una solución se
selecciona en el rango k = {10, 20, 30, 40, 50} tal y como se indica en [17, 70, 100], ob-
teniendo aśı 7 ·5 = 35 instancias de problema diferentes (resultantes de la combinación
de 7 redes y 5 tamaños de conjunto semilla).

Para analizar la calidad del algoritmo propuesto, realizamos una prueba competi-
tiva con los mejores métodos encontrados en el estado del arte, considerando el conjunto
completo de 35 instancias derivadas del repositorio SNAP1. Se consideran tres algorit-
mos: CELF [44], el conocido algoritmo greedy hill-climbing; CELF++ [101], la versión
mejorada de CELF [44]; y PSO [102], el algoritmo de optimización por enjambre de
part́ıculas que se considera el estado del arte para el análisis de la influencia social según
el reciente estudio experimental desarrollado en [36]. La Tabla 9.1 recoge los resultados
finales obtenidos en esta prueba competitiva. Nótese que Pro. no es un valor entero, ya
que es el valor medio de las 100 ejecuciones del ICM en la simulación de Monte Carlo.
También hemos incluido una fila final en esta tabla (G.Pro.) con los valores promedios
de la función objetivo y Tiempo (s), calculados a través del conjunto de 35 instancias.

Nos gustaŕıa destacar en primer lugar los resultados obtenidos con PSO, ya que es
el último clasificado, incluso siendo considerado el estado del arte para este problema.
La razón detrás de esto es que el trabajo original [102] considera instancias de tamaño
pequeño (de 410 a 15233 nodos) y la calidad de las soluciones proporcionadas por
PSO se deteriora cuando el tamaño de la instancia aumenta, como se puede derivar
de la Tabla 9.1. Mientras tanto, CELF y su versión mejorada CELF++ son capaces
de alcanzar mejores soluciones, siendo aún competitivos con los algoritmos de última
generación. Sin embargo, solo CELF++ es capaz de igualar la solución más conocida
en 1 instancia (de 35). Finalmente, los mejores resultados se obtienen con el algoritmo
GRASP propuesto, que es capaz de alcanzar la mejor solución encontrada en los 35
casos. Además, el tiempo de cálculo es menor que el del segundo mejor algoritmo,
CELF++ (39.04 frente a 60.09 segundos en promedio).

Al analizar el tiempo de cálculo requerido para cada algoritmo, podemos ver
claramente que CELF y CELF++, como enfoques completamente voraces, no se ven

1http://snap.stanford.edu

http://snap.stanford.edu
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CELF CELF++ PSO GRASP
k Instancia Pro. Tiempo (s) Pro. Tiempo (s) Pro. Tiempo (s) Pro. Tiempo (s)

10

CA-AstroPh 157.60 2.51 171.81 9.40 169.85 232.40 187.47 8.28
CA-CondMat 35.73 0.67 35.73 2.15 33.40 4.60 36.15 2.56
Cit-HepPh 46.63 1.16 46.63 3.29 35.27 1.71 47.20 4.20
Email-Enron 383.95 25.23 469.63 87.68 465.24 1756.84 489.67 41.41
Email-EuAll 132.96 6.03 130.28 307.98 107.41 37.42 144.57 24.42
Wiki-Vote 108.50 0.39 108.50 1.00 92.16 16.40 109.10 6.32

p2p-Gnutella31 16.24 1.46 16.23 7.83 13.38 0.95 16.27 1.63

20

CA-AstroPh 222.63 2.69 234.36 9.76 222.92 889.79 259.25 18.53
CA-CondMat 59.72 0.66 59.87 2.13 45.46 8.67 61.05 6.00
Cit-HepPh 81.75 1.11 81.75 3.25 68.51 2.58 82.11 18.97
Email-Enron 451.24 25.71 547.96 88.47 544.57 4394.46 589.65 74.23
Email-EuAll 214.66 5.68 214.54 303.01 162.32 99.98 224.10 28.88
Wiki-Vote 162.49 0.49 162.49 1.45 141.66 41.44 165.32 26.03

p2p-Gnutella31 30.82 1.30 30.86 7.43 24.69 0.99 30.92 3.80

30

CA-AstroPh 266.77 2.85 276.69 10.48 259.90 1005.17 312.68 51.32
CA-CondMat 80.87 0.70 82.18 2.30 66.27 11.09 82.54 14.11
Cit-HepPh 113.39 1.16 113.39 3.45 86.22 3.69 113.63 42.30
Email-Enron 501.78 25.49 608.63 88.62 553.25 7594.67 652.48 140.71
Email-EuAll 277.40 5.86 275.36 298.66 212.84 183.58 281.30 59.58
Wiki-Vote 208.18 0.64 208.18 2.03 150.40 97.75 214.97 80.83

p2p-Gnutella31 44.75 1.24 44.81 7.42 35.30 1.34 44.81 6.08

40

CA-AstroPh 319.52 3.11 302.86 11.58 288.92 1492.82 360.34 66.97
CA-CondMat 100.96 0.76 101.80 2.54 75.61 17.40 104.38 16.37
Cit-HepPh 140.63 1.27 140.63 3.81 113.46 4.94 141.20 58.03
Email-Enron 549.64 25.95 658.38 92.09 634.58 9032.87 705.03 216.65
Email-EuAll 323.85 6.17 312.47 302.47 258.46 230.12 337.39 165.23
Wiki-Vote 246.02 0.83 246.02 2.83 182.88 115.05 252.15 34.60

