
TESIS DOCTORAL

Heuristic optimization of graph
embedding problems in circular layouts

Autor:
Sergio Cavero Dı́az

Directores:
Abraham Duarte Muñoz

Eduardo Garcı́a Pardo

Programa de Doctorado en Tecnologı́as de la Información y las

Comunicaciones

Escuela Internacional de Doctorado

2023

This Doctoral Thesis has been partially supported by the Ministerio de Ciencia, Inno-

vación y Universidades (Grant Ref. PGC2018-095322-B-C22, PID2021-125709OA-C22,

FPU19/04098, and EST22/00444) and by the Comunidad de Madrid and the Fondo Euro-

peo de Desarrollo Regional (Grant Ref. P2018/TCS-4566).

Copyright ©2023 Sergio Cavero Dı́az. All rights reserved.

iii

FIRMADO POR FECHA FIRMA

DUARTE MUÑOZ ABRAHAM - DIRECTOR DE LA ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA 27-02-2023 15:46:21

GARCIA PARDO EDUARDO 27-02-2023 16:44:44

Documento firmado digitalmente - Universidad Rey Juan Carlos - C/

Tulipan, s/n - 28933 Mostoles Universidad Rey Juan Carlos Página: 1 / 1

El Dr. D. Abraham Duarte Muñoz, Profesor Catedrático de Universidad del Departamento

de Informática y Estadı́stica, y el Dr. D. Eduardo Garcı́a Pardo, Profesor Titular de Univer-

sidad del Departamento de Informática y Estadı́stica de la Universidad Rey Juan Carlos,

directores de la Tesis Doctoral Heuristic optimization of graph embedding problems in cir-

cular layouts realizada por el doctorando D. Sergio Cavero Dı́az,

HACEN CONSTAR:

que esta Tesis Doctoral reúne los requisitos necesarios para su defensa y aprobación.

En Móstoles, Marzo de 2023,

Dr. D. Abraham Duarte Muñoz Dr. D. Eduardo Garcı́a Pardo

I
D

D
O
C
U
M
E
N
T
O
:

M
O
u
i
9
l
E
1
J
e

V
er

ifi
ca

ci
ón

 c
ód

ig
o:

 h
ttp

s:
//s

ed
e.

ur
jc

.e
s/

ve
rif

ic
a

v

A mis padres y a mis abuelos.

Esta Tesis es el resultado de vuestro trabajo.

Nōlı̄ turbāre circulōs meōs!

Archimedes

Acknowledgments

The achievement of this thesis would not have been possible without the valuable help and

support of my family, friends, and advisors. I would like to take this opportunity to thank

everyone who has contributed to my journey of research and learning.

First and foremost, I would like to express my deepest gratitude to my supervisors,

Eduardo and Abraham. Eduardo has given me guidance and support beyond this thesis. It

seems like only yesterday that you were preparing me to present my bachelor’s s thesis.

Abraham, thank you for trusting me without even knowing me. I am very grateful for your

teachings and advice, but above all for being able to enjoy this predoctoral scholarship with

you.

Without a doubt, I have really enjoyed these years as a doctoral student. I could not be

more fortunate to have shared an office with the best colleagues and friends I could have

in this “fun run”. There has been no lack of laugh since the first day we met. It has been a

pleasure to have had the opportunity to work with you, guys.

I would like to thank all those people who have made my stay in the United States

possible, especially Manuel Laguna. This experience would not have been the same without

Manuel Laguna and his family, Rafael Martı́ and his family, Marco Better and his family

and especially the Thoresen family who made me feel at home. I miss you all.

Finally, to all those people who were already there before I started this Thesis, espe-

cially my family. Thank you, mom and dad, for supporting me and for teaching me how to

play this wonderful board game that is life. Thanks to Marı́a, for being by my side in each

one of my crazy adventures.

ix

Abstract

Optimization is a discipline that addresses the search for the best possible solution, called

the optimal solution, to a problem mathematically modeled. These problems can be clas-

sified according to its computational complexity. Problems belonging to the NP-hard class

are too complex to be solved with an exact algorithm in a reasonable amount of time. Al-

ternatively, these problems can be approached through approximate techniques that allow

finding good quality solutions, although not necessarily optimal, in a reasonable amount

of computing time. Among these techniques, heuristic and metaheuristic algorithms stand

out, since they have been proven as useful tools in solving high-complexity real problems.

In this Doctoral Thesis, heuristic and metaheuristic algorithms are proposed for the

resolution of four Graph Layout Problems (GLP). Specifically, the problems studied belong

to the NP-hard class and can be framed as combinatorial optimization problems. GLPs aim

to find the best possible assignment of the vertices of an input graph to the vertices of a

host graph, optimizing a certain objective function. More specifically, this Doctoral Thesis

focuses on the study of GLPs in which the embedding is done in circular layouts. This

family of problems is of great interest due to the variety of practical applications they have.

In this research, a methodology for addressing GLPs is proposed. Specifically, it starts

from the study of each problem, and then proposes heuristic and metaheuristic algorithms

for tackling the problem. After a preliminary experimentation, the algorithmic proposal

is compared to the existing methods in the state of the art. This methodology has been

successfully applied to the studied problems, resulting in various scientific publications

that compile the main findings of the research carried out.

xi

Resumen

La optimización es una disciplina que aborda la búsqueda de la mejor solución posi-

ble, denominada solución óptima, a problemas modelados matemáticamente. Los pro-

blemas pueden ser clasificados según su complejidad computacional. Concretamente, los

pertenecientes a la clase NP-difı́cil son demasiado complejos como para ser resueltos con

un algoritmo exacto en un tiempo asumible. Alternativamente, estos problemas pueden ser

abordados mediante técnicas aproximadas que permiten encontrar soluciones de calidad,

aunque no necesariamente óptimas, en tiempos razonables. Entre estas técnicas se destacan

los algoritmos heurı́sticos y metaheurı́sticos que se han consolidado como herramientas de

gran utilidad en la resolución de problemas reales de alta complejidad.

En esta Tesis Doctoral se proponen algoritmos heurı́sticos y metaheurı́sticos para la

resolución de cuatro problemas de embebido de grafos (GLP, del inglés, Graph Layout

Problems). Concretamente, los problemas estudiados pertenecen a la clase NP-difı́cil y

pueden ser enmarcados como problemas de optimización combinatoria. Los GLP tienen

como objetivo buscar la mejor asignación posible de los vértices de un grafo de entrada

a los vértices de un grafo huésped, optimizando una determinada función objetivo. Más

concretamente, esta Tesis Doctoral se centra en el estudio de varios GLP cuyo embe-

bido se realiza en estructuras cı́clicas. Esta familia de problemas es de gran interés por

la variedad de aplicaciones prácticas que tienen. En esta investigación, además, se pro-

pone una metodologı́a para abordar los GLP. Esta metodologı́a parte del estudio de cada

problema para, a continuación, proponer algoritmos heurı́sticos y metaheurı́sticos para el

mismo. Tras una experimentación preliminar, la propuesta algorı́tmica es comparada con

los métodos existentes en el estado del arte. Esta metodologı́a ha sido aplicada con éxito

para los problemas estudiados, resultando en diversas publicaciones cientı́ficas que recogen

las principales contribuciones de la investigación realizada.

xiii

Contents

Acknowledgments ix

Abstract xi

Resumen xiii

Contents xv

List of tables xix

List of figures xxi

List of acronyms xxv

I PhD Dissertation 1

1 Introduction 3
1.1 Optimization . 3

1.1.1 Optimization problems . 4

1.1.2 Optimization methods . 6

1.2 Graph Layout Problems . 18

1.2.1 Definitions and notation . 21

1.2.2 Literature review . 25

1.2.3 Historical perspectives and applications 29

1.3 Hypothesis and objectives . 33

xv

1.3.1 Hypothesis . 33

1.3.2 Objectives . 33

1.3.3 Research methodology . 35

1.4 Structure of the document . 36

2 Studied Graph Layout Problems 39
2.1 Cyclic Cutwidth Minimization Problem 39

2.2 Cyclic Antibandwidth Problem . 41

2.3 Cyclic Bandwidth Sum Problem . 42

2.4 Two-Dimensional Bandwidth Minimization Problem 44

3 Algorithmic proposal 47
3.1 Constructive procedures . 47

3.1.1 Criteria for selecting a vertex of the input graph 51

3.1.2 Criteria for selecting a set of vertices of the input graph 53

3.1.3 Criteria for selecting a vertex of the host graph 54

3.1.4 Randomization of the procedures 57

3.2 Improving methods . 58

3.3 Metaheuristics . 60

3.3.1 Multistart procedures . 61

3.3.2 Tabu Search . 62

3.3.3 Variable Neighborhood Search . 63

3.3.4 Iterated Greedy . 65

3.4 Advanced strategies . 66

3.4.1 Efficient evaluation of a solution after a move 67

3.4.2 Tiebreak criterion for solutions with the same objective function

value . 69

3.4.3 Neighborhood reduction strategy 70

3.5 Final proposals . 72

3.6 Software development . 72

3.6.1 Implementation issues . 74

3.6.2 Solution visualization . 78

xvi

3.6.3 Resources used . 80

4 Joint discussion of results 83
4.1 Analysis of the performance of the algorithms 83

4.1.1 Instances . 85

4.1.2 Metrics . 87

4.2 Preliminary testing . 89

4.3 Competitive testing . 94

5 Conclusions and future work 97
5.1 General conclusions . 97

5.2 Future lines of research . 102

II Publications 105

6 Overview 107

7 Cyclic Cutwidth Minimization Problem 113

8 Cyclic Antibandwidth Problem 135

9 Cyclic Bandwidth Sum Problem 169

10 Two-Dimensional Bandwidth Minimization Problem 185

11 Other related publications 203

III Appendix 207

A Example of solution visualizations 209

B Resumen en castellano 213
B.1 Introducción . 214

B.2 Antecedentes . 220

xvii

B.3 Hipótesis y objetivos . 223

B.4 Metodologı́a . 224

B.5 Propuesta algorı́tmica . 227

B.6 Resultados . 232

B.7 Conclusiones . 235

Bibliography 241

Glossary 267

xviii

List of tables

1.1 Example of the definition of ψ in different host graphs: ψP for the path,

ψC for the cycle and ψG for the grid. 24

1.2 Classification and review of the state of the art of some GLPs organized by

publication type. 27

3.1 Summary of the strategies and algorithms proposed for the problems ad-

dressed. 73

4.1 Sets of instances used to test and compare the proposed algorithms for the

studied GLPs. 86

4.2 Influence of the greedy selection λ of the host vertex, in the performance

of the constructive procedure proposed for the CBS. 91

4.3 Contribution of advanced strategies to the local search proposed for the

2DBMP. 92

4.4 Performance differences between the procedure components and the full

procedure proposed for the CCMP. 93

4.5 Algorithmic proposals existing in the state of the art for the problems stud-

ied in this research. 95

4.6 Summary of the comparison of the best-proposed algorithms with the best

state-of-the-art algorithms. 96

B.1 Resumen de la comparación de los mejores algoritmos propuestos con los

mejores algoritmos del estado del arte. 234

xix

List of figures

1.1 Graphical representation of an optimization problem. 5

1.2 Complexity classes of decision problems. 6

1.3 Graphical representation of two possible neighborhoods of a solution. . . . 11

1.4 Representation of a solution space with flat landscapes. 12

1.5 Origin of the most relevant metaheuristics. 15

1.6 Local search procedure based on tabu memory. 16

1.7 Example of a metaheuristics based on multiple neighborhood exploration. . 17

1.8 Example of graphical representations of real-world systems that can be

modeled as graphs . 19

1.9 Graph representation of a VLSI circuit. 20

1.10 Some graphs of the most used host graphs in GLPs. 22

1.11 Example of an embedding in three different host graphs. 23

1.12 Evolution of the number of publications related to the GLPs. 26

1.13 Representation of the adaptation of the scientific method. 37

2.1 Example of the evaluation of the CCMP objective function. 41

2.2 Example of the evaluation of the bandwidth in a cycle host graph. 43

2.3 Example of the evaluation of the bandwidth in a grid host graph. 45

3.1 Example of the order followed to select vertices of the host graph following

graphical patterns. 55

3.2 Example of an insert move for a cycle hos graph. 59

3.3 Example of a swap move for a cycle hos graph. 60

xxi

3.4 Example of two neighborhood reduction strategies for a minimization op-

timization problem. 71

3.5 Disciplines which influence the heuristic optimization field in a Venn Dia-

gram. 74

3.6 Class diagram of the software developed for the CCMP. 77

3.7 Example of the generic representation of a solution using two arrays. 78

3.8 Graphical representation of two common input graphs of GLPs. 79

3.9 Graphical representation of two solutions for the CCMP. 80

4.1 Evolution of the average objective function value when increasing the num-

ber of constructions of the constructive procedure proposed for the Two-

Dimensional Bandwidth Minimization Problem. 91

4.2 Example output of irace when tuning the GVNS procedure proposed for

the CAB. 93

6.1 Timeline of the relevant events associated with this Doctoral Thesis. 110

7.1 Information related to the publication about the CCMP. 115

8.1 Information related to the publication about the CAB. 137

9.1 Information related to the publication about the CBS. 171

10.1 Information related to the publication about the 2DBMP. 187

A.1 Solutions obtained after the construction phase and during the improve-

ment process. 210

A.2 Example of the best solutions found for the CAB. 211

B.1 Ejemplo de un grafo de entrada y tres posibles grafos huésped. 215

B.2 Ejemplo de embebidos en un grafo huésped ciclo y rejilla. 216

B.3 Ejemplo de evaluación de la función objetivo del CCMP. 218

B.4 Ejemplo de evaluación del bandwidth en un grafo huésped ciclo. 219

B.5 Ejemplo de evaluación bandwidth en un grafo huésped rejilla. 221

xxii

B.6 Representación de la adaptación del método cientı́fico al contexto de la

Tesis Doctoral. 225

xxiii

List of acronyms

2DBMP Two-Dimensional Bandwidth Minimization Problem
ABP Antibandwidth Minimization Problem
ABC Artificial Bee Colony
ACO Ant Colony Optimization
BFS Breadth First Search
BMP Bandwidth Minimization Problem
BVNS Basic Variable Neighborhood Search
CGLP Circular Graph Layout Problem
CAB Cyclic Antibandwidth Problem
CBS Cyclic Bandwidth Sum Problem
CBMP Cyclic Bandwidth Minimization Problem
CCMP Cyclic Cutwidth Minimization Problem
CMP Cutwidth Minimization Problem
CSP Constraint Satisfaction Problem
EDA Estimation of Distribution Algorithms
EP Evolutionary Programming
FLP Facility Layout Problem
FPTAS Fully Polynomial-Time Approximation Scheme
GA Genetic Algorithm
GLP Graph Layout Problem
GLS Guided Local Aearch
GP Genetic Programming
GRAFO Group for Research in Algorithms For Optimization
GRASP Greedy Randomized Adaptive Search Procedure
GVNS General Variable Neighborhood Search
IG Iterated Greedy

xxv

ILS Iterated Local Search
JCR Journal Citation Reports
MA Memetic Algorithm
MinLA Minimum Linear Arrangement Problem
PSO Particle Swarm Optimization
PTAS Polynomial-Time Approximation Scheme
PVNS Parallel Variable Neighborhood Search
RVNS Reduced Variable Neighborhood Search
SA Simulated Annealing
SJR Scimago Journal & Country Rank
SS Scatter Search
TS Tabu Search
URJC Universidad Rey Juan Carlos
VFS Variable Formulation Search
VLSI Very Large Scale Integration
VND Variable Neighborhood Descent
VNS Variable Neighborhood Search

xxvi

Part I

PhD Dissertation

1

Chapter 1

Introduction

The Doctoral Thesis presented in this document is framed within the discipline of heuris-

tic optimization. The first chapter defines the key terms and basic concepts necessary to

contextualize this dissertation in the area of optimization. In addition, different strategies

to address optimization problems are discussed. Next, a particular family of combinatorial

optimization problems is described, the Graph Layout Problems. This chapter concludes by

formulating the hypothesis and objectives of this Doctoral Thesis and the research method

used.

1.1 Optimization

Intuitively, we face optimization problems in almost any decision we make in our daily

lives. For instance, when we want to purchase something at the best price, we explore

different alternatives and weigh their pros and cons. When we desire to travel from one

location to another, we opt for the quickest or most cost-effective route. When we want to

manage our time, we rank the most relevant or pressing activities. All these are scenarios

in which we aim to maximize or minimize the value of a particular magnitude, subject to

certain conditions.

Optimization, from a more technical point of view, is a field of research concerned with

the search for the best possible solution to a mathematically modeled problem. For this

problem, it is defined as one or more mathematical functions (called objective functions)

3

4 Chapter 1. Introduction

and a set of constraints that the solution must satisfy. A solution is represented by the

values assigned to a set of variables. The quality of a solution is determined by evaluating

the objective function associated to the values of the variables. Furthermore, if a solution

satisfies the given constraints, it is called a feasible solution.

In the following section, an optimization problem is mathematically defined, and the

most relevant methods used to tackle these problems are listed: exact methods, approximate

methods, and heuristic and metaheuristic methods.

1.1.1 Optimization problems

An optimization problem may be defined by the couple (S , f), where S represents the set

of feasible solutions, commonly denoted as the search space or the solution space, and

f : S → R is the objective function to optimize, that is, to minimize or maximize. The

objective function assigns a real number to each solution in the solution space, s ∈ S ,

which represents the quality of the solution. Therefore, the objective function f provides

a clear way to determine whether one solution is better than others. Finally, the solution

to a minimization optimization problem consists of finding a solution that minimizes the

function f . In mathematical terms:

s⋆ ∈ S : ∀s ∈ S , f (s⋆)≤ f (s). (1.1)

The solution to an optimization problem is also known as the global optimum. Therefore,

the main goal when solving optimization problems is to find the global optimal solution s⋆.

Note that the above definition can be particularized for maximization problems by simply

changing “≤” to “≥”.

Figure 1.1 illustrates a possible graphical representation of a minimization optimization

problem, as well as the most relevant concepts presented so far. Specifically, in this figure,

the search space of an optimization problem is represented by the x -axis, which also con-

tains all feasible solutions to the problem. The y-axis represents the value of the objective

function associated with each of the solutions. As an example, two solutions s and s⋆ are

illustrated, where s⋆ is also the optimal solution to the problem since there is no solution

with a lower value of the objective function in the search space.

Chapter 1. Introduction 5

𝑓𝑓

𝑆𝑆𝑠𝑠⋆𝑠𝑠

𝑓𝑓(𝑠𝑠)

𝑓𝑓(𝑠𝑠⋆)

Figure 1.1 Graphical representation of an optimization problem where the x -axis rep-
resents the search space S , and the y-axis represents the objective function value of
each solution s,s⋆ ∈ S .

Different families of optimization problems are used to formulate and solve problems

in many domains. Optimization problems naturally fall into two categories with respect to

the variables used to represent a solution: those with continuous variables and those with

discrete variables, often referred to as combinatorial. Continuous optimization problems

are those that search for a set of real numbers or a function; combinatorial optimization

problems are characterized by discrete decision variables and a finite search space [188].

Optimization problems are also classified according to their complexity. The complex-

ity of a problem is usually measured with the complexity of the best algorithm known to

solve it. A problem can be considered as tractable or uncomplicated if a polynomial-time

algorithm is able to solve it. Otherwise, a problem is considered intractable or complicated

if the algorithm that solves it runs in non-polynomial time [238]. Generally, problems are

classified into one of the following categories or classes according to their complexity: P,

NP, NP-complete, and NP-hard.

A problem belongs to the complexity class P if there is a deterministic algorithm that

can solve it in polynomial time relative to the size of the input. For the vast majority of

combinatorial optimization problems, no algorithm is known to obtain an optimal solution

in polynomial time. Consequently, they cannot be solved in a reasonable time. This type of

problem is called NP. As is shown in Figure 1.2, the set of problems belonging to the class P

is a subset of NP problems. Another subset of NP problems is the NP-complete set. For the

6 Chapter 1. Introduction

NP

NP-complete

P

NP-hard

Figure 1.2 Complexity classes of decision problems.

problems belonging to the complexity class NP-Complete, there is no polynomial algorithm

able to solve them (or at least it has not been found yet), but there does exist a polynomial

algorithm that can determine whether a solution solves that problem or not. These problems

are the most complex in the NP class. In addition, they present the peculiarity that if only

one of the problems of this class were solvable by means of a polynomial algorithm, all

of them would be polynomially solvable. Finally, the NP-hard class encompasses all those

problems that do not have a polynomial algorithm to verify whether a given solution solves

the problem. The relationship between these four complexity classes is depicted in Figure

1.2.

1.1.2 Optimization methods

Depending on the complexity of an optimization problem, it may be solved using an exact

or approximate method. Exact methods are those that guarantee the optimality of the solu-

tion found, while the approximate methods generate high-quality solutions, but there is no

guarantee of finding a global optimal solution. Additionally, this last group of approximate

methods is divided into approximation algorithms, heuristic algorithms, and metaheuristic

algorithms. This section collects some of the most relevant exact and approximate meth-

ods for dealing with optimization problems. Specifically, the section is organized into four

blocks: exact techniques, approximation techniques, heuristic techniques, and metaheuris-

tic techniques.

Chapter 1. Introduction 7

Exact techniques

Although this Doctoral Thesis does not focus on problem-solving by means of exact al-

gorithms, it is worth highlighting some of the most important exact techniques, such as

dynamic programming, the branch and bound family, or constraint programming.

Dynamic programming consists of recursively splitting a problem into simpler subprob-

lems. This stepwise optimization method is the result of a series of partial decisions. The

procedure avoids the total enumeration of the search space by removing partial decision

series that will not lead to optimal solutions [17, 238].

The branch and bound and similar algorithms (branch and bound, branch and cut,

branch and price, or A⋆, among others) are based on the dynamic exploration of a solu-

tion tree for the optimization problem considered. The root node of the tree represents the

problem to be solved and its associated search space. Leaf nodes represent a solution to the

problem, and internal nodes are sub-problems of the total solution space. The pruning of

the search tree is based on a bounding function that prunes subtrees that do not contain any

optimal solution [143, 184, 238].

Constraint programming is a programming paradigm in which the relationships be-

tween variables are expressed in terms of constraints. Optimization problems in constraint

programming are modeled using a set of variables linked by a set of constraints. Variables

take their value in a finite integer domain, while constraints can be expressed symbolically

or mathematically [214, 238].

However, most of today’s relevant and practical problems do not have an exact algo-

rithm with polynomial complexity that provides optimal solutions in a reasonable amount

of time, since the solution space is immense. For this reason, approximate algorithms, such

as approximation or heuristic algorithms, play a fundamental role.

Approximation techniques

Approximation algorithms, unlike heuristic algorithms, guarantee the bound of the solution

obtained with respect to the global optimum [94, 115]. This Doctoral Thesis also does not

focus on proposing approximation algorithms, but it is worthwhile to present some of the

most relevant ones.

8 Chapter 1. Introduction

An ε-approximation algorithm for an optimization problem is a polynomial-time al-

gorithm that for any input instance of the problem produces a solution whose objective

function value is within a factor of ε of the value of the optimal solution [252]. In mathe-

matical terms:
s ≤ ε · s⋆ if ε > 1

ε · s⋆ ≤ s if ε < 1
(1.2)

where s is the solution produced and s⋆ is the global optimal solution, and the factor ε

determines the relative performance guarantee [238].

Given the definition of an ε-approximation algorithm, a problem is in the Polynomial-

Time Approximation Scheme (PTAS) class if there exists a polynomial-time (1+ε)-approx-

imation algorithm for any fixed ε > 0. Similarly, a problem is in the Fully Polynomial-

Time Approximation Scheme (FPTAS) class if there exists a polynomial-time (1 + ε)-

approximation algorithm in terms of both input size and 1/ε for any fixed ε > 0 [238].

In general, the aim of designing a problem approximation algorithm is to find a tight

worst-case bound. However, approximation algorithms are specific to the target optimiza-

tion problem (i.e., they are problem dependent). This characteristic limits its applicability.

Moreover, today’s problems tend to be difficult because of the high cardinality of the so-

lution space, the presence of many constraints, or the existence of more than one objective

to be optimized simultaneously. In fact, for the problems of most interest, these classical

techniques rarely find solutions close to the near-optimal solutions in a reasonable amount

of time. In this situation, heuristic and metaheuristic algorithms manage to find a quality

solution in a reasonable time.

Heuristic techniques

The word “heuristic” has an etymological origin from the Greek word euriskein which

comes from eureka, a word that means “finding” or “encountering”. For example, the

Chapter 1. Introduction 9

Merriam-Webster Collegiate Dictionary1 gives the following definition of the word “heuris-

tic”: “involving or serving as an aid in learning, discovery, or problem-solving using ex-

perimental and especially trial-and-error methods” [113]. Similarly, the dictionary of the

Real Academia Española2 defines the word “heuristics” as the technique of inquiry and

discovery, and the process of searching and researching historical documents or sources

[114].

From a scientific point of view, the term “heuristics” was first used by G. Polya to ex-

press the rules by which humans managed common knowledge. Later, S.H. Zanakis defined

it as follows [260]:

“Simple procedures, often guided by common sense, that are meant to provide

good but not necessarily optimal solutions to difficult problems, easily and

quickly”.

Although the coining of the word “heuristics” may be considered recent, people have

been using heuristic techniques since its very beginnings. In fact, in the chapter “A History

of Metaheuristics” in the recognized book “Handbook of Heuristics”, K. Sörensen et al.

state that when studying the history of heuristics with an open mind, it is easy to realize

that people used heuristic procedures long before the term existed [232]. Furthermore, in

the same chapter, the authors put forward that it is not until 1940 that the first formal studies

on heuristics appear. Since then, the literature in this field has been flooded with a wealth

of new techniques and heuristic procedures to solve optimization problems.

Given the diversity of heuristic algorithms proposed over time, and that they are gener-

ally designed for specific problems, classifying them is a complicated and challenging task.

However, there is a clear division between those procedures that aim to construct a solution

to a given problem, generally from scratch; and those search procedures that start from a

given solution and try to improve it [227, 261]. In this Doctoral Thesis, heuristic methods

are the key component for the resolution of the optimization problems studied. The most

1Merriam-Webster, Inc. is a well-known U.S. reference book publisher, usually recognized for its dictio-
naries.

2Real Academia Española, more commonly known as RAE, is a cultural institution dedicated to linguistic
regularization among the Spanish-speaking world.

10 Chapter 1. Introduction

widely used techniques are listed below.

Constructive heuristics are usually the fastest approximate methods. They deal with

the generation of solutions starting, generally, from an empty partial solution and ending

with a feasible complete solution after adding step-by-step individual components to it

(e.g., vertices, edges, variables). Among the heuristic construction algorithms, greedy al-

gorithms emerge above others due to their ability to find good quality solutions [227]. A

baseline greedy construction adds at each step a solution component for which the value

of a defined heuristic function is the best [235]. However, as will be seen in further detail,

the diversity of the solutions produced is also relevant for exploring the solution space in

depth. Therefore, in cases where greedy construction is fully deterministic, additional ran-

domization of the construction process may be adequate. Based on these ideas, researchers

propose semi-greedy heuristics [107] or the randomization of the procedure [72].

Repeated construction of solutions makes sense when the construction is not completely

deterministic and, therefore, the generation of multiple solutions allows exploring different

points in the search space. Moreover, this strategy could be exploited when some knowl-

edge gained from previous solutions could be used to generate the following solutions.

However, the construction of multiples is not recommended when generation is relatively

time-consuming, especially when initial construction steps require a lot of computation

compared to later construction steps [235].

Generally, the solution of the constructive procedures mentioned above is used as a

starting point for improvement methods such as local search [171, 261]. The local search

heuristic starts with a feasible solution and at each iteration tries to replace it with a better

solution from a reduced set of solutions in the solution space. This subset of solutions is

known as a “neighborhood” and the replacement of the solution is denoted as a “move”.

Therefore, a neighborhood is made up of all those solutions that can be reached by per-

forming a specific move (or a set of moves).

From a mathematical perspective, a neighborhood can be understood or defined by a

function N such that N : S → P(S), where S denotes the finite set of solutions and P(S)

represents the set of all subsets of solutions of S . For each solution s ∈ S , N (s) provides

all neighboring solutions of s , that is, all solutions that can be reached from s by a move

[171].

Chapter 1. Introduction 11

𝑓𝑓

𝑆𝑆

𝑠𝑠
𝑁𝑁1(𝑠𝑠)

𝑁𝑁2(𝑠𝑠)

𝑃𝑃2(𝑠𝑠)𝑃𝑃1(𝑠𝑠)

𝑠𝑠1
𝑠𝑠2

Figure 1.3 Graphical representation of two possible neighborhoods (N1, and N2) of a
solution s , a solution obtained with a “first improvement” strategy (s2) and another one
obtained with a “best improvement strategy” (s1).

The exploration of a neighborhood has been extensively studied and can be detrimental

to the performance of algorithms, especially in cases where exploration is costly. Among

the exploration strategies, the first and best improvement strategies stand out in the litera-

ture. If a local search follows the “best improvement strategy”, it selects, at each iteration,

the best possible move that produces an improvement in the current neighborhood; oth-

erwise, in the “first improvement strategy”, it selects the first solution that improves the

current solution.

Based on the example of the minimization optimization problem presented above, two

possible neighborhoods (N1 and N2) for the solution s are represented in Figure 1.3. Each

neighborhood is formed by a subset of solutions of the solution space (P1 and P2 respec-

tively). When exploring the neighborhood N1 (for example), either of the two strategies

mentioned above can be followed: “best” or “first improvement”. On the one hand, follow-

ing a “best improvement” strategy would result in the exploration of all solutions of P1(s)

and a move would be made to the best of them all, in this case, s1. On the other hand, if

a “first improvement” strategy was followed, the first solution that improves the quality of

the solution is chosen, such as s2.

Having defined the main concepts of the local search heuristic, some potential problems

that can be found when implementing it must be discussed. Among these problems, the

most relevant in the context of this Doctoral Thesis are presented below.

12 Chapter 1. Introduction

Figure 1.4 Representation of a solution space with three flat landscapes. For example,
considering the solution s and its neighborhood N (s), all solutions in N (s) have the
same objective function value as s .

The first unavoidable problem is easily getting stuck in local minima or maxima. Lo-

cal search algorithms often get stuck in local optima, which are suboptimal solutions that

cannot be improved by making any changes within the immediate neighborhood of that

solution. This issue arises particularly when the objective function fails to clearly differen-

tiate between the quality of candidate solutions. As a consequence, some problems present

plateaus or valleys in the fitness landscape, which can obscure distinctions in fitness levels

among solutions. This situation is also known as flat landscapes [16, 207, 210]. A graphical

representation of a solution space with flat landscapes is depicted in Figure 1.4. In this Doc-

toral Thesis, we observed that flat landscapes are likely to occur in optimization problems

formulated as max-min (or min-max) problems, where the objective function consists of

maximizing a minimum value (or minimizing a maximum value). The solution proposed

to deal with this situation in the problems studied is presented in Section 3.4.2.

Flat landscapes are one of the reasons for the slow convergence of the proposed algo-

rithms. However, slow convergence may also be due to other reasons such as large search

space, complex and time-consuming computation of the objective function, or complex

constraints to be satisfied.

When addressing large neighborhoods, the termination criteria could become a relevant

issue to consider. In addition, detecting when it is time to terminate an improvement pro-

cess to avoid over-exploring a region of the search space is a very effective strategy when

Chapter 1. Introduction 13

combined with metaheuristic procedures, such as multistart metaheuristics, which will be

described in the following. Other approaches propose reduction techniques to decrease the

number of solutions in a neighborhood. In Section 3.4.3 some strategies are collected in

order to reduce the size of the neighborhoods proposed in this research.

The objective function is a key component of local search algorithms since it is calcu-

lated multiple times to evaluate the solutions within a neighborhood. In some cases, evalu-

ating the objective function requires a long calculation time, therefore, researchers have de-

vised different approaches to address this crucial issue. For example, using approximations

of the original objective functions or other simpler heuristics with similar characteristics.

In this dissertation, this problem is faced through an efficient or intelligent evaluation of the

objective function, avoiding the complete recalculation after a move (see Section 3.4.1).

An additional aspect to take into account when applying local search strategies is the

influence or sensitivity of the initial solution. In some cases, the quality of the final solution

found by a local search algorithm can be highly dependent on the initial solution used as

a starting point. This means that only a few regions are explored, and it is necessary to

introduce some diversity in the generated solutions.

In this sense, local search algorithms must be able to balance the need to explore new

solutions with the need to exploit the current best solution. If the algorithm focuses too

much on exploitation, it may get easily stuck in a local optimum, while if it focuses too

much on exploration, it may waste time exploring bad-quality solutions. This difficulty is

closely related to the definition of a suitable neighborhood. In some cases, it may be difficult

to define an appropriate neighborhood for a given problem, which can make it difficult to

use local search algorithms effectively.

Metaheuristic techiques

Frequently, heuristic methods, such as constructive procedures or local search procedures,

are problem-dependent; that is, they are defined for a given problem to exploit problem-

dependent information. On the contrary, metaheuristics are problem-independent techniques

that can be applied to any problem. Metaheuristics, besides being of general applicability,

solve several of the problems of the heuristics presented above.

The term “metaheuristic” is formed by the Greek prefix meta (beyond in the sense of

14 Chapter 1. Introduction

high-level) with heuristic and is credited to F. Glover [88]. From an algorithmic point of

view, the term is used in two ways. The first way uses it to refer to a high-level framework,

a set of strategies that combine to develop a complete optimization algorithm. The second

meaning of “metaheuristic” denotes a specific implementation of an algorithm based on

such a framework (or on a combination of concepts from different frameworks) designed

to find a solution to a specific optimization problem. In this Doctoral Thesis, the term

“metaheuristic framework” refers to the first meaning, while the “metaheuristic algorithm”

is associated with the second sense of the word “metaheuristic”. Therefore, taking into

account the two possible meanings of the word, in this document, the following definition

proposed by K. Sörensen and F. Glover is adopted [231]:

“A metaheuristic is a high-level problem-independent algorithmic framework

that provides a set of guidelines or strategies to develop heuristic optimization

algorithms. The term is also used to refer to a problem-specific implementation

of a heuristic optimization algorithm according to the guidelines expressed in

such a framework.”

Despite the wide variety of metaheuristics that have been proposed [233], three main

ways of classifying them by the manner they manipulate solutions to produce effective

solutions can be found in the literature: constructing a solution by its constituent parts (de-

noted as constructing metaheuristics); making small changes (local search metaheuristics);

and combining solutions into new ones (population-based metaheuristics) [92, 231].

Based on the previous classification and moving from the first greedy heuristic proposed

for a combinatorial optimization problem in 1971 by J. Edmonds [66] and the first local

search algorithm proposed within the simplex algorithm by G. Dantzig in 1947 [47], Figure

1.5 collects some of the most relevant metaheuristics organized by date of publication (y-

axis) and by origin or main inspiration (x -axis).

Specifically, the following metaheuristics are depicted: Artificial Bee Colony (ABC)

[225, 258], Ant Colony Optimization (ACO) [55, 56], Estimation of Distribution Algo-

rithms (EDA) [10, 142], Evolutionary Programming (EP) [76, 256], Genetic Algorithm

(GA) [116, 51], Guided Local Aearch (GLS) [247, 248], Genetic Programming (GP) [138,

139], Greedy Randomized Adaptive Search Procedure (GRASP) [71, 72], Iterated Greedy

Chapter 1. Introduction 15

1940

1950

1960

1970

1980

1990

2000

Time

GC

LS

GA

SS

GRASP
SA

ILS
IG

TS

VNS EDAACO
PSO

MA

EP

ABC

Constructive Local Search Population
Origin

Figure 1.5 Origin and inspiration of the most relevant heuristic and metaheuristic al-
gorithms, ordered chronologically according to their publication date and classified by
type of strategy.

(IG) [123, 216], Iterated Local Search (ILS)[155, 160], Memetic Algorithm (MA) [179,

180], Particle Swarm Optimization (PSO) [131, 195], Simulated Annealing (SA) [134,

244], Scatter Search (SS) [87, 91], Tabu Search (TS) [87, 90] and Variable Neighborhood

Search (VNS) [174, 175].

Another possible organization of metaheuristics is based on their inspiration or origin.

Specifically, there is a clear distinction between nature-inspired and non-nature-inspired

metaheuristics. For example, GA and EP have their origin in biology; ABC, ACO, and

PSO in different species or animals; or SA in physics. On the other hand, metaheuristics

such as VNS or IG have no natural inspiration.

Additionally, researchers also distinguish metaheuristics that make use of memory dur-

ing the search. The most recognized memory-based metaheuristic is TS [87, 90]. Figure 1.6

illustrates in a simple way the search process guided by a tabu memory. In Figure 1.6(a),

starting from the solution s , an improvement is made to the solution s1 from among the

solutions of its neighborhood N (s). After the move, the previous neighborhood is marked

as tabu, colored gray in Figure 1.6(b). Next, in Figure 1.6(b), from the solution s1, any

solution of N (s1) could be explored as long as it is not marked as tabu. In this case, only

16 Chapter 1. Introduction

𝑓𝑓

𝑆𝑆

𝑠𝑠
𝑠𝑠1

𝑁𝑁(𝑠𝑠)

(a)

𝑓𝑓

𝑆𝑆

𝑠𝑠1

𝑠𝑠2𝑁𝑁(𝑠𝑠)
𝑁𝑁(𝑠𝑠1)

(b)

𝑓𝑓

𝑆𝑆

𝑁𝑁(𝑠𝑠2)

𝑠𝑠3
𝑠𝑠2𝑁𝑁(𝑠𝑠)

𝑁𝑁(𝑠𝑠1)

(c)

Figure 1.6 Local search procedure based on tabu memory. (a) Improving move from
s to s1 ∈ N (s). (b) N (s) is marked as tabu and a worsening move is made from s1 to
s2 ∈ N (s1)\N (s). (c) N (s1) is marked as tabu and an improving move is made from
s2 to s3 ∈ N (s2)\{N (s)∪N (s1)}.

a worsening move is possible, for example, to solution s2. This new move adds new solu-

tions to the tabu memory. Finally, in Figure 1.6(c) a move is made to one of the solutions of

N (s2), in this case to a better-quality solution. This example shows how metaheuristics can

cope with one of the main problems of local search and other heuristic algorithms: local

optimal solutions.

Most metaheuristic algorithms operate on a single neighborhood structure. In other

words, the search space topology does not change during the course of the algorithm, such

as TS. Other metaheuristics, such as VNS or, IG use a set of dynamic structures that allow

diversification of the search by switching between different neighborhoods. An example of

such a metaheuristic is shown in Figure 1.7. Specifically, in Figure 1.7(a) a move is made

from s to the best solution of N1(s), s1. Then, in Figure 1.7(b) there is no possible move

from s1 to a better solution in N1(s1). Therefore, the neighborhood is changed, from N1 to

N2. Now, it is possible to move to a better solution, such as s2.

Researchers also find a clear division between deterministic metaheuristics, those that

take deterministic decisions (e.g., IG or TS); and stochastic metaheuristics, where some

random rules are applied (e.g., SA, GA or VNS). For example, the VNS metaheuristic per-

forms random movements, known as “shake” [174, 175], to move from a local optimum

solution to other regions of the solution space. This perturbation movement is represented

Chapter 1. Introduction 17

𝑓𝑓

𝑆𝑆

𝑁𝑁1(𝑠𝑠)
𝑠𝑠

𝑠𝑠1

(a)

𝑓𝑓

𝑁𝑁2(𝑠𝑠1)
𝑠𝑠1 𝑠𝑠2

𝑆𝑆

𝑁𝑁1(𝑠𝑠1)

(b)

𝑓𝑓

𝑁𝑁1(𝑠𝑠2)

𝑠𝑠2

𝑠𝑠3

𝑆𝑆
𝑁𝑁2(𝑠𝑠2)

(c)

Figure 1.7 Example of a metaheuristics based on multiple neighborhood exploration.
(a) Improving move from s to s1 ∈ N1(s). (b) Improving move from s1 to s2 ∈ N2(s1).
(c) Random shake move from s2 to s3.

in Figure 1.7(c) with a gray dashed line from s2 to s3. Over time, researchers have pro-

posed more advanced shake or perturbation moves that follow greedy criteria or explore

unfeasible solutions. See, for example, [100] or [218].

The perturbation movement aforementioned is an example of a technique that encour-

ages diversification of the exploration of the solution space. Diversification and, therefore,

intensification are two opposing criteria that researchers must take into account when im-

plementing a metaheuristic framework. In diversification, unexplored regions must be vis-

ited to ensure that all regions of the search space are explored equally, and the search is not

limited to a reduced number of regions. In intensification, promising regions are explored

more thoroughly in the hope of finding better solutions. Extreme search algorithms in terms

of exploration are those based on randomness, such as GRASP [71, 72], Reduced Variable

Neighborhood Search (RVNS) [100, 175] or multistart procedures [163, 166]. Similarly,

extreme search algorithms based on intensification strategies are Variable Neighborhood

Descent (VND) [60, 100] or ILS [155, 160], among others.

Metaheuristic algorithms, in the same way as heuristic algorithms, present certain lim-

itations. D.H. Wolpert and W.G. Macready demonstrated with the well-known “No Free

Lunch Theorem” that, on average, no metaheuristic is better than a completely random

search [254, 255]. This is due to the fact that there is insufficient corroboration evidence

that metaheuristics converge to a local optimum and that a metaheuristic may be efficient

18 Chapter 1. Introduction

for one set of problems, but not for others.

In this section, two types of methods for dealing with optimization problems have been

studied: exact and approximate algorithms. So far, both algorithms have been described in-

dependently. However, nowadays, more and more researchers are proposing algorithms that

combine ideas from both approaches. Here, matheuristic algorithms emerge. As its name

suggests, a matheuristic is the hybridization of mathematical programming with meta-

heuristics [75]. The availability of commercial software such as Gurobi [97] or CPLEX

[122] has created new opportunities in heuristic design, generating this new class of algo-

rithms that combine classical heuristic and metaheuristic schemes with mixed integer linear

programming strategies.

1.2 Graph Layout Problems

Graphs are used to represent a significant number of real-life and diverse applications only

by connecting points (vertices or nodes) by lines (edges or arcs). For example, in com-

puter science, graphs are employed for the representation of networks of communication,

organization of data, the flow of computation, computational devices, etc. In linguistics,

graphs are mainly used to analyze language tree grammars and lexical semantic networks

[226]. In physics and chemistry, graph theory is used to study molecules by its represen-

tation through 3D structures [215]. Statistical physics also uses graphs to represent local

connections between interacting parts of a system, as well as the dynamics of a physical

process on such systems [85]. In social sciences, some of its most interesting applications

are focused on rumor spreading or influence analysis [20]. In the field of biology, graphs

have been widely used to represent biomolecules such as genes or proteins [193]. Finally,

from a more general point of view, graphs have been used for the design of maps, to de-

fine the hierarchy of the company, or to determine the distribution of stores or products in a

shopping center [253]. Figure 1.8 illustrates examples of real systems that can be intuitively

modeled as graphs.