p2p-Gnutella31 58.26 1.28 58.22 7.48 51.26 1.85 58.37 12.69

50

CA-AstroPh 361.51 3.50 338.28 13.11 340.54 2267.98 399.92 132.35
CA-CondMat 119.29 0.86 120.72 2.87 106.10 10.85 124.57 26.51
Cit-HepPh 165.47 1.38 165.47 4.26 126.77 6.35 166.77 65.20
Email-Enron 597.26 27.02 680.29 96.71 662.67 10063.47 744.38 157.26
Email-EuAll 361.51 6.68 357.43 304.03 258.15 321.81 375.03 161.59
Wiki-Vote 277.65 1.09 277.65 3.76 188.82 181.07 287.66 86.39

p2p-Gnutella31 71.80 1.34 71.90 7.76 64.63 2.74 72.08 17.42
G.Avg. 208.33 5.55 221.49 60.09 195.54 1146.71 236.37 39.04

Tabla 9.1: Pruebas competitivas del algoritmo GRASP propuesto con respecto a los
mejores algoritmos encontrados en la literatura: CELF, CELF++ y PSO. Los mejores
resultados se resaltan en negrita.
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realmente afectados por el aumento del tamaño del conjunto de semillas. Por el contra-
rio, el tiempo de cálculo requerido para PSO y GRASP se ve afectado por el tamaño
del conjunto de semillas, ya que valores k mayores llevan al método de mejora local
a realizar un mayor número de iteraciones. Sin embargo, si miramos más de cerca los
resultados obtenidos con GRASP, podemos concluir que este aumento en el número
de iteraciones y, por tanto, en el tiempo de cálculo, permite que el algoritmo alcance
mejores soluciones. En el caso de PSO, el aumento del tiempo de cálculo es aún mu-
cho más notable, pero normalmente no resulta en mejores soluciones, lo que sugiere
que el algoritmo PSO es particularmente adecuado para resolver instancias de tamaño
pequeño.

Para validar estos resultados, hemos realizado una prueba de Friedman no pa-
ramétrica para clasificar todos los algoritmos comparados. El valor p obtenido, inferior
a 0.0005, confirma que existen diferencias estad́ısticamente significativas entre los algo-
ritmos. Los algoritmos ordenados por clasificación son GRASP (1.00), CELF++ (2.44),
CELF (2.79) y PSO (3.77). Finalmente, realizamos la conocida prueba estad́ıstica no
paramétrica de Wilcoxon para comparaciones por pares, que responde a la pregunta:
¿las soluciones generadas por ambos algoritmos representan dos poblaciones diferen-
tes? El valor p resultante menor que 0.0005 al comparar GRASP entre śı confirma la
superioridad del algoritmo GRASP propuesto. Por tanto, GRASP emerge como uno de
los algoritmos más competitivos para el SNIMP, siendo capaz de alcanzar soluciones
de alta calidad en poco tiempo de computación.

9.4.2 Resultados del problema de maximizar la influencia con
un presupuesto

Las empresas suelen tener un presupuesto espećıfico en sus campañas de marketing, esto
no está modelado en el SNIMP clásico. Con el objetivo de incluir esta caracteŕıstica,
Nguyen [57] definió formalmente el BIMP inspirado en SNIMP, siendo también NP-
dif́ıcil. Como ya se ha comentado existen varios IDM, este trabajo utiliza: ICM, WCM
y TV.

Banerjee [36] publicó un art́ıculo de resumen relacionado con los problemas de
maximización de la influencia en redes sociales, convirtiéndose en uno de los trabajos de
investigación más relevantes en el área. El algoritmo denominado ComBIM propuesto
por Banerjee [45] se considera el estado del arte para BIMP. ComBIM proporciona
una solución basada en la comunidad que proporciona los mejores resultados en la
literatura hasta donde nuestro conocimiento alcanza, por lo que será considerado como
el algoritmo para referenciar nuestra propuesta. Se pueden encontrar más detalles en
el Caṕıtulo 7 de la Parte II.

La propuesta algoŕıtmica se basa en la metodoloǵıa Greedy Randomized Adaptive
Search Procedure (GRASP) donde se diseña una novedosa heuŕıstica eficiente y eficaz
para la selección del conjunto de semillas en la fase constructiva. Este criterio voraz,
denominado gdist aprovecha la distribución de nodos semilla, es decir, prioriza los nodos
que no tienen vecinos seleccionados como nodo semilla, con el objetivo de llegar a
un mayor número de usuarios no influenciados, explorando regiones mayoritariamente
ignoradas hasta ese momento.



CAPÍTULO 9. RESUMEN EN CASTELLANO 115

Para ello, se valora directamente el grado de un nodo, pero penalizándolo si
algunos de sus nodos vecinos ya han sido seleccionados. La penalización se ha fijado
experimentalmente reduciendo el grado a la mitad. Más formalmente,

gdist =

{
d+u if v /∈ S, ∀v ∈ N+

u
d+u
2

en otro caso

Una vez finalizado el constructivo se realiza una fase de búsqueda local. La prin-
cipal diferencia con SNIMP es el presupuesto (B), ya que en BIMP no se requiere
un número exacto de nodos. Entonces, un movimiento que elimine un nodo e inserte
otro, puede dar lugar a una solución inviable que supere el presupuesto disponible. La
vecindad de una solución S se define como el conjunto de soluciones que se pueden
alcanzar realizando un único movimiento sobre S. A continuación, es necesario definir
el movimiento que se considerará en el contexto de BIMP. En concreto, el movimien-
to, denominado Reemplazar(S, u, P ), consiste en eliminar el nodo u de la solución y
sustituirlo por el conjunto de nodos en P , con P ∈ V \ S. Obsérvese que, para alcan-
zar una solución factible, la suma del coste de los nodos en P debe ser menor o igual
que B + C(u) (puesto que u se eliminará, su coste no debe tenerse en cuenta). Más
formalmente,