Chapter 1. Introduction 19

(a)

Access point

Protected computers
Web UI users on protected

management network
Mobile
device

Proxy
Server

Proxy
Server

WAN LAN LAN

Firewall Firewall

scanner

CIU

Switch

Mgmt

Mgmt

Internet

Mgmt

Corporate
LAN

EDR: Network
scanner

Switch

WANEDR: Network

EDR: Network

(b)

(c)

York Mills

Vaughan
Metropolitan Centre

Highway 407

Pioneer Village

York University

Finch West

Downsview Park

Sheppard West

Wilson

Yorkdale

Lawrence West

Glencairn

Eglinton West

St. Clair West

Dupont

Spadina

St. George

Toronto Subway (2018)
Line 1 Yonge-University

Line 2 Bloor-Danforth

Line 3 Scarborough (RT)

Line 4 Sheppard

station interchange

VIA Rail GO Train

Warden

Lawrence East

Ellesmere

M
id
la
nd

Sca
rb

or
ou

gh

C
en

tre

McCowan

Kennedy

Lawrence

Museum

Queen's Park

St. Patrick

Osgoode

St. Andrew

Union

Dundas

Queen

King

College

Wellesley

Sheppard-Yonge

Finch

North York Centre

Don Mills

Bay

Victoria Park

Main Street

W
oo

db
in

e

G
re

en
w
oo

d

Pap
e

Bro
ad

vi
ew

Bathurst

Bloor-
Yonge

D
un

da
s

W
es

t

D
uff

er
in

C
hr

is
tie

H
ig

h
Par

k

Ja
ne

R
oy

al
 Y

or
k

Kipling

C
oxw

ell

D
onlands

C
hester

O
ssington

Lansdow
ne

Keele

R
unnym

ede

O
ld M

ill

Islington

Bay
vi
ew

Le
sl
ie

Bessarion

Egl
in

to
n

D
av

is
vi
lle

St.
C
la

ir

Sum
m

er
hi

ll

R
os

ed
al

e

C
as

tle
 F

ra
nk

She
rb

ou
rn

e

(d)

Figure 1.8 Example of graphical representations of real-world systems that can be
intuitively modeled as graphs. (a) Phylogenetic relationship of ABC transporter gene
family proteins in soybean [173]. (b) Diagram of the architecture of a telecommu-
nications network [24]. (c) Keyword Co-Occurrence Network Graph for the Overall
Research Field on COVID-19 up to March 16th, 2020 [5]. (d) Toronto subway map in
2018.

However, the purpose of using graphs is not only to represent real-world systems in

order to visualize them but also to model the input of an optimization problem that can be

solved computationally by a computer. Therefore, in recent years, there has been a growing

interest in studying Graph Layout Problems (GLPs) in the context of Very Large Scale

Integration (VLSI) design, which is considered the origin of this family of problems [44,

20 Chapter 1. Introduction

(a)

2 E.G. Pardo et al.

and it is illustrated with a detailed example. Additionally, the most relevant
heuristic methods in the associated literature are reviewed together with the
instances used in their evaluation. Since linear layouts represent a challenge for
optimization methods in general and, for heuristics in particular, this review pays
special attention to the strategies and methodologies which provide high-quality
solutions.

Keywords
Embedding • Graph layout • Heuristics • Linear arrangement • Linear lay-
out • Optimization

Introduction

In recent years there has been a growing interest in studying graph layout problems.
From a historical perspective, the terms layout and layout problem come from their
early application to the optimal layout of circuits in the context of Very Large-
Scale Integration (VLSI) design. A VLSI circuit can be modeled by means of a
graph, where the edges represent the wires and the vertices represent the modules.
Specifically, given a set of modules, they look for placing these modules on a
board in both a non-overlapping manner and wiring together the terminals on the
different modules. In general, there are two stages: placement and routing. The
former consists in placing the modules on a board while, the latter consists in wiring
together the terminals on different modules that should be connected. In Fig. 1 an
example of a circuit design with six modules (identified with a different letter, A–F)
and their corresponding connections through different tracks are presented. This
circuit can be modeled as a graph, as it will be seen below. Notice that the order of
the modules can determine, among others, the number of tracks needed to wire the
circuit and, therefore, the space needed to build it.

From a theoretical point of view, the main objective of graph layout problems
is to project an original graph G D .VG;EG/ into a predefined host graph H D
.VH ;EH/. This projection, generally known as embedding, consists in defining

A B C D E F

Fig. 1 Circuit design with six modules and its corresponding connections(b)

M. He et al.

Fig. 1 Illustration of a ring
circuit layout

Generally, GLPs consist of finding a layout of an input graph to optimize a certain
objective function. GLPs have two mapping functions. The first function maps each
vertex in the input graph to a vertex in the host graph, and the second function maps
each edge in the input graph to an edge in the host graph. These host graphs can be
lines, trees, grids, and cycles. Apart from the different types of host graphs, different
objective function values may be considered in different GLPs. For more details on
GLPs, we refer the reader to Díaz et al. (2002).

In this paper, we focus on a particular GLP, known as the cyclic cutwidth min-
imization problem (CCMP). The CCMP studied in this work involves mapping an
input graph to a cyclic host graph to minimize the maximum cut of a host edge. The
detailed description of the problem is given in Sect. 2. Among the large family of the
GLPs, the cutwidth minimization problem (CMP) (Cohoon and Sahni 1987) shares
similarities with CCMP. Their objective function values are the same and the differ-
ence lies in that the host graph of CMP is a line, while the host graph of CCMP is
a circle. CMP is NP-hard and computationally challenging (Cavero et al. 2021; Jain
et al. 2016; Pardo et al. 2013), which is why solving CCMP also represents a real
computational challenge for any solution method.

According to Raspaud et al. (2000); Johnson (2003), an important application of
CCMP comes from the ring circuit layout, where processing elements are placed on a
cycle and wires are routed around the cycle. Figure 1 shows a ring circuit board layout,
where all the connections of electronic components are predetermined, and different
layouts lead to different cutwidth distributions. By discovering the cyclic cutwidth, a
circuit can be arranged efficiently such that the wires are evenly distributed across the
circuit, alleviating congestion.

For CCMP, several published papers can be found in the literature. The literature
includes some studies on several special classes of graphs. For example, Chavez and
Trapp (1998) embedded trees into cyclic host graphs in such a way as to minimize the

123

(c)

Figure 1.9 (a) A VLSI VL82C106 Super I/O chip [45]. (b) Graph representation of
a circuit design with six modules and its corresponding connections [192]. (c) Graph
representation of a ring circuit design with 15 modules and its corresponding connec-
tions [110].

65]. Figure 1.9(a) shows an example of a VLSI chip. A VLSI circuit can be modeled using

a graph, where the edges represent the wires and the vertices represent the modules (see

Figures 1.9(b) and 1.9(c)). Then, given a set of modules, designers try to place them on a

board in both a non-overlapping manner and wiring together the related terminals on the

different modules. Therefore, the objective is to reduce the total number of tracks needed

to wire the circuit and, consequently, to decrease the space needed to build it.

After the first motivation, based on the design of VLSI, GLPs has emerged as a family of

combinatorial optimization problems whose main objective is to project or embed a graph

into another graph, denoted as host graph. This projection has also been denoted as layout

[63, 191], labeling [42, 130], numbering [41, 191], arrangement [194, 206] or ordering

[25, 81]. Moreover, GLPs have been used to model many other real-life problems and

applications such as information retrieval, numerical analysis, biology, and graph theory,

among others.

Next, the definition of several graph layout problems and associated concepts are pre-

sented. The formulated basic notation is used as a unique framework to define, in general,

most of the problems that belong to the GLP family.

Chapter 1. Introduction 21

1.2.1 Definitions and notation

The main element of every GLP is a graph. In order to define a graph and its related nota-

tion, it is presented the standard definition commonly used in Computer Science.

Let G = (VG ,EG) be an input graph where the set of vertices is denoted as VG , and its

edge set as EG . Similarly, let H = (VH ,EH) be a host graph, where the set of vertices is

denoted as VH and its edge set as EH . Specifically, the most commonly used host graphs

are those with a well-known topology in graph theory, such as a path, a cycle, a grid (or

lattice), a tree, a hypercube, or a toroid, among others. Some of them are formally defined

next.

The notation (u,v) stands for the undirected edge that connects the vertices u and v .

The degree of a vertex u on a graph G is denoted as, deg(u) and the maximum and mini-

mum degree of G are defined as ∆(G) and δ (G), respectively. Finally, a path of a graph G

(similarly with H), denoted as p(u,v), is a sequence of edges. More formally: p(u,v) =

{(u,u1),(u1,u2), . . . ,(ui−1,ui),(ui ,v)}, where (u,u1),(u1,u2), . . . ,(ui−1,ui),(ui ,v) ∈ EG .

Figure 1.10(a) shows an example of an input graph G , with VG = {A,B,C,D,E} and

EG = {(A,B),(A,C),(A,E),(B,C),(C,D),(C,E),(D,E)}. Figures 1.10(b), 1.10(c) and

1.10(d) show an example of a path, cycle, and grid host graph, respectively. In particu-

lar, the path host graph, denoted as HP , depicted in 1.10(b) is made of VHP
= {1,2,3,4,5}

and EHP
= {(1,2),(2,3),(3,4),(4,5)}. Similarly, the cycle host graph, denoted as HC , de-

picted in 1.10(c) is made of VHC
= {1,2,3,4,5} and EHC

= {(1,2),(2,3),(3,4)(4,5),(5,1)}.
Finally, the grid host graph, denoted as HG , depicted in 1.10(d) is made of VHG

={1,2,3,
4,5,6,7,8,9} and EHC

= {(1,2),(1,4),(2,3),(2,5),(3,6),(4,5),(4,7),(5,6),(5,8),(6,9),
(7,8),(8,9)}.

Given an input graph G and a host graph H , an embedding or projection of G in H is

defined through the definition of two mathematical functions, usually denoted as ϕ and ψ .

The first of the functions mentioned, ϕ , assigns each vertex of the input graph to a

vertex of the host graph. In mathematical terms, let ϕ be an injective function such that:

ϕ : VG → VH , ∀u ∈ VG ∃! v ∈ VH |ϕ(u) = v . (1.3)

22 Chapter 1. Introduction

E
A

CD

B

(a)

1 2 4 53

(b)

1

25

4 3
(c)

1 2 3

4 5 6

7 8 9

(d)

Figure 1.10 Some graphs of the most used host graphs in GLPs. In particular, (a)
depicts an input graph, (b) shows a path host graph and, (c) presents a cycle host graph
and (d) illustrates a grid host graph.

The second function, ψ , is an injective function that maps each edge (u,v) ∈ EG to a

set of paths in H whose endpoints are ϕ(u) and ϕ(v). More formally,

ψ : EG → PH , ∀ (u,v) ∈ EG ∃p(ϕ(u),ϕ(v)) ∈ PH with ϕ(u),ϕ(v) ∈ VG . (1.4)

For some specific GLPs the function ψ is slightly modified to assign to an edge (u,v)

∈ EG , the path with the smallest possible cardinality between ϕ(u) and ϕ(v). Formally,

this variant of the function ψ is defined in Equation 1.5.

ψ((u,v)) = argmin
p(w ,z) ∈ PH

{|p(ϕ(u),ϕ(v))|}, (1.5)

where the operator | · | computes the cardinality of a path, that is, the number of edges that

constitute it.

Chapter 1. Introduction 23

Given the input graph G and the host graphs HP , HC and HG depicted in Figure 1.10,

now we define a possible mapping or embedding of G in each of the host graphs. Notice

that, in these figures, the host graph is shown in dashed black lines and the input graph in

gray solid lines. Specifically, Figure 1.11(a) shows an embedding of G in HP using the

tuple of functions (ϕP , ψP). Similarly, Figure 1.11(b) illustrates an embedding of G in HC

through (ϕC , ψC). Finally, Figure 1.11(c) shows an embedding of G in HG through (ϕG ,

ψG). The definition of ϕ function in any of the three consider embeddings is equivalent:

ϕP = ϕC = ϕG = {ϕ(A) = 1,ϕ(B) = 2,ϕ(C) = 2,ϕ(D) = 3,ϕ(E) = 4}. However, the

definition of ψ depends on the paths that can be found in the host graph. In Table 1.1 the

paths assigned to each edge of the input graph are defined, considering the definition of the

ψ function in Equation 1.5. As it can be observed, for the edges (A,E) and (C,E) there are

two possible paths that can be assigned through the ψ function when the host graph is a

grid. Note that this situation would also occur when the host graph is a cycle.

1 2 4 53
EA C DB

(a)

1

25

4 3

E

A

CD

B

(b)

1 2 3

4 5 6

7 8 9

A B

ED

C

(c)

Figure 1.11 Example of an embedding in a path host graph (a), a cycle host graph (b),
and a grid host graph (c).

24 Chapter 1. Introduction

(u,v) (ϕ(u),ϕ(v)) ψP (ϕ(u),ϕ(v)) ψC (ϕ(u),ϕ(v)) ψG(ϕ(u),ϕ(v))

(A,B) (1,2) {(1,2)} {(1,2)} {(1,2)}
(A,C) (1,3) {(1,2),(2,3)} {(1,2),(2,3)} {(1,2),(2,3)}
(A,E) (1,5) {(1,2),(2,3),(3,4),(4,5)} {(5,1)} {{(1,2),(2,5)},

{(1,4),(4,5)}}
(B,C) (2,3) {(2,3)} {(2,3)} {(2,3)}

(C,D) (3,4) {(3,4)} {(3,4)}
{{(3,6),(6,5)(4,5)},
{(3,2),(2,5),(5,4)},
{(3,2),(2,1),(1,4)}}

(C,E) (3,5) {(3,4),(4,5)} {(3,4),(4,5)} {{(3,6),(6,5)},
{(3,2),(2,5)}}

(D,E) (4,5) {(4,5)} {(4,5)} {(4,5)}

Table 1.1 Example of the definition of ψ in different host graphs: ψP for the path, ψC

for the cycle and ψG for the grid.

Problems defined over a path host graph, are probably the most studied subfamily

within the context of GLPs, followed by cycles and grids. However, other general struc-

tures are also preferred as host graphs, such as: trees, hypercubes, or torus, among others.

Next, the most relevant host graphs are formally defined.

A path graph, denoted as Pn , is defined in [21, 53] as a graph with n vertices, that can

be listed in order v1,v2, . . . ,vn such that the edges are (vi ,vi+1) where i = 1,2, . . . ,n− 1.

The path graph is a tree with two nodes with degree 1, and the other n−2 nodes (if exist)

of degree 2. A path graph is usually drawn so that all its vertices and edges lie on a single

straight line [95]. In the context of GLP, a path host graph, H , for an input graph G , satisfies

|VG |= |VH |= n. Figure 1.10(b) illustrates a path graph with n = 5.

A cycle graph, denoted as Cn , is defined as a path graph where the edge set contains

the edge (vn ,v1). Therefore, the number of vertices of Cn is equal to the number of edges,

and each vertex has degree 2; that is, every vertex has exactly two edges incident with it

[53]. Similarly to the path host graph, a cycle host graph has the same number of vertices

as the input graph. Figure 1.10(c) depicts a cycle graph with n = 5. In this dissertation, the

subfamily of GLPs whose embedding occurs in a cycle will be named as Circular Graph

Layout Problem (CGLP).

A grid graph is defined as the Cartesian product Pn ×Pm of path graphs of n and m

Chapter 1. Introduction 25

vertices, respectively [2]. Grid graphs are a common type of lattice graph, whose drawing

in an Euclidean space R2 forms a regular tiling. These graphs can be represented as a 2-

tuple (i , j) that locates a point in the plane. Considering the GLPs context, given an input

graph G , the grid host graph satisfies |VH | = ⌈
√
n⌉ · ⌈√m⌉ and therefore, 1 ≤ i ≤ ⌈√n⌉

and 1 ≤ j ≤ ⌈√m⌉. An example of grid host graph for an input graph with n = m = 5 is

depicted in Figure 1.10(d). Even though the grids may not have an equal number of rows

and columns, the problem tackled in this Doctoral Thesis restricts the host graph to have

an equal number of vertices in both dimensions as the one presented in Figure 1.10(d).

The second way to classify GLPs is according to the optimized objective function. The

most relevant objective functions involve the “bandwidth” calculation. The bandwidth is

defined as the length (or cardinality) of a path assigned to an edge of the input graph. Based

on the bandwidth, the following objective functions are highlighted: maximum bandwidth,

minimum bandwidth, or the sum of the bandwidth (also known as minimum linear arrange-

ment), among others. In the literature, other objective functions can be found on the basis

of more complex calculations, such as the “cutwidth” or “edge bisection”. The maximum

“cutwidth” is computed as the maximum number of edges that traverse the space between

every of two consecutive vertices of the arrangement. The edge bisection is calculated as

the number of edges that link disjoint sets of vertices of the same size, obtained as a par-

tition of the host graph. An exhaustive study on GLPs objective functions can be found in

[65].

A particular GLP depends mainly on the objective function to be optimized and the host

graph on which the embedding is to be performed. The combination of these two elements

has provided a wide range of problems denoted as the GLPs family.

1.2.2 Literature review

In the literature, it can be found a wide variety of articles studying GLPs from different

perspectives. The earliest works related to the GLPs date back to the end of the 20th century.

At the moment when this dissertation was written, about 45,000 related publications were

collected. To illustrate the number of publications, Figure 1.12 shows a graph with the

evolution of the number of publications over the years and the cumulative percentage of

26 Chapter 1. Introduction

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

500

1000

1500

2000

2500

1963 1973 1983 1993 2003 2013 2023

Ac
cu

m
ul

at
ed

 p
er

ce
nt

ag
e

of
 p

ub
lic

at
io

ns

N
um

be
r o

f p
ub

lic
at

io
ns

Year

Figure 1.12 Evolution of the number of publications3 related to the GLPs.

publications.

Most of the papers address GLPs from a theoretical point of view: studying their com-

putational complexity, proposing equations to determine the value of the optimal embed-

ding, determining lower and upper bounds, or finding relationships between problems, etc.

This type of work generally focuses not only on an objective function and a particular

host graph but also on a particular input graph, which usually has a well-known topology.

On the other hand, researchers also study these problems from a more general perspective

proposing exact and approximate algorithms for any type of input graph. Table 1.2 shows

a summary of contributions organized by contribution typology and the objective function

being optimized for the two most studied host graphs, the path, and the cycle. Specifically,

the citations colored in green are theoretical publications, the ones in yellow are exact ap-

proaches, and the ones in red correspond to heuristic approaches.

The combination of an objective function with a host graph determines a particular

GLP. The maximization of the bandwidth on the path host graph is known as Antibandwidth

3Data is collected from Web of Science and the query: https://www.webofscience.com/wos/
woscc/summary/ebb5950b-66dd-4aac-a45f-97854680b05b-62b12cce/relevance/1.

https://www.webofscience.com/wos/woscc/summary/ebb5950b-66dd-4aac-a45f-97854680b05b-62b12cce/relevance/1
https://www.webofscience.com/wos/woscc/summary/ebb5950b-66dd-4aac-a45f-97854680b05b-62b12cce/relevance/1

Chapter 1. Introduction 27

Minimization Problem (ABP), while for the cycle host graph it is denoted as Cyclic An-

tibandwidth Problem (CAB). Similarly, the problem that minimizes the bandwidth for the

path host graph is known as Bandwidth Minimization Problem (BMP), and for the cycle

host graph, the Cyclic Bandwidth Minimization Problem (CBMP). The minimization of the

sum of the bandwidth is denoted as the Minimum Linear Arrangement Problem (MinLA)

for the path and the Cyclic Bandwidth Sum Problem (CBS) for the cycle. Finally, the mini-

mization of the cutwidth is denoted as Cutwidth Minimization Problem (CMP), and for the

cycle as Cyclic Cutwidth Minimization Problem (CCMP).

Host graph
Objective Function Path Cycle

Max. Bandwidth
[3] [146] [172]
[237] [249] [11]
[58] [156] [204]

[54] [146] [172]
[199] [237] [12]
[31] [157]

Min. Bandwidth

[105] [119] [127]
[146] [200] [264]
[105] [165] [148]
[176] [135]

[52] [119] [127]
[141] [151] [152]
[264] [213] [201]
[202] [210]

Min. Sum. Bandwidth

[103] [83] [65]
[82] [4] [26]
[48] [96] [168]
[206] [13] [136]
[194] [205]

[259] [37] [126]
[221] [98] [209]
[208] [33]

Min. Cutwidth

[36] [106] [128]
[212] [241] [154]
[158] [167] [185]
[44] [59] [162]
[186] [192] [49]

[1] [8] [27]
[43] [68] [125]
[128] [203] [223]
[222] [224] [34]
[28] [110] [124]

Table 1.2 Classification and review of the state-of-the-art of some GLPs organized by
publication type. Specifically, the citations colored in green are theoretical publica-
tions, the ones in yellow are exact approaches, and the ones in red correspond to
heuristic approaches.

This Doctoral Thesis focuses on GLPs where the host graph is a cycle. However, an

additional problem has been studied where the host graph is a grid. GLPs with grid host

28 Chapter 1. Introduction

graphs have not been studied as deeply as those with paths or cycles host graphs. For

that reason, they have not been included in Table 1.2. However, it is worthwhile to collect

the most relevant works related to this family of problems. Specifically, there are several

theoretical papers [42, 149, 150], one paper proposing exact algorithms based on Constraint

Satisfaction Problem (CSP) [211] and two heuristic approaches [32, 211].

Among the theoretical papers collected in this section, it is worth highlighting those

that aim to demonstrate the complexity of the problems. Originally, L.J. Stockmeyer, in

a private communication to Michael R. Garey and D.S. Johnson, made a reduction of the

CMP to the Simple Max-Cut problem [93, 133] in order to demonstrate that the CMP is

NP-complete [82, 83]. However, this contribution was never published, although this result

was reported in 1977 by F. Gavril [84]. Further studies of the computational complexity

of the CMP led to the demonstration that it remains NP-complete for some specific input

graph [64, 159, 177]. Once there was a demonstration of a GLP as belonging to the NP-

complete, other researchers demonstrated the membership of similar problems, where the

embedding is performed into a path graph, to that same complexity class [187].

As it can be observed, the complexity of problems whose embedding is performed on

path host graphs has been extensively studied. However, this type of work is barely found

when moving to other GLPs, where the host graph is not a path. Generally, authors address

this issue just by relating the complexity of a particular problem to another problem in

which complexity class is known. However, it is possible to find studies for specific graphs.

Before concluding this section, a crucial aspect of the experimentation process, espe-

cially when analyzing and comparing the algorithms, must be pointed out. To evaluate the

performance of the proposed algorithms, the researchers test them with different types of

instances, which, in the context of the GLPs, correspond to the input graph to be embedded.

The instances that can be found in the literature for these problems can be classified into

three groups. The first set consists of graphs with a specific topological structure, such as

the Cartesian product of several graphs, hypercube graphs, grids, or cones, among others.

The second type includes graphs coming from different scientific disciplines or inspired by

real-world applications. In particular, the Harwell-Boeing collection [61] is of great interest

in this group, as it has been widely used for many other problems modeled with graphs.

Finally, the last category encompasses all graphs that have been generated synthetically or

Chapter 1. Introduction 29

artificially, generally at random, or following a certain probability distribution [157, 164].

All the sets of instances used in the comparisons to test the proposed algorithms are col-

lected in each of the articles that comprise this dissertation and summarized in Section

4.1.

1.2.3 Historical perspectives and applications

Algorithms applied to GLPs have a wide range of applications in various fields, including

computer science, engineering, and social sciences. This section provides several additional

applications for GLPs.

As stated previously in this chapter, the first known application and origin of the GLPs,

is the design of VLSI circuits. VLSI circuit can be modeled using a graph, where the edges

represent the wires, and the vertices represent the modules [191]. In this sense, GLPs are

used to determine the placement of transistors on a chip to minimize the length of the wires

that connect them. This can help to reduce not only the amount of time it takes for signals

to travel between transistors, which can improve the performance of the chip but also the

production cost.

Once graph embedding problems became established in the scientific community as

a family of problems with both theoretical and applied interest, researchers proposed their

application to a diverse set of areas. Some of these applications, which are presented below,

were previously collected in [65].

Visualizations and graph drawing

GLPs are commonly used to design the visualization of networks. Since networks or graphs

can model data from a wide variety of disciplines, GLPs emerge as a methodology that

could address their visualization. The following is a list of some possible disciplines in

which the visualization of networks by means of GLPs may be of greatest interest.

• Biological networks, such as networks of proteins or genes. These visualizations can

help researchers understand the relationships between different biological entities

and how they interact with each other [35, 137, 263].

30 Chapter 1. Introduction

• Communication networks, such as telephone or Internet connection networks. These

visualizations can help network engineers to analyze the structure and properties of

the network and identify potential problems or areas for optimization. These visual-

izations can also help to identify patterns and relationships within the data [240].

• Computer-aided design to visualize complex systems and to help designers and en-

gineers to interpret the structure and properties of the systems they are working with

[181].

• Visualizations of transportation networks, like roads or air routes, can be useful for

planners and engineers. They can show how the network is organized and what its

features are. They can also help find possible problems or areas that need improve-

ment [50, 262].

• Social networks, such as networks of friends on social media platforms. These visu-

alizations can help to identify patterns and relationships within the network, such as

the formation of communities or the identification of key influencers. In particular,

one potential application of a circular graph layout is the representation of a group of

friends who are connected to each other through mutual acquaintances. The circular

layout can help to show the relationships between the different members of the group

and how they are connected to each other [19, 73, 182, 242].

Generally, to deal with these visualizations, graph-drawing systems are commonly used

[78, 129]. An automated graph-drawing system is a computer program that takes a graph as

input and produces a visual representation of it, typically in the form of a diagram. The goal

of an automated graph-drawing system is to create a clear and aesthetically pleasing visu-

alization of the graph that makes it easy for a human viewer to understand the relationships

between the vertices and the edges [169, 197].

Automatic graph-drawing systems use various algorithms to determine the position of

the vertices and the route of the edges in the diagram. Among them, one of the most rel-

evant is the Sugiyama framework [236]. Some of the most common objectives of these

algorithms are to minimize the number of edge crossings, avoid edge overlaps, and balance

the distribution of the vertices in the diagram [89]. Today, many graph-drawing systems

Chapter 1. Introduction 31

have been proposed, such as Graphviz [79], yEd [250], the Open Graph Drawing Frame-

work (OGDF) [40] or Tulip [9], among others.

Numerical analysis

Traditionally, GLPs have been used in the context of numerical analysis where researchers

often work with large matrices that have a high number of zero entries, known as sparse

matrices. Existing algorithms are inefficient when applied to very sparse matrices. To im-

prove the efficiency of these algorithms, it is typically desirable to reorder the rows and

columns of the matrix in such a way that the non-zero entries of the matrix are as close

as possible to the diagonal of the matrix. It is in this need for reorganization of rows and

columns where GLPs emerge. In particular, GLPs are used to model the data as a graph

and then to find the best arrangement of the vertices and edges of the graph. By minimizing

the distance between non-zero entries and the diagonal, it can improve the performance of

algorithms that rely on the sparsity of the matrix. Some references about these applications

can be found in [14, 86, 217, 228].

Data analysis

GLPs could be used as a framework and support system in the area of data analysis to

identify patterns and relationships within a dataset. This application could be related to

other fields like data mining, market research, or network analysis, among others.

For example, suppose a large dataset of customer transactions from an online retail

store. The objective is to identify patterns and trends in the data that could improve the

store’s marketing and sales strategies. One way to do this is to model the data with a graph

where each product is represented by a vertex and each transaction is represented by an

edge, connecting those products that a customer has purchased in the same transaction.

Therefore, those products that have been purchased together on numerous occasions will

be highly connected. Then, a GLP can be defined just by using the network of products

as the input graph of the problem and the host graph could be any simple structure such

as a path, grid, or cycle. Then, the objective will be to minimize the bandwidth, i.e., the

distance between each product on the selected host graph. Finally, the layout generated

32 Chapter 1. Introduction

could be used to identify groups of products whose customers are in the habit of buying

them together, which can help us target our marketing efforts more effectively [104, 144,

145].

Facility planning

Facility planning can be found in many contexts, such as healthcare, education, urban plan-

ning, manufacturing process, logistics, or retail, among others. In healthcare, for example,

facility planning involves designing hospitals and clinics that are functional, efficient, and

safe for patients and medical staff. In logistics, it involves designing warehouses, distribu-

tion centers, and other facilities that support the movement and storage of goods. In retail,

it involves designing stores that are attractive and inviting to customers, while also being

functional and efficient for employees. However, the most relevant applications of GLPs in

facility planning are focused on the manufacturing process.

The manufacturing process is usually related to a family of problems referred to as the

physical organization of a production system. The best layout is often the one that results in

the greatest overall efficiency of transactions or flows between facilities. Costs can also be

an important factor in choosing an alternative distribution plan for your application. Some

models are based on an analysis of the relative location of facilities. In this sense, Facility

Layout Problems (FLPs) can be understood as a particular family of problems within GLPs,

where the facilities and their relationships can be modeled as an input graph, and the desired

layout is the host graph [108, 170].

FLPs have been studied as much as the GLPs. Indeed, there is a clear relation be-

tween layouts and host graphs. For example, regular layout configurations are preferred

over irregular ones. In this sense, the most relevant ones are linear single-row layouts, lin-

ear double-row layouts, semicircular layouts, and closed-loop layouts. Among the above

layouts, the loop layout was found to be more attractive due to their relatively low initial

costs and high flexibility in material handling [38, 147, 219]

Overall, algorithms applied to GLPs play a key role in many fields, and they are an

essential tool for understanding and analyzing complex systems and data.

Chapter 1. Introduction 33

1.3 Hypothesis and objectives

In all research projects, the objectives must be determined prior to their implementation.

Generally, these objectives are based on the need to address or solve a given problem and

they are aimed to obtain an expected result, usually known as the starting hypothesis.

After a deep review of the state of the art of GLPs, we identified a family of problems

whose graph embedding is performed on host graphs with a regular cycle-like structure.

These problems, which are presented in depth in Chapter 2, are of great interest from both

academic and applied points of view. In addition, we consider the possibility of improving

existing approaches by finding better solutions in a reduced computational time.

Since GLP are classified as NP-hard problems, that is, there is no exact method able to

solve them in a reasonable amount of time, we believe that if we apply new heuristic meth-

ods to solve these problems, they could be solved more efficiently compared to previous

proposals in the state of the art.

Based on these ideas, the hypothesis (Section 1.3.1) and the objectives (Section 1.3.2)

are elaborated.

1.3.1 Hypothesis

The hypothesis presented in the following is considered the cornerstone of this research

project since it serves as a guide. The hypothesis proposed for the development of this

Doctoral Thesis can be summarized in the following terms:

Heuristic algorithms, used in conjunction with metaheuristic techniques, are

methods capable of finding high quality, potentially near-optimal solutions to

optimization problems modeled by graphs consisting of embedding a candidate

graph in a host graph with circular structure.

1.3.2 Objectives

Derived from the hypothesis previously introduced, the main objective of this Doctoral

Thesis is stated as follows:

34 Chapter 1. Introduction

Design and implement heuristic algorithms, used in combination with meta-

heuristic techniques, to address optimization problems modeled by graphs con-

sisting of embedding graphs in cycles.

To achieve the main objective, it is necessary to cover the following specific objectives for

each of the problems tackled:

• Review and analyze the current state of the art of each GLP. This objective starts

by studying the GLP family from a general perspective and then focuses on problems

where the embedding is performed on a particular host graph. Later, an exhaustive

study of the problem under consideration is carried out. As a result, it is expected

to collect and document strategies, algorithms, and procedures used to tackle related

problems. Finally, the sets of instances on which these algorithms have been tested

have to be collected.

• Obtain properties and structural characteristics of the problem. Since heuris-

tic procedures are generally problem-dependent, learning the characteristics of the

problem can help to propose very advanced and efficient techniques.

• Model the problem so that it can be approached computationally. This objective

involves the selection of the most appropriate programming language and paradigm.

• Design and develop a heuristic algorithm to solve the problem. For this pur-

pose, heuristic and metaheuristic techniques will be used. In particular, we intend

to use some algorithms or strategies discussed in Section 1.1.2. This objective in-

cludes identifying the most appropriate heuristic and metaheuristic algorithms for

each problem. In addition, algorithms typically have certain parameters that must be

adjusted.

• Compare experimentally the proposed algorithm with the state-of-the-art al-
gorithms. The state-of-the-art algorithms identified will be executed to perform an

exhaustive and fair comparison, over a previously used set of instances. The state-of-

the-art algorithms will ideally be the ones originally implemented by the authors or,

in the worst case, re-implemented.

Chapter 1. Introduction 35

• Prepare a document that includes the work carried out and the conclusions of
the results obtained. In the final phase of the research, the Doctoral Thesis report

will be written, describing the problems identified and addressed. For these problems,

the state of the art will be collected, and both the contributions made and the results

obtained will be documented.

• Disseminate the results by publishing them in research forums such as journals,
conferences, or workshops. The results of the research work will be subject to a

review process by independent institutions that will culminate with their publication

in journals of national and international prestige in the optimization research area or

in conferences.

1.3.3 Research methodology

The development of this Doctoral Thesis is based on the scientific method as a method-

ology to generate new knowledge. Specifically, this method is based on observation, mea-

surement, experimentation, formulation, and modification of the hypothesis. Moreover, this

method can be applied to any scientific area whose purpose is to provide new knowledge.

In this case, the scientific method is used as a guide to propose heuristic and metaheuris-

tic algorithms to address the combinatorial optimization problems introduced in previous

sections. Figure 1.13 shows the research process proposed in this Doctoral Thesis.

The process begins with the problem statement (phase 1). This is followed by a study of

the state of the art, that is, learning about the most recent advances related to the problem

at hand (phase 2). In the same phase, the tasks of identifying and reproducing previous

algorithms and obtaining the instances (also known as inputs or test cases) are highlighted,

since they are fundamental for the correct development of the research.

The following five phases of the research process, detailed in Figure 1.13, are repeated

iteratively (phases 3, 4, 5, 6, and 7). Starting with the formulation of a hypothesis (phase

3), a study of the problem is carried out to enable the extraction of characteristics and

their modeling (phase 4). Then, an algorithm is proposed and implemented to address the

problem concerned. Generally, the algorithms implemented will be heuristic algorithms,

metaheuristic algorithms, or advanced strategies that increase the efficiency or robustness of

36 Chapter 1. Introduction

the proposed algorithm (phase 5). After the implementation of an algorithm, it is necessary

to analyze its performance through a set of experiments (phase 6). These experiments are

classified into preliminary experiments if the objective is to establish the best configuration

of the parameters of the proposed algorithm; or competitive experiments, aimed to compare

the proposed algorithm with state-of-the-art algorithms. Finally, the starting hypothesis is

validated or refuted (phase 7). The most relevant results of the research conducted are

disseminated through publications in journals, conferences, or workshops (phase 8).

Finally, it should be emphasized that each of the phases of the research process de-

scribed in Figure 1.13 is related to one or more of the objectives, set out in the previous

section. Therefore, the correct compliance to this scheme favors the achievement of the

objectives set.

1.4 Structure of the document

To conclude the introductory chapter of this Doctoral Thesis, the structure of the document

is described in summary form, including a brief description of each part and chapter that

comprise it.

• Part I summarizes the research developed, including the introduction and formal-

ization of the problems, the existing heuristics and metaheuristics generally used to

tackle optimization problems, and the results of each problem, including the conclu-

sions, obtained. Specifically, this part is divided into the following chapters.

– Chapter 1 introduces the concept of optimization and optimization problems

and collects the most relevant methods to solve them. In addition, this chap-

ter presents the GLPs, the most relevant related work, and the motivation to

study them. This chapter concludes with the statement of the hypothesis and

objectives of the Doctoral Thesis.

– Chapter 2 presents the GLPs addressed in this Doctoral Thesis. For each of the

studied problems, the objective function is formalized and explained with an

example. In addition, other variants are described.

Chapter 1. Introduction 37

Formulate the
problem

Obtain instances

Identify
previous

algorithmsStudy the state
of the art

Postulate a
hypothesis

Heuristics

Metaheuristics

Advanced
strategies

Develop an
algorithm

Disseminate the
results

Identify
problem

properties

1

4

Run
experiments

Parameter
tunning

Compare with
the state of the

art

6

Validate the
hypothesis

7

2

3

5

8

Figure 1.13 Representation of the adaptation of the scientific method to the context of
this Doctoral Thesis.

38 Chapter 1. Introduction

– Chapter 3 describes the algorithmic proposal to tackle the considered prob-

lems. In particular, the main components of the methodology are classified into

constructive procedures, improving procedures, metaheuristics, and advanced

strategies.

– Chapter 4 is concerned with the results obtained by the algorithms proposed

for each problem considered. In addition, each chapter section highlights the

main contributions made.

– Chapter 5 ends with the conclusions derived from the research, as well as the

main contributions, presenting possible lines of future work.

• Part II contains the publications, both journal and conference, associated with this

Doctoral Thesis, including additional information about the journal in which it was

published and a summary of the publication. This part is divided into the following

chapters:

– Chapter 5 presents a summary of the publications obtained as the result of this

Doctoral Thesis.

– Chapters 6–10 include published articles along with information on the journal

in which they are published.

– Chapter 11 lists additional publications obtained during the Doctoral Thesis

period, but not directly related to the main objective of the investigation.

• Part III corresponds to the appendix of this Doctoral Thesis. Specifically, it contains

a summary in Spanish that includes background, objectives, methods, and results, and

conclusions. In addition, it includes the bibliography and the glossary of keywords.

Chapter 2

Studied Graph Layout Problems

In this chapter, the problems addressed in this Doctoral Thesis are introduced. For each of

the problems, the objective function, the goal of the problems, and an illustrative example of

the evaluation of a solution are described. In particular, the studied problems are the Cyclic

Cutwidth Minimization Problem (Section 2.1), the Cyclic Antibandwidth Problem (Section

2.2), the Cyclic Bandwidth Sum Problem (Section 2.3), and finally, the Two-Dimensional

Bandwidth Minimization Problem (Section 2.4).

2.1 Cyclic Cutwidth Minimization Problem

The first problem studied in this Doctoral Thesis is the Cyclic Cutwidth Minimization Prob-

lem (CCMP). The CCMP consists of embedding general input graphs into a cycle host

graph. To formally define the CCMP is necessary to consider again the assignment func-

tions ϕ and ψ (see Equations 1.3 and 1.4 respectively, introduced in Section 1.2.1). Then,

the objective function of this problem is based on the concept of a cut of an edge in the host

graph (i.e., edges in EH). The cut of an edge (w ,z) ∈ EH , also known as congestion [212],

is defined as the number of paths, PH , assigned by ψ that traverse (w ,z). Formally, given

ϕ and ψ , the cut of an edge (w ,z) ∈ EH is defined as:

cut(ϕ,ψ,(w ,z)) = |{(u,v) ∈ EG : (w ,z) ∈ ψ(u,v)}|. (2.1)

39

40 Chapter 2. Studied Graph Layout Problems

Note that, for this problem, the function ψ does not need to assign the shortest path

between vertices u and v but is a matter to be decided in the optimization process. However,

for the sake of simplicity, we use in this research the one that assigns the shortest path (see

Equation 1.5).

Then, the objective function, denoted as ccw or cyclic cutwidth, is calculated as the

maximum cut for all edges (w ,z) ∈ EH . In mathematical terms:

ccw(G ,ϕ,ψ) = max
(w ,z) ∈ EH

cut(ϕ,ψ,(w ,z)). (2.2)

Finally, this min-max optimization problem consists of finding the assignment (ϕ⋆,ψ⋆),

among all possible assignments (ϕ,ψ) ∈ Φ, that minimizes the cyclic cutwidth:

(ϕ⋆,ψ⋆)← argmin
(ϕ,ψ) ∈ Φ

ccw(G ,ϕ,ψ). (2.3)

Figure 2.1 depicts the evaluation of the solution previously presented in Figure 1.11(b)

of the input graph illustrated in Figure 1.10(a). The evaluation of a solution for the CCMP,

implies the calculation of the cut associated with each edge of the host graph. For example,

to compute the cut of the edge (1,2) first it is necessary to obtain those paths associated

with the edges of the input graph that contain the edge (1,2). In this example, there are

two paths that meet this condition: ψC (A,B) = {(1,2)} and ψC (A,C) = {(1,2),(2,3)}
(see Table 1.1). Figure 2.1(a) highlights the edge (A,B) and its associated path in yellow.

Similarly, the edge (A,C) has been highlighted in green. Therefore, cut((1,2),ϕ,ψC) =

|{(A,B),(A,C)}|= 2. Figure 2.1(b) illustrates the value of the cut for each edge of the host

graph. Finally, the value of the objective function is ccw(G ,ϕ,ψC)=max{2,2,2,2,1}= 2.

The Cyclic Cutwidth Minimization Problem is one of those min-max optimization

problems where the objective function consists of minimizing a maximum value. This

kind of problem usually presents flat landscapes or fitness landscapes [59, 192, 207]. This

concept was previously introduced in Section 1.1.2 and means that many solutions are

qualified with the same value of the objective function, although they are structurally dif-

ferent. For example, the solution ccw(G ,ϕ,ψC) = max{2,2,2,2,1} = 2, will be equiva-

lent to any other solution whose objective function value is 2 such as ccw(G ,ϕ ′,ψ ′C) =

max{1,1,2,1,1}= 2. However, as the reader may have noted, the solution (ϕ ′,ψ ′C) seems

Chapter 2. Studied Graph Layout Problems 41

1

25

4 3

E

A

CD

B

2

(a)

1

25

4 3

E

A

CD

B

2

2

2

2

1

(b)

Figure 2.1 (a) Evaluation of the cut of the edge (1,2) ∈ EH . (b) Evaluation of all cuts
in a solution for the CCMP resulting in an objective function value of 2.

to be better than (ϕ,ψC) since it closer to reduce the value of the objective function.

In this sense, determining search directions becomes a very difficult task when decisions

are based only on the change of the objective function value produced by a move. Finding

a meaningful way of differentiating solutions with the same objective function value is

important because the structure of one solution may be more promising than the structure

of another one in terms of a later improvement in the search.

2.2 Cyclic Antibandwidth Problem

The second problem tackled within this Doctoral Thesis is the Cyclic Antibandwidth Prob-

lem (CAB), which aim is to embed the input graph in a cycle host graph maximizing the

minimum distance of all adjacent vertices, i.e., the bandwidth.

Again, to formally define the CAB it is necessary to consider the functions ϕ and ψ .