Reemplazar(S, u, P ) = S \ {u} ∪ P

Entonces, dada una solución S, la vecindad NtextitR(S) se define como el conjunto
de soluciones factibles que pueden alcanzarse con un único movimiento Reemplazar. En
términos matemáticos,

NR(S) =

{
S ′ ← Reemplazar(S, u, P ) ∀u ∈ S ∧ ∀P ∈ V \ S :

∑
p∈P

C(p) ≤ B + C(u)

}

Incluso considerando una implementación eficiente de la evaluación de la función
objetivo, el gran tamaño de la vecindad resultante hace que la exploración comple-
ta de la vecindad no sea adecuada para el BIMP. Por ello, limitamos el número de
evaluaciones que realiza la búsqueda local con el objetivo de disponer de un método
computacionalmente eficiente. Cabe mencionar que, si el número de iteraciones utili-
zadas en los IDMs es limitado, entonces es interesante explorar en primer lugar los
vecinos más prometedores de la vecindad considerada.

Los parámetros utilizados son los siguientes: como es habitual en los proble-
mas SIMs, se realizan 100 simulaciones Monte Carlo en todos los modelos IDMs.
El presupuesto total B para conformar una solución se selecciona en el rango B =
{2000, 6000, 10000, 140000, 180000, 22000, 26000} como se indica en el trabajo previo,
obteniendo aśı 3 · 7 = 21 instancias de problema diferentes para cada IDM. Teniendo
en cuenta que se consideran 4 IDMs, el número total de instancias son 21 · 4 = 84.
Para analizar la calidad del algoritmo propuesto, se realiza una prueba competitiva
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con el mejor método encontrado en el estado del arte, ComBIM. La Tabla 9.2 recoge
los resultados finales obtenidos en esta prueba competitiva para cada IDM.

IDM Algoritmo Pro. Tiempo (s) Des (%) #Mejor

ICM(1%)
ComBIM 8319.68 214.97 17.64% 0
GRASP 8872.61 117.06 0.00% 21

ICM(2%)
ComBIM 14467.65 215.31 6.49% 3
GRASP 14828.77 146.21 0.07% 18

WCM
ComBIM 2277.79 214.04 57.49% 0
GRASP 10087.08 97.80 0.00% 21

TV
ComBIM 1976.11 214.68 39.10% 0
GRASP 2677.58 69.65 0.00% 21

Resumen
ComBIM 6760.31 214.75 30.18% 3
GRASP 9116.51 107.68 0.02% 81

Tabla 9.2: Pruebas competitivas de la metodoloǵıa GRASP propuesta con respecto
al algoritmo de última generación ComBIM. Los mejores resultados se destacan en
negrita.

Los resultados muestran como GRASP es capaz de obtener soluciones de alta
calidad (81 mejores soluciones de 84), requiriendo la mitad del tiempo de computación
(107.68 segundos frente a 214.75 segundos). Aunque GRASP es capaz de superar a
ComBIM en todos los IDMs considerados, los resultados más destacables en términos
de calidad se obtienen al utilizar WCM y TV. En concreto, ComBIM es capaz de
alcanzar la mejor solución solo en tres casos cuando se utiliza ICM (2%). En este
caso, la desviación de GRASP es del 0.07%, lo que indica que está realmente cerca de
esa mejor solución. A la vista de estos resultados, GRASP se perfila como uno de los
algoritmos más competitivos para BIMP.

Por último, realizamos la conocida prueba estad́ıstica no paramétrica de Wilcoxon
para comparaciones por pares, que responde a la pregunta: ¿representan las soluciones
generadas por ambos algoritmos dos poblaciones diferentes? El valor p resultante infe-
rior a 0.0001 al comparar GRASP con ComBIM confirma la superioridad del algoritmo
GRASP propuesto. En concreto, GRASP es capaz de obtener 81 de 84 clasificaciones
positivas, 3 negativas y 0 empates.

9.4.3 Resultados del problema de seleccionar el conjunto ob-
jetivo

El último problema resuelto está relacionado con la familia de problemas de selección
del conjunto objetivo, en los que se pueden distinguir dos variantes: garantizar alcanzar
la red completa (o incluso una cierta parte de ella) con el mı́nimo número de usuarios
iniciales o maximizar el número de usuarios alcanzados sin exceder un presupuesto ini-
cial. Esta propuesta se centra en resolver este último, que suele denominarse problema



CAPÍTULO 9. RESUMEN EN CASTELLANO 117

de selección del conjunto objetivo GAP de máximo esfuerzo-recompensa (Max-TSS),
un problema NP-dif́ıcil [59]. Se pueden encontrar más detalles en el Caṕıtulo 8 de la
Parte II.

Nuestra propuesta está relacionada con Path Relinking para resolver el problema
Max-TSS [103]. Path Relinking requiere de un método para generar soluciones diversas
y de alta calidad con el fin de crear caminos prometedores durante la búsqueda, tan-
to en variantes estáticas, como dinámicas. Aunque estas soluciones pueden generarse
aleatoriamente, se ha demostrado experimentalmente en varios trabajos que el diseño
de un método constructivo y de mejora local espećıfico para el problema considerado
suele conducir a mejores resultados [92, 104, 105, 106].

En el contexto de los problemas de maximización de influencia, la metodoloǵıa
Greedy Randomized Adaptive Search Procedure ha demostrado ser un método eficaz
y eficiente para generarlos [69]. El método constructivo propuesto para el problema
Max-TSS sigue la filosof́ıa GRASP de diversificación evitando decisiones totalmente
voraces. Con el objetivo de aumentar la diversidad, el método selecciona el primer nodo
a incluir al azar del conjunto de usuarios V , inicializando la solución en construcción
S. A continuación, se crea la lista de candidatos (CL) con todos los nodos menos v.
El método constructivo añade iterativamente un nodo a la solución mientras no se
supere el presupuesto y la CL no esté vaćıa. En cada iteración, se calcula el valor
mı́nimo y máximo de una determinada función voraz. El objetivo de la función voraz
es evaluar lo prometedor que es un candidato y es una parte clave del procedimiento
constructivo. Con este umbral, se crea la lista de candidatos restringida (RCL), que
contiene todos los nodos cuyo valor de la función voraz es mayor o igual que el umbral
µ, considerando que no superan el presupuesto máximo. Una vez construida la RCL,
se selecciona al azar el siguiente elemento del mismo (ya que todos los nodos de la RCL
son prometedores) para favorecer la diversidad. A continuación, el nodo seleccionado
se añade a la solución actual y se actualiza la CL eliminándolo.

La función voraz se considera tradicionalmente en la literatura GRASP y consiste
en evaluar directamente el valor de la función objetivo si el nodo evaluado se añadiera
a la solución actual, es decir, representa la contribución directa del nodo a la solución
en construcción. Más formalmente,

gof(c, S)← TSS(S ∪ {c})

El principal inconveniente es que la evaluación de la función objetivo para el
Max-TSS es un proceso bastante exigente computacionalmente, por lo que se propone
una nueva función voraz con el objetivo de reducir el esfuerzo computacional de la
evaluación, ya que se realizará en cada iteración del proceso de construcción. La segunda
función voraz propuesta, denominada gdg(c, S), considera que la relevancia de un nodo
es directamente proporcional a su grado. En otras palabras, si un nodo está conectado
a varios nodos, entonces probablemente influirá en una gran cantidad de sus nodos
adyacentes. Entonces, esta función voraz se evalúa como el grado del nodo evaluado:

gdg(c, S)← |u ∈ V : (c, u) ∈ E|
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La segunda fase de GRASP consiste en un método de mejora local que encuentra
un óptimo local partiendo de la solución inicial. A partir de la solución inicial S, no es
posible añadir nuevos nodos, ya que el procedimiento constructivo se detiene cuando
se supera el presupuesto máximo con alguno de los nodos restantes. Por lo tanto,
el operador de movimiento propuesto se define en dos pasos: eliminar y añadir. En
concreto, el operador de movimiento elimina un nodo de la solución y, a continuación,
añade nodos de forma iterativa hasta alcanzar el presupuesto máximo.

En el contexto de TSS, el esfuerzo computacional es una parte cŕıtica del algo-
ritmo, por lo que hemos decidido utilizar el primer método de mejora con el objetivo
de reducir el tiempo computacional para realizar un método de búsqueda local. Con el
objetivo de evitar sesgar la búsqueda, se explora el vecindario de forma aleatoria, rea-
lizando el primer movimiento que resulte en una solución mejor en base a un operador
de movimiento que elimina un nodo de la solución y lo sustituye por todos los nodos
que se puedan añadir sin exceder el presupuesto permitido.

Con el objetivo de reducir aún más el esfuerzo computacional del método de
búsqueda local, se proponen tres mejoras. La primera mejora trata de evitar la ex-
ploración de soluciones ya visitadas. Para ello, se asocia a cada solución visitada un
número único, es decir, un código hash. A continuación, cada vez que se visita una solu-
ción, se evalúa si su código hash correspondiente no se ha incluido ya en el conjunto de
soluciones visitadas. En caso afirmativo, el método deshace el movimiento y continúa
con la siguiente iteración, evitando repetir la exploración de la misma región del espa-
cio de búsqueda. La segunda mejora se dedica a limitar los nodos explorados durante
la búsqueda, descartando aquellos nodos que darán lugar a una solución inviable. A
continuación, los nodos candidatos a ser añadidos se clasifican con respecto a su valor
de esfuerzo en orden ascendente. Solo se exploran aquellos nodos cuyo valor de esfuerzo
es menor o igual que el presupuesto disponible. Además, para favorecer la diversidad,
la exploración se realiza de forma aleatoria entre todos los nodos que satisfacen esta
restricción.

El objetivo de la última mejora es reducir el tiempo de cálculo necesario para
evaluar la influencia de un nodo almacenándola en caché. En concreto, la influencia
de un nodo (es decir, los nodos que se ven afectados por su activación), se calcula al
principio del método de búsqueda local. Después, cada vez que se selecciona un nodo
para eliminarlo o añadirlo a la solución, se actualiza la influencia de ese nodo sobre
los demás nodos del grafo. Como resultado, no es necesario evaluar completamente
la función objetivo en cada iteración, sino comprobar la influencia correspondiente
precalculada.