Then, the objective function of this problem is based on the concept of the bandwidth

of an edge in the input graph. The bandwidth of an edge (u,v) ∈ EG is defined as the

cardinality of the path p ∈ PH , assigned by ψ to the edge (u,v). Formally, given ϕ and ψ ,

the bandwidth of edge (u,v) ∈ EG is defined as:

42 Chapter 2. Studied Graph Layout Problems

bw(ϕ,ψ,(u,v)) = |ψ(u,v)|. (2.4)

Then, the objective function, denoted as cab or cyclic antibandwidth, is calculated as

the maximum bandwidth for all edges (u,v) ∈ EG . In mathematical terms:

cab(G ,ϕ,ψ) = min
(u,v) ∈ EG

bw(ϕ,ψ,(u,v)). (2.5)

Finally, this max-min optimization problem consists of finding the assignment (ϕ⋆,ψ⋆),

among all possible assignments (ϕ,ψ) ∈ Φ, that minimizes the cyclic antibandwidth:

(ϕ⋆,ψ⋆)← argmax
(ϕ,ψ) ∈ Φ

cab(G ,ϕ,ψ). (2.6)

Based on the solution previously presented in Figure 1.11(b) of the input graph illus-

trated in Figure 1.10(a), we illustrate now in Figure 2.2 the evaluation of the objective

function of this problem with an example. In particular, in order to compute the bandwidth

of an edge, the cardinality of it associated path is calculated. For example, the bandwidth

of the edge (A,C) is computed as |ψC (A,C)| = |{(1,2),(2,3)}| = 2. Both, the edge and

its assigned path are highlighted in green in Figure 2.2(a). Similarly, the bandwidth of the

edge |ψC (D,E)|= |{(4,5)}|= 1, highlighted with yellow in the same figure. Figure 2.2(b)

illustrates the value of the bandwidth for each edge of the host graph. Finally, the value

of the objective function is the minimum bandwidth across all edges, which is 1 in this

example. In mathematical terms: cab(G ,ϕ,ψC) = min{1,2,1,1,1,2,1}= 1.

2.3 Cyclic Bandwidth Sum Problem

The third problem studied within the GLP family is the Cyclic Bandwidth Sum Problem

(CBS), which consists of minimizing the sum of the bandwidth, that is, the distance, of the

edges of an input graph computed in the cycle host graph.

In order to compute the objective function of a solution to the CBS, the calculation

of the bandwidth for each edge of the input graph is needed. In this case, the bandwidth

is computed as defined for the CAB in Equation 2.4. Then, the evaluation of the objective

Chapter 2. Studied Graph Layout Problems 43

1

25

4 3

E

A

CD

B2

1

(a)

1

25

4 3

E

A

CD

B2

1

1

1

1

1

2

(b)

Figure 2.2 (a) Evaluation of the bandwidth of edges (A,C),(D,E) ∈ EG . (b) Evalua-
tion of all edges of the input graph in the cycle host graph.

function of the CBS for a particular embedding (ϕ,ψ) of the input graph G , denoted as cbs,

is calculated as the sum of the bandwidth of each edge of the input graph. More formally:

cbs(G ,ϕ,ψ) = ∑
(u,v) ∈ EG

bw((u,v),ϕ,ψ) (2.7)

Finally, the objective of CBS is to find an embedding (ϕ⋆,ψ⋆) among all possible em-

beddings, (ϕ,ψ) ∈ Φ, that minimizes the Equation (2.7). In mathematical terms:

(ϕ⋆,ψ⋆)← argmin
(ϕ,ψ) ∈ Φ

cbs(G ,ϕ,ψ) (2.8)

Based on the solution presented in Figure 2.2 for the CAB that shows the evaluation

of the bandwidth for each edge of the input graph, we now illustrate the calculation of the

objective function for the CBS. Specifically, to compute it, the bandwidth value associated

with each edge is summed. More formally: cbs(G ,ϕ,ψC) = 1+2+1+1+1+2+1 = 9.

44 Chapter 2. Studied Graph Layout Problems

2.4 Two-Dimensional Bandwidth Minimization Problem

The main objective of this doctoral thesis focuses on the proposal of heuristic and meta-

heuristic algorithms for CGLP. However, after successfully addressing three problems be-

longing to the latter family, it was decided to apply the knowledge learned to other GLPs

defined over a different host graph emerging a new additional hypothesis during the last

year of the Doctoral Thesis:

The heuristic techniques proposed for CGLP are also useful to find quality

solutions for other GLPs in which the embedding is performed in another type

of host graph.

Among the possible GLPs existing in the literature, it is decided to work on the Two-

Dimensional Bandwidth Minimization Problem (2DBMP). The Two-Dimensional Band-

width Minimization Problem (2DBMP) consists of minimizing the bandwidth of the input

graph when embedding it into a grid host graph.

In the related literature, the most relevant bandwidth function for grids is denoted

L1-norm [149, 211], which is also known as Taxicab norm distance or Manhattan distance

[46, 149]. To compute the L1-norm distance or the bandwidth of an edge of the input graph

(u,v) ∈ EG , the cardinality of the path assigned to (u,v) is calculated. To do so,ψ is used

alike for the CAB and the CBS (see Equation 2.4).

Then, the objective function, denoted as 2dbmp, is calculated as the maximum band-

width for all edges (u,v) ∈ EG . In mathematical terms:

2dbmp(G ,ϕ,ψ) = max
(u,v) ∈ EG

bw((u,v),ϕ,ψ) (2.9)

Finally, the 2DBMP for a graph G consists of finding an embedding (ϕ⋆,ψ⋆
G) among

all possible embeddings of the problem that minimizes Equation 2.9. More formally:

(ϕ⋆,ψ⋆)← argmin
(ϕ⋆,ψ⋆) ∈ Φ

2dbmp(G ,ϕ,ψ) (2.10)

Figure 2.3 depicts the evaluation of the solution previously presented in Figure 1.11(c)

of the input graph illustrated in Figure 1.10(a). As it can be observed, all vertices of VG

Chapter 2. Studied Graph Layout Problems 45

1 2 3

4 5 6

7 8 9

A B

ED

C
2

3

(a)

1 2 3

4 5 6

7 8 9

A B

ED

C
2

3

2

2

1

1 1

(b)

Figure 2.3 (a) Evaluation of the bandwidth of edges (A,C),(C,D) ∈ EG . (b) Evalua-
tion of all edges of the input graph in the grid host graph.

have been assigned to a vertex of VH through the definition of ϕ . However, unlike the

CGLP previously presented, there are vertices of the host graph that have not been assigned

to any vertex of the input graph.

In order to evaluate the objective function of the example described in Figure 2.3, it

is required to calculate the distance between each pair of adjacent vertices in VG (i.e.,

for each edge of EG) by using Equation 2.4. For instance, considering edge (C,D), three

possible paths can be assigned to it (see Table 1.1). Since the choice does not influence

the bandwidth calculation, one of them is selected for this example. In particular, the path

ψG(C,D) = {(3,6),(6,5),(5,4)} has been selected and is highlighted in Figure 2.3(a).

Therefore, bw(ϕ,ψG ,(C,D)) = 3. Similarly, the bandwidth of the edge (A,C), highlighted

in yellow in the same figure is bw(ϕ,ψG ,(A,C)) = |ψG(A,C)| = |{(1,2),(1,3)}| = 2.

This calculation is performed over the rest of the edges of G . The obtained distances

are depicted in Figure 2.3(b). Finally, the value of the objective function is the maximum

across all distances, which is 3 in this example. In mathematical terms, 2dbmp(G ,ϕ,ψG) =

max{1,2,2,1,3,2,1}= 3.

Chapter 3

Algorithmic proposal

This Doctoral Thesis proposes various heuristic and metaheuristic procedures to solve the

presented GLPs. The use of heuristics allows finding good solutions efficiently when exact

methods are not able to find feasible solutions or require too much computational time.

Heuristic algorithms are based on knowledge and experience and are often used to quickly

find good solutions to complex problems. Constructive procedures are responsible for gen-

erating solutions from scratch, while improvement procedures start with an initial solution

and iteratively improve it by making small changes. Metaheuristics are higher-level heuris-

tic strategies that guide the use of other heuristics to solve a problem.

This chapter describes the heuristic and metaheuristic procedures proposed in this Doc-

toral Thesis. Section 3.1 summarizes the constructive procedures proposed, while Section

3.2 describes the improving methods based on defining neighborhoods. Section 3.3 presents

the metaheuristic approaches that combine the proposed heuristics. Finally, Section 3.4 dis-

cusses some advanced strategies that complement the improving methods. The proposed

procedures aim to efficiently and effectively solve the presented GLPs.

3.1 Constructive procedures

Constructive procedures are heuristic methods used for the generation of solutions. Gener-

ally, constructive procedures start from an empty initial solution and end with a complete

solution, i.e., a feasible solution (see Section 1.1.2).

47

48 Chapter 3. Algorithmic proposal

In this section, all the issues to be taken into account when proposing a constructive

for a GLP are presented. In addition, the constructive procedures proposed for each of the

problems studied are collected.

First, the construction of a solution for a GLPs consists of defining the mathematical

functions ϕ and ψ . In the four problems studied in this Doctoral Thesis (see Chapter 2), the

function ψ always depends on the function ϕ since the path assigned to each of the edges

of the input graph will always be the one with the smallest cardinality (see Equation 1.4).

Therefore, for the sake of clarity, in the construction of a solution we focus just on defining

the ϕ function.

It is worth remembering that the ϕ function assigns a vertex of the host graph to each

vertex of the input graph, and this assignation has been denoted as an embedding or a

projection. Any definition of the ϕ function that satisfies that each vertex of the input graph

is assigned to a vertex of the host graph, will result in a feasible solution to the problem.

In this dissertation, beyond proposing specific constructive algorithms for each of the

problems studied, we also propose a general scheme or framework for the definition of any

constructive algorithm for the graph layout family of problems. Specifically, the definition

of a constructive algorithm for a GLP should consider the followings steps:

1. Generate a set of candidate vertices made of unassigned vertices of the input graph.

This set will be formally denoted as CLG .

2. Generate a set of candidate vertices made of vertices of the host graph. This set will

be formally denoted as CLH .

3. Select a vertex u of CLG following specific criteria.

4. Select a vertex v of CLH following specific criteria.

5. Assign the vertex of the host graph to the vertex of the input graph, ϕ(u) = v .

6. Update the sets CLG and CLH .

These steps are repeated until a feasible solution is reached, that is until the set CLG is

empty. Based on this scheme, the researcher’s task will be to determine the way in which

Chapter 3. Algorithmic proposal 49

each of the steps is carried out. For example, the creation of the candidate vertex lists (points

1 and 2) can be dynamic (a list of candidate vertices that is updated at each iteration) or

static (a list initialized with all the vertices of the graph). However, the most determinant

aspect of a construct that follows this scheme focuses on the selection of a vertex from

both CLG and CLH . In this research, we have studied different strategies for the selection

of the vertices of both sets. In general, these strategies are not complex and focus on the

properties of the graph to be embedded.

The simplest constructive that can be proposed for any GLP following this scheme is a

random constructive. In this case, all candidate lists are statically generated and at each iter-

ation, one vertex is randomly selected from each set. Algorithm 1, shows a classical scheme

of the implemented randomized constructive. Specifically, a constructive procedure for a

GLP receives as input parameter the input and the host graph and returns the constructed

solution. To do so, first, the procedure generates an empty solution (step 2), and the sets of

candidate vertices CLG (step 3) and CLH (step 4) are initialized. Then, while CLG is not

empty, a vertex for both, CLG and CLG is selected at random (steps 6 and 7 respectively).

Then, the assignation is performed (step 8), and sets are updated (steps 9 and 10).

Algorithm 1: Example of a random constructive procedure for a GLP
1 Procedure RandomConstructive(G(VG ,EG), H (VH ,EH)):
2 ϕ ← /0 ;
3 CLG ← VG ;
4 CLH ← VH ;
5 while CLG ̸= /0 do
6 u← random(VG);
7 v ← random(VH);
8 ϕ ← ϕ ∪{ϕ(u) = v};
9 VG = VG \{u};

10 VH = VH \{v};
11 end
12 return ϕ

Despite the simplicity and the predictable poor quality of the solutions generated by the

random constructive procedure, the definition of such a procedure is considered crucial for

the development of this type of research for several reasons. The generated solutions are

50 Chapter 3. Algorithmic proposal

used as a preliminary comparison framework or as an upper/lower bound in the absence of

benchmark results obtained by a state-of-the-art algorithm. It is also used to validate that

the implementation is correct and to detect possible errors in the early stages of algorithm

coding, especially in the procedure which evaluates the objective function of the solutions.

In addition, it is used as a starting point for other more advanced methods to analyze its

performance, such as the improvement capability of the improvement procedure. An easy

extension of this method would be adding a multistart strategy to this method which would

result in an improvement in the quality of the best solution found after a few iterations.

There are other more complex and intelligent construction procedures known as greedy

constructive procedures. These procedures start from an empty solution, and at each itera-

tion, they add the best possible element to the solution according to a criterion. Generally,

this criterion is a mathematical function that the candidate elements have to optimize.

Following the 6-point framework outlined above, Algorithm 2 compiles the pseudocode

of a general greedy constructive procedure for a GLP. The main difference with the random

construction (Algorithm 1) is in the selection of the vertices of the sets CLG and CLH (steps

6 and 7, respectively). Specifically, as an example, two greedy criteria g1 and g2 are posed.

In each iteration, the vertices that maximize (analogously minimize) these functions, will

be the ones chosen to perform the assignment ϕ(u) = v (step 8). Note that the selection

criteria do necessarily have to be mathematical functions to be optimized, as they may be

based on other more simple or complex criteria.

A greedy criterion is a rule that selects the best candidate vertex according to the value

of a function at each step of a constructive procedure. Depending on the criterion used, the

evaluation of a candidate vertex could be very time-consuming, and the resultant solution

might not even be good in terms of quality. Therefore, researchers generally propose criteria

that can be calculated quickly and that bear some relation to the function to be optimized.

In this Doctoral Thesis, different criteria have been proposed for the selection of vertices

of both sets. Next, criteria proposed for the selection of a vertex of the input graph are

presented (see Section 3.1.1, Section 3.1.2 and Section 3.1.3)

Chapter 3. Algorithmic proposal 51

Algorithm 2: Example of a greedy constructive procedure for a GLP
1 Procedure GreedyConstructive(G(VG ,EG), H (VH ,EH)):
2 ϕ ← /0
3 CLG ← VG

4 CLH ← VH

5 while CLG ̸= /0 do
6 u← argmaxu ′ ∈ VG

g1(ϕ,u
′)

7 v ← argmaxv ′ ∈ VH
g2(ϕ,u

′,v ′)
8 ϕ ← ϕ ∪{ϕ(u) = v}
9 VG = VG \{u}

10 VH = VH \{v}
11 end
12 return ϕ

3.1.1 Criteria for selecting a vertex of the input graph

The most used greedy criterion for the selection of a vertex from the input graph, in the

context of this dissertation, is based on the idea of quantifying the urgency with which

a vertex should be assigned based on the state of a partial solution. This idea was first

proposed by A.J. McAllister in 1999 in the context of the MinLA [168] and it has been

adapted to consider a cycle host graph in this research.

In particular, the greedy selection function to select the next vertex from the candidate

graph is defined as follows. Let γ be a mathematical function such that, given a partial

solution ϕ , associates a vertex of the input graph u ∈ CLG ⊆ VG to a natural number.

More formally, γ : CLG → N. In order to compute the number associated with a vertex,

two sets must be defined. Let A(u) be the set of vertices adjacent to u that have already

been assigned to a vertex of the hos graph, and let U (u) be the set of vertices adjacent

to u that still remains to be assigned, such that deg(u) = |A(u)|+ |U (u)|. Both sets are

mathematically formalized as follows:

A(u) = {v ∈ VG : (u,v) ∈ EG ∧ v /∈ CLG}, (3.1)

U (u) = {v ∈ VG : (u,v) ∈ EG ∧ v ∈ CLG}, (3.2)

52 Chapter 3. Algorithmic proposal

Then, we define the value of γ function for a vertex u ∈ CLG and a partial solution ϕ as:

γ(u) = |A(u)|− |U (u)|. (3.3)

The rationale of the γ function relay on the “attractiveness” of a vertex to be selected

next to perform the next assignment. In this sense, the proposed greedy function considers

a vertex as “attractive” if all its adjacent vertices have already been assigned. Conversely,

an unassigned candidate vertex is “unattractive” when none of its adjacent vertices have

been assigned. Therefore, the vertex that maximizes Equation 3.3 is selected to be assigned

next.

This greedy criterion was satisfactorily used to tackle the CCMP (see Chapter 7). How-

ever, in the following research in which the CBS and 2DBMP were studied, a weakness of

the strategy was observed. To explain this deficiency, the following situation is presented

as an example. Consider a vertex a where |A(a)| = 1 and |U (a)| = 1, the value of γ for

u is γ(a) = |A(a)|− |U (a)| = 1−1 = 0. Similarly, consider a vertex b where |A(b)| = 3

and |U (b)| = 4, then, γ(b) = |A(b)|− |U (b)| = 3− 4 = −1. Since γ(a) > γ(b), vertex a

will be chosen to be added next. Apparently, it seems reasonable to pick vertex a because it

has more adjacent vertices in the solution than vertices yet to be assigned. However, vertex

b has more vertices in the solution than a, and it also seems reasonable that it should be

assigned more urgently.

In practice, there is no absolute or clear answer for determining which vertex should

be considered more important or urgent. In fact, experimentation has led to the observation

that it depends on the problem or even on the input graph considered. For that reason, in

this Doctoral Thesis an adaptation of Equation 3.3 is proposed by adding two parameters,

w1 and w2 to be adjusted by the researcher. The adaptation of the proposed greedy criterion,

denoted as γw (u), is detailed in the following equation:

γw (u) = w1 · |A(u)|−w2 · |U (u)|, (3.4)

where 0 ≤ w1,w2 ≤ 1 and w1 +w2 = 1. The rationale behind these two parameters is to

balance the relevance of having many adjacent vertices assigned (w1 > w2) or a reduced

number of adjacent vertices unassigned (w1 < w2). Notice that if w1 = w2, then the strategy

Chapter 3. Algorithmic proposal 53

is equivalent to the original proposal introduced in Equation 3.3. Again, all unassigned

vertices from the input graph are evaluated, and the vertex with the largest γw -value is

chosen to be assigned next.

Finally, it should be noted that both greedy criteria proposed are adaptive since the value

associated with each candidate vertex has to be updated at each iteration of the construction

phase. This concept is closely connected with such relevant construction procedures as the

one proposed in the GRASP methodology, which will be further explained in Section 3.1.4.

3.1.2 Criteria for selecting a set of vertices of the input graph

In this research, the greedy criterion proposed in the previous section has been used to gen-

erate the initial solutions of three problems, the CCMP, the CBS and the 2DBMP. As the

reader may have noticed, these three problems share the property that, directly or indirectly,

placing the adjacent vertices of the input graph as close as possible in the embedding leads

to better-quality solutions. However, in the CAB the objective is just the opposite: adja-

cent vertices should be placed as far as possible from each other. It is for this reason that

to address the CAB it is necessary to propose a constructive strategy based on a different

criterion.

In particular, in [12, 64], a criterion was presented to detect several groups of vertices

that are suitable to be jointly assigned to adjacent vertices of the host graph since this

assignment will not impact negatively the objective function. Specifically, those groups

of vertices are the ones that simply satisfy that they are not adjacent to each other. To

detect those groups, a spanning tree of the input graph is generated using a Breadth First

Search (BFS) algorithm [229].

The BFS algorithm starts at a given vertex (root) and explores all the adjacent vertices

at the present depth before moving on to the vertices at the next depth level. This process

is repeated until all vertices have been visited. The BFS, while exploring the vertices of the

graph, organizes them into levels according to the depth at which they have been found.

For example, the root vertex has a depth of 0, while those adjacent to it have a depth of 1,

and so on, resulting in a spanning tree.

The spanning tree organizes the vertices in layers or levels that have the same unit

54 Chapter 3. Algorithmic proposal

distance with respect to a root vertex. Then, for each level of the spanning tree, vertices are

then assigned to consecutive vertices of the host graph. Once the vertices of the first level

selected have been assigned, the next non-consecutive level of the spanning tree is selected,

and so on.

The rationale for this strategy is to ensure that adjacent vertices of the input graph are

not adjacent to each other in the embedding. However, vertices at the same level of the

spanning tree can be adjacent among them, in that case, only those that are not adjacent to

some already assigned vertex will be assigned.

In order to adequately apply this strategy, it is necessary to take some decisions. First, a

vertex must be selected as the root node. Secondly, a strategy must be established to explore

the levels and finally, another strategy must determine the order in which the vertices of the

same level are assigned. In this research, we have not delved into these issues and the

decisions have been taken at random (see Section 3.1.4). However, these tasks open new

chances for future research.

3.1.3 Criteria for selecting a vertex of the host graph

Once the vertex of the input graph has been chosen, an available vertex from the host graph

must be selected to embed it. In this research, we propose two different approaches: one

based on graphical patterns and the other one based on a greedy criterion.

The first approach determines the order in which host vertices are selected on the basis

of a graphical pattern. In the case of the cycle host graph, we studied two patterns denoted

as “sequential pattern” (Figure 3.1(a)) and “alternating pattern” (Figure 3.1(b)). In the case

of the grid host graph, three patterns are proposed: the “sequential pattern”(Figure 3.1(c)),

the “diagonal pattern” (Figure 3.1(d)) and the “zigzag pattern” (Figure 3.1(e)). In each of

the figures, the sequence is indicated with blue arrows and numbers inside each of the host

vertices, being the number 1 the vertex selected in the first iteration, and numbers 5 and 9

the vertices selected in the last iteration for the cycle, and grid host graphs, respectively.

These strategies have been proposed and studied for the GLPs studied, however, their

performance has been inefficient for all of them except for the CCMP. For the rest of the

problems, the second approach, based on a greedy function, is used.

Chapter 3. Algorithmic proposal 55

1

25

4 3
(a)

1

23

5 4
(b)

1 2 3

4 5 6

7 8 9

(c)

1 2 4

5 7

6 8 9

3

(d)

1 2 3

6 5 4

7 8 9

(e)

Figure 3.1 Example of the order followed to assign vertices of the input graph to ver-
tices of the host graph using the sequential (a) and alternating (b) patterns in a cycle
host graph, and the sequential (c), diagonal (d) and zigzag (e) patterns in a grid host
graph.

56 Chapter 3. Algorithmic proposal

The second proposed approach selects a vertex of the host graph based on greedy func-

tion denoted as λ . This function is based on the concept of “contribution to the objective

function” of an assignation ϕ(u) = v . Therefore, λ is defined according to the particular

objective function addressed (λ1 for the CAB, λ2 for the CBS, and λ3 for the 2DBMP). For

example, given a partial solution ϕ , one vertex of the input graph u and one vertex of the

host graph v , the λ function for the CAB will be defined as follows:

λ1(u,v) = min
w ∈ VG\CLG

{ min
p ∈ PH

{p(v ,ϕ(w))}}. (3.5)

In a simple way, this function calculates the minimum distance that a vertex u would

be from all its adjacent vertices that are already part of the solution (w ∈ VG \CLG) if

it were assigned to the vertex of the host graph v . To calculate the minimum distance, in

addition, it is necessary to calculate the shortest path between v and ϕ(w). Therefore, the

best possible candidate host vertex v⋆ for an input vertex u is:

v⋆ = argmax
v ∈ CLH

λ1(u,v). (3.6)

Similarly, this greedy function is adapted for the CBS in Equations 3.7 and 3.8, and for

the 2DBMP in Equations 3.9 and 3.10.

λ2(u,v) = ∑
w ∈ VG\CLG

{ min
p ∈ PH

{p(v ,ϕ(w))}}. (3.7)

v⋆ = argmin
v ∈ CLH

λ2(u,v). (3.8)

λ3(u,v) = max
w ∈ VG\CLG

{ min
p ∈ PH

{p(v ,ϕ(w))}}. (3.9)

v⋆ = argmin
v ∈ CLH

λ3(u,v). (3.10)

Given the computation time required to calculate the proposed greedy criterion, espe-

cially when the input graph is large, a reduction of the set CLH to a subset of these vertices,

denoted as CL′H is proposed. This set is adaptive, and it is updated at each iteration of the

Chapter 3. Algorithmic proposal 57

constructive procedure by adding all host vertices adjacent to any other adjacent host vertex

that has been previously assigned. Formally, the update of the set can be mathematically

defined as follows:

CL′H = {w ∈ CLH : (w ,z) ∈ EH ∧ z /∈ CLH }. (3.11)

This strategy has been successfully implemented for the CAB, CBS and the 2DBMP.

3.1.4 Randomization of the procedures

In general, any constructive procedure aims to generate solutions of the best possible qual-

ity, i.e., to generate the optimal solution to the problem or to get as close as possible to it

so that other intensification methods can reach it quickly. However, applying the construc-

tion procedure repeatedly may sometimes be desirable to yield diverse starting solutions

for other intensification procedures, such as the local search. In this sense, diversification

could provide lower quality but more diverse solutions, allowing the exploration of more

regions of the solution space. Strategies that encourage diversity are especially interest-

ing when combined with procedures in which it is necessary to generate more than one

solution, such as multi-start procedures or population-based algorithms.

In this Doctoral Thesis we have used the GRASP constructive extensively. GRASP

is a multistart metaheuristic for producing good-quality solutions of combinatorial opti-

mization problems. The probabilistic component that randomly chooses one of the best

candidates from the Restricted Candidate List [71, 72], usually denoted as RCL, is the key

characteristic of this procedure.

Inspired by these ideas, we have adapted the proposed greedy criterion to promote

the diversity of the solutions generated. Specifically, the greedy criterion γw , used for the

selection of an input graph vertex, is randomized by selecting the weights w1 and w2 each

iteration (see Equation 3.4).

In addition, other randomized strategies are proposed to further promote the diversity

of the solutions obtained, which are listed below:

• The selection of the first vertex of the input graph, necessary to initialize the candi-

date list CLG , can be performed randomly. Similarly, the selection of the first vertex

58 Chapter 3. Algorithmic proposal

of the host graph to initialize the candidate list CLH , can be performed randomly.

• The selection of the root vertex for the generation of a spanning tree based on the

BFS algorithm is performed randomly. In addition, the order in which the levels are

traversed and the order in which each vertex of a level is added to the solution is also

chosen randomly.

• Ties produced when evaluating any of the proposed criteria are broken at random.

3.2 Improving methods

One of the most relevant improving or intensification procedures is the local search proce-

dure. This procedure has been used in all the investigations developed within this Doctoral

Thesis.

The approach of a local search implies the definition of neighborhood structures and,

therefore, of movement operators. In this research, two moves widely used in the context

of combinatorial optimization when the solution is modeled with a graph are proposed:

insertion and exchange (also known as swap).

The insert move consists of removing one vertex of the input graph from its current

assignation and assigning it (i.e., inserting) into another vertex of the host graph. This move

implies a “shift” of some vertices to “make room” to the vertex that is going to be inserted.

An example of an insert move is illustrated in Figure 3.2. In particular, given the embedding

depicted in Figure 3.2(a), we illustrate the insertion of vertex A of the input graph into

vertex 4 of the host graph. Both vertices have been highlighted. Then, in Figure 3.2(b)

we show the resultant solution after the operation. As it can be observed, the operation

implies the shift of vertices D and E to make room for vertex A. The direction of the shift

(clockwise or counterclockwise) should be decided experimentally.

Formally, the insert move is denoted as Insert(ϕ,u,v), where ϕ is the current embed-

ding in which vertex u ∈ VG is going to be assigned to vertex v ∈ VH . Then, the associated

neighborhood, denoted as NI (ϕ) is defined as the set of solutions that can be reached by

applying the insert operator for each u ∈ VG and v ∈ VH . Mathematically:

Chapter 3. Algorithmic proposal 59

1

25

4 3

E

A

CD

B

𝜑𝜑1
(a)

1

25

4 3

D

E

CA

B

𝜑𝜑2
(b)

Figure 3.2 (a) Example of an embedding ϕ1. (b) Resultant embedding ϕ2 obtained
after the operation Insert(ϕ1,A,4).

NI (ϕ) = {Insert(ϕ,u,v)∀u ∈ VG ,v ∈ vVH ,ϕ(u) ̸= v}. (3.12)

The second neighborhood proposed in this research is defined by the swap move. The

swap move consists of exchanging the assignation of vertices u and w (i.e., ϕ(u) = z and

ϕ(w) = v). An example of a swap in the solution ϕ of the previous example is depicted in

Figure 3.3. In particular, in Figure 3.3(a), vertices A and E of the input graph are assigned

to vertices 1 and 4 respectively. Then, Figure 3.3(b) illustrates the resultant solution after

exchanging their assigned vertices of the host graph.

Formally, the swap move is denoted as Swap(ϕ,u,w), where ϕ is the current embed-

ding where vertices u,w ∈ VG are going to exchange their assignments. Then, the associ-

ated neighborhood, denoted as NS (ϕ) is defined as the set of solutions that can be reached

by applying the insert operator for each u ∈ VG and v ∈ VH . More formally:

NS (ϕ) = {Swap(ϕ,u,w)∀u,w ∈ VG ,u ̸= w}. (3.13)

Given a neighborhood structure, a local search algorithm attempts to find a solution that

improves the quality of the best solution found so far. If it is able to find a better one, it

replaces the best solution found with the new one. This process is repeated until reaching

60 Chapter 3. Algorithmic proposal

1

25

4 3

E

A

CD

B

𝜑𝜑1
(a)

1

25

4 3

E

D

CA

B

𝜑𝜑3
(b)

Figure 3.3 (a) Example of an embedding ϕ1. (b) Resultant embedding ϕ3 obtained
after the operation Swap(ϕ1,A,D).

a locally optimal solution. Algorithm 3 presents the pseudocode of a generic local search

procedure for a neighborhood N and follows a “best improvement” strategy. Note that, the

of function, computes the objective function of a solution ϕ .

To implement a “first improvement strategy”, the neighborhood exploration (step 6)

should be performed iteratively, checking if the solution found is better than the current

one. In that case, the neighborhood exploration is stopped and the best solution found is

updated.

3.3 Metaheuristics

In this Doctoral Thesis, different metaheuristic methods are used to solve the GLPs ad-

dressed. The metaheuristic procedures applied in this research combine several of the above

heuristic procedures to efficiently explore the search space in order to find optimal so-

lutions. Since metaheuristics are generic strategies that are not problem-dependent, some

metaheuristics among those presented below have been proposed to address multiple prob-

lems in the context of this Doctoral Thesis (multistart procedures, TS, VNS and its variants,

and IG).

Chapter 3. Algorithmic proposal 61

Algorithm 3: An example of a local search procedure for a minimization problem
following a “best improvement” strategy
1 Procedure LocalSearch(ϕ):
2 ϕ⋆← 1
3 improves← 1
4 while improves = 1 do
5 improves← 0
6 ϕ ′← argminϕ ′′ ∈ N (ϕ⋆) of (ϕ

′′)
7 if of (ϕ ′)< of (ϕ⋆) then
8 ϕ⋆← ϕ ′

9 improves← 1
10 end
11 end
12 return ϕ⋆

3.3.1 Multistart procedures

In this research, a multistart optimization algorithm has been proposed to tackle all the

CGLP addressed, the CCMP, the CAB, and the CBS. Multistart strategies are used in this

context to escape from local optima where heuristic procedures get stuck. They are based

on the idea of generating new solutions iteratively. Optionally, many methods combine

the initial construction with a local search procedure as an intensification strategy. The

pseudocode of a generic scheme of a multistart procedure for a minimization problem is

presented in Algorithm 4. The multistart algorithm takes as input the maximum number of

iterations (imax). Then, it initializes an empty solution (step 2). It next enters a loop where it

performs imax iterations of an algorithm (step 3). Note that, the function algorithm should

be replaced by the particular algorithm proposed for each problem (step 4). When the loop

finishes, it returns the best solution found among all the restarts.

The Algorithm 4 is a simplified and simple version of a multistart algorithm. In practice,

researchers use combinations of more complex termination criteria such as the number of

unimproved iterations, the minimum number of iterations, or the maximum time.

62 Chapter 3. Algorithmic proposal

Algorithm 4: Example of a multistart procedure
1 Procedure Multistart(imax):
2 ϕ ← /0
3 for i ← 1 to imax do
4 ϕ ′← algorithm(ϕ)
5 if of (ϕ ′)< of (ϕ) then
6 ϕ ← ϕ ′

7 end
8 end
9 return ϕ

3.3.2 Tabu Search

Tabu Search (TS) is a metaheuristic introduced by F. Glover in 1986 as a way to improve

traditional local search algorithms [88]. The main idea of TS is to combine local search

with memory-based strategies to explore the search space more efficiently and escape local

optima.

TS works by maintaining a tabu list, which is a list of solutions that are considered

“tabu” or forbidden for a certain number of iterations. The algorithm starts with an initial

solution and iteratively generates a set of neighboring solutions, but only considers those

that are not on the tabu list. If a better solution is found among the neighbors, the algorithm

updates the current solution and adds the previous solution to the tabu list. The tabu list

is updated at each iteration by removing solutions that are no longer tabu and adding new

solutions that have become tabu [90, 91].

The tabu list acts as a memory of solutions that have been visited and helps the algo-

rithm avoid revisiting solutions that have already been explored. This can help the algorithm

escape from local optima and explore the search space further. Many ideas and extensions

are discussed in [87, 90, 91].

In particular, we add a simple tabu search short-term memory to the local search pro-

posed for the CCMP. Unlike TS original designs that use memory based on attributes,

it is not necessary to include an aspiration criterion, since no tabu move can reach a so-

lution that the search has not already visited [140]. Additionally, the short-term memory

Chapter 3. Algorithmic proposal 63

components are enough to produce high-quality solutions, however, any optimization al-

gorithm should find the right balance between intensification and diversification. To that

aim, the tabu search framework introduces the general idea of long-term memory in order

to diversify the search. However, other simpler approaches, such as the one proposed in

this research to tackle the CCMP, combines TS with a multistart strategy to diversify the

search.

3.3.3 Variable Neighborhood Search

Variable Neighborhood Search (VNS) was proposed by N. Mladenović and P. Hansen as

a general method to solve hard combinatorial optimization problems [99, 100, 102]. The

basic principle of this methodology is to perform systematic changes in the neighborhood

structure to escape from local optima traps.

The use of different neighborhood structures was a novel idea in 1997 when VNS first

appeared, unlike classical search procedures such as SA or TS that used a single neighbor-

hood structure. VNS is based on the following three ideas [101]:

• A local optimum with respect to one neighborhood may not be optimal with respect

to another neighborhood.

• A global optimum is a local optimum with respect to all possible neighborhood struc-

tures.

• Local optima with respect to one or more neighborhoods may be relatively close.

Although there is no formal demonstration of this concern, it has been observed that,

in some problems or neighborhoods, a local optimum is closely related to a global

optimum.

Based on these ideas, it is possible to find many variants in the literature. Some of

the most relevant ones are: Reduced Variable Neighborhood Search (RVNS), Basic Vari-

able Neighborhood Search (BVNS), Variable Neighborhood Descent (VND), General Vari-

able Neighborhood Search (GVNS), Parallel Variable Neighborhood Search (PVNS), or

Variable Formulation Search (VFS), among others [59, 99, 101, 192].

64 Chapter 3. Algorithmic proposal

In this research, we proposed the use of BVNS variant to tackle the CBS. Additionally,

we propose the use of GVNS, and VND for the CAB.

The pseudocode of the BVNS variant is presented in Algorithm 5. Particularly, BVNS

receives two input parameters, a feasible solution (ϕ) and the last neighborhood to be ex-

plored (kmax). The BVNS is conformed by three main steps: a shake procedure which

helps to escape from local minima traps (step 4); a local search procedure based on the

exploitation of a neighborhood structure (step 5); and the neighborhood change procedure,

that determines which neighborhood is explored next (step 6) depending on the improve-

ments found in the current neighborhood. These three steps are repeated until reaching the

maximum number of neighborhoods explored, kmax . The neighborhood change procedure

follows a standard design that increases the value of k by one unit when there is not an im-

provement in the current iteration, and it resets the value of k to one when an improvement

is found.

Algorithm 5: Basic Variable Neighborhood Search Procedure
1 Procedure BVNS(ϕ , kmax):
2 k ← 1
3 while k ≤ kmax do
4 ϕ ′← Shake(ϕ,k)
5 ϕ ′′← LocalSearch(ϕ ′)
6 ϕ ← NeighborhoodChange(ϕ,ϕ ′′,k)
7 end
8 return ϕ

The main difference between BVNS and GVNS is in step 5 of Algorithm 5. As it can be

seen, in BVNS the improving procedure is a local search. In contrast, in the GVNS variant,

this step is replaced by a VND which is characterized by the deterministic exploration of

several neighborhood structures during the search. In that case, the neighborhoods are ex-

plored sequentially and in descending order through local search procedures. This method

returns a solution that is locally optimal with respect to all neighborhoods explored [60].

Algorithm 6 illustrates the pseudocode of a generic VND procedure for a minimization

problem. In particular, the procedure receives two input parameters, the input solution (ϕ)

and the set of neighborhoods (N) where N = {N1, . . . ,Nkmax }. The procedure starts by

Chapter 3. Algorithmic proposal 65

initializing k to the value one and then, it enters a loop in which it iterates through each

neighborhood in the set. Each neighborhood is explored with the goal of finding a better

solution than the current one found so far (step 4). If the solution found is better than the

current solution (step 5), the algorithm updates the current solution (step 6). If the improved

solution is not better than the current solution, the algorithm moves on to the next neigh-

borhood (step 9). The loop continues until all neighborhoods have been explored. Then, the

best solution found is returned.

Algorithm 6: Variable Neighborhood Descent Procedure
1 Procedure VND(ϕ , N):
2 k ← 1
3 while k ≤ kmax do
4 ϕ ′← LocalSearch(Nk ,ϕ)
5 if of (ϕ ′)< of (ϕ) then
6 ϕ ← ϕ ′

7 k ← 1
8 else
9 k ← k +1

10 end
11 end
12 return ϕ

3.3.4 Iterated Greedy

Iterated Greedy (IG) is a metaheuristic based on the repeated application of two main

phases: a partial destruction of a solution, and a reconstruction to reach a new feasible

solution. These two phases are usually repeated until termination criteria is met [216, 235].

A solution is partially destroyed in the destruction phase to create a new feasible solu-

tion. The goal of this phase is to diversify the search by moving into unexplored regions

of the solution space. The destruction phase typically involves small changes to the current

solution to create a new solution that is feasible, but not necessarily better. This can be done

in various ways, depending on the problem being solved. In addition, researchers propose

the use of parameters to control the percentage of the solution to be destroyed. Therefore,

66 Chapter 3. Algorithmic proposal

small modifications intensify the exploration in a narrow region of the solution space. On

the contrary, large variations diversify the search in a broader region.

The reconstruction phase receives a partially destroyed solution and restores it to create

a new feasible solution that is better than the current one. The reconstruction is done by a

greedy procedure that, in some cases, will be similar to the one used to generate the initial

solution.

IG is widely hybridized or combined with search algorithms such as local search pro-

cedures. In fact, for constructive heuristics, a natural extension is to improve the solu-

tions generated by applying a local search method being, in the simplest case, an iterative

improvement algorithm. This extension results in the procedure proposed to address the

2DBMP.

A standard version of IG combined with a local search procedure is presented in Algo-

rithm 7. The procedure receives the input graph G and the maximum number of iterations

imax , as parameters. The algorithm starts by generating an initial solution with the greedy

constructive procedure (step 2). Then, after obtaining an improved solution through the lo-

cal search procedure (step 3), the procedure enters a loop (step 4). In each iteration, some

elements are removed from the current solution using the destruction method (step 5). Next,

the solution is greedily reconstructed (step 6) and improved again by the local search proce-

dure (step 7). In each iteration, IG determines whether the perturbed and improved solution

(ϕ ′′′) is better than the incumbent one (ϕ) (step 8). If so, ϕ is updated accordingly. These

three last steps (destruction, reconstruction, and local search) are repeated until reaching a

maximum number of iterations. Once the termination condition is met, IG returns the best

solution found.

3.4 Advanced strategies

The procedures presented in this chapter can be further improved with the use of the three

advanced strategies. Although these strategies were designed within the context of GLPs,

the ideas behind them might be applied to other heuristic searches. The first strategy ex-

plores computationally efficient ways of calculating the value of the objective function after

a move, which is particularly important in large neighborhoods (Section 3.4.1). The second

Chapter 3. Algorithmic proposal 67

Algorithm 7: Iterated Greedy procedure
1 Procedure IG(G , imax):
2 ϕ = GreedyConstructive(G)
3 ϕ ← LocalSearch(ϕ)
4 for i ← 1 to imax do
5 ϕ ′← Destruction(ϕ)
6 ϕ ′′← Reconstruction(ϕ ′)
7 ϕ ′′′← LocalSearch(ϕ ′′)
8 if of (ϕ ′′′)< of (ϕ) then
9 ϕ ← ϕ ′′′

10 end
11 end
12 return ϕ

strategy deals with flat landscapes, where many solutions have the same objective function

value (Section 3.4.2). Finally, the third strategy also addresses efficiency, but from the point

of view of reducing the number of moves to be evaluated within a neighborhood structure

(Section 3.4.3).

3.4.1 Efficient evaluation of a solution after a move

The most time-consuming part of an optimization algorithm is usually the improvement

strategy since it explores the neighborhood of a solution. Sometimes, a local search may

need to examine almost all the neighboring solutions, especially when finding better so-

lutions becomes harder or when using a “best improvement” strategy. Neighborhood ex-

ploration involves calculating the value of the objective function for each of the solutions

that are part of it. For this reason, the time spent calculating the quality of a solution is

critical to the performance of a heuristic algorithm, such as a local search. Therefore, re-

searchers have proposed an intelligent or efficient evaluation of the objective function. In

this Doctoral Thesis, two levels of optimization in the calculation of the objective function

are proposed.

The first and simplest level focuses on the detection of the elements of the solution that

have changed after a movement has been performed. Two moves were proposed in Section

68 Chapter 3. Algorithmic proposal

3.2: insertions and exchanges. In the case of the insertion, denoted as Insert(ϕ,u,v), at least

two vertices may be affected by the move, the vertex inserted u and the vertex currently

assigned to the position where u is going to be inserted ϕ(w) = v . In addition, all displaced

(or shifted) vertices will also be impacted by the movement. Finally, vertices adjacent to

any of the directly affected vertices would also have to be considered.

Considering the insertion move depicted in Figure 3.2, vertices A, D, and E are directly

influenced by the Insert(ϕ1,A,4), while vertices B and C, are indirectly affected by the

motion of their adjacent vertices.

Similarly, when considering a Swap(ϕ,u,w) move, vertices u and w and their adjacent

vertices are affected. Considering again the example depicted in Figure 3.3, vertices A and

D are directly affected by the move Swap(ϕ,A,D), while the rest of the vertices (B, C, E)

are affected for being adjacent the swapped vertices.

From a computational point of view, the complexity of the computation of the optimized

objective function is also in the same order as the original objective function calculation

order, since all the vertices might be affected by the move, so in the worse case they would

be equivalent. However, despite the fact that this proposal does not reduce the theoretical

complexity, from a practical point of view, and as we will illustrate in the experimental

section, the number of edges affected by a move is considered, on average, smaller than the

total number of edges of the graph, especially when the input graph is large.

The second level of optimization related to the calculation of the objective function is

devoted to reducing the complexity involved in its calculation. However, this optimization

is only possible for some specific objective functions and move operators. On the other

hand, extra data structures are needed whose updating and storing do not deteriorate the

performance of the algorithm. Given the particularity and complexity of this procedure,

the reader is referred to the articles in which it is published. Specifically, this has been

implemented for the CAB in [31] and for the CBS in [33].