A continuación, se utilizan SPR y DPR para mejorar la solución. Las estrategias
de Path Relinking requieren de un conjunto de soluciones de alta calidad, normalmente
conocido como conjunto élite que se combinan. En el contexto de TSS, dadas dos
soluciones Si y Sg a combinar, el método de creación de trayectorias diseñado para el
problema Max-TSS elimina iterativamente nodos que pertenecen a Si pero no a Sg, es
decir, Si \Sg, e incluye nodos que están en Sg pero no en Si, es decir, Sg \Si. El método
se detiene cuando Si se ha convertido completamente en Sg y no se pueden eliminar
/añadir más nodos. Dado que el esfuerzo computacional es una parte cŕıtica de TSS,
hemos seleccionado Random Path Relinking que, además, aumenta la diversidad de
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la búsqueda. En el método propuesto, se combinan todos los pares de soluciones del
conjunto élite.

El conjunto de datos utilizado para realizar los experimentos se ha derivado del
mejor algoritmo encontrado en la literatura para proporcionar una comparación justa.
Este conjunto de instancias está formado por 82 instancias derivadas de redes sociales
reales que se han utilizado ampliamente en el análisis de redes sociales. El principal
inconveniente de este conjunto de datos es que la red más grande está formada por 58
nodos, lo que podŕıa no ser lo suficientemente exigente teniendo en cuenta el tamaño
actual de las redes sociales. Para mitigar este inconveniente, hemos añadido 8 instancias
adicionales, con tamaños de 67 a 10312 nodos.

El mejor enfoque anterior es un método exacto que muestra sus ĺımites cuando
se trata de instancias más grandes y complejas. Con el fin de evaluar la contribución
de nuestra propuesta, también se ha incluido un algoritmo metaheuŕıstico adicional
para realizar una comparación con SPR y DPR. En concreto, hemos seleccionado Si-
mulated Annealing (SA), que es una metaheuŕıstica basada en la analoǵıa entre un
proceso de optimización y un proceso termodinámico conocido como recocido. Se trata
de un método de búsqueda que trata de escapar de los óptimos locales, permitiendo
explorar soluciones peores si dichas soluciones satisfacen ciertos criterios. SA fue pro-
puesto originalmente por Kirkpatrick et al. [107] y se ha aplicado con éxito en una
amplia variedad de problemas de optimización combinatoria duros. SA se ha aplicado
con éxito en varios trabajos relacionados con problemas de maximización de influencia
[108, 109]. Además, el conocido algoritmo de selección CELF [44], que ha sido amplia-
mente utilizado en el contexto de los problemas de maximización de influencia y, en
particular, en Max-TSS [110], se incluye en la comparación. CELF es un procedimiento
voraz que aprovecha la propiedad de submodularidad de la red para reducir conside-
rablemente el esfuerzo computacional del algoritmo greedy hill-climbing. El objetivo
principal de esta optimización es escalar a problemas grandes, alcanzando colocaciones
casi óptimas. Esta mejora hace que CELF sea aproximadamente 700 veces más rápi-
do que el procedimiento original. Existen varias implementaciones de SA disponibles
públicamente. Para este trabajo, hemos seleccionado la proporcionada por la herra-
mienta Metaheuristic Optimization framewoRK (MORK) [111], que ha sido probada
en varios problemas de optimización [112, 113].

Los resultados se dividen en dos experimentos diferentes. En primer lugar, se
evalúan SPR y DPR al considerar el conjunto de instancias originales en las que el
método exacto es capaz de alcanzar el valor óptimo. En la Tabla 9.3 se muestran
los resultados obtenidos. Como puede deducirse de los resultados, SPR se comporta
ligeramente mejor que DPR en este conjunto de instancias, siendo capaz de alcanzar
79 de las 82 soluciones óptimas, mientras que DPR alcanza 76. Es importante destacar
que la desviación media de ambos métodos, inferior a 0.05, indica que en aquellas
instancias en las que ni SPR ni DPR son capaces de alcanzar el valor óptimo, se quedan
realmente cerca de él. Para confirmar esta hipótesis, hemos realizado un test estad́ıstico
no paramétrico de Wilcoxon por pares entre SPR y el solver Gurobi, obteniendo un
valor p igual a 0.109, lo que indica que, con un intervalo de confianza del 95%, no
existen diferencias estad́ısticamente significativas entre dichos métodos. Respecto al
SA, cabe destacar que es capaz de alcanzar 76 de 82 instancias con una desviación
del 4.86%, requiriendo un tiempo despreciable al igual que SPR y DPR. Respecto a
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CELF, el algoritmo requiere de tiempos de computación irrelevantes como DPR, SPR
y SA, pero solo alcanza 61 de 82 soluciones óptimas, con una desviación del 12.19%.
A partir de estos resultados, podemos obtener dos conclusiones principales: SA es un
algoritmo competitivo para el Max-TSS, y los DPR y SPR propuestos contribuyen
significativamente a la calidad de las soluciones obtenidas, como se aprecia en la menor
desviación respecto al valor óptimo.

Algoritmo Pro. Des. (%) Tiempo (s) #Óptimo

Gurobi 45.38 0.00 117.14 82
DPR 44.34 2.58 0.01 76
SPR 44.54 1.82 0.01 79
SA 46.31 4.86 0.01 76

CELF 42.07 12.19 0.01 61

Tabla 9.3: Comparación de SPR, DPR, SA, CELF y el solver de Gurobi al considerar
el conjunto de datos original en el que Gurobi es capaz de alcanzar el valor óptimo.