Chapter 3. Algorithmic proposal 69

3.4.2 Tiebreak criterion for solutions with the same objective function
value

An essential element for the successful application of local search procedures is the use

of the objective function value to guide the search. However, sometimes, the search space

presents plateaus (valleys) in the fitness landscape, also known as flat landscapes [16, 210,

207] where many solutions have the same objective function value associated, despite the

structure of the solution might differ significantly. This situation is likely to occur in op-

timization problems formulated as max-min (or min-max) problems, where the objective

function consists of maximizing a minimum value (or minimizing a maximum value). Gen-

erally, these type of problems has numerous solutions associated with the same value of the

objective function. When this occurs, it is difficult to determine which of the compared so-

lutions is more promising to continue the search. In this case, the objective function value

alone does not provide enough information to find effective search directions. A priori, two

solutions with the same objective function value are equivalent for a local search proce-

dure. Therefore, it is necessary to identify certain properties of the solution that determine

which solution is more promising to continue the search. Some of the proposals that can

be found in the literature to mitigate the impact of this problem consist of using addi-

tional objective functions as a tie-breaker tool [186, 192, 207]. These alternative objective

functionsalternative objective function are only computed when the value of the original

objective function for the compared solutions is the same.

In this research, we face a max-min optimization problem, the CAB (see Section 2.2),

and two min-max optimization problems, the CCMP (see Section 2.1) and the 2DBMP

(see Section 2.4). To overcome this difficulty, we propose a tiebreak criterion based on the

frequency of a particular cut (in the case of the CCMP) or bandwidth (for the CAB and

2DBMP). More formally, given a solution (ψ,ϕ), we define fc as the number of edges of

the host graph with an associated cut equal to c as follows:

fc = {(w ,z) ∈ EH : cut(ϕ,ψ,(w ,z)) = c}. (3.14)

Then, let cmax be the maximum cut among all edges of the host graph of n vertices,

and therefore, cmax = ccw(G ,ϕ,ψ). Then, given an embedding (ϕ,ψ), the tie-breaking

70 Chapter 3. Algorithmic proposal

function tc for the CCMP is defined next:

tc(ϕ,ψ) =
cmax

∑
c=0

nc · fc. (3.15)

Analogously, in the case of bandwidth-based problems, we define fb as the number of

edges of the input graph with an associated bandwidth equal to b. In mathematical terms:

fb = {(u,v) ∈ EG : bw(ϕ,ψ,(u,v)) = b}. (3.16)

Then, let bmax be the maximum bandwidth among all edges of the input graph and n the

number of vertices of the input graph. Then, given an embedding (ϕ,ψ), the tie-breaking

function tb for the CAB and t ′b for the CBS are formalized in Equations 3.17 and 3.18

respectively:

tb(ϕ,ψ) =
bmax

∑
b=1

nbmax−c · fb . (3.17)

t ′b(ϕ,ψ) =
bmax

∑
b=1

nc · fb . (3.18)

The proposed tie-break criteria take into consideration not only the objective function

of an embedding but also additional semantic information related to promising solutions.

Specifically, when the objective function value of two solutions is equal, both solutions are

evaluated using the tie-breaking functions (i.e., tc tb and tb). The solution with the lower

value is chosen as the most promising one. The rationale behind this decision is to penalize

those solutions with many edges with a cut or bandwidth close to the value of the objective

function. It is worth mentioning that if the t-value for two solutions is the same, they are

considered equivalent (in terms of the tie-breaking criterion).

3.4.3 Neighborhood reduction strategy

Considering that for the problems of interest, the neighborhoods are generally of immense

size, it seems necessary to propose more advanced techniques for the exploration of these

neighborhoods. This problem led to the well-known neighborhood reduction techniques.

Chapter 3. Algorithmic proposal 71

𝑓𝑓

𝑆𝑆

𝑁𝑁(𝑠𝑠)

𝑠𝑠

𝑁𝑁𝑁(𝑠𝑠)

(a)

𝑓𝑓

𝑆𝑆

𝑁𝑁(𝑠𝑠)

𝑁𝑁𝑁𝑁(𝑠𝑠)

𝑠𝑠

(b)

Figure 3.4 Representation of the landscapes of a minimization optimization problem.
(a) Reduction of the neighborhood N (s) to the subset N ′(s). (b) Reduction of the
neighborhood N (s) to the subset N ′′(s)

Ideally, a reduction technique focuses on promising solutions, avoiding waste of time in

the evaluation of solutions that produce a deterioration in the objective function (see Figure

3.4(a)). However, in practice, given the complexity of the neighborhoods, some techniques

are limited to reducing their size by setting a percentage or a fixed number of solutions to

explore (see Figure 3.4(b)).

In this Doctoral Thesis, neighborhood reduction strategies have been proposed for some

of the problems studied. In the CCMP, we were able to determine those potential moves

that, in the worst case, will lead to a solution with the same quality as the current solution

found [34].

Neighborhood exploration for the CAB was constrained by two neighborhood reduction

strategies. Specifically, the exchange and insertion moves proposed in Section 3.2 depend

on two vertices, one from the input graph and one from the host graph in the insertion move,

and two vertices from the input graph in the swap case. In this research, two reduction

strategies are proposed to reduce the number of vertices of both graphs. Specifically, the

first strategy reduces the number of vertices of the input graph that can be moved, while the

second strategy reduces the number of vertices of the host graph where the input vertices

can be inserted, in the case of insertions. Similarly, it reduces the number of vertices of the

72 Chapter 3. Algorithmic proposal

input graph that can be swapped, for the exchange operation.

Finally, in the 2DBMP we avoid the exhaustive exploration of the proposed neighbor-

hood based on swaps by identifying all possible exchanges that would worsen the quality

of the solution. Therefore, only moves to solutions of equal or better quality are considered.

3.5 Final proposals

In this chapter, the main heuristic and metaheuristic techniques applied in the context of this

Doctoral Thesis have been described. Next, Table 3.1 summarizes the strategies proposed

for each of the tackled problems: the CCMP, the CAB, the CBS, and the 2DBMP. Specif-

ically, the algorithms and strategies are organized into greedy constructive, local search,

metaheuristics, and advanced strategies.

As demonstrated, although heuristic strategies are generally problem-dependent, in this

research we have been able to find strategies with more general applicability. However,

it should be noted that the objective function tie-breaking criterion is not implemented

for CBS because, unlike the other three problems where a maximum or minimum must

be minimized or maximized, in this problem, a sum must be minimized. This makes the

quality of the solutions much more diverse and thus hampers the emergence of large sets

of solutions with the same objective function value.

Moreover, the four elements that organize this table can be understood as the framework

for the development of an algorithmic proposal for any optimization problem.

Finally, it is worth mentioning that in this chapter only the algorithms and strategies

that have been used in the final proposals have been included. However, to achieve this

final configuration, it has been necessary to experiment and test a wide variety of strategies

and algorithms.

3.6 Software development

The aim of this Doctoral Thesis is to optimize a specific problem or domain using heuristic

and metaheuristic techniques. This involves combining computer science, mathematics and

statistics, and operational research, which are all broad disciplines. Figure 3.5 shows a

Chapter 3. Algorithmic proposal 73

CCMP CAB CBS 2DBMP

Greedy
Constructive

γ ✓
γw ✓ ✓
BFS based ✓
Patterns ✓
λ ✓ ✓ ✓
Randomized ✓ ✓ ✓ ✓
Adaptive ✓ ✓ ✓ ✓

Local
Search

NI ✓ ✓ ✓
NS ✓ ✓ ✓

Metaheuristic

Multistart ✓ ✓ ✓
TS ✓
VNS ✓ ✓
IG ✓

Advanced
strategies

Efficient OF ✓ ✓ ✓ ✓
Tiebreak ✓ ✓ ✓
Neigh. Reduction ✓ ✓ ✓

Table 3.1 Summary of the strategies and algorithms proposed for the problems ad-
dressed.

Venn Diagram [245] that illustrates this combination. To apply mathematics and statistics

to real-world problems, we need to formalize and model them mathematically. We also

need to extract or elicit the requirements of the stakeholders and how they fit into the

business context, which can be translated in the optimization area as the understanding

of the constraints, objectives, and input data of the problem to be addressed. In addition,

software developers use computer science methodologies to extract this domain knowledge

and propose a software solution, as we did in this thesis for an optimization problem. The

software development also requires deployment and maintenance of the program [246].

The relationship between building software for a company and solving an optimization

problem follows similar processes. It is for this reason that in this Doctoral Thesis, special

importance has been given to software development. Therefore, in this section, the most

relevant aspects related to software engineering are collected.

74 Chapter 3. Algorithmic proposal

Domain
Knowledge

Mathematics
and Statistics

Computer
Science

Software
Development

Heuristic
Optimization

Mathematical
Modelling

Artificial
Intelligence

Figure 3.5 Disciplines which influence the heuristic optimization field in a Venn Dia-
gram.

3.6.1 Implementation issues

The quality of a proposed algorithm is mainly measured using two metrics as a basis:

the quality of the solutions obtained and the execution time. The implementation of an

algorithm is as important as the proposed algorithm itself, i.e., if the algorithm is good,

but the implementation is not, it will be difficult to obtain quality solutions in a reasonable

amount of time.

Another essential issue to consider, when implementing a heuristic optimization algo-

rithm is the programming language. Some of the most relevant general-purpose program-

ming languages are Java [7], Python [243], C [132], C++ [234], or C# [112] among others.

Although all programming languages are valid for coding an algorithm, certain aspects

must be taken into account, such as complexity for learning, speed of execution, use of

external libraries, or the possibility of running it on different operating systems easily [70].

Chapter 3. Algorithmic proposal 75

In this Doctoral Thesis, the Java programming language has been chosen over the rest

of the aforementioned languages. The flexible nature of Java enables programmers to create

code that can be executed on any system or device, regardless of its architecture or plat-

form. Since it is one of the most widely used programming languages in the world, it has

continuous maintenance and a large community. Some Java advanced features are: the lan-

guage is compiled and interpreted, platform-independent, portable, robust, multithreaded,

and object-oriented [77, 196].

It is worth focusing on Java object-oriented feature. Since Java is strongly oriented to

the object paradigm, almost everything in Java is an object and the main functionalities of

the program live within objects and classes. This makes it considerably easier to achieve

one of the objectives proposed in this Doctoral Thesis: “Model the problem so that it can

be approached computationally”.

The organization of the code into classes guides the developer to structure the code

with the goal of solving a problem. For example, since this dissertation solves optimization

problems that are closely related one to each other, the code developed will be similar. By

organizing the code properly, a common development framework can be created for all of

them.

Figure 3.6 shows the main classes of the application software developed to approach a

particular problem, the CCMP. Note that, the diagram presented is based on the UML class

diagram [22]. In particular, this diagram is organized into six packages.

The package “util” contains those classes that usually handle certain functionalities of

the algorithms and that are generally common to any optimization problem such as instance

reading, time control, random number generation, or a report generator.

The package“models” contains two of the fundamental classes in the implementation of

any optimization problem: the instance and the solution. Both classes are abstract classes,

as shown by the blue circle with the letter “C” next to the class name. Abstract classes

are classes with general applicability to any optimization problem. Therefore, when imple-

menting a particular problem, the particular classes of that problem are coded to inherit the

generic behavior of the abstract classes.

The package “algorithms”, and its subpackages, “constructives”, and “improving”, con-

tain the procedures that operate on the solutions: construct them, modify them, etc. In other

76 Chapter 3. Algorithmic proposal

words, each of these classes represents an algorithm.

Finally, the package “experiment” represents the program to be executed. In the “Ex-

periment” class, a concrete experiment is executed, and it is used to compare different

algorithms. Therefore, this class requires the reading of instances, the use of algorithms to

generate solutions, and methods to generate reports of the desired metrics.

Among all the classes represented in the diagram shown in Figure 3.6, the Solution class

stands out above the rest, since its correct implementation is critical in the final performance

of the algorithm. Objects of this class represent a solution to the considered problem and

are going to be handled by the proposed algorithms.

In the case of the GLPs, from a formal point of view, the solution is represented by

means of the tuple (ϕ,ψ). When representing these concepts by a Java class, we have

chosen to use two synchronized data structures. Specifically, two arrays of integer values

denoted R and R−1 are used. An array is a one-dimensional matrix composed of an index

that identifies each memory position within the array, and the corresponding content of

those positions in memory. Therefore, an array can be understood as a set of key-value

tuples.

In array R, the key represents the vertices of the host graph, while the value repre-

sents the vertices of the input graph. Therefore, a correspondence key-value represents the

assignment of an input vertex to a host vertex. In this sense, there are n key-value pairs,

being n the number of vertices of the host graph. Figure 3.7 illustrates the representation

of this array with a table. In this case, the header of the array corresponds to the keys of the

array (i.e., vertices of the host graph) while the second row of this graphical representation

contains the values associated with each key (i.e., vertices of the input graph). This is the

straightforward implementation of the ϕ function.

Oppositely, in R−1, the key represents the vertices of the input graph, while the value

represents the vertices of the input graph. Figure 3.7, illustrates the array R−1 of the solu-

tion depicted in Figure 3.7. Therefore, determining the assigned host vertex to a vertex of

the input graph, or vice versa, has a computational complexity of O(1).

It should be noted that an array structure is very appropriate for this task since it allows

direct access to its components. In addition, the choice of this structure has taken into

account that it is generally quite efficient when it comes to queries and modifications.

Chapter 3. Algorithmic proposal 77

 R
an

do
m

M
an

ag
er

C

 C
CM

PI
ns

ta
nc

e
C

 C
CM

PS
ol

ut
io

n
C

 G
re

ed
yC

on
st

ru
ct

iv
e

C

 G

RA
SP

Co
ns

tr
uc

tiv
e

C

 T
im

eM
an

ag
er

C

 R

es
ul

tM
an

ag
er

C

 I

ns
ta

nc
eM

an
ag

er
C

 E
xp

Co
ns

tr
uc

tiv
e

C

 T

ab
uS

ea
rc

h
C

 B
VN

SA
lg

or
ith

m
C

 M
ul

tis
ta

rt
Al

go
rit

hm
C

 L
oc

al
Se

ar
ch

C

 E
xp

Lo
ca

lS
ea

rc
h

C

 I
m

pr
ov

in
gM

et
ho

d
A

 C
on

st
ru

ct
iv

e
A

 S
ol

ut
io

n
A

 I
ns

ta
nc

e
A

 M
et

ah
eu

ris
tic

s
A

 E
xp

er
im

en
t

A

 H
eu

ris
tic

A

Fi
gu

re
3.

6
C

la
ss

di
ag

ra
m

of
th

e
so

ft
w

ar
e

de
ve

lo
pe

d
fo

rt
he

C
C

M
P.

78 Chapter 3. Algorithmic proposal

1

25

4 3

C

A

DB

E

1 2 3 4 5

A E D B C

A B C D E

1 4 5 3 2

𝑉𝑉𝐻𝐻
𝑉𝑉𝐺𝐺

𝑉𝑉𝐺𝐺
𝑉𝑉𝐻𝐻

𝑅𝑅−1

𝑅𝑅

Figure 3.7 Example of the generic representation of a solution using two arrays.

Finally, some other auxiliary data structures are typically used to facilitate the calcula-

tion of the objective function of a solution. For example, in the case of CBS, a structure is

used to store, for each edge of the input graph, the value of the associated bandwidth. In

this way, in the case of calculating the value of the objective function of the solution after

a move, only the value of the edges affected should be updated.

3.6.2 Solution visualization

Geometric representations and drawings have been the subject of study since about 3000

BC. This dissertation begins by quoting the famous citation of Archimedes “Do not dis-

turb my circles!” (in Latin, “Noli turbare circulos meos!”) indicating the early connection

between graph drawing and geometry [62].

Classic geometry is a branch of mathematics that deals with the properties and rela-

tionships of points, lines, angles, surfaces, and solids. Undoubtedly, Euclid revolutionized

classic geometry after presenting his best-known work, the book “Element” [69, 111].

Today, there are more advanced technologies to deal with geometry. Here, automated

graph drawing emerges as a system to position vertices (or nodes) and edges (or arcs) to

produce graphs with desired properties (See Section 1.2.3) [89, 239].

In this research, we consider crucial to develop software to represent and generate draw-

ings of the solutions obtained. By observing the graphical representation of a solution, it is

Chapter 3. Algorithmic proposal 79

1

7

10

2

17

3

12

4

11

5

6

15

168

9 13

14

(a)

1

2

3

4

7

10

28

5

8

11

29

6

9

12

30

13

31

16

34

19

14

32

17

35

20

15

33

18

36

21

22

23

24

25

26

27

(b)

Figure 3.8 (a) Example of a graph of the Small Instances set. (b) Example of a regular
Toroidal Mesh topology graph.

possible to visually conjecture how close it is to an optimal solution, what difficulties an

algorithm may present, or to analyze the evolution of the quality of the solutions during the

search.

Therefore, solutions obtained by the different procedures are transformed into an image,

in vector format. Also, just as a data scientist does a preliminary analysis of the data, when

working on GLPs it is important to know the structure and topology of the input graphs.

Figures 3.8 and 3.9 have been made through the library developed in the context of

this Doctoral Thesis. In particular, this library has been coded in Java, in combination with

DOT and Graphviz. DOT is a plain text descriptive language that provides a simple way to

describe graphs [79]. Using the open-source software Graphviz [67, 80], graphs described

in the DOT language are converted into images, vector images, or PDFs.

The development of such software not only allows us to visualize solutions in order to

understand the performance of the algorithms (see Appendix A), but it can also be used

to compare the generated solutions with other graph-drawing software. In this sense, the

conventional wisdom that a picture is worth a thousand words applies here to evaluate our

proposals and compare them it with other graph-drawing software, beyond statistical study

based on specific objective functions.

Although a wide variety of free libraries for graph representation can be found on the

Internet, it is important to note that none of them allow the representation of a graph as the

80 Chapter 3. Algorithmic proposal

4

6

5

7
8

10

13

15

11

9

12

18

17

14
19

16

22

20

21

24

23

3

2

1

(a)

1

14

50

13

49

12

48

11

47

10

46

9

45

8

44

7

43

6

42

5

41

4

40

3

39

2

38
37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18
17

16 15

(b)

Figure 3.9 Graphical representation of two solutions for the CCMP. In particular, figure
(a) shows the Complete Split graph K4∇K20, made of 24 vertices and 86 edges; and
(b) depicts the Circulant graph C 14

50 , made of 50 vertices and 50 edges.

embedding of an input graph in a given host graph. This library can be reused to represent

solutions to any other problem of GLP.

3.6.3 Resources used

The developed research has been carried out at Universidad Rey Juan Carlos (URJC),

within the Group for Research in Algorithms For Optimization (GRAFO). Both the uni-

versity and the research group have supported this research by allowing the use of their

resources. The means necessary for the achievement of this Doctoral Thesis are described

below.

GRAFO consists of professors and students belonging to different universities and re-

search areas. This group, in addition to providing funding to support the Ph.D. student, has

shared their knowledge, contacts of international researchers, and the necessary scientific

equipment. The characteristics of the hardware used are specified next:

• Dell XPS 13 9300. Intel Core i7-1065G7 4-core CPU @ 1.30GHz. RAM 16.0 GB

• High-performance computing cluster. Experiments were carried out on Ubuntu 20.04

Virtual Machine. AMD EPYC 7282 16-core CPU @ 2.80GHz. RAM 16.0 GB

Chapter 3. Algorithmic proposal 81

On the other hand, the URJC has provided the Ph.D. candidate with a workplace as

well as multiple other facilities ranging from software licenses to bibliographic material.

The most relevant resources in the context of this Doctoral Thesis are listed below:

• GitHub Campus Program is a premium access package to GitHub for education-

focused institutions. GitHub is a web-based platform for version control and col-

laboration that uses the Git control system. It allows developers to store and track

changes to their code and collaborate with other developers on projects.

• JetBrains Professional License. Jetbrains is a software development company that is

that provides integrated development environments (IDEs) and other developer tools.

In particular, IntelliJ IDEA and PyCharm (IDEs for Java and Python development

respectively) have been used.

• Microsoft Office is a collection of productivity software developed and published

by Microsoft. It includes applications such as Word, Excel, PowerPoint, Outlook,

OneNote, and OneDrive, among others.

• Adobe Acrobat Reader is a software to view, print, and annotate Portable Document

Format (PDF) files.

• SPSS Statgraphics is a statistical analysis software package for statistical analysis

and visualization [74].

• Library of the URJC, with access to inter-library loan, the Madroño Consortium, spe-

cialized databases such as Web Of Science, or access to journals of Elsevier, Springer,

IEEE, ACM, and other digital libraries.

• Microsoft Visio and StarUML are diagramming programs generally used to visual-

ize business data. Both softwares support the Unified Modeling Language (UML)

framework. In the context of this Doctoral Thesis, they have been used to model the

problems, the flow of the algorithms, and the structure of the input data.

Chapter 4

Joint discussion of results

This chapter summarizes and synthesizes the results obtained during the experimentation

carried out in this Doctoral Thesis, as well as the drawing of some conclusions and im-

plications based on the results obtained when considering the research as a whole. It also

provides a comprehensive and critical evaluation of the research, demonstrating the contri-

bution of the proposed algorithms and strategies for each problem studied.

Specifically, this chapter is organized into three sections. The section 4.1 presents the

guidelines followed for the experimental evaluation of the proposed algorithms in a rigor-

ous way. Then, Section 4.2, describes the tuning process of an algorithm as well as some

directions to illustrate the merit of the proposals. Finally, Section 4.3, describes the frame-

work followed to compare the proposed algorithms with the best algorithms found in the

state of the art.

4.1 Analysis of the performance of the algorithms

Analyzing the performance of an algorithm is essential to evaluate its effectiveness and

efficiency in solving a problem. However, it is usually not sufficient to rely solely on a

theoretical approach to evaluate them. Especially in the case of heuristic and metaheuristic

algorithms that are designed to find good solutions, but not necessarily optimal ones, to

optimization problems. In this case, their performance can be affected by a number of

factors that will not be captured by a purely theoretical analysis.

83

84 Chapter 4. Joint discussion of results

To properly assess a metaheuristic, it is often necessary to perform an empirical anal-

ysis, where the algorithm is run on a series of test cases and its performance is measured

using appropriate performance metrics. In this Doctoral Thesis, a very specific experimen-

tation scheme is followed. These guidelines are summarized in the following steps:

Step 1: Experimental Design. Before analyzing the performance of an algorithm, the as-

sumptions and objectives must be clearly defined. This also involves the selection

of test cases or instances. These test cases should be representative of the types of

inputs that the algorithm is likely to encounter in practice. Also, this step involves

obtaining other codes of state-of-the-art algorithms.

Step 2: Measurement. To properly analyze the performance of an algorithm, some per-

formance metrics to measure have to be defined. This might include metrics like

time complexity, space complexity, or the quality of the solutions produced by the

algorithm.

Step 3: Implementation and execution. The proposed algorithms are executed on the se-

lected test cases. In some non-deterministic environments, it would be interesting

to run the algorithm several times to take into account the randomness or variability

of the results.

Step 4: Collect, report, and analyze the results. The raw results are manipulated to obtain

the metrics specified in the previous step. Generally, the analysis of the results

entails plotting graphs, and charts or calculating statistical measures.

Step 5: Draw conclusions and validate the hypothesis. From the analysis of the results,

conclusions are drawn, and the initial hypothesis is validated. This step involves

the extraction of knowledge from the data, identifying areas where the algorithm

performs particularly well or poorly, and suggesting ways to improve its perfor-

mance.

Based on the steps described above, we now focus on two of them, which are decisive

for the correct execution of the rest of the steps and therefore of the research in general.

In particular, in Section 4.1.1 we list and analyze the instances used in the studied GLPs.

Then, Section 4.1.2 collects the most relevant metrics for comparing algorithms.

Chapter 4. Joint discussion of results 85

4.1.1 Instances

Instances used in this Doctoral Thesis are introduced in Section 1.2.2. Specifically, these

instances are graphs that are used as the input graph of the addressed GLP. Table 4.1 lists

the instances utilized, organized by problem and set. From the table, it can be observed that

most of the graphs used have a well-known topology except the Small Instances, Random

Graphs, and Harwell-Boeing sets. Moreover, for all the problems studied, sets of instances

with a known optimum can be found (they are marked with a “*” in the table). Instances

with a known optimum are useful to test the effectiveness of heuristic algorithms. However,

when designing an algorithm for general graphs, the behavior of the method on a specific

family, with a particular topology, might not reach the optimal solutions.

From the observation of Table 4.1 it can be concluded that there is a minority of in-

stances that represent real scenarios. In particular, the Harwell-Boeing set includes in-

stances that model problems in diverse areas of engineering [61].

Finally, it is worth mentioning that all instances listed in Table 4.1 can be easily obtained

from literature articles, which kindly provide links for downloading. Moreover, graphs with

known topology have the advantage that they can be generated using commercial software.

The selection of input instances to evaluate an algorithm should be performed carefully.

When determining the set of instances, researchers should take into account their diversity,

difficulty, and structure. In addition, a large number of instances may facilitate a fairer

comparison and analysis of the proposed methods. In fact, some statistical tests require

a sufficiently large sample in order to be performed correctly. However, it also implies a

higher effort in the validation process.

Generally speaking, the considered instances are usually divided into two subsets. The

first one is used to adjust the algorithm parameters and the second one to evaluate its per-

formance. The calibration of the parameters of the metaheuristics is an important and tricky

task that will be further explained in Section 4.2. From the point of view of the selection

of the instances, a poor selection of instances can cause the algorithm to overfit. Overfit-

ting is one common problem in artificial intelligence or machine learning algorithms that

arises when an algorithm performs well on the training data but poorly on new or unseen

data [109, 257]. Additionally, this set division can lead to a more accurate measure of the

86 Chapter 4. Joint discussion of results

CCMP CAB CBS 2DBMP

3D Meshes 18
Bipartite graph *6
Cartesian product of graphs 6 *15
Caterpillar 36
Complete binary tree 21
Complete graph *2
Complete Split *21
Cone *10
Cycle Pow *4 6
Cycles *22 *2 *3
Double Stars 18
Grids *21
Hamming *22
Harwell-Boeing 38 21 90 45
Hypercubes 5
Join of Hypercubes *9
Paths *22 *2 *3
Petersen graph *1
r-level t-ary trees *4
Random Graphs 28
Small Instances 84
Toroidal Mesh *17 *33
Wheel *2 5
Total 179 247 106 90

Table 4.1 Sets of instances used to test and compare the proposed algorithms for the
studied GLPs. “*” indicates instances with known optima.

performance of an algorithm or approach, as it allows the testing of the algorithm on new

data rather than relying on the same data used to train or develop it.

In order to address the problems that a poor selection of instances may entail, during

the course of the Doctoral Thesis a parallel research was carried out, which ended with the

proposal of an automatic method for the selection of a preliminary set of instances. The

reference to the associated publication with this research can be found in Chapter 11.

Chapter 4. Joint discussion of results 87

4.1.2 Metrics

Before executing an algorithm, the performance measures and indicators may be selected.

Then, a statistical analysis will be applied to the obtained results. Measurement metrics

are the way researchers have found to evaluate the performance and effectiveness of the

proposed algorithms in solving a particular problem.

Metrics can generally be divided into the following groups: quality metrics, efficiency

metrics, and robustness [15, 39, 230].

Quality metrics measure the quality or effectiveness of the solutions produced by an

algorithm. An example of a quality metric, in the context of the GLP, is the objective

function value of the solution. Based on the objective function value, other metrics can

be derived, such as the difference to the global optimum solution or the distance to the

lower/upper bounds.

Efficiency metrics usually measure the time that an algorithm needs to solve. Compar-

ing the execution time of algorithms is the most commonly used metric for evaluating the

efficiency of an algorithm in solving a problem. However, it is important to note that the

execution time of an algorithm can be affected by a variety of factors, such as the computer

or the specific environment in which the algorithm is run. For example, the execution time

of an algorithm may be slower on a computer with slower processing speeds or less prin-

cipal memory, or in an environment with higher levels of background activity due to other

processes in execution. The programming language is also a matter to consider. Although

researchers strive to make fair comparisons, the analysis of the efficiency of algorithms is

an issue that needs to be studied deeper.

Other more precise metrics focus on the study of efficiency from the perspective of

complexity, such as the time complexity, or the space complexity. The time complexity

measures the amount of time it takes for an algorithm to solve a problem as the size of the

input data increases, while the space complexity, measures the amount of memory required

to solve a problem. However, it is not always possible to calculate the complexity of an

algorithm [23].

In this research, in order to promote a fair and unbiased comparison, the state-of-the-art

88 Chapter 4. Joint discussion of results

algorithms have been run in the same experimental environment as the proposed algo-

rithms. In addition, stopping criteria have been proposed to restrict the execution time to

the times proposed by the researchers of the previous studies.

Finally, the third group of metrics focuses on algorithm robustness. There is no clear

definition of this metric, although its objective is clear, to measure the ability of the algo-

rithm to maintain its performance under a range of changing conditions or circumstances.

For example, in the case of GLP these metrics should analyze the ability of the algorithm

to find solutions to sets of input graphs with diverse topologies. Moreover, their resolution

must be done with the same parameter adjustment, not being valid for a specific adjustment

for each type of graph.

The above metrics are often combined with statistical analyses. The simplest analysis

combines performance indicators by aggregation, averaging, or deviation operations that

summarize the total experimentation into a single number. In this research, and in general

in the context of single-objective optimization, we report the average value of the objective

function, the deviation from the best solution found in the experiment (or known in the

literature), and the number of best (or optimal) solutions found.

Other more complex analyses are based on statistical tests. Statistical tests can be a

useful tool for analyzing and comparing the performance of different algorithms and can

help to provide a scientifically valid basis for making conclusions about their effectiveness.

In particular, in the context of this Doctoral Thesis, tests are used to determine whether

there is a significant difference between the performance of two compared algorithms.

Given the particular properties of the problem, a specific statistical hypothesis testing

tool is chosen. Statistical tests are commonly classified as parametric (there are assump-

tions about the distribution of the population from which the sample was taken) and non-

nonparametric (the sample that does not follow any specific distribution) [6, 117]. Then,

depending on the number of algorithms compared, different tests are used. For example, for

one or two parametric samples, the most widely used statistical test is the Student’s t-test

[183], and for more than two samples the ANOVA test [118]. In this Doctoral Thesis, we

propose and analyze algorithms comparing the quality, i.e., the objective function value,

of the generated solutions. Since we assume that the sample formed by the values of the

objective function does not follow any known distribution, nonparametric tests are needed.

Chapter 4. Joint discussion of results 89

In this case, when two algorithms are compared, the Wilcoxon test [251] test is used, while

when three or more algorithms are compared, we use the Friedman test [265]. These tests

can be easily performed with commercial software such SAS [220] or SPSS [74] and free

software like R [198].

4.2 Preliminary testing

Most algorithms, and in particular heuristic and metaheuristic procedures, require the tun-

ing of various parameters that influence the quality of the obtained results. The parameter

values associated with the metaheuristics used must be the same for all instances and they

are determinants in all the metrics mentioned above. Therefore, finding the best parameters

for an algorithm can be considered an optimization problem itself, where the goal is to find

the best performance of an optimization method provided through a series of test cases.

Parameter tuning strategies can be divided into two categories: offline and online. Of-

fline parameter tuning involves setting the algorithm parameters prior to the execution,

while online parameter tuning involves adjusting the parameters dynamically during exe-

cution. In particular, the research carried out in this Doctoral Thesis uses the first strategy,

the offline parameter tuning [178, 238].

This parameter setting can be done manually or automatically. A manual parameter tun-

ing is usually done by analyzing one parameter at a time, and its optimal value is determined

empirically. In this case, no interaction between parameters is studied. To overcome this

problem, “experimental design” is used [18]. Although manual tuning is time-consuming

and does not guarantee to find the best algorithm configuration, it is very important from a

scientific point of view as it provides great control and understanding of the tuning process

and the proposed strategies.

In contrast, automatic tuning use software that often follows a common general scheme.

Given a set of input parameters to configure the algorithm, it generates a list of possible

configurations of the algorithm. Then, the algorithm to be tuned is evaluated over a prelim-

inary set of instances and finally, the best configurations are returned. Automatic parameter

setting usually finds the parameter setting faster, but overall, it is a less tedious procedure

than manual setting. However, since it only provides a list of the best settings, it is often

90 Chapter 4. Joint discussion of results

less intuitive and difficult to understand the tuning process. In addition, a diverse and large

set of test cases is needed for the correct operation of programs of this style to avoid pos-

sible biases when running over the full test set. Examples of automatic tuning software are

ParamILS [121], Sequential Model-based Algorithm Configuration [120] or irace [153],

among others [178].

In this Doctoral Thesis, both strategies are combined. In general, the same experimen-

tation scheme is followed in the research carried out to address the problems studied. First,

preliminary experiments are conducted to determine the best strategies for constructing a

solution. Next, the best search strategies are determined, i.e., which neighborhood should

be explored (insertions or swaps) and how it should be explored (“first improvement“ or

“best improvement” strategies). Then, the contribution of the proposed advanced strategies

is analyzed. In general, these experiments, in addition to adjusting the parameterization of

the algorithm, can be used to illustrate the behavior of these strategies and their contribution

to the final performance of the algorithm. This experiment is followed by the configuration

of the parameters related to the proposed metaheuristic as well as the algorithm termination

criteria. Finally, before moving on to the competitive experiments, an analysis of the evolu-

tion and influence of the proposed strategies on the final proposed algorithm is performed.

The following are examples of some experiments carried out in the research conducted in

[31, 32, 33, 34].

As stated before, the first preliminary experiment focuses on the constructive configu-

ration. Table 4.2 shows an example of the results reported when comparing different strate-

gies for determining the best constructive procedure in the context of the CBS. In particular,

Table 4.2 is extracted from [33] and it is devoted to analyzing the influence of the greedy

selection λ (see Equation 3.7), in the performance of the constructive procedure based on

the γ greedy criteria (see Equation 3.4)

As it can be observed, to compare the performance of the algorithms proposed, in each

experiment, we usually report the averaged value of the objective function (Avg. cbs), the

deviation from the best solution found in the experiment (Dev. (%)), the number of best

solutions found in the experiment (#Best) and the running time in seconds (CPU T. (s)).

Although tables are usually the simplest and most straightforward way to analyze the

Chapter 4. Joint discussion of results 91

γw +Seq .Pattern γw +λ

Avg. cbs 18116.61 16838.72
Dev. (%) 5.93 0.36
Best (18) 4 14
CPU T. (s) 1.35 1.46

Table 4.2 Influence of the greedy selection λ of the host vertex, in the performance of
the constructive procedure proposed for the Cyclic Bandwidth Sum Problem.

9

11

13

15

17

19

21

23

25

0 500 1000 1500 2000 2500

w1 = 0.00, w2= 1.00

w1 = 0.25, w2= 0.75

w1 = 0.50, w2= 0.50

w1 = 0.75, w2= 0.25

w1 = 1.00, w2= 0.00

Iterations

A
v
g.
O
F

Figure 4.1 Evolution of the average objective function value when increasing the num-
ber of constructions for different values of w1 and w2 in γw for the constructive proce-
dure proposed for the 2DBMP in [32].

performance of algorithms, graphs can also be useful for visualizing the performance of al-

gorithms, especially when comparing the performance of multiple algorithms over a range

of different input sizes or other variables.

For example, the in context of the 2DBMP we illustrated in Figure 4.1 the influence

of the parameters w1 and w2 in γw that balance the influence of the adjacent assigned/u-

nassigned vertices respectively (see Equation 3.4). Particularly, in Figure 4.1 we depict the

average performance of the constructive procedure for five different configurations of these

two parameters when the number of constructions increases from 1 to 2500.

The next experiment is usually devoted to analyzing the influence of incorporating the

92 Chapter 4. Joint discussion of results

LS LS+T LS+T+E LS+T+E+R

Avg. 2dbmp 32.54 7.77 7.77 7.85
Dev. (%) 350.04 4.62 4.62 7.05
#Best 0 8 8 9
CPU T. (s) 72.51 7873.28 22.76 2.18

Table 4.3 Contribution of advanced strategies to the local search proposed for the Two-
Dimensional Bandwidth Minimization Problem in [32].

proposed advanced strategies into the local search procedure. For example, Table 4.3, re-

ported in the context of the 2DBMP in [32] study the contribution of each strategy proposed

(i.e., the tiebreak criterion (T), the efficient move calculation (E), and the neighborhood re-

duction strategy (R) with the original local search procedure in isolation (LS). In a nutshell,

it can be observed how the tiebreak criterion (LS+T) drastically improves the quality of the

solutions obtained with respect to the original local search (LS) although the time increases

considerably. Then, LS+T+E is able to reduce the time required to reach the same solu-

tions by 99.71%. Finally, the reduction strategy (LS+T+E+R) reduces the time required for

LS+T+E by an order of magnitude, although the average quality of the solutions obtained

deteriorates slightly.

The next experiment is devoted to configuring the termination criteria or some param-

eters related to the particular metaheuristic algorithm proposed. In general, this experi-

mentation is performed automatically with an automatic tuning software. In the developed

research we used irace (Iterated Race for Automatic Algorithm Configuration) [153]. irace

produces an output in the form of a table that summarizes the results of the configuration

search process. The output typically includes the values of the performance metric for each

combination of algorithm and hyperparameter settings that were evaluated, as well as any

other relevant information, such as the running time or the number of iterations required to

reach each combination. See for example [31] where we adjusted the largest neighborhood

(kmax) and the maximum time for each iteration (tmax) of the proposed GVNS for address-

ing the CAB. The output obtained as a result of executing irace is depicted in Figure 4.2.

Finally, the final preliminary experiment explores the increase in solution quality when

going from the constructive procedure to the local search with advanced strategies and the

Chapter 4. Joint discussion of results 93

I t e r a t i o n : 4
n b I t e r a t i o n s : 4
e x p e r i m e n t s U s e d S o F a r : 993
t i m e U s e d : 0
rem a i n i n g B u d g e t : 7
c u r r e n t B u d g e t : 7
number o f e l i t e s : 3
n b C o n f i g u r a t i o n s : 3
Bes t c o n f i g u r a t i o n s :
ID k max t max
1 0 . 0 1 30
2 0 . 0 1 25
3 0 . 0 1 40

Figure 4.2 Example output of irace when tuning the GVNS procedure proposed for
the Cyclic Antibandwidth Problem in [31].

Constructive LS+T+E+R MS-TS

Avg. ccmp 60.61 43.61 43.06
Dev. (%) 41.03 3.15 0.11
#Best 0 12 17
CPU T. (s) 0.01 0.51 2.14

Table 4.4 Performance differences between the procedure components and the full
procedure proposed for the Cyclic Cutwidth Minimization Problem in [34].

final tuned procedure that is compared with state-of-the-art algorithms. As an example,

Table 4.4 reports the results obtained for the algorithms proposed for the CCMP in [34]. As

can be appreciated, local search significantly improves the quality of the solution obtained

by the constructive procedure. Combining both procedures in the TS framework yields a

further improvement in quality, although the difference between local search and TS is

significantly smaller than the difference in solution quality between constructive and local

search.

Before concluding this section, it is worth mentioning another type of preliminary ex-

perimentation, as important as what it has been discussed so far. In particular, another

objective of the preliminary experimentation is to verify that everything works correctly

94 Chapter 4. Joint discussion of results

and as expected. For example, if the optima values are known, it can be expected that

the proposed algorithm will never report solutions whose value of the associated objective

function is higher/smaller than the global optimum. Another example could be to check

that the efficient computation of the objective function reports the expected value.

The preliminary experimentation process usually ends when the most efficient algo-

rithm and parameters configurations have been determined. In addition to verifying and

validating the correct functioning of the implemented code. Then, it is then compared with

the methods proposed in the state of the art.

4.3 Competitive testing

Competitive testing is commonly used as a way to assess the effectiveness of different

approaches or strategies. In the context of this Doctoral Thesis, competitive tests compare

the performance of the best state-of-the-art algorithms in finding the best solutions for an

input data set. However, making a fair comparison is not as simple as comparing some of

the metrics discussed in Section 4.1.2. In general, it is important to keep in mind that there is

no “best” algorithm, but rather the best algorithm for a specific task and set of requirements.

Different algorithms have different strengths and weaknesses, and the algorithm that is best

suited for a given might depend on several factors, including the characteristics of the data

set, the performance metrics that are most significant, and the resources available.

For example, exact algorithms are usually slower than heuristic procedures. However,

they are among the few algorithms capable of determining whether the solution reached

corresponds to the optimal solution of a problem. On the other hand, in the area of GLPs

one can find algorithms that focus on solving some specific input graphs, while others are

of a more general nature. Also, extremely fast algorithms can be found, capable of finding

good quality solutions in reduced computation times. These algorithms should be carefully

compared with other algorithms aiming to find better-quality solutions without considering

short execution times.

Another aspect to consider in competitive experimentation is the number of algorithms

to be compared. Comparing a few algorithms may not provide a complete survey of the

Chapter 4. Joint discussion of results 95

CCMP CAB CBS 2DBMP

Upper/lower bounds ✓ ✓ ✓ ✓
Exact algorithms 0 0 0 3
Approximate algorithms 1 2 3 1

Table 4.5 Algorithmic proposals existing in the state of the art for the problems studied
in this research.

options available in solving a problem, while comparing many algorithms may be time-

consuming, making it difficult to draw meaningful conclusions, or consider algorithms that

are of minor importance to the comparison.

In the case of competitive comparison of algorithms for solving optimization problems,

and, more specifically in GLPs, the fairest comparison is one in which exact algorithms,

which can ensure that the found solution is optimal, and heuristic algorithms, focused on

the problem at hand, are compared. It may also be of interest to include in the compari-

son upper/lower bounds obtained both through theoretical studies and exact/approximate

algorithms.

Table 4.5 shows, for the four problems studied in this Doctoral Thesis, the number

of algorithmic proposals present in the state of the art. These proposals are organized by

the existence, or not, of lower/upper bounds, exact algorithms, or approximate algorithms

(usually heuristic and metaheuristic procedures). Note that the algorithms proposed in this

research are not reported in the table.

When performing the competitive tests, we always compare our proposal with the exact

algorithm, if it exists, and with the best approximate procedures. Sometimes, two or more

algorithms perform well in different sets of instances. For example, for the CAB and the

2DBMP, our proposal is compared with two state-of-the-art algorithms.

To conclude this section, Table 4.6 presents a summary of the competitive tests carried

out in each studied problem, comparing the best algorithm of the state of the art at that

moment, and our best algorithmic proposal. Note that for the CAB two algorithms in the

state of the art are compared, and the objective was to maximize an objective function value.

Although the following chapter contains the most relevant conclusions of this research, it

is worth mentioning some of them based on the results compiled in Table 4.6.

96 Chapter 4. Joint discussion of results

State of the art Our proposal

CCMP

Avg. ccw 57.94 57.24
Dev. (%) 3.54 0.69
#Best (179) 141 157
CPU T. (s) 1434.01 177.42

CAB

Avg. cab 149.39 164.70 164.09
Dev. (%) 21.11 7.57 5.45
#Best (267) 99 94 167
CPU T. (s) 150.00 150.00 150.00

CBS

Avg. cbs 60209.01 59408.65
Dev. (%) 6.14 0.10
#Best (106) 50 100
CPU T. (s) 6019.53 1485.50

2DBMP

Avg. 2dbmp 4.82 3.57
Dev. (%) 32.90 0.00
#Best (86) 40 86
CPU T. (s) 231.77 53.39

Table 4.6 Summary of the comparison of the best-proposed algorithms with the best
state-of-the-art algorithms for the CCMP, CAB, CBS, and 2DBMP, respectively.

Overall, the results suggest that each proposed algorithm is generally superior to the

state-of-the-art algorithm in terms of solution quality. The proposed algorithm consistently

achieves higher average solution quality, lower deviation from the best values found, a

larger number of best solutions found, and a shorter running time. These results lead to af-

firm that the proposed algorithms are promising approaches for solving optimization prob-

lems and, in particular, to GLPs.

It is worth noting that the specific conclusions that can be drawn from the results are

available in the articles attached to this dissertation. In particular, Chapter 7 contains the

results for the CCMP, Chapter 8 the results for the CAB, Chapter 9 the results for the CBS

and finally, Chapter 10 the results for the 2DBMP.

Chapter 5

Conclusions and future work

The last chapter of this Doctoral Thesis summarizes, in Section 5.1, the main conclusions

and contributions of the research carried out. The conclusions also include an analysis of the

degree of achievement of the proposed objectives, as well as the validation of the hypothesis

set at the beginning of this research. Finally, Section 5.2 presents research lines that remain

open and that would allow researchers in the field to continue with the investigation initiated

in this Doctoral Thesis.

5.1 General conclusions

In this Doctoral Thesis, four optimization problems belonging to the GLPs family of prob-

lems have been addressed. These problems consist of finding an embedding of an input

graph in a host graph with a well-known topology or structure, in a way that a given ob-

jective function is optimized. In particular, three of the studied problems perform the em-

bedding of general graphs on a cycle host graph, while the other one does it on a grid

host graph. Moreover, the objective functions optimized are based on two mathematical

functions, the cutwidth, and the bandwidth.

The GLP family of problems is a broad and diverse class of optimization problems that

have many practical applications, including network design, resource allocation, and graph

drawing. Solving these problems efficiently and accurately is an important challenge since

most of them belong to the NP-hard or NP-complete category. Since exact algorithms are

97

98 Chapter 5. Conclusions and future work

inefficient for solving these types of problems, it is necessary to propose techniques that,

although they are not able to certify if the solutions found are optimal, obtain high-quality

solutions in reduced computation times. Among the possible techniques to address these

problems, heuristic and metaheuristic algorithms have been proven to be very effective.

Consequently, heuristic and metaheuristic algorithms are proposed in this dissertation to

tackle the studied GLPs.

These ideas are the basis hypothesis stated in this Doctoral Thesis. This hypothesis

has been successfully validated for the three problems studied: the Cyclic Cutwidth Min-

imization Problem, the Cyclic Antibandwidth Problem, and the Cyclic Bandwidth Sum

Problem. Then, the hypothesis is subsequently extended by modifying the host graph in

which the embedding is performed (a grid) and it has been successfully validated for the

Two-Dimensional Bandwidth Minimization Problem.

In order to corroborate that the initial hypothesis is true, different objectives have been

set and have consequently guided the research. The following is an analysis of the degree

of achievement of the proposed objectives.

The first objective was to review and analyze the current state of the art. This objective

has been achieved, since the research project includes an exhaustive review of the litera-

ture for each of the problems studied, and a more general review of related problems. In

addition, this review includes an analysis of existing approaches to solving the problems.

The second objective was to obtain the properties and structural characteristics of the

problem. This objective has also been achieved, as the proposed strategies in this research

exploit some characteristics of the problems. The objective function tie-breaking criterion

or neighborhood reduction techniques are a clear example of such strategies.

The third objective was to design and develop a heuristic algorithm to solve each par-

ticular problem. Based on the information provided, the objective has been achieved, as the

research includes the development of a new algorithmic approach for each problem tack-

led. Although the proposed algorithms are described in detail in the accompanying papers,

the first part of this dissertation provides insight into the work developed.

The fourth objective was to experimentally compare the proposed algorithm with state-

of-the-art algorithms. The research project includes a thorough evaluation of the proposed

Chapter 5. Conclusions and future work 99

algorithm using a variety of experimental methods: preliminary experiments made of au-

tomatic and manual tuning, competitive testing, or statistical analysis, among others. The

results of these experiments are compared to those obtained using other existing algorithms,

providing a comprehensive assessment of the performance of the proposed algorithm.

The fifth objective was to elaborate a document that includes the work carried out and

the conclusions of the results obtained. The elaboration of this dissertation is a clear proof

of the achievement of this objective. However, other reports have been prepared for purely

dissemination purposes that are more closely related to the objective mentioned next.

Finally, the sixth objective was to disseminate the results by publishing them in re-

search forums. This objective has also been achieved, as this research includes several

publications in scientific forums such as journals and conferences. Participation in confer-

ences has helped to share the results of the study with the research community in general

and has also allowed us to benefit from the comments and suggestions of other researchers.

Similarly, the reviewers proposed by the journals to evaluate our articles have enriched and

improved our research.

Overall, it seems that the objectives stated at the beginning of this Doctoral Thesis

have been achieved, and the most relevant results have been of interest to the scientific

community, allowing their dissemination in different forums.

Regardless of the fulfillment of the objectives of the Doctoral Thesis, the approach

of the algorithms has allowed obtaining knowledge and experience that can be applied to

other problems or in future research, not necessarily bound to GLPs. In addition, although

the articles published for each problem have their own conclusions, it is possible to draw

general conclusions from the research conducted. The most relevant conclusions learned

from this research are summarized in eleven points:

1. This work presents a general formalization of GLPs, which involves defining the

problem in precise and mathematical terms. This formalization provides a framework

for understanding the key features and challenges of these problems and helps to

identify commonalities and differences between problems in the GLPs family.

2. Search horizons in max/min or min/max problems require alternative objective func-

tions. This highlights the importance of carefully considering the objective function

100 Chapter 5. Conclusions and future work

when designing algorithms for these problems and suggests that different approaches

may be needed to optimize different objective functions.

3. There are common strategies that can be applied to multiple related problems. This

suggests that it may be possible to develop general-purpose algorithms or approaches

that are effective across a range of different graph embedding problems. It is from

this conclusion that a line of research emerges and will be described in Section 5.2.

4. The strategy for constructing an initial solution is key in all the algorithms proposed

in this research. The proposed scheme is considered as a guide to successfully tackle

a GLP. In particular, the step-by-step construction based on selecting a vertex of the

input graph and assigning it to a vertex in the host graph has a major impact on the

efficiency and effectiveness of the proposed algorithms. Tailoring these strategies to

the specific characteristics and requirements of the problem has been shown to be

successful in generating good initial solutions.

5. The combination of greedy constructive techniques with a multi-start approach can

be a powerful approach for solving optimization problems, particularly when com-

bined with a local search. This approach allows for the rapid construction of good

initial solutions, which can be improved using local search procedures to find high-

quality solutions.

6. Classic neighborhoods, such as swaps and inserts, perform well for GLPs. Not only

for combinatorial optimization problems but also for GLPs, the swap and insertion

operators allow finding good quality solutions when exploring neighborhoods by lo-

cal search algorithms. Moreover, their combination with the efficient computation

of the objective function or neighborhood reduction techniques makes them key ele-

ments to tackle a problem of these characteristics.

7. In general, it is not necessary to explore a neighborhood exhaustively in order to find

an improved solution in a GLP. Instead, it is usually sufficient to explore a subset of

potential solutions to find an improvement. This observation is based on the fact that

GLPs may have a complex search space. Instead, it is likely to find a good solution

by exploring a subset of the search space and applying local search techniques to

Chapter 5. Conclusions and future work 101

improve the solution. In general, those potential solutions can be determined by the

degree of the vertices that are going to be moved or the contribution of a vertex to the

objective function if it is moved.

8. Given the formalization of a GLP, one solution might have multiple equivalent so-

lutions. That is, one solution can be considered equal to another when the relative

position of each vertex with respect to its adjacents is the same. In that case, it can

be understood visually as the geometric motion of translation and rotation of an em-

bedding. This issue results in neighborhoods composed of numerous equivalent solu-

tions. Moreover, this opens a line of future work in the detection of these equivalent

solutions, but also in the exploitation of these properties to propose more efficient

methods.

9. Advanced search strategies, such as those proposed in this research, are an impor-

tant aspect of optimization problem-solving and can be considered a combination

of programming knowledge and scientific expertise. Typically, these procedures are

created and used by scientists and researchers who may not be proficient in program-

ming but who have thorough knowledge in understanding of the problem and the

algorithms and strategies needed to solve it. Therefore, they should not be under-

valued by the computer science community. Indeed, they should be reflected in the

disclosures made to increase community awareness.

10. There is a lack of exact algorithms for the resolution of GLPs. Given the complexity

of the problems, it seems reasonable that exact algorithms have hardly been proposed

for these types of problems. Possibly, the combination of heuristic and exact algo-

rithms, such as matheuristics, can result in effective methods to solve some problems

belonging to the GLP family.

11. Finally, the representation of the solutions by its drawing is fundamental to analyzing

the correct functioning of the algorithm and proposing more effective strategies. Fur-

thermore, by observing the visualizations of the solutions, it is possible to elaborate

conjectures or ideas of how close a solution may be to optimality.

102 Chapter 5. Conclusions and future work

Overall, the learned lessons listed here offer valuable insights into the nature of graph

embedding problems and suggest directions for future research and the development of

more efficient algorithms for solving related problems. In fact, at the time of writing this

dissertation, other researchers have based their algorithmic proposal on the research re-

flected here, being able to improve the results obtained by our proposed methods [110].

This can be considered as proof that our work has contributed significantly to the ad-

vancement of knowledge in the GLP field, and it has had a real impact on the scientific

community.

The specific conclusions obtained for each particular problem and possible lines of

research derived from these conclusions are presented in each of the papers compiled in

Part II of this dissertation.

5.2 Future lines of research

During the development of a Doctoral Thesis, it is common to identify open lines of work,

which can be an alternative starting point for future research. As a result of the research

process initiated with this Doctoral Thesis, the following future work is proposed:

1. Exact and matheuristic algorithms. Future research may focus on developing exact

methods to solve some GLP. Although, given the difficulty of the problems, they will

allow checking if the quality of the solutions obtained for the smallest instances cor-

responds to the optimal one. This can entail developing branch-and-bound algorithms

that effectively search across the space of potential solutions to identify the best one,

as well as developing mathematical models that can be used to assess and optimize

solutions. In addition, the proposition of such techniques may lead researchers to

combine them with heuristic algorithms that eventually result in matheuristic algo-

rithms.

2. Review on graph embeddings. It may also be useful to extend the review of graph

embedding problems to other host structures. This could involve reviewing the liter-

ature to identify major research contributions and trends and synthesizing this infor-

mation into a coherent view of the current state of the field. Such a study could be

Chapter 5. Conclusions and future work 103

a useful resource for researchers who wish to understand the current research land-

scape and identify potential areas for future research. In addition, the last paper of

this nature was published in 2002 [65] and, since then, a wide variety of papers and

applications have been published.

3. GLP variants. Another important area of research is the study of other graph em-

bedding problems. This may involve exploring different types of input graphs and

objective functions, as well as examining the feasibility of embedding graphs in dif-

ferent types of host graphs. By broadening the scope of these problems, it may be

possible to gain a deeper understanding of the underlying challenges and find more

general solutions. This line of research may result in future work raised in the next

item.

4. Black-box algorithm. Possible research to be carried out may be aimed at develop-

ing a black-box algorithm. This could involve combining and applying the knowledge

gained from previous research efforts in order to create a more comprehensive and

effective solution, for more general input and host graphs.

5. Multiobjective optimization. A potential new research direction in the field of graph

embedding could focus on the development of algorithms and approaches for solving

multiobjective optimization problems. In this context, a multiobjective optimization

problem is one with multiple conflicting objectives that need to be optimized simul-

taneously. This type of problem has not been sufficiently studied or raised in the field

of graph embedding.

6. Neighborhoods. Possible future research could include the development of more ad-

vanced neighborhoods for use in local search algorithms. Generally, neighborhoods

used in this Doctoral Thesis are based on insertion or exchange moves or a com-

bination of these. However, it is reasonable to consider other more complex and

sophisticated operators. For example, a move that removes some vertices from the

input graph, then solves the reduced problem, and finally inserts back the removed

vertices, could be considered. Other neighborhoods could implement operators in-

volving multiple vertices (more than two vertices), for example.

104 Chapter 5. Conclusions and future work

7. Equivalent solutions. Another possible research line could focus on studying how

equivalent solutions may affect the performance and effectiveness of the algorithms.

As stated, embeddings into a cycle and grid host graphs lead to many equivalent solu-

tions which, further than having the same objective function, are indistinguishable in

terms of their representation. This could involve research into the use of techniques

such as symmetry breaking or the use of additional constraints that could significantly

reduce the search space.

8. Graph drawing software. Finally, the development of graph drawing software has

a dual benefit. On the one hand, it could be a useful tool for researchers who study

graph embedding problems. Since, as mentioned above, such a tool could make it

easier for users to analyze graphs in order to propose more effective and efficient

algorithms. On the other hand, the development of this tool would allow the general

public to visualize generic graphs represented by cyclic or grid structures.

In conclusion, the above ideas highlight the significant opportunity for progress in the

area of GLPs by conducting novel research. Researchers pursuing the suggested topics of

investigation can extend and improve the existing algorithms, as well as conduct a theoret-

ical analysis of interest in the area. When combined, both perspectives offer the potential

to reveal new insights in this intrepid field.

Part II

Publications

105

Chapter 6

Overview

In this Doctoral Thesis, several contributions to the body of knowledge related to the GLPs

are presented, drawing on a variety of techniques and tools from computer science and

mathematics that have been applied to the studied problems.

Specifically, this second part of the dissertation is divided into six chapters. This is the

first of the chapters and aims to contextualize chronologically each of the research studies

performed and the associated publications, both in journals and scientific forums. Then, a

total of four chapters are devoted to the problems addressed in this Doctoral Thesis. Specif-

ically, one chapter per optimization problem (Chapter 7 for the CCMP, Chapter 8 for the

CAB, Chapter 9 for the CBS and Chapter 10 for the 2DBMP). For each of these problems,

the related publications and their most relevant contributions are presented. Finally, the last

chapter (Chapter 11) presents other publications related to the research presented in this

dissertation.

Figure 6.1 presents a chronological representation of the main events and publications

along a timeline, with the different milestones reached in this Doctoral Thesis. In this fig-

ure, each milestone is classified by color, where publications are identified with green,

participation in conferences or workshops with yellow, and notable events with red.

As can be observed in Figure 6.1, research on GLPs began at the end of 2018 in the

context of a grant developed at the Universidad Politécnica de Madrid, where the author

was studying for a B.Sc. in Software Engineering. This grant was requested by the author

of this Doctoral Thesis, together with one of the supervisors, Eduardo G. Pardo. During the

107

108 Chapter 6. Overview

first few months, an exhaustive study of all GLPs was performed, finally focusing on the

CGLPs. Specifically, for each of the problems studied in the literature, the most relevant

contributions, previous algorithms, sets of instances used, the most relevant authors, etc.

were identified. Based on this previous state-of-the-art research, the focus was placed on

the CCMP. The preliminary results obtained were subsequently presented at the GRAFO

Workshop. In addition, an article summarizing the research on the CCMP was written and

accepted, and it was published in February 2021 (see Chapter 7) [34].

The B.Sc. studies were complemented by M.Sc. studies in Artificial Intelligence. Dur-

ing this period, research began on the second problem presented in this dissertation, the

CAB. In addition, the Ph.D. candidate participated in two workshops and started doc-

toral studies at the Universidad Rey Juan Carlos, becoming part of the GRAFO research

group. Furthermore, the Ph.D. was partially financed by one of the most recognized pre-

doctoral scholarships in Spain, the Ayudas para la formación de profesorado universitario

(FPU), applied for in collaboration with the other supervisor, Abraham Duarte. With the

start of doctoral studies in October 2020, research on the third problem addressed, CBSs,

began. The first results obtained for the CAB were presented at an international confer-

ence, severely affected by the Covid-19 pandemic, in March 2021. During the same year,

the study on the 2DBMP began, and a presentation was made at a workshop and a national

conference. Within the framework of this conference, an article in a Scimago Journal &

Country Rank (SJR) journal was published. In particular, [28] presented some results for

the CCMP not included in [34].

At the beginning of 2022, two articles were published in Journal Citation Reports (JCR)

journals (CAB [31] and CBS [33]). In addition, presentations were made at various scien-

tific forums: a national conference, a workshop, and an informative contest. In the latter

contest, the doctoral candidate was awarded as the winner in the Three Minute Doctoral

Thesis (3MT) competition among the best participants of public universities in Madrid in

the area of engineering and architecture. In July 2022, a research stay at the University

of Colorado Boulder (Denver, USA) supervised by Professor Manuel Laguna was made.

During this stay, the Ph.D. candidate strengthened ties and collaborations with renowned re-

searchers in the area of heuristics and metaheuristics, such as Fred Glover and Rafael Martı́.

During the stay, the fourth article of this Doctoral Thesis was published [32] (see Chapter

Chapter 6. Overview 109

10). The year ended with a presentation at an international conference and a workshop. In

addition, an article not directly related to the topic of this Doctoral Thesis was published

[161]. In this publication, we studied the methodological and reproducibility perspectives

when addressing optimization problems through heuristic or metaheuristic approaches (see

Chapter 11). Afterward, the doctoral candidate focused on writing and defending the Doc-

toral Thesis.

In the following chapters, publications in JCR journals are included, together with a

figure with relevant information about the publication: title, authors, corresponding author,

DOI, volume, article number, date of publication, number of records obtained to date and

name of the journal. In addition, information related to the journal is included: research

areas, the rank of the categories, and the Journal Impact Factor. All information related to

the journal has been extracted from the Web of Science1 platform.

1Web of Science is a citation database platform provided by Clarivate Analytics, widely used by re-
searchers to find relevant literature, track research trends, and analyze citation metrics. Web of Science can
be accessed at https://www.webofscience.com.

https://www.webofscience.com

110 Chapter 6. Overview

First steps in research Nov. 2018

Workshop
Presentation at the II Workshop of the
GRAFO research group about the CCMP.

Jun. 2019

2019

Joining GRAFO Oct. 2019

Workshop
Presentation in the II Winter School
organized by the Red HEUR about the
CAB.

Nov. 2019

B.Sc. completion Jul. 2019

Workshop
Presentation at the III Workshop of the
GRAFO research group about CGLPs.

Sep. 2020

2020

M.Sc. completion Jun. 2020

continued on the next page

Figure 6.1 Timeline of the relevant events associated with this Doctoral Thesis.

Chapter 6. Overview 111

2021

2022

PhD enrollment Oct. 2020

JCR article
Article published in Computers &
Operations Research related to the CCMP.

Feb. 2021

International conference
Presentation at the 8th International
Conference on Variable Neighborhood
Search (ICVNS) about the CAB.

Mar. 2021

Workshop
Presentation at the IV Workshop of the
GRAFO research group about the
2DBMP.

Jun. 2021

SJR article
Article published in the Lecture Notes in
Computer Science book series related to the
CCMP in the context of a national conference.

Sep. 2021National conference
Presentation at the XIV Congreso
Español de Metaheurísticas, Algoritmos
Evolutivos y Bioinspirados about the
CCMP. Participation in the Doctoral
Consortium. 2nd best student’s article
award.

Sep. 2021

JCR article
Article published in Computational
Optimization and Applications related to the
CAB.

Jan. 2022
An International Journal

Editor-in-chief

William W. Hager

JCR article
Article published in Knowledge-based
Systems related to the CBS.

Jun. 2022Thesis in 3 Minutes Contest
Winner of the 6th "Thesis in 3 Minutes"
contest of the public universities of
Madrid.

National conference
Presentation at the XXXIX Congreso
Nacional de Estadística e Investigación
Operativa about CCGLPs and the 2DBMP.

Workshop
Presentation at the V Workshop of the
GRAFO research group about GLPs.

Research stay
Stay at the Univ. of Colorado Boulder,
supervised by Professor Manuel Laguna.
Start of research on GLPs applications.

Jul-Sep.2022

continued on the next page

Figure 6.1 Timeline of the relevant events associated with this Doctoral Thesis.

112 Chapter 6. Overview

2023

JCR article
Article published in European Journal of
Operational Research related to the 2DBMP.

Sep. 2022

JCR article
Article published in Evolutionary
Computation Journal, where a methodology
for reproducible experimentation is proposed.

Nov. 2022Workshop
Presentation at the III Winter School
organized by the Red HEUR about GLPs.

Nov. 2022

International conference
Presentation at the 9th ICVNS about a
new CGLP based on signed graphs.

Oct. 2022

PhD Defense Apr. 2023

Thesis Deposit Mar. 2023

Figure 6.1 Timeline of the relevant events associated with this Doctoral Thesis.

Chapter 7

Cyclic Cutwidth Minimization Problem

The Cyclic Cutwidth Minimization Problem is the first of the GLPs studied in this Doc-

toral Thesis and it was previously introduced in Section 2.1. As a result of the research

conducted, two articles have been published:

1. S. Cavero, E. G. Pardo, M. Laguna, and A. Duarte. Multistart search for the cyclic

cutwidth minimization problem. Computers & Operations Research, 126:105116,

2021 [34].

2. S. Cavero, E. G. Pardo, and A. Duarte. Influence of alternative objective functions

in the optimization of the cyclic cutwidth minimization problem. In Advances in Ar-

tificial Intelligence: 19th Conference of the Spanish Association for Artificial Intel-

ligence, CAEPIA 2020/2021, Málaga, Spain, pages 139–149. Springer, Cham, 2021

[28].

Moreover, a presentation has been made at a national conference:

3. S. Cavero, E. G. Pardo, and A. Duarte. Influence of the alternative objective functions

in the optimization of the cyclic cutwidth minimization problem. XIX Conferencia de

la Asociación Española para la Inteligencia Artificial (CAEPIA 2021), in Málaga,

Spain, 2021 [29].

Among the previous publications, the article, titled: “Multistart search for the Cyclic

Cutwidth Minimization Problem” [34], was published in a JCR journal. Figure 7.1 compiles

113

114 Chapter 7. Cyclic Cutwidth Minimization Problem

some information about the journal. Note that, in addition to the Ph.D. candidate and his

supervisors, Professor Manuel Laguna from the University of Colorado Boulder (Denver,

USA) also participated in this research. The problem tackled in this research, the CCMP

has previously been studied for specific classes of graphs with regular structure. However,

work on general candidate networks is scarce. We can only point out a population-based

metaheuristic of the GA family. In this investigation, we take a different approach and

develop a single-solution neighborhood search based on TS. The main contributions of this

proposal are summarized next:

• Greedy constructive procedure based on the adjacency of the vertices. The vertices

are selected according to a greedy criterion originally inspired by the ideas presented

in [168]. Then, each selected vertex is assigned sequentially to an available host

vertex.

• Local search procedure based on the insert neighborhood which is explored follow-

ing a best improvement strategy. This local search procedure is further improved with

three advanced strategies: an alternative objective function, an efficient calculation of

the objective function, and a neighborhood reduction strategy to explore just those

potential better solutions.

• The previous heuristic procedures are combined with two well-known metaheuris-

tics: Tabu Search (TS) [87, 90] and a Multistart procedure [163, 166]. On the one

hand, tabu short-term memory is added to the aforementioned local search to store

attributes of previously visited solutions. On the other hand, the multistart strategy is

used to escape from local optima by starting the search again from a different point

in the solution space.

Finally, our proposal was compared to the previous state-of-the-art algorithm. The TS

solutions are found in about one order of magnitude less time than MA. The performance

of TS is better on random graphs than on structured graphs. For all instances, the solutions

obtained are on average closer to the best solutions than the GA solutions. Furthermore,

statistical tests indicate the merits of our proposal.

Chapter 7. Cyclic Cutwidth Minimization Problem 115

Multistart search for the Cyclic Cutwidth Minimization Problem

Sergio Cavero, Eduardo G. Pardo, Manuel Laguna and Abraham Duarte

Computers & Operations Research. Volume 126, 105116, 2021.

https://doi.org/10.1016/j.cor.2020.105116

Journal Information

Research Areas:

• Computer Science (Interdisciplinary Applications)
• Engineering (Industrial)
• Operations Research & Management Science.

Category Rank:

• Operations Research & Management Science: 20/87 (Q1)
• Computer Science (Interdisciplinary Applications): 35/113 (Q2)
• Engineering (Industrial): 19/50 (Q2)

Journal Impact Factor: 5.159
Data obtained from Journal Citation Reports 2021

Figure 7.1 Journal information related to the publication [34].

In the second publication related to the CCMP titled “Influence of alternative objective

functions in the optimization of the cyclic cutwidth minimization problem”, we extended the

previous article by studying different alternative objective functions and their combinations

were analyzed in the search for better quality solutions beyond flat landscapes. The article is

published in the journal Advances in Artificial Intelligence as part of the collection Lecture

Notes in Artificial Intelligence (SJR / Q2). In particular, we analyze the influence in the

search of using alternative objective functions within local search procedures to deal with

the flat landscape problem presented in Section 1.1.2. In addition, we propose different

alternative objective functions for the CCMP and compare its performance.

To conclude this chapter, we include a copy of the most relevant paper published for

the CCMP in the context of this Doctoral Thesis.

https://doi.org/10.1016/j.cor.2020.105116

Multistart search for the Cyclic Cutwidth Minimization Problem

Sergio Cavero a, Eduardo G. Pardo a,⇑, Manuel Laguna b, Abraham Duarte a

aUniversidad Rey Juan Carlos, Spain
bUniversity of Colorado Boulder, USA

a r t i c l e i n f o

Article history:
Received 21 March 2020
Revised 30 September 2020
Accepted 5 October 2020
Available online 15 October 2020

Keywords:
Cyclic cutwidth
Graph layout problem
Circular embedding
Tabu Search
Multistart search

a b s t r a c t

The Cyclic Cutwidth Minimization Problem (CCMP) is a Graph Layout Problem that consists of finding an
embedding of the vertices of a candidate graph in a host graph, in order to minimize the maximum cut of
a host edge. In this case, the host graph is restricted to be a cycle. In this paper, we identify a new lower
bound for the problem, and also a property which allows search procedures to drastically reduce the
neighborhood size during the search. Additionally, we propose the use of an alternative objective func-
tion for min–max optimization problems, never used before in the context of the CCMP. These strategies
have been combined within a multistart search procedure for this problem. The obtained method is com-
pared with the state of the art for the CCMP using sets of problem instances previously published.
Statistical tests indicate the merit of our proposal.

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Some families of optimization problems can be represented as
graph layout problems where the objective consists of defining a
mapping of a candidate graph into a regular structure, called the
host graph. In these problems, there are two mapping functions.
The first one assigns each vertex in the candidate graph (candidate
vertex) to a vertex in the host graph (host vertex). The second func-
tion assigns to each edge in the candidate graph (candidate edge) a
path in the host graph (host path). The most common approaches
found in the literature for this family of problems are those where
the host graph is a line. These problems are commonly referred to
as linear layout problems (Pardo et al., 2016). However, there exist
mappings over more complex regular structures such as trees,
grids, or cycles (Díaz et al., 2002). Regardless of the structure of
the candidate and host graphs, the optimization problem may be
defined over several objective function choices.

We tackle a minimization problem consisting of embedding a
general candidate graph in a cycle host graph. Let C ¼ VC; ECð Þ be
a connected, unweighted, and undirected candidate graph where
VC and EC represent the sets of vertices and edges, respectively.
Analogously, let H ¼ VH; EHð Þ be a host cycle graph with the fol-
lowing properties:

� n ¼ jVCj ¼ jVHj ¼ jEHj.

� The degree of each vertex v 2 VH is 2.
� H is a Eulerian and Hamiltonian graph.
� The disposition of the vertices VH in the Euclidean space is such
that all adjacent vertices are placed at the same distance.

Considering these definitions, the host graph in our context is
represented as a cycle. A bijective function u assigns each vertex
in the candidate graph to a single vertex in the host graph. This
function is defined as u : VC ! VH, where 8v 2 VC 9 w 2 VH such
that u vð Þ ¼ w. An injective function w assigns candidate edges to
host paths. A path is a sequence of edges that connects two vertices
without repeating any edges or vertices. Let PH be the set of all
possible host paths in H. Then, since H is a cycle, for every candi-
date edge u;vð Þ 2 EC there are two possible paths in PH, starting in
u uð Þ and ending in u vð Þ. The w function is defined as the mapping
of candidate edges to host paths, i.e., w : EC ! PH.

Fig. 1 shows an example of a candidate graph (C), a host graph
(H), a possible embedding of the candidate graph in the host graph,
and the two possible host paths between a pair of adjacent vertices
(A and D). In particular, Fig. 1(a) shows a candidate graph
with VC ¼ A;B;C;D;E; Ff g and EC ¼ A;Bð Þ; A;Dð Þ; A;Eð Þ; A; Fð Þ;f
B;Cð Þ; B;Dð Þ; C;Dð Þ; D;Eð Þg. Therefore, the host graph must have
the same number of vertices VH ¼ 1;2;3;4;5;6f g and a set of cor-
responding edges EH ¼ 1;2ð Þ; 2;3ð Þ; 3;4ð Þ; 4;5ð Þ; 5;6ð Þ; 6;1ð Þf g, as
presented in Fig. 1(b). One possible mapping of the candidate
graph into the host graph is showed in Fig. 1(c). Each vertex in
VC is assigned to a vertex in VH. For instance, vertex A in VC is
assigned to vertex 1 in VH. The assignment is denoted by
uðAÞ ¼ 1. Similarly, vertex B is assigned to vertex 4 (uðBÞ ¼ 4),

https://doi.org/10.1016/j.cor.2020.105116
0305-0548/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. C/Tulipán s/n, 28933, Móstoles, Spain.
E-mail addresses: sergio.cavero@urjc.es (S. Cavero), eduardo.pardo@urjc.es (E.G.

Pardo), laguna@colorado.edu (M. Laguna), abraham.duarte@urjc.es (A. Duarte).

Computers and Operations Research 126 (2021) 105116

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier .com/locate /caor

116 Chapter 7. Cyclic Cutwidth Minimization Problem

and so forth for all other candidate vertices. Then, candidate edges
are assigned to host paths. For instance, edge A;Dð Þ must be
assigned to a host path with uðAÞ ¼ 1 and uðDÞ ¼ 5 as terminal
vertices. The possible paths are p A;Dð Þ1 ¼ u Að Þ;u Eð Þ;u Dð Þf g ¼
1;6;5f g and p A;Dð Þ2 ¼ u Að Þ;u Fð Þ;u Cð Þ;u Bð Þ;u Dð Þf g ¼ 1;2;3;4;5f g.
These paths are shown in Fig. 1(d). Note that for any candidate
edge, there are only two possible host paths (clockwise and coun-
terclockwise) when the host graph is a cycle. We further define w
as a function that selects the shortest path. The length of the path
is determined by the number of host edges traversed. In our exam-
ple, the length of p A;Dð Þ1 is 2 and the length of p A;Dð Þ2 is 4. Therefore,
w A;Dð Þ ¼ p A;Dð Þ1 ¼ 1;6;5f g. The function must be applied to all can-
didate edges EC . When the length of both host paths is the same, w
selects the clockwise path.

1.1. Problem description

We study the Cyclic Cutwidth Minimization Problem (CCMP)
for general candidate graphs and cycle host graphs. Our objective
function for the CCMP is based on the concept of a cut of an edge
in the host graph (i.e., edges in EH). Given the assignment functions
u and w, the cut of an edge e 2 EH is defined as the number of host
paths assigned by w that traverse e. This calculation has been
referred to in the literature as congestion (Rolim et al., 1995).

Formally, we define the cut of host edge w; zð Þ 2 EH associated
with u and w as:

cut w; zð Þu;wð Þ
w;zð Þ2EH

¼ j u;vð Þ 2 EC : w; zð Þ 2 w u; vð Þf gj; ð1Þ

where the w u; vð Þ path is defined as:

w u;vð Þ ¼

w; zf g if u uð Þ ¼ w ^u vð Þ ¼ z

w; z; . . . ;u vð Þf g if u uð Þ ¼ w

u uð Þ; . . . ;w; zf g if u vð Þ ¼ z

u uð Þ; . . . ;w; z; . . . ;u vð Þf g otherwise:

8>>><
>>>:

ð2Þ
The objective function (ccw) is denoted as the cyclic cutwidth

and is calculated as follows:

ccw C;u;wð Þ ¼ max
w;zð Þ2EH

cut w; zð Þu;wð Þ: ð3Þ

Since paths can be derived from the vertex assignments (see Eq. 2),
a solution is fully characterized by u. Therefore, for the purpose of
the optimization problem, we can simplify the notation for ccw, by
making it depend only on C and u. Our min–max optimization
problem consists of finding, among all possible candidate vertex
assignments u 2 U, the assignment uH that minimizes the cycle
cutwidth:

uH argmin
u2U

ccw C;uð Þ: ð4Þ

Fig. 2 depicts the evaluation of the solution represented in
Fig. 1, i.e., the evaluation of the assignments u and w. The host
graph is shown in dashed black lines and the candidate graph in
gray solid lines. The host paths assigned by w to each candidate
edge in EC are shown outside the cycle. Then, the cut associated
with each edge of the host graph is indicated as the number of
paths that traverse the edge. For example, edge 1;2ð Þ is traversed
by paths p A;Fð Þ and p A;Bð Þ. Therefore, cut 1;2ð Þ;u;wð Þ ¼
j A; Fð Þ; A;Bð Þf gj ¼ 2. Similarly, edge 2;3ð Þ is traversed by only path

Fig. 1. (a) A candidate graph, C. (b) A host graph, H. (c) A possible embedding of C in H. (d) Two possible paths in H for A;Dð Þ 2 VC named as p A;Dð Þ1 and p A;Dð Þ2 respectively.

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

2

Chapter 7. Cyclic Cutwidth Minimization Problem 117

p A;Bð Þ. Therefore, cut 2;3ð Þ;u;wð Þ ¼ j A;Bð Þf gj ¼ 1, and so on. The
value of the objective function for the vertex assignment u on
graph C is ccw C;uð Þ ¼max 2;1;3;2;2;2f g ¼ 3.

1.2. Literature review

The CCMP is closely related to the Cutwidth Minimization Prob-
lem (CMP). Both problems share the same objective function, how-
ever the host graph for the CMP is a line, while the host graph for
the CCMP is a cycle. The practical applications of these problems
are also common, and can be found in various areas that include
circuit design (Cohoon and Sahni, 1987), engineering (Makedon
and Sudborough, 1989), and graph drawing (Makedon and
Sudborough, 2001).

The CMP was originally proposed in the 70s as a theoretical
model in the context of circuit design (Cohoon and Sahni, 1987).
The problem belongs to the NP-hard class (Gavril, 1977). Due to
the problem complexity, several heuristic procedures have been
proposed in Cohoon and Sahni (1987), Resende (2009), Pantrigo
et al. (2012), Pardo et al. (2013), Duarte et al. (2016) and Martins
Santos and Moreira de Carvalho (2019). The literature also includes
exact procedures for the CMP on some special classes of graphs
(Harper, 1966; Rolim et al., 1995; Thilikos et al., 2005). In addition,
two Branch & Bound procedures have been proposed for general
graphs (Palubeckis, 2012; Martí et al., 2013) and mathematical
formulations have been proposed in Luttamaguzi et al. (2005)
and López-Locés et al. (2014).

The bounds proposed in Johnson (2003) establish a relationship
of the objective function values for the CMP and the CCMP. In par-
ticular, for a candidate graph C, if we let lcw Cð Þ and ccw Cð Þ be the
optimal objective function values corresponding to the CMP and
CCMP, then:

lcw Cð Þ
2

6 ccw Cð Þ 6 lcw Cð Þ: ð5Þ

The CMP and the CCMP are equivalent when C is a tree (Chavez
and Trapp, 1998).

There are several exact algorithms for the CCMP for particular
types of candidate graphs. The optimal value of the CCMP for com-
plete graphs is known by construction (Rios, 1996). For mesh
graphs, it is possible to determine the optimum for grids with
dimensions larger than 3� 3 (Schröder et al., 1999; Clarke, 2002;
Schröder et al., 2004). The optimal solution is known for three-
dimensional meshes, as long as one dimension is 2 and the other
two are greater than or equal to 2 (Sciortino et al., 2002). Similarly,
the optimal solution is known for cylindrical meshes for which one
of the dimensions is greater than or equal to 2 and the other

dimension is greater than or equal to 3 (Schröder et al., 2004).
Exhaustive search procedures can be used to find optimal solutions
for the CCMP on Q3 hypercubes (Abbott, 1966). This result has
been extended to Q4 (James, 1996), Q5 (Aschenbrenner, 2001)
and Q6 (Castillo, 2003) hypercubes. The CCMP has also been stud-
ied on general hypercubes (Erbele et al., 2003). Finally, exact algo-
rithms exist for complete bipartite graphs (Johnson, 2003),
complete tripartite graphs (Allmond, 2006), and n-partite graphs
(Allmond, 2006).

No exact algorithms exist for the CCMP on general graphs.
Recently, the practical interest of the CCMP has motivated
researchers in the optimization community to apply heuristic tech-
niques to this problem. For instance, in Jain et al. (2016) the
authors describe a Memetic Algorithm (Moscato et al., 1989) for
the CCMP. They propose six constructive heuristics to generate
an initial population of solutions for their solution method. The
method includes a local search procedure that attempts to move
vertices from positions where the maximum cut occurs. The
Memetic Algorithm was evaluated with six types of graph
instances: complete splits, join of hypercubes, cones, toroidal
meshes, and two random types. The procedure matched all
known-optimal solutions and produced the best-known solutions
for all other instances, establishing itself as the state of the art
for the CCMP.

1.3. New lower bound for the CCMP

Despite the fact that not many theoretical results have been
derived for the CCMP for general graphs, several authors have pro-
posed lower bounds for the linear version of the problem
(Palubeckis, 2012; Martí et al., 2013). In particular, we focus our
attention on the ideas introduced in Martí et al. (2013). In that
paper the authors proposed four new lower bounds for the linear
cutwidth minimization problem. Based on these ideas, in this sec-
tion we propose a new lower bound for the CCMP.

Let d vð Þ be the degree of a candidate vertex v 2 VC , the CCMP of
the candidate graph C, denoted as ccw Cð Þ, can be bounded by the
ceiling of the half of d vð Þ. Let us illustrate this with the example
in Fig. 3. Let i be the host vertex assigned to v (u vð Þ ¼ i) and let
d vð Þ ¼ 4, as we show in the figure. Additionally, let j and k be the
host vertices such that j; ið Þ; i; kð Þf g 2 EH. Therefore, j and k are
adjacent vertices to i in the host graph. For each u, such that
u;vð Þ 2 EC , assigned to any other host vertex distinct from i, there
exists a path in the host graph, determined by the w function,
assigned to the edge u;vð Þ that contains either the edge j; ið Þ or
the edge i; kð Þ. In Fig. 3, we illustrate the assignation of each edge
of v to a different path in the host graph. In this case, the adjacent
vertices to v are denoted as u1;u2;u3, and u4 and its associated
paths are denoted as p v ;u1ð Þ; p v ;u2ð Þ; p v ;u3ð Þ, and p v ;u4ð Þ respectively.
Therefore, each u; vð Þ contributes with one unit to the cut of either
the host edge j; ið Þ or the host edge i; kð Þ. In this example, p v ;u1ð Þ and

Fig. 2. Evaluation of a possible embedding of C in H:.

Fig. 3. Illustration of the lower bound derived from vertex v .

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

3

118 Chapter 7. Cyclic Cutwidth Minimization Problem

p v ;u2ð Þ contribute to the cut of the host edge j; ið Þ, while p v ;u3ð Þ and
p v ;u4ð Þ contribute to the cut of the host edge i; kð Þ. Since we are fac-
ing a min–max optimization problem, in the best scenario half of
the vertices adjacent to v would contribute to the edge j; ið Þ while
the other half to the edge i; kð Þ with independence of the assign-
ment of rest of the vertices of the graph.

Among all the vertices in VC , the one with the largest d vð Þ will
provide the tightest bound. Mathematically, this lower bound, LB,
can be expressed as follows:

ccw Cð ÞP LB ¼max
v2VC

d vð Þ
2

� �
: ð6Þ

This new lower bound has been calculated for each instance
used in our computational tests and the results per instance are
shown in the Appendix A, where it is possible to compare the LB
with the results obtained by the Multistart TS procedure proposed
in this paper.

1.4. Our contributions

In addition to the new lower bound proposed for the CCMP (in-
troduced in Section 1.3), the main contribution of this work is the
development of a metaheuristic procedure that includes sound
fundamental as well as advanced search strategies for the CCMP.
We are able to show, through extensive computational experimen-
tation, that our proposal is competitive with the current state of
the art for solving the CCMP. The method consists of a multistart
search, where the starting points are generated in greedy fashion
and the improvement phase is based on neighborhoods and a tabu
memory structure (Glover, 1997). We perform several preliminary
tests to find the best configuration of our procedure, i.e., to deter-
mine the best set of search parameter values. Through this process,
we are able to determine the contribution of the various elements
embedded in the proposed procedure.

After a set of tuning experiments to identify the best combina-
tion of parameter values, we employ the resulting procedure con-
figuration for competitive testing. The test set consists of problem
instances from the literature. Those instances are grouped into two
main categories, graphs with known structure and random graphs.
The results of these tests indicate that, in many cases, our proposed
solution method is able to find solutions of better quality than the
state-of-the-art-procedures, and in less computational time. Fur-
thermore, we show that these differences are statistically
significant.

The description of our work is organized as follows. Section 2
describes our algorithmic proposals. Section 3 presents several
advanced strategies. Section 4 introduces the test set, describes
the computational experiments, and discusses the results. Conclu-
sions and final thoughts are in Section 5.

2. Algorithmic proposal

Our solution method has two main components, a procedure to
construct an initial solution and an improvement method based on
tabu search (TS) Glover, 1997. We first provide details of a proce-
dure to construct initial solutions (Section 2.1). Then, we discuss
how a local search operates on these initial solutions (see Sec-
tion 2.2). This section continues with a description of the TS mech-
anisms that help the local search escape local optimal points (see
Section 2.3). Finally, the combination of the previous components
is described in Section 2.4 where we present our multistart
procedure.

2.1. Constructive procedure

Constructing a solution for the CCMP consists of performing two
tasks: 1) assigning the vertices of the candidate graph to the ver-
tices of the host graph (i.e., defining the domain and range of the
u function); and 2) assigning the edges of the candidate graph to
a path in the host graph (i.e., defining the domain and range of
the w function). We have tried different strategies to construct ini-
tial solutions for the CCMP. These strategies were tested over a
subset of instances and the best of them was selected for the final
configuration of our algorithm. We next describe in detail the best
strategy identified among the tested ones and, at the end of the
section, we enumerate and briefly describe the rest of the strate-
gies tested.