El último experimento está dedicado a evaluar el rendimiento de los algoritmos
propuestos y del solucionador Gurobi cuando se consideran las instancias más desa-
fiantes y realistas. La Tabla 9.4 muestra los resultados obtenidos en el conjunto de
instancias grandes. En este caso, mostramos los resultados desagregados, ya que se
conforma con 8 instancias que pueden ser analizadas individualmente. Cabe destacar
que el solver de Gurobi solo es capaz de proporcionar la solución óptima para 2 de
las 8 instancias derivadas del nuevo conjunto de instancias complejas marcadas con
un asterisco en el nombre de la instancia correspondiente. Para el resto de instancias,
Gurobi ni siquiera es capaz de cargar el modelo en memoria, lo que pone de manifiesto
la necesidad de considerar algoritmos metaheuŕısticos para este conjunto de instancias
desafiantes. En particular, en las instancias en las que Gurobi alcanza el valor óptimo,
SA, SPR y DPR también son capaces de encontrarlo. Sin embargo, CELF no es capaz
de alcanzar el valor óptimo para estos dos casos. Además, para la instancia EMAIL-
EUCORE, Gurobi requiere casi 30h para encontrar el valor óptimo, mientras que SA
requiere 268s, DPR 262s y SPR solo 85s.

Analizando las instancias en las que Gurobi ni siquiera es capaz de cargar el
modelo, SPR requiere de menor tiempo de computación que DPR en general, pero
proporciona peores resultados en términos de calidad. En cuanto a SA, es capaz de
proporcionar resultados competitivos en estos casos dif́ıciles. En concreto, SPR alcanza
la mejor solución en 3 de las 8 instancias, SA alcanza 5 de las 8 mejores soluciones y, por
último, DPR alcanza todas las mejores soluciones excepto en dos instancias en las que
CELF es capaz de proporcionar resultados ligeramente mejores. Cabe mencionar que
CELF requiere desde aproximadamente cinco veces el tiempo de computación requerido
por DPR, siendo, por tanto, DPR mucho más escalable para redes de gran escala.
En términos de desviación, CELF proporciona los peores resultados con un 2.23%,
seguido de SA con un 1.71%, pero es considerablemente mayor que la obtenida por
SPR y DPR. En concreto, la desviación media obtenida por SPR es considerablemente
pequeña (0.44%) y DPR es capaz de alcanzar una desviación del 0.12%. Dado que la
desviación de DPR es realmente cercana al 0%, realizamos una prueba estad́ıstica no
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CELF SA

Instancia Pro. Dev. (%) Tiempo (s) #Mejor Pro. Dev. (%) Tiempo (s) #Mejor

PRISON* 240 11.11 0.02 0 270 0.00 0.34 1
EMAIL-EU-CORE* 4672 1.79 22.71 0 4757 0.00 267.78 1
EGO-FACEBOOK 19462 0.00 3609.75 1 19462 0.00 1044.35 1

CA-GRQC 22487 5.05 12441.33 0 23684 0.00 5364.14 1
TWITCH EN 25060 0.22 16833.33 0 23853 5.03 5885.88 0
LASTFM ASIA 25005 0.00 26017.00 1 23000 8.02 6160.10 0
CA-HEPTH 44451 1.16 165624.79 0 44972 0.00 9105.73 1

BLOG CATALOG3 46732 0.00 44674.80 1 46418 0.67 8407.40 0

Resumen 23514.13 2.23 33652.97 3 23302.00 1.71 4534.97 5

SPR DPR

Instancia Pro. Dev. (%) Tiempo (s) #Mejor Pro. Dev. (%) Tiempo (s) #Mejor

PRISON* 270 0.00 0.07 1 270 0.00 0.16 1
EMAIL-EU-CORE* 4757 0.00 84.48 1 4757 0.00 262.59 1
EGO-FACEBOOK 19462 0.00 279.47 1 19462 0.00 769.70 1

CA-GRQC 23630 0.23 442.07 0 23684 0.00 2166.29 1
TWITCH EN 24853 1.06 680.77 0 25116 0.00 2230.12 1
LASTFM ASIA 24556 1.80 760.97 0 24780 0.90 2409.55 0
CA-HEPTH 44909 0.14 2140.92 0 44972 0.00 7743.06 1

BLOG CATALOG3 46595 0.29 1336.91 0 46692 0.09 8705.44 0

Resumen 23629.00 0.44 715.71 3 23716.63 0.12 3035.87 6

Tabla 9.4: Comparación de CELF, SA, SPR y DPR sobre el conjunto de instancias
mayores y más complejas.

paramétrica por pares de Wilcoxon para evaluar si existen diferencias estad́ısticamente
significativas entre SPR y DPR. El valor p resultante de 0.04, inferior a 0.05, indica
que DPR es estad́ısticamente mejor que SPR.

Estos resultados ponen de relieve la contribución de SPR y DPR al estado del
arte de Max-TSS.

Como conclusión, tanto SPR como DPR son capaces de proporcionar soluciones
prometedoras para el TSS, siendo cada una de ellas adecuada para diferentes situa-
ciones. Por un lado, si el tiempo de cálculo es una restricción dura, recomendamos
considerar SPR ya que la calidad de las soluciones no es drásticamente peor. Por otro
lado, si el tiempo máximo de computación no es una parte cŕıtica del problema, DPR
es capaz de proporcionar mejores resultados en términos de calidad. Los algoritmos
propuestos se han comparado con una implementación de Simulated Annealing, que
se ha aplicado con éxito en varios problemas de maximización de influencia, y con
CELF, que es un método ampliamente utilizado en el contexto de la maximización de
influencia y, en particular, en Max-TSS. Los resultados obtenidos ponen de manifiesto
la conveniencia de diseñar un algoritmo espećıfico para la resolución del TSS cómo el
propuesto en esta investigación.
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9.5 Conclusiones

En este caṕıtulo se presentan las conclusiones de cada variante de los problemas abor-
dados y el trabajo futuro general de esta Tesis Doctoral. Sección 9.5.1, muestra las con-
clusiones de Social Network Influence Maximization Problem (SNIMP), Sección 9.5.2
resalta las conclusiones relacionadas con Budgeted Influence Maximization Problem
(BIMP) y finalmente Sección 9.5.3 comenta las principales conclusiones sobre Target
Set Selection (TSS). Cabe mencionar que en cada sección se presenta un enlace a un
repositorio (con código fuente, instancias y resultados) para facilitar mayores compa-
raciones.