The constructive algorithm used in the final configuration of our
procedure starts with all candidate vertices unassigned. We num-
ber the host vertices starting from the top vertex (i.e., the vertex
that in a graphical representation would be at 12 o’clock) and con-
tinuing clockwise. At each step, we select a candidate vertex and
assign it to the next available host vertex. Since the host graph is
a cycle, without loss of generality, at each step of the procedure,
we move sequentially in the clockwise direction. That is, the first
candidate vertex is assigned to host vertex 1, the second candidate
vertex is assigned to host vertex 2, and so forth. The first assign-
ment is random. That is, a candidate vertex is randomly selected
and it is assigned to host vertex 1. After the first assignment, all
unassigned vertices in the candidate graph are evaluated with a
greedy function to determine the most attractive vertex to assign
next. The greedy function to select the next unassigned vertex from
the candidate graph is inspired by previously published ideas
(Mcallister, 1999). The construction ends after all candidate ver-
tices have been assigned to a host vertex.

The greedy selection function to select the next vertex from the
candidate graph is defined as follows. Let A be the set of candidate
vertices that have already been assigned and let U be the set of
unassigned candidate vertices. Let d vð Þ be the degree of candidate
vertex v . Also, let dA vð Þ be the number of assigned candidate ver-
tices that are adjacent to v and dU vð Þ be the number of unassigned
vertices adjacent to v . That is,

dA vð Þ ¼ j u 2 A : v;uð Þ 2 ECf gj;

dU vð Þ ¼ j u 2 U : v;uð Þ 2 ECf gj;

such that d vð Þ ¼ dA vð Þ þ dU vð Þ. Then, we define the greedy value g
for an unassigned vertex v as:

g vð Þ ¼ dA vð Þ � dU vð Þ:
The g function measures the urgency of the candidate vertex

under consideration to the assigned candidate vertices versus to
its proximity to the unassigned candidate vertices. We would like
to select the unassigned candidate vertex that, relative to other
unassigned candidate vertices, is closest to the candidate vertices
that have already been assigned. Therefore, the unassigned candi-
date vertex with the largest g value is chosen to be assigned next.
The greedy function is such that it makes an unassigned candidate
vertex very attractive if all vertices adjacent to it have already been
assigned. Conversely, an unassigned candidate vertex is unattrac-
tive when none of its adjacent vertices have been assigned.

Algorithm 1 summarizes the greedy constructive procedure.
The candidate graph C ¼ VC; ECð Þ is the input to this procedure. Ini-
tially, all candidate vertices are unassigned (step 2). Steps 3–4
make the assignment of a randomly selected candidate vertex to
host vertex 1. The assigned vertex is removed from the set of unas-
signed candidate vertices (step 5). A for-loop is then executed
(steps 6–10) to assign all remaining candidate vertices in U . Step

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

4

Chapter 7. Cyclic Cutwidth Minimization Problem 119

7 evaluates all unassigned candidate vertices to identify the one
with the largest greedy value (with ties broken arbitrarily). The
chosen candidate vertex nextC is assigned to the next available host
vertex nextH (step 8). The assigned candidate vertex, nextC, is
removed from U (step 9). Once all candidate vertices are assigned,
the procedure returns u, which contains the mapping of candidate
vertices to host vertices (step 11).

Algorithm 1. Constructive procedure

1: Procedure GreedyConstructive(C)
2: U VC
3: nextC rand Uð Þ
4: u nextCð Þ 1
5: U U n nextCf g
6: for all nextH > 1 do
7: nextC argmax

v2U
g vð Þ

8: u nextCð Þ nextH
9: U U n nextCf g
10: end for
11: return u

In order to implement an algorithm for the CCMP, it is also nec-
essary to define an efficient data structure to represent a solution
u. In this case, we propose the use of an array data structure. An
array is a one-dimension matrix composed of an index that identi-
fies each memory position within the array, and the corresponding
content of those positions in memory. Therefore, an array can be
seen as a set of tuples key-value. The key represents the vertices
of the host graph, while the value represents the vertices of the
candidate graph. Therefore, a correspondence key-value represents
the assignment of a candidate vertex to a host vertex. In this sense,
there are n key-value pairs, being n the number of vertices of either
the host or the candidate graphs. In Fig. 4, we depict several repre-
sentations of this array (one per subfigure). In this case, the header
of the array corresponds to the keys of the array while the second
row of this graphical representation contains the values associated
with each key.

Fig. 4 shows an example of the steps followed by the construc-
tive procedure for the graph introduced in Fig. 1(a). For this graph,
the construction is completed in six iterations (i.e., one for each
vertex). As shown in Fig. 4(a), the procedure starts with a random
selection of candidate, say for instance vertex C, which is assigned
to host vertex 1. In each step, we indicate which vertex is nextH and
nextC. The first one follows the numerical (clockwise) order. The
second one is selected by computing the value of the g function.
Fig. 4(a) shows the g value for the vertices in U at this step (i.e.,
A, B, D, E, and F). For instance, g Að Þ ¼ dA Að Þ � dU Að Þ ¼ 0� 4 ¼ �4.
Similarly, g Bð Þ ¼ dA Bð Þ � dU Bð Þ ¼ 1� 2 ¼ �1, and so forth. Once
all the unassigned vertices have been evaluated, the greedy selec-
tion chooses the vertex with the largest g value (with ties broken
arbitrarily). The number of vertices evaluated decreases by one at
each step. In addition to the graphical representation of the current
partial solution, Fig. 4 includes tables associated with the vertex
assignments, i.e, u Cð Þ ¼ 1, u Bð Þ ¼ 2, u Dð Þ ¼ 3, u Eð Þ ¼ 4,
u Að Þ ¼ 5, and u Fð Þ ¼ 6.

The w function can be derived from the u mapping (see Fig. 4
(f)). The domain of w is given by the edges of the candidate graph,
while the range is given by the paths in the host graph. Of the pos-
sible paths, we choose the shortest that connects the end candidate
vertices. The topology of the host graph restricts the range of w to
two possible paths per candidate edge, one clockwise and another
one counterclockwise (see Fig. 1(d)). If there is a tie in the length of
the two possible paths, the procedure selects the clockwise path.

Since w can be derived from the u mapping, we consider that u
is a full characterization of the solution to the problem.

From an implementation point of view, we need to define an
additional data structure to evaluate a solution. Particularly, this
data structure is an array which stores integer values that repre-
sent the different cuts of each edge in the host graph. Therefore,
the size of this array is equal to the number of edges in the host
graph. In this case, we use the same key-value representation pre-
viously mentioned, the key identifies the edge in the host graph,
while the value represents the number of cuts of this edge. To cal-
culate the number of cuts of each host edge, we scan all the edges
of the candidate graph and obtain the associated paths in the host
graph determined by the w function. Each time that a host edge is
included in a path, it implies to increment in one unit the value of
the number of cuts of that host edge. This procedure is in the order
of O n2

� �
. Once all the cuts for a particular solution have been stored

in the array, we need to fully traverse it in order to find the largest
cut value, which is the value of the objective function for the CCMP.

In addition to the aforementioned constructive algorithm, we
also tested other constructive variants. Even though those strate-
gies were not so successful for this problem, it might be also inter-
esting to enumerate them. First, we tried a randomization of the
greedy selection represented by g, following a GRASP constructive
approach (Feo and Resende, 1994; Resende et al., 2010). Secondly,
we used a second greedy function based on the quality of the
objective function, instead of the function g, to select the next can-
didate vertex. Again, we also implemented a randomized variant of
this constructive, based on the new greedy function. Unfortunately,
the performance of those methods was far from the best results
obtained by the one described in this section. Therefore, for the
sake of brevity we do not include the experiments related to these
additional strategies in the preliminary experiments section.

2.2. Local search

From a starting solution, a local search is an intensification
strategy designed to find the local optimum in a predefined neigh-
borhood. Our Local Search (LS) is defined in an insertion neighbor-
hood. An insertion is a classical move in both graph layout and
permutation problems. It consists of removing a candidate vertex
from its current position in the host graph and inserting it in a dif-
ferent position. For instance, Fig. 5 depicts the move of vertex A
from position 5 (i.e., u Að Þ ¼ 5) to position 2. We denote this oper-
ation as u0 ¼ Insert u;A;2ð Þ, where u0 is the solution after the
move. Fig. 5 shows the solution before the insertion (u) and the
solution after the insertion (u0). The figure highlights the vertices
from the candidate and host graphs that are affected by the move.
As customary in insertion moves, the displaced elements must be
shifted. In our context, the vertices can be shifted in the clockwise
or counterclockwise direction. Since the host graph is a cycle, shift-
ing in one direction or the other results in the same solution. In our
example, when candidate vertex A is moved to position 2, dis-
placed vertices could have shifted in the clockwise direction (i.e.,
B moves to 3, D to 4, and E to 5). Instead, our moves are such that
we always shift the displaced candidate vertices in the counter-
clockwise direction, as shown in Fig. 5.

Considering the aforementioned insertion move, the neighbor-
hood associated with candidate vertex v of solution u is defined
as the solutions that can be reached by the insertions (embedding)
of v in all positions (vertices) in the host graph that are different
from its current position:

Nu vð Þ ¼ Insert u; v;uð Þ : 8u 2 VH;u – u vð Þf g
For a candidate graph with n vertices, the size of the complete

neighborhood (i.e., considering all candidate vertices) is n � n� 1ð Þ.

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

5

120 Chapter 7. Cyclic Cutwidth Minimization Problem

Algorithm 2 summarizes the steps of the local search with
insert moves. The input to this procedure is the candidate graph
(C ¼ VC; ECð Þ) and the initial solution uð Þ. The procedure combines
first and best improving strategies. The first improvement strategy
is related to performing the insertion of the first vertex which
improves the current solution, while the best improvement strat-
egy is referred to only considering the best insertion of each vertex.
Particularly, all candidate vertices in VC are scanned at random
using a shuffle function (see step 4). Therefore, for each vertex v

being considered, the procedure finds the best possible insertion
in Nu vð Þ (step 6), as in the best improvement strategy, with an
algorithmic complexity of O n2

� �
. Then, if this insertion results in

an improvement (step 7), since we are following a first improve-
ment strategy, the current solution is updated (step 8), the
improvement flag is switched to True (step 9), and the scanning
of the candidate vertices starts again from this new solution (step
10). The do-while loop (steps 2–13) is repeated until no insertion
of a candidate vertex is able to improve the current solution.

Fig. 4. Example of the steps followed to construct a solution.

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

6

Chapter 7. Cyclic Cutwidth Minimization Problem 121

Algorithm 2. Local search

1: Procedure LocalSearchBestImprovement (C;u)
2: do
3: improve False
4: V shuffle VCð)
5: for v 2 V do
6: u0 arg min

u002Nu vð Þ
ccw C;u00ð Þ

7: if ccw u0ð Þ < ccw uð Þ then
8: u u0

9: improve True
10: break

11: end if
12: end for
13: while improve
14: return u

Notice that in addition to the local search defined in an inser-
tion neighborhood, we also tested the performance of another local
search, in the interchange neighborhood. The interchange is classi-
cal move in both graph layout and permutation problems. In par-
ticular, the interchange move consists of selecting two candidate
vertices from the solution and exchanging their assigned vertices
in the host graph. Unfortunately, the performance of this strategy
was far from the best results obtained by the local search based
on the insertion move. Therefore, for the sake of brevity we do
not include the experiments related to this additional strategy in
the preliminary experiments section.

2.3. Tabu search

Tabu Search (TS) is a metaheuristic originally introduced in 1977
(Glover, 1977) and later formalized in Glover (1986) as a general
method for solving hard optimization problems. Many ideas and
extensions are discussed in Glover (1989), Glover (1990), Glover
(1997) and Glover and Laguna (1997). A recent review of the strategies
associated with tabu search are compiled in Laguna (2017). TS is a, so-
called, single-solution neighborhood search metaheuristic methodol-
ogy. TS introduces the concept of memory with the goal of making
the best possible decisions based on the previous information col-
lected throughout the search, instead resorting to randomization.

We add a simple tabu search short-term memory to the local
search summarized in Algorithm 2. The TS memory consists of
recording a number of recently visited solutions. A move (i.e., an
insertion) is classified tabu if it transforms the current solution into
a tabu solution (i.e., a solution that is currently in the short-term
memory). Unlike TS designs that use memory based on attributes,
in our design it is not necessary to include an aspiration criterion,
since no tabu move can reach a solution that the search has not
already visited. The size of the TS memory (i.e., the number of tabu
solutions) is the search parameter known as TabuTenure.

Instead of stopping at the first local optimum (i.e., the first time
that a move cannot be found to improve the current solution) as in
Algorithm 2, the search is allowed to continue by selecting the
non-improving move that deteriorates the objective function the
least. This move is the ‘‘best” non-improving move. Before making
a move, the current solution is added to the TS memory and the
‘‘oldest” tabu solution is deleted. The oldest tabu solution is the
one added TabuTenure iterations ago. The search continues after
a number of iterations without improvement are executed. The
number of non-improving iterations used to stop is a search
parameter (Non-Improving), computed with respect to the number
of vertices of the input graph (n). Preliminary testing revealed
TabuTenure ¼ 0:2n as an effective value for this search parameter.
These experiments also showed that the best results can be
expected when Non-Improving is set to 0:1n, with a minimum
value of 6 and a maximum value of 15. The short-term TS memory
components are sufficient to produce very high-quality solutions,
however, any optimization algorithm should find the right balance
between intensification and diversification (Laguna, 2017). To that
aim, tabu search framework introduces the general idea of long-
term memory in order to diversify the search. However, other sim-
pler approaches (Glover and Laguna, 1997), as the one proposed in
this paper, propose the combination of tabu search with a multi-
start strategy to diversify the search as we present in Section 2.4.

2.4. Multistart procedure

In this paper we propose a multistart optimization algorithm to
tackle the CCMP. Multistart strategies are used in this context to
escape from local optima where heuristic procedures get stuck. It
based on the idea of applying an intensification strategy to differ-
ent starting points in the space search. The pseudocode of our pro-
posal is presented in Algorithm 3. In this case, at each iteration, the
procedure starts from a different solution constructed with the
greedy constructive algorithm introduced in Section 2.1. Then,
the intensification strategy used is the TS presented in Section 2.3.
When the TS stops, a new solution is generated with Algorithm 1.
This process continues until a maximum time limit (tmax) or a max-
imum number of iterations (rmax) is reached, but guaranteeing that
a minimum number of iterations (rmin) is performed for each can-
didate graph (C). As we will see in the preliminary experiments
section, the minimum and maximum number of iterations have
been set to 10 and 30 respectively.

Algorithm 3. General procedure

1: Procedure MultistartTabuSearch (C; tmax; rmin; rmax)
2: restarts 0
3: best £
4: do
5: u GreedyConstructive Cð Þ
6: u0 TabuSearch C;uð Þ
7: if best ¼¼£ or ccw u0ð Þ < ccw bestð Þ
8: best u0

9: end if
10: restarts restartsþ 1
11: while restarts < rmin or time < tmax and restarts < rmaxð Þ
12: return u

3. Advanced strategies

The procedures presented in Section 2 can be further improved
with the use of the three advanced strategies proposed in this sec-
tion. Although these strategies were designed within the CCMP

Fig. 5. Example of an embedding u and the resultant embedding u0 obtained after
the operation Insert u;A;2ð Þ.

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

7

122 Chapter 7. Cyclic Cutwidth Minimization Problem

context, the ideas behind them might be applied to other heuristic
searches. The first strategy deals with landscapes where many
solutions have the same objective function value. In this case, the
objective function value alone does not provide enough informa-
tion to find effective search directions. A secondary evaluation is
able to differentiate solutions for which objective function values
are the same. The second strategy explores computationally effi-
cient ways of calculating move values. This is particularly impor-
tant in large neighborhoods. The third one also tackles efficiency
but from the point of view of reducing the number of moves to
evaluate.

3.1. Secondary solution evaluation

In heuristic search, a flat landscape condition occurs when large
fractions of the solution space have the same objective function
value (Pinana et al., 2004; Resende et al., 2010). This means that
structurally different solutions may be associated with the same
value of the objective function. Determining search directions
becomes a very difficult task when decisions are based only on
the change of the objective function value produced by a move.
Finding a meaningful way of differentiating solutions with the
same objective function value is important because the structure
of one solution may be more promising than the structure of
another in terms of improving the incumbent solution later in
the search.

Flat landscapes are typically associated with min–max or max–
min optimization problems (Pardo et al., 2013; Duarte et al., 2016),
that is, those problems where the objective is to minimize a max-
imum value or to maximize a minimum value. To overcome this
difficulty, researchers have proposed the use of one or more sec-
ondary solution evaluations. These evaluations are only activated
when solutions have the same objective function value and they
are designed to indicate preferences regarding the structure of
the solutions being compared (Pantrigo et al., 2012; Pardo et al.,
2013).

The secondary evaluation that we employ is based on ideas pre-
sented in Pantrigo et al. (2012) and Pardo et al. (2013). As our prob-
lem formulation indicates, the CCMP is an optimization problem
that has the goal of finding a solution that minimizes the maxi-
mum cut produced by the assignment of candidate vertices to a
host graph. It is possible for multiple solution configurations to
have the same maximum cut. When comparing two solutions with
the same maximum cut (i.e., the same objective function value),
we are interested in knowing which one of the two has a better
‘‘improvement potential” if a move (or series of moves) could
reduce the current maximum cut.

We use the improvement potential concept to differentiate
solutions with the same objective function value. In particular, if
two solutions have the same objective function value, we compare
the number of times that the largest cut occurs in each them. The
solution with the smallest number of largest cut is deemed better
(i.e., the solution has the larger improvement potential of the two
solutions under consideration). If this calculation is not able to dif-
ferentiate between the solutions, then we compare the number of
times that the second largest cut occurs in any of them and so on.
We do this until the result of the calculation is able to distinguish
between the two solutions.

3.2. Efficient move calculation

The exploration of a solution neighborhood usually is the most
computational intensive element in search procedures. Neighbor-
hood search methods require the evaluation of moves to determine
what to do next. Developing efficient ways of calculating move val-
ues is critical in heuristic search. We propose an efficient calcula-

tion of the value of the Insert move that we defined in
Section 2.2. The main idea consists of isolating the effect of an
Insert move. Specifically, we only need to consider the edges of
the candidate vertices that are reassigned with the corresponding
move.

We illustrate the move evaluation with the example depicted in
Fig. 6. Fig. 6(a) shows the solution before the move of vertex C to
position 2, characterized by Insert u;C;2ð Þ. Notice that, for the sake
of clarity, in the figure we have simplified the notation of the cut of
each host edge, introduced in Eq. (1), with a label ci (1 6 i 6 5).
Fig. 6(b) shows the solution after Insert u;C;2ð Þ. The move evalua-
tion consists of first deleting the paths associated with the edges
adjacent to vertices B and C, which are the only vertices that
change positions (host vertices) after the move. We also delete
the contribution of these paths to the objective function calcula-
tion. Then, new paths are assigned to these edges and the contribu-
tion of these paths is added to the objective function. The table in
Fig. 6(c) shows these calculations. Step 0 shows the cuts in the cur-
rent solution. Step 1 shows the contributions that are removed and
step 2 shows the contributions that are added. The cut values asso-
ciated with the new solution are shown in step 3. These values are
obtained by adding the corresponding values in the previous steps.

From a computational point of view, and taking into considera-
tion the array data structure used to evaluate a solution (intro-
duced in Section 2.1), calculating the value of the objective
function from the scratch is in the order of O n2

� �
being n the num-

ber of vertices of the graph. On the other hand, if the array data
structure used to evaluate a solution is already calculated, per-
forming a move only implies to reconsider the contribution of
the edges of the candidate vertices being reassigned (instead of
all of them). The complexity of this operation is also in the order
of O n2

� �
, since all the vertices might be affected by the move. How-

ever, despite the fact that this proposal does not reduce the theo-
retical complexity, from a practical point of view, and as we will
illustrate in the experimental section, the number of edges affected
by a move is considerably smaller than the total number of edges
of the graph.

3.3. Search regions of interest

Exhaustive neighborhood searches become increasingly
impractical when the size of the neighborhood grows either poly-
nomially or exponentially with the size of the problem. In our case,
the entire neighborhood of a solution is n � n� 1ð Þ, being n the
number of vertices. To complement the quick move calculation
described in the previous subsection, we add a strategy to focus
the search on regions of interest. These regions are reached by a
set of promising moves and therefore the strategy consists of iden-
tifying such moves. This partial exploration of the entire neighbor-
hood is similar to the strategy of moving to the first improving
solution, which has been documented to work well in multi-start
settings (Hansen and Mladenovic, 2006). Our neighborhood search
combines the two strategies and in addition we embed the notion
of a partial exploration that focuses on Regions Of Interest (ROI).

The ROI of a candidate vertex v , denoted by ROI vð Þ, is the subset
of host vertices such that if v was assigned to any of them, the cur-
rent objective function value might change. In other words, ROI vð Þ
is the set of host vertices that could cause a reassignment of paths
associated with the edges of v . Clearly, the idea here is to avoid
changing the assignments of candidate vertices to positions (host
vertices) that will cause no changes in the path assignments (and
therefore no changes in the objective function value).

From an implementation point of view, the vertices that are
included in the set ROI vð Þ are derived from the assignments of
the adjacent vertices to v . For each u such that u;vð Þ 2 EC (i.e., u

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

8

Chapter 7. Cyclic Cutwidth Minimization Problem 123

is adjacent to v in the candidate graph), we add to ROI vð Þ
the following vertices of the host graph:
u uð Þ; u uð Þ � 1; u uð Þ þ n=2; u uð Þ þ n=2ð Þ þ 1, and u uð Þþ
n=2ð Þ � 1. Notice, that without loss of generality, in order to prop-
erly identify the host vertices added to ROI vð Þ we are supposing
that host vertices are denoted by numbers from 1 . . .n and that
u uð Þ � 1 < u uð Þ < u uð Þ þ 1. Additionally, the set ROI vð Þ also
includes the host vertices derived from the following situation:
when two adjacent vertices in the candidate graph (let denote
them as v1 and v2) are assigned to two vertices in the host graph
such that, the length of the two possible paths between them is
the same, then u v1ð Þ, u v1ð Þ � 1, u v2ð Þ, and u v2ð Þ � 1 are also
included in the set ROI vð Þ.

The exploration of the regions of interests is then done in two
steps, we first identify ROI vð Þ for a v chosen at random, and then
we evaluate all the moves associated with inserting v in all the
host vertices in ROI vð Þ. The best move is selected if it improves
the current solution. We repeat this process for all v until no
improvement is performed.

It is worth mentioning that this strategy is independent of the
considered objective function. Therefore, it can be used as a single
strategy in isolation or in combination with the secondary objec-
tive function (See Section 3.1).

4. Experimental results

Before describing our computational experiments and discus-
sion or results, we introduce the instances of our test set (Sec-
tion 4.1). Preliminary experiments are described in Section 4.2.
These experiments are devoted to adjust the parameters of our
solution procedure and also to analyze the contribution of the pro-
posed search strategies. We compare the best configuration with
the state of the art in Section 4.3.

It is important to notice that all our algorithms have been
implemented in Java 8, and all the experiments have been run in
an Intel Core i7-4702MQ CPU 2.20 Ghz with 16 GB RAM.

4.1. Instances

We use the following set of instances (graphs) from the litera-
ture in our computational tests Jain et al., 2016:

� Small: the number of vertices and edges in these random
graphs varies between 16 and 24, and between 18 and 49,
respectively. There are 84 instances in this set.
� Harwell-Boeing: these graphs arise from a wide variety of
problems in scientific and engineering disciplines. The selected
problems are a diverse subset of the original Harwell-Boeing set
(Duff et al., 1992). Particularly, we have selected the 38 graphs
used in Jain et al. (2016). These graphs have sizes between 39
and 685 vertices and from 46 to 3720 edges.
� Regular: these subset includes four different types of graphs
(Complete Split Graph, Toroidal Mesh, Join of Hypercubes, and
Cone Graph) with a predefined and well-known structure, but
with an unknown optima. This set includes a total of 57 graphs
with a number of vertices ranging from 12 to 1000 and a num-
ber of edges ranging from 46 to 6225.

Our experiments do not include the set of regular graphs with
known optimal solutions included in Jain et al. (2016). These
graphs are such that do not provide insightful results in compara-
tive testing, since modern heuristics can easily find the optimal
value.

4.2. Preliminary experiments

The preliminary experiments have the goal of identifying the
best values for the search parameters, as well as assess the merit
of the proposed search strategies. They have been performed over
a reduced set of instances consisting of 10% of all problem
instances (i.e., 18 graphs). We will refer to this subset of instances
as the preliminary set.

The procedure to construct solutions described in Section 2.1 is
not totally deterministic. The first candidate vertex to be assigned

Fig. 6. (a) Solution before the move Insert u;C;2ð Þ. (b) Solution after the move Insert u;C;2ð Þ. (c) Efficient revaluation of the objective function.

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

9

124 Chapter 7. Cyclic Cutwidth Minimization Problem

is chosen at random. Also, when the greedy value is the same for all
unassigned candidate vertices, ties are broken arbitrarily. There-
fore, it is interesting to observe the performance of the procedure
when constructing more than one solution with the aim of deter-
mining if the procedure is able to produce diverse solutions. Table 1
reports the average value for the considered instances of the objec-
tive function (Avg.), the deviation of the best solution with respect
to the overall best within the experiment (Dev. (%)), the number of
best solutions found in the experiment (#Best) and the time in sec-
onds (CPU Time (s)) when applying the procedure to construct 1, 5,
10, 20, 30, 40, and 50 solutions. Note that we are not comparing
against the best known solutions but against the best solutions
found within this experiment. The results in Table 1 show that
the best solutions for the 18 instances in the preliminary set are
found when the procedure constructs 50 solutions. The improve-
ment is significant from constructing one solution to constructing
50 solutions. However, the difference in solution quality is negligi-
ble after executing the procedure 20 times.

As we introduced in Section 2.4, our whole procedure performs
a variable number of iterations for each graph, depending on the
available time. In this sense, each iteration starts from a new solu-
tion constructed with our greedy procedure. Considering the
results presented in Table 1, the number of different iterations
used per instance in our final experiments has been set in the range
[10,30] which means that the procedure continues until a maxi-
mum time limit is reached, as long as at least 10 but no more than
30 restarts are performed.

We then compare the performance of our greedy construction
(Greedy) and a totally random construction (Random). In Table 2
we report the results found when executing the algorithms with
a time limit of one second for each graph. Since this experiment
do not include parameter adjustments, it has been performed over
both: the preliminary set and the whole set of instances. Particu-
larly, in this table, in addition to the Avg., Dev. (%) and #Best we
report the average number of solutions constructed (Avg. #Cons.)
in the aforementioned time limit. As expected, the average number
of constructions performed by the random constructive is larger
than the ones obtained by the greedy constructive. This difference
is due to the necessity of the greedy procedure of evaluating each
unassigned candidate vertex before selecting it. However, the solu-
tion quality indicators favor the greedy constructions over a totally
random approach. This fact is observed either in the preliminary
and the whole set of instances.

The second preliminary experiment is devoted to testing the
influence of the advanced strategies introduced in Section 3. We
start by running the local search of Section 2.2 and reporting the
results in Table 3 (LS). The table compares these results with the
outcomes from running LS with the efficient move evaluation of
Section 3.2 (LS+E) and the results from focusing on regions of inter-
est of Section 3.3 (LS+E+ROI). Since the local search follows a
strictly descent pattern, the secondary evaluation of Section 3.1
does not play a role (it is included in the three compared strategies
of this experiment). Recall that the secondary evaluation is used to
distinguish between moves that result in no change of the objec-
tive function value.

Table 3 reveals that all variants are able to reach the same solu-
tion quality. Moving from LS to LS+E, we observe the decrease of
one order of magnitude in computational time to explore the same
average number of solutions (Avg. #Sol.). The neighborhood reduc-
tion strategy associated with ROI is able to further reduce the com-
putational burden (by two additional orders of magnitude). We
point out that all variants were run starting from the same initial
solution. Again, these findings have been observed either in the
preliminary and the whole set of instances.

To adjust the two parameters associated with the tabu search
elements in our procedure, we performed a full factorial design
with values that we made dependent on the graph size. In partic-
ular, for the tabu tenure we tested 0:05, 0.1, 0.2, 0.3, and 0.4 of n,
where n is the number of vertices in the candidate graph. We
tested the same percentages for the maximum number of itera-
tions without improvement, and limited the value to be within a
minimum (6 iterations) and a maximum (15 iterations). For the
sake of brevity, we do not include the corresponding table of
results. We only identify the best setting for tabu tenure (0.2n)
and number of iterations without improvement (0.1n).

Our final preliminary experiment explores the increase in solu-
tion quality when going from simple greedy constructions
(Greedy) to the local search with advanced strategies (LS+E+ROI)
and to the tuned procedure that includes TS elements (TS). Table 4
reports the results. As expected, adding local search results in a
noticeable improvement in solution quality. The embedding of
tabu search elements results in additional quality improvement,
although the difference between LS+E+ROI and TS is significantly
smaller than the solution quality difference between Greedy and
LS+E+ROI.

4.3. Competitive testing

In our competitive testing, we compare our tuned procedure
with the one proposed in Jain et al. (2016), the Memetic Algorithm
(MA) that we described in the literature review. Notice that we
have directly used the original code implemented by the authors
in Jain et al. (2016), who kindly provided us with the source code
of their algorithms for our comparisons. In order to execute the
MA procedure we have used the parameters indicated by the
authors. Particularly, the maximum number of generations of each
run of the MA is set to 400 generations. Additionally, the reported
quality values are the best ones obtained after 30 runs of the algo-
rithm and the time reported corresponds only to the run where the
best solution was found. Table 5 shows the results of this test. The
results are grouped by set and graph type (i.e., random or struc-

Table 1
Performance of the constructive procedure based on the number of iterations.

Iterations 1 5 10 20 30 40 50

Avg. 60.61 57.28 55.00 54.17 54.11 54.06 53.94
Dev. (%) 32.82 12.83 6.20 0.33 0.28 0.17 0.00
#Best 3 9 11 15 16 17 18
CPU Time (s) 0.004 0.010 0.015 0.024 0.032 0.041 0.048

Table 2
Comparison between random and greedy constructions.

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

10

Chapter 7. Cyclic Cutwidth Minimization Problem 125

tured). TS refers to our proposed method and MA refers to the
memetic algorithm in Jain et al. (2016). We use the same metric
as before, where average deviation from best (Dev.) is calculated
considering the collective-best solutions found with either TS or
MA. The ‘‘Total” section at the bottom of the table provides aver-
ages across all graph types.

The general observations from examining this table are that:

� The TS solutions are found in about one order of magnitude less
time than MA.
� The performance of TS is better on random graphs than on
structured graphs.
� For all problem types, TS solutions are on average closer to the
best solutions (maximum deviation of 2.40%) than the MA solu-
tions (maximum deviation of 12.09%).

We performed two statistical tests with the goal of identifying
significant performance differences, the Wilcoxon’s signed rank
test and the t-test for paired samples.

Specifically, we use Wilcoxon’s signed rank test (Wilcoxon,
1992) to identify differences between the objective function values
of the best solutions found by TS and MA. We apply the one-tail
version of this paired test to random graphs and structured graphs
separately. Our null hypothesis is that there is no difference in the
median of the objective function values, while the alternative
hypothesis is that the median of one set of values is smaller than
the other. The first test with all 122 random graphs results in a
p-value of 0.0008. Therefore, we can confidently reject the null
hypothesis in favor of the alternative hypothesis that the median
of the TS objective function values is less than the median of the
MA values. This fact confirms the better performance of the TS over
these instances. The Wilcoxon test with all 57 structured graphs
results in a p-value of 0.0069. This also indicates a strong rejection
of the null hypothesis in favor of concluding that the median of the
MA objective function values for structured graphs is less than the
median of the TS values.

We complement this experiment by conducting a t-test for
paired samples. The resulting p-values of 0.032 and 0.106 for ran-
dom and structured graphs, respectively, means that, in the case of
random graphs, we could still reject the null hypothesis at a rea-
sonable level of significance, say 5%. However, we would have to
accept a Type I error of over 10% if we would like to reject the null
hypothesis for the structured graphs in favor of concluding that the
average MA objective function values for structured graphs is less
than the TS average.

We believe that the solid performance of MA on structured
graphs is due to the six different ways in which solutions are
constructed to initialize the search. This fact is also supported
by the authors of the MA procedure, since they tested in Jain
et al. (2016) the six constructive heuristics in isolation for the
different kinds of instances. The differences found in the perfor-
mance of each constructive procedure for each kind of graph,
suggested them the inclusion of solutions provided by all the
constructives, in the initial population of their MA. At least one
of these constructives can be customized to exploit a particular
regular structure and give the search procedure the advantage
of starting the search at high-quality initial points. Customiza-
tion of a solution-construction procedure is not possible for
graphs without a regular structure, such as random graphs.
Including various forms of constructing solutions within a single
procedure is indeed a reasonable idea as long as the application
can afford the price to be paid on the increased computational
effort.

Given the previous assumptions, as a final experiment, we eval-
uate the influence of the constructive procedures in the overall
performance of the compared methods. In Table 6, we report the
average quality (Avg.), the number of best solutions found (#Best),
and the average improvement, Imp. (%), achieved by the TS or the
MA with respect to its corresponding constructive procedure.
Notice that, the overall method (TS or MA) also includes the con-

Table 5
Comparison with the state of the art.

Table 3
Contribution of advanced strategies to the local search.

Table 4
Performance differences between the procedure components and the full procedure.

Greedy LS+E+ROI TS

Avg. 60.61 43.61 43.06
Dev. (%) 41.03 3.15 0.11
#Best 0 12 17
CPU Time (s) 0.01 0.51 2.14

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

11

126 Chapter 7. Cyclic Cutwidth Minimization Problem

structive phase and therefore, if we just report the total number of
best solutions found by TS or MA it would always match the total
number of instances. However, since we are interested in deter-
mining which part of the method is responsible of the best solu-
tion found, in Table 6, we have separated the number of best
solutions found by the constructive procedure, from the total
number of best solutions found by the metaheuristic. The column
Greedy in Table 6 reports the initial solution provided to the TS in
the best iteration. On the other hand, the MA runs 6 constructive
procedures (6 cons. column in Table 6) for 30 iterations with an
initial population size of 60 or 90 individuals (depending on the
size of the graph) at each iteration. We have performed all the
possible initial constructions for the 30 iterations with the code
provided by the authors in Jain et al. (2016) and we have reported
the best solution found among all of them. As it can be seen in
Table 6, considering all the instances together (row Total) the
TS was able to improve 166 initial solutions out of 179, while
13 solutions generated by the Greedy constructive were not
improved. Furthermore, the TS improved the Avg. value of the
objective function in a 48.21% over the Greedy procedure. On
the other hand, MA was able to improve 112 initial solutions
out of 179, and the average improvement of the MA with respect
to the constructive procedures resulted in a 16.85%. If we take a
closer look to the sets of instances separately, we observe a differ-
ent influence of the initial solution in the search, depending on
the type of instance. Particularly, in the sets of instances where
the MA obtains a more competitive performance (the graphs with
a regular structure) there are a smaller improving difference with
respect to its constructive procedure. This indicates that the solu-
tion quality for those sets of instances is mainly due to the con-
structive phase. In this sense, the differences in the Complete
Split Graphs are the more remarkable, since the TS was able to
improve a 72.55% with respect to the initial solution, while the
MA was only able to improve a 0.18%, obtaining almost the same
final quality. We believe that this behavior is due to the fact that
in Jain et al. (2016) the authors proposed six tailored-made con-
structive procedures able to perform very well for the particular
sets of instances used. We can conclude that, TS is able to largely
improve the initial solutions provided by a general constructive
procedure. On the other hand, the use of a set of tailored-made
constructive procedures when handling different sets of
instances, might be useful to provide high-quality starting points
for improvement methods.

Appendix A includes the individual results of our competitive
tests. This could help researchers to perform future comparisons.

5. Conclusions

We studied the Cyclic Cutwidth Minimization Problem consist-
ing of embedding a candidate graph into a cycle (host) graph in
order to minimize the maximum cut. This problem has been previ-
ously studied for specific classes of graphs with a regular structure.
However, work on general candidate graphs is sparse. We can point
to only one recent heuristic approach for general graphs. The
approach in the literature is a population-basedmetaheuristic from
the family ofmemetic algorithms.We took a different approach and
developed a single-solution, neighborhood search. In the process of
creating an effective and efficient solution method, we adapted
three strategies that have general applicability:

1. Efficient move value calculation.
2. Secondary move evaluation to distinguish moves that the pri-

mary evaluation (based on the objective function) is not able
to distinguish.

3. Neighborhood search space reduction via regions of interest.

Our work establishes some new benchmarks for the Cyclic Cut-
width Minimization Problem and provides validation for strategies
that promise to accelerate the execution of heuristic searches with-
out sacrificing solution quality. Finally, we have identified a gen-
eral new lower bound for CCMP, valid for any kind of graph and
inspired in the linear version of the problem.

CRediT authorship contribution statement

Sergio Cavero: Conceptualization, Investigation, Data curation,
Methodology,Software.EduardoG.Pardo:Conceptualization,Inves-
tigation,Validation,Writing-originaldraft.ManuelLaguna:Supervi-
sion, Formal analysis, Writing - review & editing. AbrahamDuarte:
Supervision,Writing-review&editing,Fundingacquisition.

Acknowledgment

This work was partially supported by the Ministerio de Ciencia,
Innovación y Universidades under Grant Ref. PGC2018-095322-B-
C22 and Grant Ref. FPU19/04098 by Comunidad de Madrid and
European Regional Development Fund with Grant Ref. P2018/
TCS-4566. We would also like to thank P. Jain, K. Srivastava, and
G. Saran, authors of the previous most competitive method in the
state of art (Jain et al., 2016) for sharing their code with us.

Table 6
Study of the influence of the constructive procedures in the overall performance of the compared methods.

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

12

Chapter 7. Cyclic Cutwidth Minimization Problem 127

Appendix A. Individual results

These are the results of our competitive testing. These values were used to calculate the summary presented in Table 5.

(continued on next page)

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

13

128 Chapter 7. Cyclic Cutwidth Minimization Problem

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

14

Chapter 7. Cyclic Cutwidth Minimization Problem 129

(continued on next page)

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

15

130 Chapter 7. Cyclic Cutwidth Minimization Problem

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

16

Chapter 7. Cyclic Cutwidth Minimization Problem 131

References

Abbott, H.L., 1966. Hamiltonian circuits and paths on the n-cube. Canadian
Mathematical Bulletin 9, 557–562.

Allmond, H., 2006. On the cyclic cutwidth of complete tripartite and n-partite
graphs. REU Project.

Aschenbrenner, R., 2001. A proof for the cyclic cutwidth of q5, REU Project. Cal State
Univ, San Bernardino.

Castillo, C., 2003. A proof for the cyclic cutwidth of q6, REU Project. Cal State Univ,
San Bernardino.

Chavez, J.D., Trapp, R., 1998. The cyclic cutwidth of trees. Discrete Applied
Mathematics 87, 25–32.

Clarke, D.W., 2002. The cyclic cutwidth of mesh cubes.
Cohoon, J.P., Sahni, S., 1987. Heuristics for backplane ordering. Journal of VLSI and

computer systems 2, 37–60.
Díaz, J., Petit, J., Serna, M., 2002. A survey of graph layout problems. ACM Comput.

Surv. 34, 313–356.
Duarte, A., Pantrigo, J.J., Pardo, E.G., Sánchez-Oro, J., 2016. Parallel variable

neighbourhood search strategies for the cutwidth minimization problem. IMA
Journal of Management Mathematics 27, 55. https://doi.org/10.1093/imaman/
dpt026.

Duff, I.S., Grimes, R.G., Lewis, J.G., 1992. Users’ guide for the harwell-boeing sparse
matrix collection (release i).

Erbele, J., Chavez, J.D., Trapp, R., 2003. The cyclic cutwidth of qn, Manuscript.
California State University, San Bernardino, USA.

Feo, T., Resende, M., 1994. A greedy randomized adaptive search procedure for
maximum independent set. Operations Research 42, 860–878.

Gavril, F., 1977. Some np-complete problems on graphs. In: Proceedings of the
Eleventh Conference on Information Sciences and Systems, pp. 91–95.

Glover, F., 1977. Heuristics for integer programming using surrogate constraints.
Decision Sciences 8, 156–166.

Glover, F., 1986. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research 13, 533–549.

Glover, F., 1989. Tabu search–part i. ORSA Journal on Computing 1, 190–206.
Glover, F., 1990. Tabu search–part ii. ORSA Journal on Computing 2, 4–32.
Glover, F., 1997. Tabu search and adaptive memory programming–advances,

applications and challenges. In: Interfaces in Computer Science and
Operations Research. Springer, pp. 1–75.

Glover, F., Laguna, M., 1997. Tabu Search. Kluwer Academic Publishers, USA.
Hansen, P., Mladenovic, N., 2006. First vs. best improvement: an empirical study.

Discrete Applied Mathematics 154, 802–817.
Harper, L.H., 1966. Optimal numberings and isoperimetric problems on graphs.

Journal of Combinatorial Theory 1, 385–393.
Jain, P., Srivastava, K., Saran, G., 2016. Minimizing cyclic cutwidth of graphs using a

memetic algorithm. Journal of Heuristics 22, 815–848.
James, B., 1996. The cyclical cutwidth of the three-dimensional and

fourdimensional cubes. Cal State Univ., San Bernardino McNair Scholar’s
Program Summer Research Journal.

Johnson, M., 2003. The linear and cyclic cutwidth of the complete bipartite graph,
REU Project, Cal State Univ., San Bernardino.

Laguna, M., 2017. Tabu Search. Springer International Publishing, Cham, pp. 741–
758.

López-Locés, M.C., Castillo-García, N., Huacuja, H.J.F., Bouvry, P., Pecero, J.E., Rangel,
R.A.P., Barbosa, J.J.G., Valdez, F., 2014. A new integer linear programming model
for the cutwidth minimization problem of a connected undirected graph. In:

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

17

132 Chapter 7. Cyclic Cutwidth Minimization Problem

Recent Advances on Hybrid Approaches for Designing Intelligent Systems.
Springer, pp. 509–517.

Luttamaguzi, J., Pelsmajer, M., Shen, Z., Yang, B., 2005. Integer programming
solutions for several optimization problems in graph theory, Technical Report,
Center for Discrete Mathematics and Theoretical Computer Science, DIMACS.

Makedon, F., Sudborough, I.H., 1989. On minimizing width in linear layouts.
Discrete Applied Mathematics 23, 243–265.

Martí, R., Pantrigo, J.J., Duarte, A., Pardo, E.G., 2013. Branch and bound for the
cutwidth minimization problem. Computers & Operations Research 40, 137–
149.

Martins Santos, V.G., Moreira de Carvalho, A.M., 2019. Tailored heuristics in
adaptive large neighborhood search applied to the cutwidth minimization
problem. European Journal of Operational Research. https://doi.org/10.1016/j.
ejor.2019.07.013.

Mcallister, A.J., 1999. A new heuristic algorithm for the linear arrangement problem.
Moscato, P., 1989. On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms, Caltech concurrent computation
program, C3P Report 826 (1989).

Palubeckis, G., 2012. A branch-and-bound algorithm for the single-row equidistant
facility layout problem. OR Spectrum 34, 1–21.

Pantrigo, J.J., Martí, R., Duarte, A., Pardo, E.G., 2012. Scatter search for the cutwidth
minimization problem. Annals of Operations Research 199, 285–304.

Pardo, E.G., Mladenović, N., Pantrigo, J.J., Duarte, A., 2013. Variable formulation
search for the cutwidth minimization problem. Applied Soft Computing 13,
2242–2252.

Pardo, E.G., Martí, R., Duarte, A., 2016. Linear Layout Problems, Handbook of
Heuristics. Springer International Publishing. ISBN: 978-3-319-07153-4.

Pinana, E., Plana, I., Campos, V., Martı, R., 2004. Grasp and path relinking for the
matrix bandwidth minimization. European Journal of Operational Research 153,
200–210.

Resende, M.G.C., 2009. A.D.V. In: Method and system for network migration
scheduling. United States Patent Application Publication. US2009/0168665.

Resende, M.G.C., Martí, R., Gallego, M., Duarte, A., 2010. Grasp and path relinking for
the max–min diversity problem. Computers & Operations Research 37, 498–
508.

Rios, F., 1996. Complete graphs as a first step toward finding the cyclic cutwidth of
the n-cube. Cal State Univ., San Bernardino McNair Scholar’s Program Summer
Research Journal.

Rolim, J., Sýkora, O., Vrt’o, I., 1995. Optimal cutwidths and bisection widths of 2-and
3-dimensional meshes. In: International Workshop on Graph-Theoretic
Concepts in Computer Science, Springer, pp. 252–264.

Schröder, H., Sýykoa, O., Vrt’o, I., 1999. Cyclic cutwidth of the mesh. In: International
Conference on Current Trends in Theory and Practice of Computer Science.
Springer, pp. 449–458.

Schröder, H., Sýkora, O., Vrt’o, I., 2004. Cyclic cutwidths of the two-dimensional
ordinary and cylindrical meshes. Discrete Applied Mathematics 143, 123–129.

Sciortino, V., Chavez, J.D., Trapp, R., 2002. The cyclic cutwidth of a p2� p2� pn
mesh, REU Project, Cal State Univ., San Bernardino.

Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I., 2001. On bipartite drawings and the
linear arrangement problem. SIAM Journal on Computing 30, 1773–1789.

Thilikos, D.M., Serna, M., Bodlaender, H.L., 2005. Cutwidth ii: Algorithms for partial
w-trees of bounded degree. Journal of Algorithms 56, 25–49.

Wilcoxon, F., 1992. Individual comparisons by ranking methods, in: Breakthroughs
in statistics, Springer, pp. 196–202.

S. Cavero, E.G. Pardo, M. Laguna et al. Computers and Operations Research 126 (2021) 105116

18

Chapter 7. Cyclic Cutwidth Minimization Problem 133

Chapter 8

Cyclic Antibandwidth Problem

The Cyclic Antibandwidth Problem is the second of the GLPs studied in this Doctoral The-

sis, and it was previously introduced in Section 2.2. As a result of the research conducted,

an article has been published:

1. S. Cavero, E. G. Pardo, and A. Duarte. A general variable neighborhood search for

the cyclic antibandwidth problem. Computational Optimization and Applications,

81(2):657–687, 2022 [31].

Moreover, a presentation has been at an international conference:

2. S. Cavero, E. G. Pardo, and A. Duarte. A vns approach for a variant of the antiband-

width problem. 8th International Conference on Variable Neighborhood Search

(ICVNS 2021), in Abu Dhabi, U.A.E., 2021 [30].

The article, titled “A general variable neighborhood search for the cyclic antibandwidth

problem” [31] was published in a JCR journal. Figure 8.1 compiles some information about

the journal. The CAB was previously studied for specific classes of graphs using exact

methods. However, just two approaches can be found in the literature for general graphs: a

MA and an ABC combined with TS.

To handle the problem, we propose a GVNS in a multistart algorithmic design. The

main components of the algorithm proposed to address the CAB are summarized next:

135

136 Chapter 8. Cyclic Antibandwidth Problem

• Two-phase greedy constructive procedure. The first phase determines the next ver-

tex to be added to the solution based on the adjacency of the vertices and the BFS

algorithm [229]. Then, a greedy function based on the objective function of the prob-

lem is used to locate the selected vertex in the host graph.

• Two local search procedures are proposed. The first one explores the insert neigh-

borhood following a best improvement strategy. The second local search explores

the swap neighborhood following a first improvement strategy. Additionally, the pro-

posal takes advantage of two exploration strategies: a criterion for breaking the tie of

solutions with the same objective function and an efficient evaluation of neighboring

solutions. Furthermore, two neighborhood reduction strategies are proposed.

• The previous heuristic procedures are framed within the GVNS metaheuristic. This

framework combines an efficient VND, based on the aforementioned local search

procedures, with a novel destruction–reconstruction shaking procedure.

Our procedure has been tested in isolation to verify that the new proposed GVNS

method, in combination with the additional advanced strategies, is capable of accelerating

the execution of heuristic search procedures without sacrificing the quality of the solutions

found. Then, the final configuration of the method has been successfully compared with

the previous state-of-the-art procedures, becoming the new state-of-the-art method for the

CAB. The merit of the empirical results obtained was corroborated using non-parametrical

statistical tests.

To conclude this chapter, we include a copy of the most relevant paper published for

the CAB in the context of this Doctoral Thesis.

Chapter 8. Cyclic Antibandwidth Problem 137

A GVNS for the cyclic antibandwidth problem

Sergio Cavero, Eduardo G. Pardo and Abraham Duarte

Computational Optimization and Applications. Volume 81(2), 657–687, 2022.

https://link.springer.com/article/10.1007/s10589-021-00334-y

Journal Information

Research Areas:

• Operations Research & Management Science
• Engineering (Industrial)

Category Rank:

• Operations Research & Management Science 78/267: (Q2)
• Mathematics (Applied) 59/87: (Q3)

Journal Impact Factor: 2.005
Data obtained from Journal Citation Reports 2021

Figure 8.1 Information related to the publication [31].

https://link.springer.com/article/10.1007/s10589-021-00334-y

Vol.:(0123456789)

Computational Optimization and Applications (2022) 81:657–687
https://doi.org/10.1007/s10589-021-00334-y

1 3

A general variable neighborhood search for the cyclic
antibandwidth problem

Sergio Cavero1  · Eduardo G. Pardo1  · Abraham Duarte1 

Received: 8 February 2021 / Accepted: 12 November 2021 / Published online: 17 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Graph Layout Problems refer to a family of optimization problems where the aim
is to assign the vertices of an input graph to the vertices of a structured host graph,
optimizing a certain objective function. In this paper, we tackle one of these prob-
lems, named Cyclic Antibandwidth Problem, where the objective is to maximize the
minimum distance of all adjacent vertices, computed in a cycle host graph. Specifi-
cally, we propose a General Variable Neighborhood Search which combines an effi-
cient Variable Neighborhood Descent with a novel destruction–reconstruction shak-
ing procedure. Additionally, our proposal takes advantage of two new exploration
strategies for this problem: a criterion for breaking the tie of solutions with the same
objective function and an efficient evaluation of neighboring solutions. Furthermore,
two new neighborhood reduction strategies are proposed. We conduct a thorough
computational experience by comparing the algorithm proposed with the current
state-of-the-art methods over a set of previously reported instances. The associated
results show the merit of the introduced algorithm, emerging as the best perfor-
mance method in those instances where the optima are unknown. These results are
further confirmed with nonparametric statistical tests.

Keywords  Cyclic antibandwidth problems · Graph layout problem · Metaheuristics ·
Variable neighborhood search · Combinatorial optimization

 *	 Abraham Duarte
	 abraham.duarte@urjc.es

	 Sergio Cavero
	 sergio.cavero@urjc.es

	 Eduardo G. Pardo
	 eduardo.pardo@urjc.es

1	 Universidad Rey Juan Carlos, Madrid, Spain

138 Chapter 8. Cyclic Antibandwidth Problem

658	 S. Cavero et al.

1 3

1  Introduction

In recent years, there has been a growing interest in studying the assignment of the
vertices of a generic input graph to the vertices of a regular host graph (e.g., path,
cycle, grid, or torus, among others), optimizing a particular objective function [11].
This idea has been previously denoted in the literature as the embedding of a graph
into another graph [16, 29]. Also, it is possible to find references to this concept as
the labeling of a graph (i.e., the vertices of the graph receive labels) [31], the layout
of the graph (i.e., the vertices of a graph are shown in a line, cycle, grid, etc.) [11],
or the mapping of a graph (i.e., a pair of functions assigning the vertices and edges
of an input graph to the vertices and paths of a host graph, respectively) [17]. Within
this family of problems, the scientific community has mainly paid attention to those
optimization problems where the host graph is a path graph. See, for instance, the
Cutwidth Minimization Problem [8, 28], the Minimum Linear Arrangement [23,
35], or the Vertex Separation Problem [7, 41]. These problems, where the mapping
is performed over a path host graph, are usually known as Linear Layout Problems
[27].

In this paper, we focus on the Cyclic Antibandwidth Problem, which belongs to
a particular subfamily of graph layout problems where the aim is to embed the input
graph in a cycle host graph. Within this subfamily, we can also find, among others,
the Cyclic Cutwidth Minimization Problem [5, 17], the Cyclic Bandwidth Problem
[34, 38], or Cyclic Bandwidth Sum Problem [36, 37].

To formally define the concept of embedding in a cycle, let G = (VG, EG) be a
connected, unweighted, and undirected candidate graph where the set of vertices is
denoted as VG (with |VG| = n ) and its edge set as EG (with |EG| = m ). Analogously,
let Cn = (VC, EC) be a host cycle graph where VC and EC represent the sets of vertices
and edges respectively (with |VC| = |EC| = n ). Due to the fact that the host graph is a
cycle, Cn is a 2-regular, Eulerian, Hamiltonian, and unit-distance graph.

Figure 1a shows an example of an input graph, G1 , with six vertices VG = {A,B, C,D, E, F}
and six edges EG = {(A,B), (A,C), (B, E), (B, F), (D, E), (E, F)} . In Fig. 1b, we show

A

F

C

D
B

E

(a)

2

3

4

3

2

1

6

5

(b)

Fig. 1   a A candidate graph G1 , b A host graph C6

Chapter 8. Cyclic Antibandwidth Problem 139

659

1 3

A general variable neighborhood search for the cyclic…

a cycle graph C6 graph where the set of edges an vertices are VC = {1, 2, 3, 4, 5, 6} and
EC = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)} , respectively.

As it was aforementioned, an embedding consists in defining two mathematical
functions. The first one, � , is a bijective function that assigns each vertex of the can-
didate graph to a vertex of the host graph. In mathematical terms,

The second one, � , is an injective function that maps each edge (u, v) ∈ EG to a set
of paths in Cn whose endpoints are �(u) and �(v) . It is worth mentioning that a path
is a sequence of edges, without repeating neither vertices nor edges. Thus, consider-
ing that Cn is a cycle graph, given two vertices u, v ∈ VG there exists only two feasi-
ble paths p1 , p2 between �(u),�(v) ∈ VC . More formally,

where PC is the set of all feasible paths.
Attending to the definition of Eq. 2, the corresponding two paths, p1 and p2 , can

be derived through � from the vertex assignment. For the sake of clarity, we sim-
plify the notation by making the embedding only dependent on G and �.

A possible embedding �′ of G1 , into C6 is shown in Fig. 2a, where we can observe
that each vertex of the input graph is mapped into a vertex of the host graph. For
example, the vertex A of G1 is assigned to vertex 2 of C6 , which is formally denoted
as �(A) = 2 (see Eq. 1). Similarly, B is assigned to 1 ( �(B) = 1 ), C is assigned to 4
( �(C) = 4 ), and so on.

As it was aforementioned, � assigns two paths in C6 for each edge in G1 . In
Fig. 2b, we highlight the two possible paths between vertices �(A) = 2 and �(C) = 4

(1)� ∶ VG → VC, where ∀v ∈ VG∃!u ∈ VC |�(v) = u.

(2)
� ∶ EG → PC, where ∀(u, v) ∈ EG∃{p1, p2} ∈ PCwith

�(u),�(v) ∈ VC ∧ �((u, v)) =

{
p1(�(u),�(v))

p2(�(v),�(u))
, with p1 ≠ p2,

2

3

4

3

2

1

6

5

D A

C

E

B

F

(a) (b)

Fig. 2   a A possible embedding �′ of G1 in C6 . b Two possible paths in C6 for (2, 4) ∈ EC denoted as
p1(2, 4) and p2(4, 2)

140 Chapter 8. Cyclic Antibandwidth Problem

660	 S. Cavero et al.

1 3

in C6 , denoted as p1(2, 4) and p2(4, 2) . Specifically, p1(2, 4) = {(2, 3), (3, 4)} , while
p2(4, 2) = {(4, 5), (5, 6), (6, 1), (1, 2)}.

Based on the input graph of Fig. 1a and the embedding of Fig. 2a, we report
in Table 1, for each edge of the candidate graph (column (u, v) ∈ EG ), the assigned
vertices in the host graph (columns �(v) and �(v) ), and the two paths assigned to the
edge (columns p1(�(u),�(v)) and p2(�(v),�(u) ). Based on a graphical representa-
tion and a clockwise move, we consider the path p1(�(u),�(v)) as the one starting
in �(u) and ending in �(v) . Similarly, we consider the path p2(�(v),�(u)) as the one
starting in �(v) and ending in �(u).

1.1 � Problem statement

In this paper, we tackle the Cyclic Antibandwidth (CAB) problem. Before formal-
izing this problem, we introduce a basic notation. Let G and Cn be the input and the
host graph, respectively; and let � be the function that defines an embedding, which
is a solution to the CAB. We then define the Cyclic Antibandwidth of a graph as:

where | ⋅ | determines the length of the path. To simplify the notation, we denote
with p((�(u), (�(v)) as the shortest path between p1(�(u),�(v)) and p2(�(v),�(u)) .
Considering that the host graph is a cycle, it trivially holds for the CAB problem
that |p2(�(v),�(u))| = n − |p1(�(u),�(v))|.

Finally, the aim of this optimization problem is to find an embedding 𝜑⋆ (i.e., a
solution) that maximizes Eq. 3:

where � represents the set of all possible feasible solutions of the problem.
Based on the input graph G1 , depicted in Fig. 1a, and the embedding �′ , depicted

in Fig. 2a , we now illustrate how to evaluate the objective function of this prob-
lem with an example. In particular, the CAB(G1,�

�) can be calculated with the
information reported in Table 1. First, we calculate the length of each of the paths
assigned to the edges of the input graph. For instances, considering the edge (A,B) ,

(3)CAB(G,�) = min
(u,v)∈EG

{|p1(�(u),�(v))|, |p2(�(v),�(u))|},

(4)𝜑⋆
← CAB(G) = argmax

𝜑∈𝜙

CAB(G,𝜑),

Table 1   Assignment of the vertices and edges of G1 into C6 vertices and paths respectively given the
embedding of Fig. 2a

(u, v) ∈ EG �(u) �(v) p1(�(u),�(v)) p2(�(v),�(u))

(A,B) 2 1 {(2, 3), (3, 4), (4, 5), (5, 6), (6, 1)} {(1, 2)}

(A,C) 2 4 {(2, 3), (3, 4)} {(4, 5), (5, 6), (6, 1), (1, 2)}

(B, E) 1 5 {(1, 2), (2, 3)(3, 4), (4, 5)} {(5, 6), (6, 1)}

(B, F) 1 3 {(1, 2), (2, 3)} {(3, 4)(4, 5), (5, 6), (6, 2), }

(D, E) 6 5 {(6, 1), (1, 2), (2, 3)(3, 4), (4, 5)} {(5, 6)}

(E, F) 5 3 {(5, 6), (6, 1), (1, 2), (2, 3)} {(3, 4), (4, 5)}

Chapter 8. Cyclic Antibandwidth Problem 141

661

1 3

A general variable neighborhood search for the cyclic…

the associated paths have lengths of 1 and 5 respectively. Similarly, the paths of the
edge (B, F) have lengths of 2 and 4, and so on with the rest of the edges of G1 . Then,
for each edge, the path with the minimum length is selected. Finally, the value of the
objective function is the minimum length across all paths, which is 1 in this exam-
ple. In mathematical terms:

1.2 � Literature review

The Cyclic Antibandwith problem was proved to be NP-Hard for general graphs
in [32]. It was first introduced in [18] as a variant of the Bandwidth Minimization
Problem (BMP). The BMP consists in finding a permutation of the rows and col-
umns of a binary symmetric matrix that minimizes its bandwidth, where the band-
width of the matrix is the largest distance from a nonzero element to the main diago-
nal [2]. This concept was later reinterpreted in terms of graph theory [22], where
the binary matrix can be represented as a graph. In this context, the bandwidth of
a graph is the maximum distance between any two adjacent vertices embedded in a
path graph [15, 33].

Considering also a path host graph, it emerges the Antibandwidth Maximization
Problem (AMP), which was proposed in [18] too. The AMP is also known as the
Dual Bandwidth problem or the Separation Number problem [11, 24, 43]. It consists
in maximizing the minimum distance between any two adjacent vertices embedded
in the host graph. This problem is closely related to the CAB since both problems
share the same objective function, being the only difference the host graph (a path
for the AMP and a cycle for the CAB). The real applications of these two optimiza-
tion problems can be found in multiprocessor scheduling [18], frequency assignment
[12], graph drawing [30], VLSI design [4], batch-processing workloads [39], or net-
work scheduling [3], among others.

The relation between the CAB and AMP was defined in terms of upper/lower
bounds in [24, 42] as follows:

The CAB has been exactly solved for some regular-structure graphs such as paths
[42], cycles [42], two dimensional meshes [32], toroidal meshes [32], and Hamming
graphs [6]. Also, Raspaud et al. [32] presented asymptotic results for hypercube
graphs. However, since the problem is NP-Hard, there is not a method able to solve
the problem for general graphs

From a heuristic perspective, this problem was first approached by Bansal and
Srivastava in [3]. The authors proposed a Memetic Algorithm (MA) where the ini-
tial population was generated by using a greedy constructive procedure based on the

(5)
CAB(G1,�

�) = min{p(�(A),�(B)), p(�(A),�(C)), p(�(B),�(E)),

p(�(B),�(F)), p(�(D),�(E)), p(�(E),�(F))} =

= min{1, 2, 2, 2, 1, 2} = 1.

(6)
1

2
AMP(G) ≤ CAB(G) ≤ AMP(G).

142 Chapter 8. Cyclic Antibandwidth Problem

662	 S. Cavero et al.

1 3

well-known Breadth First Search (BFS) algorithm [40]. The MA was tested over
different sets of instances that could be grouped into: those where the optimum is
known and those where the optimum is unknown. Based on the results obtained in
[3], the authors also conjectured about the optimal solution of some graphs with
regular structure, such as: three-dimensional meshes, hypercubes, and double stars.
Later, Lozano et al. [20] tackled the problem with a hybrid metaheuristic that com-
bined Artificial Bee Colony (ABC) with Tabu Search. They also used the BFS
introduced in [3] as the constructive procedure to generate the initial population of
the ABC method. Computational experienced showed that the algorithm proposed
in [20] was favorably compared with the MA approach in [3] over the same set of
instances, becoming the new state of the art of the CAB.

1.3 � Our contributions

In this paper, we propose a Multistart General Variable Neighborhood Search (MS-
GVNS) for the Cyclic Antibandwidth problem. The GVNS combines a Variable
Neighborhood Descent (VND) with a shake procedure. Particularly, we propose a
two-neighborhood VND, combined with a novel destruction–reconstruction shak-
ing procedure. Also, we introduce a new constructive procedure based on a BFS
strategy, to provide initial solutions to the GVNS. Additionally, we consider a crite-
rion to guide the algorithm through the search space where solutions have the same
objective function, and an efficient mechanism to evaluate neighboring solutions.
To accelerate the scanning strategies of the neighborhoods, we also propose two
methods focused on evaluating a very reduced number of solutions from the whole
neighborhood.

The rest of the paper is organized as follows: in Sect. 2 we describe our algo-
rithmic proposal. In Sect. 3, we present the advanced strategies for the local search.
Then, in Sect. 4 we introduce the set of instances used in this paper, the preliminary
experiments, and the competitive test performed in order to compare our algorithms
with the two previous approaches. Finally, in Sect. 5 we expose our conclusions.

2 � Algorithmic proposal

Dealing with hard optimization problems, especially those which fall into the NP

-Hard class of problems (as it is the case of the CAB), usually requires the use of
approximate procedures. These methods need to be able to find high-quality solu-
tions in a reasonable amount of time. Among them, we can find the heuristic pro-
cedures, which are able to: produce feasible solutions, reach local optima starting
from a particular solution, and even move from one local optimum to another one
(through the use of a special kind of heuristics named metaheuristics). However,
they cannot determine if any of the local optima reached is also the global optimum
of the problem tackled.

Heuristic search procedures usually require some type of diversification to over-
come local optimality [21]. One effective way to achieve diversification is to restart

Chapter 8. Cyclic Antibandwidth Problem 143

663

1 3

A general variable neighborhood search for the cyclic…

the algorithm from new promising solutions once a region has been explored. Multi-
start procedures were originally conceived as a way to go beyond classical local
search methods by simply applying it to multiple random initial solutions. These
procedures usually follow a generic scheme where the generation of new solutions
and the corresponding improvement are alternated for a given number of itera-
tions. In particular, our approach for the CAB problem starts by constructing solu-
tions with a greedy procedure and then the improvement is performed with General
Variable Neighborhood Search (GVNS). Algorithm 1 shows the pseudocode of the
proposed multi-start procedure. It receives as input parameters, in step 1, a graph
( G ), the maximum allowed time for the whole method ( tmax ), and the two param-
eters necessary for initializing each iteration of the GVNS ( t′

max
 and kmax ). Notice,

that t′
max

 symbolizes the maximum allowed time for the GVNS at each iteration of the
MS-GVNS and, therefore t′

max
< tmax . At each iteration, a solution, � , is constructed

with the greedy method ������������������ (step 4) described in Sect. 2.1, then
it is improved with the method GVNS (step 5), described in Sect. 2.2. After that, it
is decided whether the new solution obtained is better than the best solution found
so far (step 6). Notice that, the method ��� returns the value of the objective func-
tion of an input solution for a given graph. If the new solution found is better than
the previous one, it becomes the new best solution (step 7). Then, a new iteration
starts (step 3). This process is repeated until a maximum time limit ( tmax ) is reached
(with time indicating the current elapsed time since the procedure started running).
Finally, the best solution found is returned (step 10).

Algorithm 1: MultiStart GVNS (MS-GVNS)

1 MS-GVNS (G, tmax, t′max, kmax)
2 ϕ� ← ∅
3 while time < tmax do
4 ϕ ← GreedyConstructive(G)
5 ϕ′ ← GVNS(G, ϕ, t′max, kmax)
6 if CAB(G, ϕ′) > CAB(G, ϕ�) then
7 ϕ� ← ϕ′

8 end

9 end
10 return ϕ�

2.1 � Constructive procedure

We propose a constructive method inspired on previous ideas reported in [3, 11].
Our procedure can be divided in two main stages: (1) generate an initial partial solu-
tion by assigning several groups of vertices that can be assigned together from the
input graph to the host graph; (2) assign the rest of the vertices one by one to the
previous structure, finding the most suitable assignment for each of them. Next, we
describe the first stage.

The input graph contains several groups of vertices suitable to be assigned
together to consecutive vertices of the host graph, since this assignation does not
affect in a negative way to the objective function. Particularly, those groups of

144 Chapter 8. Cyclic Antibandwidth Problem

664	 S. Cavero et al.

1 3

vertices are the ones which satisfy the fact that they are not adjacent among them.
To detect those groups, we first generate a level structure (spanning tree) of the input
graph by using a Breadth First Search (BFS) algorithm [40]. The aim of this strat-
egy is to separate the vertices into subsets (named levels) that have the same unit
distance with respect to a randomly selected root vertex. Then, we choose a level
at random from the spanning tree, and, from that level, we select the group of non-
adjacent vertices. These vertices are then assigned to consecutive vertices of the
host graph. Notice that the order used to assign the vertices within this group to the
host graph is not relevant. Also, it is important to remark that some vertices from
the selected level might remain unassigned, since they are adjacent to any of the
selected vertices in the group.

Once the vertices of the first level selected have been assigned, we repeat this
process on the nonconsecutive levels of the spanning tree one by one. The reason
behind this strategy is to guarantee that the selected vertices are nonadjacent. Notice
that this process is only applied to half of the levels (i.e., supposing that the levels
are labeled starting from one to l, this is equivalent to scan all odd levels or all even
levels).

Let us illustrate this first stage with an example. In Fig. 3a we depict a feasi-
ble spanning tree of the input graph shown in Fig. 1a. As we can observe, in level
1, there is only one vertex (B), which is the root of the spanning tree. In the sec-
ond level, there are 3 vertices (A, E, and F), where the edge between vertices E
and F is represented with a dotted line. Finally, vertices C and D are located in the
third level. As it was aforementioned, we select an initial level at random (say, for
instance, level 1). Then, all nonadjacent vertices in the selected level are assigned
to the host graph ( �(B) = 1 ). We repeat this process with the non-consecutive/odd
levels. In this example level 3 is selected next, and their non-adjacent vertices are
assigned next (i.e., �(C) = 2 , and �(D) = 3 ). Notice that in the case that there exists
an edge between two vertices in the same level, we only assign one of them, which
would be selected at random.

C D

B

A E FLevel 2

Level 1 (root)

Level 3

(a)

2

3

4

3

2

1

6

5

C

B

D

(b)

Fig. 3   Example of the construction of a solution (first stage)

Chapter 8. Cyclic Antibandwidth Problem 145

665

1 3

A general variable neighborhood search for the cyclic…

The selection of a random root vertex for generating the spanning tree, and the
selection of a random level to start the construction of the solution, favors the diver-
sification when performing multiple constructions, as it is the case of a multistart
procedure.

Next, we describe the second stage of our constructive procedure which assigns
one by one the remaining unassigned vertices of the input graph. Particularly, nonas-
signed vertices are scanned at random and assigned to its best possible vertex of the
host graph, which is determined with the help of a greedy function.

The purpose of this function is to determine the suitability of a vertex of the host
graph as a candidate for an input vertex. Particularly, this function is based on the
proximity to any adjacent vertex previously assigned to the solution (i.e., it quanti-
fies the distance in the cycle of the input vertex to its nearest adjacent).

To define this greedy function, let A be the set of vertices of the input graph
that have been already assigned to any of the vertices of the host graph, and U the
set of unassigned vertices, such that A ∪ U = VG . Given a vertex of the input graph
u ∈ U ⊂ VG and a vertex of the host graph, v ∈ VC , we define a function g(u, v) that
ponders the quality of a possible assignment �(u) = v as follows:

where p(v,�(w)) is the path in the host graph from the candidate host vertex v to
any other host vertex w with an adjacent to u assigned. Therefore, the best possible
assignation v⋆ for a vertex u is:

Let us illustrate this second stage with an example. Taking into consideration the
example depicted in Fig. 3b, A = {B,C,D} and U = {A, E, F} . Then, we randomly
select a vertex from U (say for instance vertex E ). Since there are six host vertices,
there are six possible assignments of E to the solution. For the sake of simplicity, in
Fig. 4 we illustrate only two of them. In Fig. 4a we show the assignation �(E) = 6
while in Fig. 4b we shown the assignation �(E) = 5 . In those figures we highlight the
shortest path from the host vertex considered to any host vertex containing an adja-
cent to E. The greedy function values for the previous assignations are g(E, 6) = 1
and g(E, 5) = 2 . Similarly, the value of the function g for the rest of the assignations
not illustrated here are: g(E, 1) = 1; g(E, 2) = 1; g(E, 3) = 1; g(E, 4) = 1.

Notice that in the case that the candidate vertex is assigned to a host vertex
which already contains other input vertex, the solution becomes unfeasible. In those
cases we follow a straightforward criterion by performing the necessary chain of
clockwise shifts of already assigned vertices, as we illustrate in Fig. 5. Particularly,
in Fig. 5a, D is assigned to 3 which previously contained F. Then, in Fig. 5b we
observe that F has been shifted and assigned to 4 and, similarly, A has been shifted
and assigned to 5, and finally, E has been shifted and assigned to 6.

In Algorithm 2 we summarize the pseudocode of the greedy constructive pro-
posed in this paper. Particularly, the steps 3 to 12 correspond to the first stage of
the algorithm, while steps 13 to 17 correspond to the second stage. The algorithm

(7)g(u, v) = min
w∈A

{|p(v,�(w))|}, with (u,w) ∈ EG,

(8)v
⋆ = arg max

v∈VC

g(u, v).

146 Chapter 8. Cyclic Antibandwidth Problem

666	 S. Cavero et al.

1 3

receives a candidate graph ( G(VG, EG) ) as an input, where VG and EG represent the
sets of vertices and edges, respectively. First, a solution � and the set of unassigned
vertices ( U ) are initialized (step 3). Then, we select a vertex at random from the
graph (step 3) that is used as a root for constructing the spanning tree (step 4). Later,
we select a random level from the tree (step 5) and we extract the list of non-con-
secutive levels starting from that one (step 6). In steps 7 to 12 we scan each of the
levels selected one by one. For each level we first extract all the vertices at the level
(step 8) and then we select the group of non adjacent vertices (step 9). The selected
vertices are then removed from the set of unassigned vertices (step 10) and assigned
at random to the next available candidate vertices (step 11). Once the first stage
is finished, we start with the second stage, where the rest of unassigned vertices

2

3

4

3

2

1

6

5

CE

B

D

(a)

2

3

4

3

2

1

6

5

C

E

B

D

(b)

Fig. 4   a Assignment of the input vertex E to the host vertex 6 ( �(E) = 6 ). b Assignment of the input ver-
tex E to the host vertex 5 �(E) = 5

(a) (b)

Fig. 5   a Infeasible assignment of the input vertex F to the host vertex 3 ( �(F) = 3 ). b Reassignation of
the vertices F, A and E after the assignation �(F) = 3

Chapter 8. Cyclic Antibandwidth Problem 147

667

1 3

A general variable neighborhood search for the cyclic…

(remaining in U ) are assigned one by one. Particularly, for each unassigned vertex
u (step 14) we look for the best possible host vertex in the host graph (using the
greedy function g previously introduced) and perform the assignation of u to that
host vertex (step 16). Notice that this method performs a reassignation of the host
vertices if the best position selected is already taken. Finally, when the solution is
completed (i.e., all candidate vertices have been assigned to a different host vertex)
the method returns the constructed solution (step 18).

Algorithm 2: Greedy constructive
1 ConstructSolution (G(VG , EG))
2 ϕ ← ∅, U ← VG
3 root ← RandomVertex(VG)
4 tree ← GenerateSpanningTree(root,VG)
5 start ← RandomIndex(tree)
6 levels ← GetNonConsecutiveLevels(tree, start)
7 for i ← 0 to |levels| do
8 vertices ← GetVertices(levels, i)
9 nonAdjacent ← GetNonAdjacentVertices(vertices)

10 U ← U \ nonAdjacent
11 AssignNextCandidateVertex(ϕ, nonAdjacent)
12 end
13 while |U| �= ∅ do
14 u ← GetVertex(U)
15 U ← U \ u
16 AssignBestCandidateVertex(ϕ, u)
17 end
18 return ϕ

2.2 � General variable neighborhood search

Variable Neighborhood Search (VNS) is a metaheuristic proposed by Hansen and
Mladenovic in [26] which is based on the concept of changes in the neighborhood
structure during the search, to prevent heuristic procedures from getting stuck in
local optima [9]. It is possible to find many different variants of VNS in the litera-
ture, which propose different ways of exploring the neighborhood structures (deter-
ministic or stochastic). Moreover, some variants of VNS have already been used to
successfully tackle other problems within the Graph Layout family of problems [8,
28]

The classical best-known variant, Basic Variable Neighborhood Search (BVNS),
includes three main procedures: shake, improve, and neighborhood change. The
shake procedure performs stochastic moves in the current neighborhood being
explored, with the aim of escaping from the basin of attraction; the improve method
is a deterministic procedure based on the use of a local search, able to find the local
optimum for a particular neighborhood structure. Finally, the neighborhood search
procedure determines if there is an improvement in the solution found in the current
iteration of the method, with respect to the best overall solution found.

In this paper, we propose the use of an extension of the previous procedure,
named General Variable Neighborhood Search (GVNS) [14, 25]. This VNS variant

148 Chapter 8. Cyclic Antibandwidth Problem

668	 S. Cavero et al.

1 3

differs from BVNS in the improvement procedure step. Particularly, instead of using
a simple local search, which explores a specific neighborhood, it uses a Variable
Neighborhood Descent (VND) [13] to explore a group of neighborhoods. The
GVNS is used as the improvement strategy for our multistart approach for the CAB.
In Algorithm 3, we introduce the pseudocode of the GVNS. This procedure receives
the input graph G , an initial solution ( � ), the maximum allowed time ( t′

max
 ), and

the largest neighborhood to be explored ( kmax ). Later, in Sects. 2.2.1 and 2.2.2 we
describe in detail the shake and VND procedures, respectively.

Algorithm 3: General VNS
1 GVNS (G, ϕ, t′max, kmax)
2 k ← 1
3 do
4 do
5 ϕ′ ← Shake(ϕ, k)
6 ϕ′′ ← VND(G, ϕ′)
7 k ← NeighborhoodChange(ϕ′, ϕ′′, k)
8 while k ≤ kmax

9 while time < t′max
10 return ϕ

2.2.1 � Shake procedure

The shake procedure is used to escape from local optima solutions by performing
a perturbation able to cause a change in the current neighborhood. This technique
allows to diversify the search and explore new regions of the solution space. To
tackle the CAB, we proposed a random destruction–reconstruction shake procedure.
Particularly, this strategy first removes a set of input vertices (selected at random)
from its currently assigned host vertex. Then, it performs also at random, new assig-
nations of the input vertices removed within the available host vertices.

The number of vertices to be removed depends on a search parameter (k) which is
received as an input to the method. The value of k ranges from 1 to kmax (received as
an input to the GVNS) and, in each iteration, it is determined by the neighborhood
change procedure within the GVNS.

In addition to the aforementioned shake procedure, we also tested a variant of the
method where the reconstruction phase was based on a greedy function. Particu-
larly, we used the greedy criterion previously introduced in the constructive proce-
dure, to assign the vertices in the reconstruction phase. However, the performance
of this shake variant was slightly worse to the one previously introduced so it was
discarded.

2.2.2 � Variable neighborhood descent

The VND is used to explore a group of neighborhoods deterministically, in such a
way that the obtained result is a local optimum with respect to all neighborhoods
explored [9, 13].

Chapter 8. Cyclic Antibandwidth Problem 149

669

1 3

A general variable neighborhood search for the cyclic…

In this paper, we propose two neighborhoods for the CAB and a different local
search procedure to explore each of them. In Algorithm 4 we introduce the pseudoc-
ode of the VND method proposed. As we can observe, the method receives the input
graph G and a feasible solution � . Then, it explores the first neighborhood ( N1 ) in
the steps 6 to 15, following a best improvement strategy. This exploration continues
while it is able to produce an improvement in the current solution. Then, it switches
to the second neighborhood ( N2 ) and explores it following a first improvement
strategy, in the steps 16 to 31. If the method finds a better solution in this second
neighborhood, the VND switches again to the first neighborhood (steps 33 to 38).
Otherwise, when both neighborhoods have been explored without improvement, the
procedure ends and returns the best overall solution found 𝜑⋆ .

150 Chapter 8. Cyclic Antibandwidth Problem

670	 S. Cavero et al.

1 3

Algorithm 4: VND procedure
1 VND (G, ϕ)
2 ϕ� ← ϕ
3 neighborhood ← 1
4 do
5 switch neighborhood do
6 case 1 :
7 do
8 improved ← False
9 ϕ′ ← argmax

ϕ′′∈N1(ϕ)
CAB(G, ϕ′′)

10 if CAB(G, ϕ′) > CAB(G, ϕ) then
11 ϕ ← ϕ′

12 improved ← True
13 end
14 while improved
15 end
16 case 2 :
17 do
18 improved ← False
19 i ← 1
20 do
21 ϕ′ ← ϕi ∈ N2(ϕ)
22 if CAB(G, ϕ′) > CAB(G, ϕ) then
23 ϕ ← ϕ′

24 improved ← True
25 break
26 else
27 i ← i+ 1
28 end
29 while i �= |N2(ϕ)|
30 while improved
31 end
32 end
33 if CAB(G, ϕ) > CAB(G, ϕ�) then
34 ϕ� ← ϕ
35 neighborhood ← 1
36 else
37 neighborhood ← neighborhood+ 1
38 end
39 while neighborhood ≤ 2
40 return ϕ�

The first neighborhood ( N1 in Algorithm 4) is based on the set of solutions that
can be reached by using the classical Insert move operator. Particularly, this opera-
tor selects an input vertex and removes its current assignation to the host graph.
Then, it tries to assign the removed vertex to any host vertex in the host graph, and
it performs the best possible overall insertion, considering the objective function.
Notice that when an Insert operation is performed, every vertex of the input graph is
already assigned to another vertex of the host graph. Therefore, it is necessary that
the method partially reassigns some of the input vertices to other host vertices, to
make room for the new assignation. In this case, all affected input vertices are reas-
signed in a chain from its current host vertex to another host vertex adjacent to the

Chapter 8. Cyclic Antibandwidth Problem 151

671

1 3

A general variable neighborhood search for the cyclic…

current one, following a clockwise or counterclockwise criterion, which depends on
the number of reassignments needed (i.e., the fewer, the better, with ties broken at
random).

In Fig. 6 we illustrate with an example the operation Insert(�, A, 1) . The Insert
operation starts from the solution � (depicted at the top of the figure). As we can
observe, in this case, the operation removes the input vertex A (assigned to the host
vertex 5 in � ) and assigns it to the host vertex 1. Therefore, vertices B and E are
reassigned to host vertices 6 and 5 obtaining the solution �′ , depicted in Fig. 6a.

Finally, we formally define the neighborhood N1 for a solution � as
N1(�) = {Insert(�, u,w), ∀ u ∈ VG,w ∈ VC ∶ �(u) ≠ w} . The size of this neighbor-
hood is n(n − 1) being n the number of vertices of the candidate graph.

The second neighborhood ( N2 in Algorithm 4) is based on another classical oper-
ator, usually known as Swap. It consist in selecting two input vertices and inter-
changing the assigned host vertex to each of them.

In Fig. 6 we illustrate with an example the operation Swap(�, A, B) . The Swap
operation starts from the solution � (depicted at the top of the figure). As we can

2

3

4

3

2

1

6

5

B

A

C

F

E

D

2

3

4

3

2

1

6

5

A

B

C

F

E

D

2

3

4

3

2

1

6

5

A

E

C

F

B

D

(b)(a)

Fig. 6   Example of a solution of the swap neighborhood, �′ , and insertion neighborhood, �′′ of a solution
�

152 Chapter 8. Cyclic Antibandwidth Problem

672	 S. Cavero et al.

1 3

observe, in this case, the operation removes the input vertex A (assigned to the host
vertex 5 in � ) and assigns it to the host vertex 1. Similarly, it removes the input
vertex B (assigned to the host vertex 1 in � ) and assigns it to the host vertex 5. The
obtained solution ( �′′ ) after the Swap is depicted in Fig. 6b.

Formally, we define the swap neighborhood N2 for a solution � as
N2(�) = {Swap(�, u, v) ∀ u, v ∈ VG ∶ u ≠ v} . The size of this neighborhood is
n(n − 1)∕2 being n the number of vertices of the candidate graph.

3 � Advanced search strategies for exploring the neighborhoods

A neighborhood structure, defined over a particular solution, determines the set
of solutions which can be reached by performing a predefined move. The size of
this set and the way in which the exploration of the solutions contained in it is per-
formed, are key parameters in determining the efficiency of a search procedure.

In Sect. 2.2.2 we defined two neighborhood structures ( N1 and N2 ) for the CAB.
Now, in Sect. 3.1 we propose, two advanced search strategies to efficiently explore
those neighborhoods. Then, in Sect. 3.2 we propose two additional strategies to
reduce the size of sets N1 and N2.

3.1 � Neighborhood exploration strategies

The solution space of some optimization problems contains a large number of
neighboring solutions with the same value of the associated objective function. This
fact makes the task of exploring the neighborhood very hard, since a local search
procedure usually reaches locally optimal solutions very quickly, being unable to
determine which solution is better among those with the same objective function
value. To avoid this drawback, in Sect. 3.1.1, we propose an advanced strategy to
distinguish the more promising solutions in the neighborhood, further than the origi-
nal value of the objective function. Additionally, when a local search method needs
to evaluate the quality of neighboring solutions, it can take advantage of the infor-
mation used to evaluate the the current solution. In this sense, neighboring solutions
usually share many common characteristics, which makes possible to efficiently
evaluate the quality of a neighboring solution after a move. In Sect. 3.1.2, we pro-
pose a strategy to handle this issue.

3.1.1 � Advanced exploration strategy 1: tiebreak criterion for the objective function

Flat landscape is a term used in the literature to refer to solution spaces, where
many solutions have the same value of the objective function associated, despite
the fact that its structure might be different [28, 31]. The Cyclic Antibandwidth
problem, as other problems belonging to the min/max or max/min categories,1

1  Minimization of a maximum value or maximization of a minimum value.

Chapter 8. Cyclic Antibandwidth Problem 153

673

1 3

A general variable neighborhood search for the cyclic…

presents a flat landscape [38, 41]. Flat landscapes are hard scenarios for search
procedures, since the value of the objective function is frequently used to deter-
mine the search direction.

To avoid this drawback, we propose an advanced exploration strategy ( AE1 )
consisting in defining a tiebreak criterion that makes it possible to distinguish
among solutions with the same value of the original objective function. There-
fore, the rationale behind this strategy is to identify potentially promising solu-
tions for search procedures. Particularly, when a tie is found in the original objec-
tive function, we use the tiebreak criterion to decide which solution is more
suitable to continue the search.

This tiebreak criterion is inspired by the ideas introduced in [20]. Particularly,
the authors of that paper proposed a very simple alternative objective function.
It consists in quantifying the number of edges which have an assigned path with
length equal to the value of the objective function, for that particular solution.
Then, when two solutions are tied in terms of value of the original objective func-
tion, the solution with the smaller value of this alternative objective function is
chosen.

To propose our tiebreak criterion, we define CAB(�, (u, v)) as the bandwidth of
an edge (u, v) ∈ EG in a solution � such that:

where the path p, as was mentioned in Sect. 1.1, is the shortest path between p1 and
p2 . Then, we classify the edges in EG based on its bandwidth in a solution, in such a
way that all the edges with the same bandwidth are grouped together. More formally,
given a solution � , let i ( 1 ≤ i ≤ ⌈�VG�∕2⌉ ) be the bandwidth of the edges in a par-
ticular set, denoted as Si

�
 . In mathematical terms:

With the previous definitions at hand, and given two solutions � and �′ , our tiebreak
criterion consists in scanning all previous sets one by one. Particularly, we traverse
the sets in ascending order of i, starting with i equal to the value of the original
objective function. For a particular i, we compare the cardinality of Si

�
 and Si

�′ , in
such a way that, if the cardinality of both sets is equal, we increment i. Otherwise,
the solution with the smallest cardinality is selected as the most promising one,
avoiding the exploration of further sets.