9.5.1 Conclusiones del problema de maximizar la influencia
en redes sociales

En este art́ıculo se presenta un algoritmo eficiente Greedy Randomized Adaptive Search
Procedure (GRASP) para resolver el SNIMP. Se proponen dos procedimientos cons-
tructivos, siendo más competitivo el basado en la vecindad de dos pasos que el basado
en el coeficiente de agrupamiento. Además, la idea de utilizar información local permite
al algoritmo construir una solución completa en un tiempo reducido. Luego se presenta
una búsqueda local basada en movimientos de intercambio. Dado que una exploración
exhaustiva del espacio de búsqueda no es adecuado para este problema, proponemos
una estrategia inteligente de exploración de vecindarios que limite la región del espa-
cio de búsqueda a explorar, centrándose en las áreas más prometedoras. Esta lógica
nos lleva a proporcionar soluciones de alta calidad en un tiempo de cálculo razonable,
incluso para las instancias más grandes derivadas de redes sociales del mundo real,
comúnmente consideradas en el área de maximización de la influencia. Dado que la
estrategia de exploración inteligente del vecindario está parametrizada, si el tiempo
de cálculo no es un factor relevante, la región explorada se puede ampliar fácilmente
para encontrar mejores soluciones, aumentando aśı el esfuerzo computacional requeri-
do. Este hecho hace que el algoritmo GRASP propuesto sea altamente escalable. Los
resultados obtenidos están respaldados por la prueba de Friedman y luego la prueba
de Wilcoxon por pares, confirmando la superioridad de la propuesta con respecto a los
procedimientos de solución clásicos y de última generación en el área.

Este trabajo fue presentado y publicado en la revista Journal of Ambient Inte-
lligence and Humanized Computing (JCR Q2) titulado A quick GRASP-based method
for influence maximization in social networks [69]. El factor de impacto de esta revis-
ta es 3.662, ubicándose en 68/145 en el área de Informática, Inteligencia Artificial y
73/164 en Sistemas de Información. El código fuente también se ha puesto a disposición
del público2 para facilitar una mayor comparación. Cabe mencionar que esta investi-
gación también ha sido presentada en: Parallel Problem Solving from Nature–PPSN
XVI: 16th International Conference, PPSN, celebrado en Leiden, Páıses Bajos, del 5
al 9 de septiembre de 2020; International Conference on Variable Neighborhood Search
(ICVNS) celebrada en Abu Dhabi, Emiratos Árabes Unidos, del 22 al 24 de marzo

2https://grafo.etsii.urjc.es/SNIMP

https://grafo.etsii.urjc.es/SNIMP
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de 2021; y XIX Conferencia de la Asociación Española para la Inteligencia Artificial
(CAEPIA 2021): avances en Inteligencia Artificial celebrada en Málaga del 22 al 24
de septiembre de 2021. Más detalles y el art́ıculo completo se pueden encontrar en el
Caṕıtulo 6.

9.5.2 Conclusiones del problema de maximizar la influencia
con un presupuesto

Se desarrolló un algoritmo eficiente, efectivo y escalable basado en el marco Greedy
Randomized Adaptive Search Procedure (GRASP). Este marco se puede configurar
según los requisitos de tiempo. La escalabilidad se logra utilizando información local
en métodos constructivos y evitando una búsqueda exhaustiva en la búsqueda local
(seleccionando los nodos más prometedores). Los resultados y la comparación con los
algoritmos anteriores se desarrollan utilizando tres modelos de difusión de la influencia
diferentes para el problema, considerando el algoritmo probabiĺıstico Monte Carlo para
la evaluación de la función objetivo.

Finalmente, se analizó un estudio de caso de infodemia desde la perspectiva de
la maximización de influencia. Espećıficamente, se construyó una instancia basada en
386384 tweets sobre la Ley Estadounidense de Atención Médica (AHCA). Se realizó un
experimento que muestra la superioridad de GRASP al compararlo con el algoritmo
previo llamado ComBIM en 21 de 27 instancias disponibles. Se analizaron los usua-
rios más influyentes, mostrando su relevancia en el tema estudiado, siendo la mayoŕıa
senadores, humoristas, escritores o periódicos.

El caṕıtulo 7 muestra el trabajo aceptado titulado An efficient and effective
GRASP algorithm for the Budget Influence Maximization Problem [65], en la revis-
ta Journal of Ambient Intelligence and Humanized Computing. Esta revista tiene un
factor de impacto de 3.662, ubicándose en 68/145 en el área de Informática, Inteligen-
cia Artificial y 73/164 en Sistemas de Información. Al igual que el trabajo anterior,
para facilitar mayores comparaciones, el código fuente, las instancias y los resultados
completos se pueden encontrar públicamente disponibles en el siguiente enlace 3.

9.5.3 Conclusiones del problema de seleccionar el conjunto
objetivo

Este trabajo presenta un algoritmo basado en Path Relinking [27] para resolver el
problema TSS. Se ha demostrado el potencial de GRASP junto con una estrategia
combinada de Path Relinking. Especialmente, en cuanto al tiempo de cómputo reque-
rido por el algoritmo para alcanzar soluciones de alta calidad, la propuesta surgió como
el mejor método en el estado del arte.

En particular, las principales aportaciones de este trabajo son las siguientes. Se
han propuesto dos variantes diferentes de GRASP usando dos variantes de Path Relin-
king: Path Relinking Estático (SPR) y Path Relinking Dinámico (DPR). Tanto SPR

3https://grafo.etsii.urjc.es/BIMP

https://grafo.etsii.urjc.es/BIMP


como DPR pueden proporcionar soluciones prometedoras para TSS, siendo cada una
de ellas adecuada para diferentes situaciones. Por un lado, si el tiempo de cálculo es
una limitación importante, recomendamos considerar SPR ya que la calidad de las
soluciones no son drásticamente peor. Por otro lado, si el tiempo máximo de cálculo
no es una parte cŕıtica del problema, DPR puede proporcionar mejores resultados en
términos de calidad.

Cabe mencionar que la estrategia del camino entre dos soluciones de Path Relin-
king (Reactive Path Relinking) fue propuesta y aceptada en un trabajo relacionado en
esta tesis [94] (ver Sección 3.2).

Se realizaron nuevas mejoras para reducir el esfuerzo computacional del método
de búsqueda local. Para ello se usó un sistema para evitar la exploración de soluciones
ya visitadas utilizando la función hash en las soluciones. Luego, cada vez que se visita
una solución, se evalúa si su código hash correspondiente no se ha incluido ya en el
conjunto de soluciones visitadas. También se limitaron los nodos explorados durante
la búsqueda, descartándose aquellos nodos que darán como resultado una solución
inviable. Estos nodos se encuentran ordenados con respecto a su valor de esfuerzo en
orden ascendente. Por lo tanto, solo se exploran aquellos nodos cuyo valor de esfuerzo
es menor o igual al presupuesto disponible. El objetivo de la última mejora es reducir
el tiempo de cálculo necesario para evaluar la influencia de un nodo almacenándolo en
caché.

Los experimentos han demostrado que la combinación de GRASP con PR da
como resultado soluciones de alta calidad. La implementación eficiente del algoritmo
y la calidad de las heuŕısticas aplicadas permiten que el algoritmo supere el trabajo
anterior, apoyado en pruebas estad́ısticas.

Los resultados del trabajo fueron publicados en una revista con el t́ıtulo, Dynamic
Path Relinking for the Target Set Selection problem [114] en Knowledge-Based Systems
la cual tiene un factor de impacto de 8.800 y se ubica en 19/145 en el campo de la
Informática, Inteligencia Artificial. El documento completo se incluye en el Caṕıtulo 8
de la Parte II, el código fuente completo y las instancias están disponibles públicamen-
te para facilitar comparaciones adicionales, aśı como los resultados completos4. Cabe
mencionar que esta investigación también ha sido presentada en el XL Congreso Na-
cional de Estad́ıstica e Investigación Operativa (SEIO) celebrado en Elche, España, del
7 al 10 de noviembre de 2023.

4https://grafo.etsii.urjc.es/TSS

https://grafo.etsii.urjc.es/TSS
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[21] T. Stützle and R. Ruiz, “Iterated greedy.,” Handbook of heuristics, pp. 547–577,
2018.

[22] J. P. Hart and A. W. Shogan, “Semi-greedy heuristics: An empirical study,”
Operations Research Letters, vol. 6, no. 3, pp. 107–114, 1987.

[23] T. A. Feo, M. G. C. Resende, and S. H. Smith, “A greedy randomized adaptive
search procedure for maximum independent set,” Operations Research, vol. 42,
pp. 860–878, oct 1994.

[24] W. Michiels, E. H. Aarts, and J. Korst, “Theory of local search,” Handbook of
heuristics, pp. 299–339, 2018.

[25] S. H. Zanakis, J. R. Evans, and A. A. Vazacopoulos, “Heuristic methods and
applications: a categorized survey,” European Journal of Operational Research,
vol. 43, no. 1, pp. 88–110, 1989.

[26] T. A. Feo and M. G. Resende, “A probabilistic heuristic for a computationally
difficult set covering problem,” Operations Research Letters, vol. 8, pp. 67–71,
apr 1989.

[27] M. Laguna and R. Marti, “Grasp and path relinking for 2-layer straight line
crossing minimization,” INFORMS Journal on Computing, vol. 11, no. 1, pp. 44–
52, 1999.

[28] S. S. Singh, V. Srivastava, A. Kumar, S. Tiwari, D. Singh, and H.-N. Lee, “Social
network analysis: A survey on measure, structure, language information analysis,
privacy, and applications,” ACM Trans. Asian Low-Resour. Lang. Inf. Process.,
vol. 22, may 2023.

[29] A. Tretiakov, A. Mart́ın, and D. Camacho, “Detection of false information in
spanish using machine learning techniques,” in Intelligent Data Engineering and



BIBLIOGRAPHY 127

Automated Learning – IDEAL 2022 (H. Yin, D. Camacho, and P. Tino, eds.),
(Cham), pp. 42–53, Springer International Publishing, 2022.

[30] Z. Reza, A. M. Ali, and L. Huan, Social Media Mining: An Introduction. Cam-
bridge University Press, 2014.
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