Let us illustrate the evaluation of this tiebreak criterion with an example. Consid-
ering the solution �′ of Fig. 6a, the set S1

�� = {(A,B), (A,C), (B, E), (E, F)} is formed
by the edges with bandwidth equal to 1. The set S2

�� = {(B, F), (D, E)} is formed by
the edges with bandwidth equal to 2. Similarly, the edges in the solution �′′ in
Fig. 6b are classified in: S1

��� = {(A,C), (B, E), (B, F)} , S2
��� = {(A,B), (E, F)} , and

S3
��� = {(D, E)} . Therefore, when comparing �′ and �′′ we observe that both solu-

tions have the same objective function value, which is equal to 1. However, the tie-
break criterion indicates that �′′ is better than �′ , since |S1

��� | = 3 is smaller than
|S1

�� | = 4.

(9)CAB(�, (u, v)) = |p(�(u),�(v))|.

(10)Si
�
= {(u, v) ∈ EG ∶ CAB(�, (u, v)) = i}.

154 Chapter 8. Cyclic Antibandwidth Problem

674	 S. Cavero et al.

1 3

3.1.2 � Advanced exploration strategy 2: efficient move calculation

A very time-consuming activity in the exploration of a neighborhood is related to
the evaluation of the neighboring solutions to determine the most suitable move.
To partially overcome this situation, we propose an advanced exploration strategy
( AE2 ) which efficiently calculates the quality of neighboring solutions by consid-
ering the current one.

Particularly, given a solution � and a neighboring solution �� ∈ Nx(�) , being x
either 1 or 2 (see Sect. 2.2.2), we can calculate the objective function value and,
if necessary, the tiebreak criterion of �′ , by only observing the changes in the
paths associated to certain edges of the input graph after the move.

Notice that a straightforward implementation of the evaluation of the objective
function of �′ , would need to analyze the whole set of input edges one by one.
Then, for each edge, the procedure determines if the path associated with each
edge derived from �′ is the shortest path among the scanned ones, to calculate the
objective function value. Additionally, the evaluation of the tiebreak criterion
would imply to classify the incumbent edge in the corresponding Si�′ . However,
depending on the similarity between � and �′ , it is possible that most of the paths
remain unaltered after the move and, therefore, its length does not change. Thus,
these edges do not need to be analyzed, since they do not produce a change either
in the objective function or in the tiebreak criterion.

This strategy consists in identifying the paths that require to be updated after
the move, which obviously depends on the particular move. In this paper, we con-
sider two possible moves: insertions and swaps. In the insertion case, as we intro-
duced in Sect. 2.2.2, it might be necessary to reassign several vertices after a
move, further than the inserted vertex. Then, it is necessary to analyze all paths
associated with any edge with an endpoint in a reassigned vertex. On the other
hand, in the swap case, the only paths affected after a move are those associated
with the edges with an endpoint in one of the vertices involved in the move.

To illustrate the performance of this strategy with an example, we consider
the solution � depicted and the vertex A in Fig. 6. The straightforward imple-
mentation of the insert move implies to update the bandwidth of the 6 edges of
the graph (i.e, (A,B), (A,C), (B, E), (B, F), (D, E), (E, F) ) for a particular insertion.
Then, exploring all the possible insertions for A (i.e., there are 5 host vertices)
requires to perform 6 × 5 = 30 updates. On the other hand, we have quantified the
number of updates needed when using AE2 . Particularly, in Table 2 we report the
updates needed for each insert move of A, reducing the total number of updates
from 30 to 25 (Table 3).

Similarly, in the case of the swap move, the straightforward implementation
again requires 30 updates as in the case of the insertion move. However, the updates
using AE2 together with the swap operator are reduced from 30 to 18. Particularly,
in Table 2, we report the updates needed for each possible swap move of A.

As we can observe, this strategy has a larger impact in the case of the explo-
ration of the neighborhood defined by the swap operator than the neighborhood
defined by the insert operator. This fact is later confirmed in the preliminary

Chapter 8. Cyclic Antibandwidth Problem 155

675

1 3

A general variable neighborhood search for the cyclic…

experiments (see Sect. 4.2). Additionally, it is worth mentioning that the influ-
ence of AE2 increases with large and dense graphs.

3.2 � Neighborhood reduction strategies

Many optimization problems are computationally intractable due the large size of its
solution space. To explore promising parts of that space, researchers define neigh-
borhood structures which contain sets of solutions associated. As stated in [1], the
larger the neighborhood, the longer it takes to perform a search which traverses all
associated solutions.

In this sense, to tackle the CAB, we have introduced two neighborhood structures
N1 (with size n(n − 1) ) and N2 (with size n(n − 1)∕2 ) being n the number of vertices
of the input graph. In this section, we propose two strategies to reduce those neigh-
borhoods, by exploring only the most promising solutions, avoiding to traverse the
whole neighborhoods.

3.2.1 � Neighborhood reduction 1: candidate vertices

The first neighborhood reduction strategy ( R1 ) narrows the number of either insert
or swap operations performed. Specifically, given a solution � , the whole explora-
tion of N1(�) implies that all the vertices v ∈ VG are candidate to be inserted in any
host vertex w ∈ VC . The first neighborhood reduction strategy applied to the insert
operator ( N R1

1
 ) narrows the number of candidate vertices in VG to be inserted. In

particular, we only consider those vertices which are endpoints of the edges in the
set Simin�  , with imin = CAB(G,�).

Table 2   Example of the edges
that need to be updated when
using AE2 together with the
insert operator

Evaluated edges

Insert(�, A, 1) (A,B), (A,C), (B, E), (B, F), (D, E), (E, F)

Insert(�, A, 2) (A,B), (A,C), (B, F), (D, E), (E, F)

Insert(�, A, 3) (A,B), (A,C), (B, F), (D, E), (E, F)

Insert(�, A, 4) (A,B), (A,C), (B, F), (E, F)

Insert(�, A, 6) (A,B), (A,C), (B, E), (D, E), (E, F)

Table 3   Example of the edges
that need to be updated when
using AE2 together with the
swap operator

Evaluated edges

Swap(�, A, B) (A,B), (A,C), (B, E), (B, F)

Swap(�, A, C) (A,B), (A,C)

Swap(�, A, D) (A,B), (A,C), (D, E)

Swap(�, A, E) (A,B), (A,C), (B, E), (E,D), (E, F)

Swap(�, A, F) (A,B), (A,C), (B, F), (E, F)

156 Chapter 8. Cyclic Antibandwidth Problem

676	 S. Cavero et al.

1 3

Similarly, the exhaustive exploration of N2(�) requires that all the vertices v ∈ VG
are candidate to swap its associated host vertex with the host vertex associated to any
other w ∈ VG . Again, this strategy applied to the swap operator ( N R1

2
 ) narrows the

number of candidate vertices in VG to be considered. Specifically, we only deal with
those vertices which are endpoints of the edges in the set Simin�  , with imin = CAB(G,�).

In mathematical terms, we define N R1

1
 and N R1

2
 as follows:

Let us illustrate the evaluation of this strategy with an example. Considering the
solution � in Fig. 6, the edges classified in: S i

min

� = {(B, E)} , i.e., edges with band-
width equal to 1. Therefore, in order to construct N R1

1
 (analogously N R1

2
 ) we con-

sider only the insertion (analogously the swap) of candidate vertices B and E over
all host vertices, which reduces considerably the number of operations in compari-
son with using the whole set of vertices of the graph.

3.2.2 � Neighborhood reduction 2: candidate assignments

Given a solution � , the whole exploration of N1(�) or N2(�) implies that all the host
vertices v ∈ VC are candidate to be considered in any move. The second neighborhood
reduction strategy ( R2 ) narrows the number of candidate host vertices considered for
the assignment of the vertices moved either in the insert or swap operators. Therefore,
we denote as N1

R2 (analogously NR2

2
 ) to the neighborhood structure, obtained after

applying the insert (analogously swap) operator together with R2 . This strategy looks
for the most suitable host vertices to assign a particular candidate one. To determine
those vertices, we use the greedy criterion (g) and the definition of the best possible
assignation for a candidate vertex, introduced in Eqs. 7 and 8, described in Sect. 2.1.

Particularly, the reduced set of host candidate vertices for the insert operator is
denoted as V R2

ins
 , while the reduced set of input vertices which are currently assigned

to the best host candidate vertices for the swap operator is denoted as V R2

swap
 . Notice,

that the Swap operator is defined in such a way that it receives two candidate vertices
belonging to VG , while the Insert operator is defined in such a way that it receives a can-
didate vertex belonging to VG and a host vertex belonging to VC.

Therefore, we formally define N R2

1
 and N R2

2
 as follows:

Let us illustrate the evaluation of this strategy with an example. Considering the
solution �′ in Fig. 6a and the vertex A, the set of host vertices chosen to construct
N

R2

1
 using the insert operator, is conformed by the host vertex 4 ∈ VC . This host

vertex is obtained after maximizing the value of g when A is assigned to each host

(11)N
R1

1
={Insert(�, v,w), with v ∈ VG ∧ (v, u) ∈ S

i
min

� , ∀u ∈ VG,w ∈ VC}

(12)N
R1

2
= {Swap(�, v,w), withv ∈ VG ∧ (v, u) ∈ S

i
min

� , ∀u ∈ VG,w ∈ VG}

(13)N
R2

1
={Insert(�, v,w), with v ∈ VG,w ∈ V

R2

ins
}

(14)N
R2

2
={Swap(�, v,w), with v ∈ VG,w ∈ VR2

swap
}

Chapter 8. Cyclic Antibandwidth Problem 157

677

1 3

A general variable neighborhood search for the cyclic…

vertex. Particularly, this evaluation results in: g(A, 1) = 1 , g(A, 2) = 1 , g(A, 3) = 1 ,
g(A, 4) = 2 , g(A, 5) = 1 and g(A, 6) = 1 ; being the assignation of A to the host ver-
tex 4, the one which maximizes the value of g. Therefore, the set of input vertices
to construct N R2

2
 using the swap operator, is conformed by the input vertex F, since

�(F) = 4.

4 � Computational results

In this section, we report the computational experiments carried out to determine
the effectiveness of the proposed algorithms. First, in Sect. 4.1, we present the set
of instances used to evaluate and test our proposal. Then, in Sect. 4.2, we describe a
set of preliminary experiments performed to illustrate the performance of our more
significant strategies in isolation, and also to tune the parameters of our algorithms.
Finally, in Sect. 4.3, we compare our best variant of the multistart GVNS procedure
with previous state-of-the-art methods.

The proposed algorithms have been coded in Java 13, and all experiments have
been run on an Intel Core i7-4702MQ CPU 2.20Ghz with 16 GB RAM.

4.1 � Instances

The instances used to test our multistart GVNS were previously proposed in other
papers of the state of the art which tackle the CAB [3, 20]. Particularly, we have
divided all available instances into two groups:

•	 Instances with known optimum. This set consists of 132 regular-structured
graphs, and it includes: paths (24 instances), cycles (24 instances), grids (23
instances), toroidal grids (37 instances), and Hamming graphs (24 instances).

•	 Instances with unknown optimum. This set consists of 163 instances divided
into regular-structured graphs and random graphs. Among the regular graphs we
can find: three-dimensional meshes (20 instances), double stars (20 instances),
hypercubes (7 instances), caterpillars (40 instances), complete binary trees (24
instances). On the other hand, the random graphs are extracted from two differ-
ent origins: harwell-boeing instances [10] (24 instances) and random connected
graphs [20] (28 instances).

We have made available all previous instances at https://​grafo.​etsii.​urjc.​es/​optsi​com/​
cab/.

Additionally, we selected a reduced set of 28 instances (in the following the “pre-
liminary data set”) chosen proportionally from each of the previously described sets,
which are used for our preliminary experiments. The small size of this data set is
devoted to avoiding overfitting of the methods. Particularly, this preliminary data
set consists of 2 paths, 2 cycles, 2 grids, 4 toroidal grids, 2 hamming, 2 three dimen-
sional meshes, 2 double stars 2 hypercubes, 4 caterpillars, 3 complete binary tree
and three Harwell-Boeing.

158 Chapter 8. Cyclic Antibandwidth Problem

678	 S. Cavero et al.

1 3

4.2 � Preliminary experiments

This section is devoted to illustrate the performance of the different strategies
proposed through the paper in isolation. First, we test the suitability of our con-
structive procedure for our multistart design. Also, we compare it with the best
previous constructive procedure in the state of the art. Second, we study the influ-
ence of the advanced strategies proposed to explore the neighborhood structures,
on the performance of the search process. In our third experiment, we illustrate
the save of time achieved when using the neighborhood reduction strategies pro-
posed. In our final preliminary experiment, we show how to increase the quality
of the results by combining several neighborhoods within a VND algorithm. At
the same time, in this experiment we observe the evolution in the quality obtained
when increasing the abstraction level of the methods used (constructive, local
search, VND, GVNS). Finally, we present the values of the parameters used for
the configuration of GVNS, obtained after a fine tuning process.

In our first preliminary experiment, we compare our greedy constructive pro-
cedure ( Greedy ), with the constructive proposed in previous papers in the state
of the art ( GLAH in [3, 20]). Since we are proposing a multistart algorithm, in
this experiment we test the evolution of the constructive procedure in both time
and quality, when performing 1, 10, 100, and 1000 constructions. Particularly, we
selected the best solution found by the compared methods for each instance, after
the predefined number of iterations and, in Table 4, we reported the average qual-
ity of the objective function (Avg.), the average CPU execution time measured in
seconds (CPUt(s)), the average deviation with respect to the best solution found
in the experiment (Dev.(%) (exp.)), the average deviation with respect to the best
solution found in the state of the art (Dev.(%) (all)), the number of best solu-
tions obtained in the experiment (#Best (exp.)) and the number of best solutions
obtained over all (#Best (all)).

As we observe in Table 4, both constructive methods proposed are able to
evolve when increasing the number of solutions constructed from 1 to 1000.
However, the improvement in the averaged quality grows in a smaller proportion
when more constructions are performed. As expected, the running time increases
proportionally with respect to the number of constructions.

Table 4   Comparison of the proposed constructive procedure (Greedy) with the previous state-of-the-art
constructive (GLAH) [3, 20] over the preliminary data set

Greedy GLAH [3, 20]

Iterations 1 10 100 1000 1 10 100 1000
Avg. 122.25 138.46 143.93 145.07 124.32 126.43 128.50 129.14
CPUt(s) 0.001 0.005 0.043 0.393 0.007 0.067 0.579 7.038
Dev.(%) (exp.) 23.16 8.72 1.30 0.00 26.02 21.17 17.72 16.61
#Best (exp.) 4 8 19 28 3 5 6 7
Dev.(%) (all) 39.04 26.30 21.94 21.15 36.90 33.60 31.72 31.07
#Best (all) 0 0 3 3 0 2 2 2

Chapter 8. Cyclic Antibandwidth Problem 159

679

1 3

A general variable neighborhood search for the cyclic…

When comparing the proposed procedure (Greedy) with the state-of-the-art one
(GLAH), we observe that our constructive method is able to systematically obtain
better solutions in shorter times, when performing the same number of construc-
tions. This fact is especially pronounced in the case of 1000 constructions. There-
fore, our method will be selected for the final configuration of our MS-GVNS.

The aim of the second preliminary experiment is to study the influence of the
advanced strategies proposed in Sects. 3.1.1 and 3.1.2 in the exploration of the
neighborhood structures introduced in Sect. 2.2.2. Particularly, the first neigh-
borhood considered in this paper, denoted as N1 , is explored with a local search
which traverses the neighborhood defined by the Insert operator, following a best
improvement strategy. This local search is defined in steps 6 to 15 in Algorithm 4
and we denote it as LS1 for the preliminary experiments. On the other hand, the sec-
ond neighborhood considered in this paper, denoted as N2 , is explored with a local
search which traverses the neighborhood defined by the Swap operator, following
a first improvement strategy. This local search is defined in steps 16 to 31 in Algo-
rithm 4 and we denote it as LS2 for the preliminary experiments.

In Table 5, we report the results obtained with both local search procedures in
isolation ( LS1 and LS2 ). Also, we report the results obtained with the combination of
LS1 and LS2 with the first advanced strategy, introduced in Sect. 3.1.1, and denoted
in Table 5 as AE1 . Let us remember that AE1 consists in using a criterion to distin-
guish between solution with same objective function. Therefore, the combination
of each local search with AE1 is denoted in Table 5 as LS1+AE1 , and LS2 + AE1 ,
respectively. Finally, we report the results obtained when combining each local
search procedure with AE1 and also with the second advanced strategy, introduced
in Sect. 3.1.2, which is denoted in Table 5 as AE2 . Let us remember that this strategy
consists of the efficient calculation of the objective function for neighboring solu-
tions. Therefore, the combination of each local search with AE1 and AE2 is denoted
in Table 5 as LS1+AE1+AE2 and LS2+AE1+AE2 , respectively.

The three variants tested for each local search start the search from the same
initial solution. Only one iteration of each variant has been performed with a
maximum allowed time for each instance of 3600 s. Notice, that some algorithms
were not able to finish the search for all instances in the preliminary data set, in

Table 5   Influence of the advanced strategies ( S1 and S2 ) in the two local search procedures proposed ( LS1
and LS2)

N1 (Insert) N2 (Swap)

LS1 LS1+AE1 LS1+AE1+AE2 LS2 LS2+AE1 LS2+AE1+AE2

Avg. 1.59 30.29 30.29 1.71 34.71 34.71
CPUt (s) 0.74 256.67 105.07 0.51 15.61 0.60
Dev.(%) (exp.) 91.27 0.00 0.00 91.05 0.00 0.00
#Best (exp.) 0 17 17 0 17 17
Dev.(%) (all) 92.94 23.68 23.68 92.31 16.84 16.84
#Best (all) 0 3 3 0 4 4

160 Chapter 8. Cyclic Antibandwidth Problem

680	 S. Cavero et al.

1 3

the time limit established, without using the efficient evaluation proposed ( AE2 ).
Therefore, we have removed those instances from this experiment to fairly illus-
trate the behavior of the proposed techniques. The quality indicators presented
in Table 5 are the same introduced in the first preliminary experiment. Finally,
let us remark that, since we are trying to test the influence of AE1 and AE2 on
each local search independently, the deviation (Dev.(%) (exp.)) and the number of
best solutions found (#Best (exp.)) are computed with respect to each local search
separately.

Observing the results in Table 5 we can conclude that the inclusion of AE1 in
combination with both local search procedures, results in a large improvement in
the performance of the methods in terms of quality. This technique avoids the meth-
ods from getting easily stuck in flat landscapes when considering a single objective
function. However, since the exploration is larger, the CPU time also increases sig-
nificantly. Additionally, we observe that the influence of AE1 seems to be slightly
smaller in N1 than in N2.

On the other hand, the inclusion of AE2 in combination with both local search
procedures and AE1 , results in an improvement in the performance of the methods in
terms of CPU time. Particularly, the methods are able to reach the same solutions in
terms of quality, but the time needed to evaluate a solution after a move is substan-
tially smaller when using AE2 . Again, we observe that the influence of AE2 seems to
be smaller in N1 than in N2.

We complement this experiment by studying the performance of the two classi-
cal strategies used to explore a neighborhood within a local search: first improve-
ment and best improvement. Particularly, we study these strategies within a local
search combined with AE1 and AE2 , over the same instances reported in Table 5.
As expected, we observed that the first improving strategy was faster in both N1 and
N2 . Moreover, in the case of N2 , the first improvement strategy presented a devia-
tion of 0.87% with respect to the best solutions found in this experiment, and 13
#Best (exp.) solutions, while the best improvement strategy had a deviation of 1.76%
and found 11 #Best (exp.) solutions. Therefore, we chose the first improvement strat-
egy to explore the swap neighborhood ( N2 ). On the other hand, in the case of N1 ,
the best improvement strategy had a deviation of 2.26% and reached 15 #Best (exp.)
solutions, while the first improvement strategy had a deviation of 3.56% and reached
13 #Best (exp.) . Therefore, in this case, we chose the best improvement strategy as a
balance between quality and CPU time.

The next preliminary experiment is devoted to determine the influence in the
CPU time of the neighborhood reduction strategies, used in combination with our
local search procedures. Particularly, we ran the local search for one iteration for
each variant and observed the differences in time and quality. Let us remember that,
we proposed two neighborhood reduction techniques R1 and R2 (see Sect. 3.2 for
further details). The results of this experiment are compiled in Table 6, where we
report the results obtained for the same subset of instances used in Table 5. Notice,
that since we are trying to test the influence of R1 and R2 in the original neighbor-
hoods proposed ( N1 and N2 ) independently, the deviation and the number of best
solutions reported in Table 6 are computed only with respect to the columns belong-
ing to N1 or N2 separately.

Chapter 8. Cyclic Antibandwidth Problem 161

681

1 3

A general variable neighborhood search for the cyclic…

Particularly, in Table 6, we present the results obtained in several scenarios:
exploring the whole neighborhoods (column N1 or N2 ); applying R1 or R2 in isola-
tion (column NR1

1
 or NR1

2
 and NR2

1
 or NR2

2
 ); or applying R1 and R2 at the same time

(column NR1R2

1
 or NR1R2

2
 ). Notice, that in terms of the solutions within those neigh-

borhoods NR1R2

1
= N

R1

1
∩N

R2

1
 . Similarly, NR1R2

2
= N

R1

2
∩N

R2

2
.

Analyzing the results presented in Table 6, as expected, we observe that the
smaller the neighborhood, the shorter the time needed to explore it. This fact is
especially accused if we compare the exploration of the whole neighborhoods with
respect to the exploration of any of the reduced neighborhoods presented. Also, it is
important to remark that either R1 or R2 are able to notably reduce the CPU time in
both: N1 or N2 , being R2 able to further reduce the time. However, the combination
of R1 and R2 results as the fastest overall strategy.

We observe that the impact of the strategies is larger in the case of N1 where
using both strategies together saves 99.97% of the CPU time with respect to explore
the whole neighborhood. On the other hand, if we observe the impact of the strate-
gies in terms of quality, as expected, the smaller the neighborhood explored, the
poorer the quality obtained. However, in this context, it is important to find a good
balance between quality and running time.

The last preliminary experiment is devoted to illustrate the contribution of each
of the strategies proposed for the final configuration of the algorithm. Therefore, we
configured several variants of our method by increasing the complexity of the strate-
gies introduced, to test that including additional strategies, with the same computing
time, contributes to the final design of the algorithm. Then, the compared procedures
were executed for a time limit of 100 s and the best solution of each method was
reported. In Table 7 we report the results obtained with the constructive procedure
(Greedy), the influence of the two local search procedures in isolation ( LS1+AE1

+AE2 , and LS2+AE1+AE2 ), the VND method (VND) and the GVNS (GVNS) con-
figured with kmax = 0.01n , being n the number of vertices of the graph. In Table 7,
we observe how the average of the objective function and the number of best solu-
tions increase when considering a more advanced strategy. Consequently, the devia-
tion of GVNS to the best solution found in the experiment is the smaller one. Also,
we observe how combining several neighborhoods within a VND algorithm results

Table 6   Influence of the neighborhood reduction strategies ( R1 and R2 ) combined with the two local
search procedures proposed ( LS1 and LS2)

N1 (Insert) N2 (Swap)

N1 N
R1

1
N

R2

1
N

R1R2

1
N2 N

R1

2
N

R2

2
N

R1R2

2

Avg. 30.29 26.47 30.65 20.82 34.71 30.82 30.29 15.12
CPUt(s) 105.07 2.06 0.27 0.03 0.60 0.13 0.04 0.004
Dev.(%) (exp.) 2.58 10.97 4.47 27.85 0.44 9.14 21.93 51.85
#Best (exp.) 14 6 12 2 15 5 2 0
Dev.(%) (all) 23.68 30.60 25.29 43.10 16.84 24.34 36.06 60.62
#Best (all) 3 2 3 2 4 2 0 0

162 Chapter 8. Cyclic Antibandwidth Problem

682	 S. Cavero et al.

1 3

in a larger improvement than exploring the neighborhoods in isolation, during the
same time horizon.

Finally, it is important to remark that we performed a fine tuning experiment to
adjust the parameters of our final method. Particularly, we use the calibration pack-
age irace (Iterated Race for Automatic Algorithm Configuration) [19]. Using irace,
we adjusted the largest neighborhood ( kmax ) and the maximum time for each itera-
tion ( t′

max
 ) of the GVNS. The kmax value is chosen dynamically for each instance

depending on the number of vertices (n) of the input graph. To determine the most
suitable value, we tested different percentages of n in the range [0.005, 0.05] in steps
of 0.005. Similarly, we study the behavior of the GVNS with different time limits in
the range [10, 100] seconds in steps of 5 s. The irace determined that the best perfor-
mance of the method was obtained with any of the following three configurations:
1. kmax = 0.01n and t�

max
= 30 ; 2. kmax = 0.01n and t�

max
= 25 ; and 3. kmax = 0.01n ;

and t�
max

= 40 . Among the proposed configurations proposed by irace, we selected
kmax = 0.01n and t�

max
= 25 for our final design, since it is the fastest among the com-

pared ones. Notice, that the final implementation of our GVNS includes, for each
local search procedure within the VND, both advanced strategies ( AE1 and AE2 ).
Additionally, in the case of the local search based on the insert operator we explore
the neighborhood obtained after applying the two neighborhood reduction strategies
proposed. On the other hand, in the case of the local search based on the swap oper-
ator we only consider R2 as a balance between time and quality.

4.3 � Final experiments

In this section, we compare our MS-GVNS with the previous methods in the state of
the art for the CAB: the Memetic Algorithm (MACAB) [3] and the Hybrid Artificial
Bee Colony (HABC) [20]. Both procedures have been described in the literature
review section. Notice that in the case of the HABC, which is the current state of the
art for the problem, we have run the original source code provided by the authors.
In the case of the MACAB, we report the results provided by the authors of the pre-
vious comparative experimentation [20], since we do not have the original source
code. However, in that experiment, the MACAB was run (together with the HABC)
on an Intel Core i7, with 3.2 Ghz processor and 12 GB of RAM. On the basis of the

Table 7   Evolution of the quality of the solutions obtained with the different strategies proposed

Greedy LS1+AE1+AE2 LS2+AE1+AE2 VND GVNS

Avg. 146.79 155.14 156.32 157.14 157.79
CPUt (s) 100.00 100.02 102.94 107.09 100.02
Dev.(%) (exp.) 16.12 2.62 1.56 0.72 0.26
#Best (exp.) 6 15 14 16 22
Dev.(%) (all) 19.38 6.49 5.54 4.81 4.43
#Best (all) 5 12 12 13 14

Chapter 8. Cyclic Antibandwidth Problem 163

683

1 3

A general variable neighborhood search for the cyclic…

results obtained, we can consider that HABC is the current state of the art for the
CAB (i.e., the best previous method in the literature).

To compare the procedures, we have followed the same criteria proposed in the
state of the art. Particularly, we run all the algorithms over the whole set of instances
(excluding the instances used in the preliminary experiments) with a maximum time
limit of 150 s per instance (previously set in the state of the art). The results are
grouped by sets of instances and then organized in two different tables. In Table 8
we report the results for the sets of instances with known optimum. Similarly, in
Table 9 we report the results for the sets of instances where the optimum remains
unknown. At the bottom of both tables we have added a row (labeled as “Total”)
which provides the average for all instances of the table. Since the provided results
in these tables are reported on average, we refer the reader to https://​grafo.​etsii.​urjc.​
es/​optsi​com/​cab/ where it is possible to find the individual results per instance.

In Table 8, since we are using instances with known optimum, we report the
result obtained by each of the compared methods with respect to the optimum
value per instance. As we can observe, the results obtained by the methods are
very similar in global terms, when comparing the deviation (Dev.(%)), the num-
ber of optimum values found (#Opt.) and the average of the objective function
(Avg.). Particularly, the HABC is the method with the smallest deviation with
respect to the optimum values (10.08%), closely followed by MS-GVNS (with a
deviation of 11.72%), and then by MACAB (with a deviation of 24.40%). How-
ever, MACAB is the best overall method in terms of the number of optimum solu-
tions found (50), followed by MS-GVNS (40) and by HABC (36). To determine
if there are significant differences among the methods, we performed a Friedman

Table 8   Comparison with the
state of the art when running
each method for 150 s, on the
sets of instances with known
optimum

MS-GVNS HABC MACAB

Paths (22) Avg. 111.68 111.86 111.91
Dev. (%) 0.16 0.01 0.00
#Opt. 17 21 22

Cycles (22) Avg. 109.46 106.13 98.21
Dev. (%) 3.60 4.81 18.75
#Opt. 4 2 12

Grids (21) Avg. 281.71 281.71 283.70
Dev. (%) 0.47 0.72 0.27
#Opt. 10 7 12

Toroidal grids (33) Avg. 217.79 220.79 164.03
Dev. (%) 20.40 17.20 39.37
#Opt. 9 6 4

Hamming (22) Avg. 54.91 60.27 21.77
Dev. (%) 29.14 23.65 55.03
#Opt. 0 0 0

Total (120) Avg. 159.80 161.53 137.62
Dev. (%) 11.72 10.08 24.40
#Opt. 40 36 50

164 Chapter 8. Cyclic Antibandwidth Problem

684	 S. Cavero et al.

1 3

test. The obtained p value of 0.28236 indicates that we can not affirm the exist-
ence of significant differences among the tested methods.

In Table 9 we present the results obtained for the sets of instances where the
optimum remains unknown. In this case, since the optimal value per instance is
not available, we report the deviation with respect to the best value obtained in
the experiment, and consequently, we report the number of best values found
(#Best) instead of the number of optimal values. The practical interest of using
heuristic procedures over instances where the optimum is unknown is larger than
in instances where the optimum is known.

In this case, the MS-GVNS is the best overall method in terms of average of
the objective function, deviation from the best solution, and the number of best
solutions found. Particularly, MS-GVNS obtains a deviation of (0.33%), fol-
lowed by HABC (with a deviation of 5.53%), and MACAB (with a deviation of
18.43%). The number of best solutions found by MS-GVNS was 127, followed
by HABC with 58 and by MACAB with 49 best solutions found. Again, to deter-
mine if there are significant differences among the methods, we performed a
Friedman test. The obtained p value lower than 0.001 indicates the existence of

Table 9   Comparison with the
state of the art when running
each method for 150 s, on the
sets of instances with unknown
optimum

MS-GVNS HABC MACAB

Three dimensional
meshes (18)

Avg. 741.39 759.33 762.17
Dev. (%) 1.83 0.38 0.07
#Best 4 4 17

Double stars (18) Avg. 10.61 10.17 10.61
Dev. (%) 0.00 5.80 0.00
#Best 18 10 18

Hypercubes (5) Avg. 117.60 109.80 120.80
Dev. (%) 1.11 4.04 0.00
#Best 3 2 5

Caterpillar (36) Avg. 142.92 141.67 141.44
Dev. (%) 0.00 0.84 2.53
#Best 36 15 4

Complete binary
tree (21)

Avg. 175.14 164.19 130.71
Dev. (%) 0.00 3.27 21.10
#Best 21 10 0

Harwell–Boeing (21) Avg. 69.81 69.71 43.81
Dev. (%) 0.46 1.43 42.98
#Best 17 13 3

Random connected (28) Avg. 7.93 6.43 3.64
Dev. (%) 0.00 19.73 45.39
#Best 28 4 2

Total (147) Avg. 167.59 167.29 159.00
Dev. (%) 0.33 5.53 18.43
#Best 127 58 49

Chapter 8. Cyclic Antibandwidth Problem 165

685

1 3

A general variable neighborhood search for the cyclic…

significant differences among the tested methods. Given the previous result, we
have performed a post-test analysis which consists of ranking the compared meth-
ods using the average rank values computed with this test. According to this rank,
the best method is the MS-GVNS (with a rank value of 2.48), followed by the
HABC (with 1.95 rank value) and finally by the MACAB (with 1.57 rank value).
Finally, to support the previous observations, we have performed a Wilcoxon test
between the two methods which ranked in the first and second position in the
previous ranking (i.e., the MS-GVNS and HABC). Again, the obtained p value
lower than 0.001 corroborates the existence of significant differences between the
methods, confirming the remarkable performance of MS-GVNS.

As a final experiment, given the existent relationship between the CAB and
AMP, introduced in Eq. 6, we have computed the lower and upper bounds for those
instances used in this paper, which had been previously solved in the context of the
AMP in the literature. Particularly, we computed these bounds for the 24 instances
belonging to the Harwell-Boeing data set. However, the average gap (the difference
between the upper and lower bounds) for these instances was very large (40.85 on
average). Additionally, the result obtained by our algorithmic proposal was never
improved by the upper bound calculated for those instances. Furthermore, consider-
ing the gap between the solutions obtained with our procedure and the lower bounds
introduced in Eq. 6 we observed an averaged gap of 29.72, which improves the gap
previously obtained. Unfortunately, we were unable to prove any solution to be opti-
mal (i.e., the difference between the upper and lower bounds is 0).

5 � Conclusions

In this paper, we have studied the Cyclic Antibandwidth problem which consists
in embedding an input graph into a cycle host graph, to maximize the bandwidth
measured in the cycle. This problem has been previously studied for specific classes
of graphs using exact methods. However, just two approaches can be found in the lit-
erature for general graphs: a Memetic Algorithm and an Artificial Bee Colony with
Tabu Search.

To handle the problem, we propose a novel constructive procedure based on pre-
vious ideas. The solutions provided by this method were then improved with a Gen-
eral Variable Neighborhood Search in a multistart algorithmic design. Additionally,
we propose the use of two strategies to reduce the neighborhood size: (1) determin-
ing the vertices likely to produce an improvement in the objective function; and (2)
determining the most suitable assignation for a vertex without trying all possible
assignations. Also, we introduce two advanced strategies to systematically traverse
those neighborhoods in an efficient way: (1) using an objective function tiebreak cri-
terion to deal with flat landscapes; and (2) performing an efficient evaluation of the
objective function value for neighboring solutions.

Our procedure has been tested in isolation to verify that the new proposed GVNS
method, in combination with the additional advanced strategies, is able to acceler-
ate the execution of heuristic search procedures without sacrificing solution quality.
Then, the final configuration of our method has been successfully compared with the

166 Chapter 8. Cyclic Antibandwidth Problem

686	 S. Cavero et al.

1 3

previous state-of-the-art procedures, becoming the MS-GVNS the new state-of-the-
art method for the Cyclic Antibandwidth problem. The merit of the empirical results
obtained was corroborated using non-parametrical statistical tests.

Acknowledgements  This research has been partially supported by the Ministerio de Ciencia, Innovación
y Universidades (Grant Ref. PGC2018-095322-B-C22 and Grant Ref. FPU19/04098) and by Comunidad
de Madrid and European Regional Development Fund (Grant Ref. P2018/TCS-4566).

Data availability  The data that support the findings of this study are available from the corresponding
author upon request.

References

	 1.	 Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search
techniques. Discret. Appl. Math. 123(1), 75–102 (2002)

	 2.	 Alway, G., Martin, D.: An algorithm for reducing the bandwidth of a matrix of symmetrical con-
figuration. Comput. J. 8(3), 264–272 (1965)

	 3.	 Bansal, R., Srivastava, K.: A memetic algorithm for the cyclic antibandwidth maximization prob-
lem. Soft. Comput. 15(2), 397–412 (2011)

	 4.	 Bhatt, S.N., Thomson Leighton, F.: A framework for solving VLSI graph layout problems. J. Com-
put. Syst. Sci. 28(2), 300–343 (1984)

	 5.	 Cavero, S., Pardo, E.G., Laguna, M., Duarte, A.: Multistart search for the cyclic cutwidth minimiza-
tion problem. Comput. Oper. Res. 126, 105–116 (2021)

	 6.	 Dobrev, S., Královič, R., Pardubská, D., Török, L., Vrt’o, I.: Antibandwidth and cyclic antiband-
width of Hamming graphs. Discret. Appl. Math. 161(10), 1402–1408 (2013)

	 7.	 Duarte, A., Escudero, L.F., Martí, R., Mladenovic, N., Pantrigo, J.J., Sánchez-Oro, J.: Variable
neighborhood search for the vertex separation problem. Comput. Oper. Res. 39(12), 3247–3255
(2012)

	 8.	 Duarte, A., Pantrigo, J.J., Pardo, E.G., Sánchez-Oro, J.: Parallel variable neighbourhood search
strategies for the cutwidth minimization problem. IMA J. Manag. Math. 27(1), 55–73 (2016)

	 9.	 Duarte, A., Sánchez-Oro, J., Mladenović, N., Todosijević, R.: Variable Neighborhood Descent. In:
Martí, R., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Heuristics, pp. 341–367. Springer,
Cham (2018)

	10.	 Duff, I.S., Grimes, R.G., Lewis, J.G.: Users Guide for the Harwell–Boeing Sparse Matrix Collection
(Release I). RAL, Chilton (1992)

	11.	 Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–
356 (2002)

	12.	 Hale, W.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)
	13.	 Hansen, P., Mladenović, N.: Variable Neighborhood Search. In: Burke, E.K., Kendall, G. (eds.)

Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques,
pp. 313–337. Springer, US, Boston, MA (2014)

	14.	 Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and
variants. EURO J. Comput. Optim. 5(3), 423–454 (2017)

	15.	 Harper, L.H.: Optimal numberings and isoperimetric problems on graphs. J. Comb. Theory 1(3),
385–393 (1966)

	16.	 Hromkovic, J., Muller, V., Sykora, O., Vrto, I.: On embeddings in cycles. Inf. Comput. 118(2), 302–
305 (1995)

	17.	 Jain, P., Srivastava, K., Saran, G.: Minimizing cyclic cutwidth of graphs using a memetic algorithm.
J. Heurist. 22(6), 815–848 (2016)

	18.	 Leung, J.Y.-T., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth minimization
problem. SIAM J. Comput. 13(3), 650–667 (1984)

	19.	 López-Ibá nez, M., Dubois-Lacoste, J., P. Cáceres, L., Birattari, M., Stützle, T.: Iterated racing for
automatic algorithm configuration. The irace package. Oper. Res. Perspect. 3, 43–58 (2016)

Chapter 8. Cyclic Antibandwidth Problem 167

687

1 3

A general variable neighborhood search for the cyclic…

	20.	 Lozano, M., Duarte, A., Gortázar, F., Martí, R.: A hybrid metaheuristic for the cyclic antibandwidth
problem. Knowl. Based Syst. 54, 103–113 (2013)

	21.	 Martí, R.: Multi-start methods. In: Handbook of Metaheuristics. International Series in Operations
Research and Management Science, pp. 355–368. Springer, Boston (2003)

	22.	 Martí, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu
search. Eur. J. Oper. Res. 135(2), 450–459 (2001)

	23.	 Martí, R., Pantrigo, J.-J., Duarte, A., Campos, V., Glover, F.: Scatter search and path relinking : a
tutorial on the linear arrangement problem. Int. J. Swarm Intell. Res. (IJSIR) 2(2), 1–21 (2011)

	24.	 Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19(6), 651–666 (1989)
	25.	 Mladenović, N., Dražić, M., Kovačevic-Vujčić, V., Čangalović, M.: General variable neighborhood

search for the continuous optimization. Eur. J. Oper. Res. 191(3), 753–770 (2008)
	26.	 Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100

(1997)
	27.	 Pardo, E.G., Martí, R., Duarte, A.: Linear Layout Problems. In: Martí, R., Panos, P., Resende, M.G.

(eds.) Handbook of Heuristics, pp. 1–25. Springer, Cham (2016)
	28.	 Pardo, E.G., Mladenović, N., Pantrigo, J.J., Duarte, A.: Variable formulation search for the cutwidth

minimization problem. Appl. Soft Comput. 13(5), 2242–2252 (2013)
	29.	 Pardo, E.G., Soto, M., Thraves, C.: Embedding signed graphs in the line. J. Comb. Optim. 29(2),

451–471 (2015)
	30.	 Pastore, T., Martínez-Gavara, A., Napoletano, A., Festa, P., Martí, R.: Tabu search for min-max

edge crossing in graphs. Comput. Oper. Res. 114, 104830 (2020)
	31.	 Piñana, E., Plana, I., Campos, V., Martí, R.: GRASP and path relinking for the matrix bandwidth

minimization. Eur. J. Oper. Res. 153(1), 200–210 (2004)
	32.	 Raspaud, A., Schröder, H., Sýkora, O., Torok, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth

of meshes and hypercubes. Discret. Math. 309(11), 3541–3552 (2009)
	33.	 Raspaud, A., Sýkora, O., Vrt’o, I.: Congestion and dilation, similarities and differences: a survey.

In: Proceedings of the 7th International Colloquium on Structural Information and Communication
Complexity, pp. 14 (2000)

	34.	 Ren, J., Hao, J.-K., Rodriguez-Tello, E., Li, L., He, K.: A new iterated local search algorithm for the
cyclic bandwidth problem. Knowl. Based Syst. 203, 106–136 (2020)

	35.	 Rodriguez-Tello, E., Hao, J.-K., Torres-Jimenez, J.: An effective two-stage simulated annealing
algorithm for the minimum linear arrangement problem. Comput. Oper. Res. 35(10), 3331–3346
(2008)

	36.	 Rodriguez-Tello, E., Lardeux, F., Duarte, A., Narvaez-Teran, V.: Alternative evaluation functions for
the cyclic bandwidth sum problem. Eur. J. Oper. Res. 273(3), 904–919 (2019)

	37.	 Rodriguez-Tello, E., Narvaez-Teran, V., Lardeux, F.: Dynamic multi-armed bandit algorithm for the
cyclic bandwidth sum problem. IEEE Access 7, 40258–40270 (2019)

	38.	 Rodriguez-Tello, E., Romero-Monsivais, H., Ramirez-Torres, G., Lardeux, F.: Tabu search for the
cyclic bandwidth problem. Comput. Oper. Res. 57, 17–32 (2015)

	39.	 Rost, M., Schmid, S.: Charting the complexity landscape of virtual network embeddings. In: 2018
IFIP Networking Conference (IFIP Networking) and Workshops, pp. 1–9 (2018)

	40.	 Skiena, S.S.: Graph Traversal. In The Algorithm Design Manual, 2nd edn. Springer Publishing
Company, Berlin (1997)

	41.	 Sánchez-Oro, J., José Pantrigo, J., Duarte, A.: Combining intensification and diversification strate-
gies in VNS. An application to the vertex separation problem. Comput. Oper. Res. 52, 209–219
(2014)

	42.	 Sýkora, O., Torok, L., Vrt’o, I.: The cyclic antibandwidth problem. Electr. Notes Discrete Math. 22,
223–227 (2005)

	43.	 Weili, Y., Xiaoxu, L., Ju, Z.: Dual bandwidth of some special trees. Journal–Zhengzhou Univ. Nat.
Sci. Ed. 35(3), 16–19 (2003)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

168 Chapter 8. Cyclic Antibandwidth Problem

Chapter 9

Cyclic Bandwidth Sum Problem

The Cyclic Bandwidth Sum Problem is the last CGLP studied in this Doctoral Thesis and

it was previously introduced in Section 2.3. As a result of the research conducted, an article

has been published:

1. S. Cavero, E. G. Pardo, A. Duarte, and E. Rodriguez-Tello. A variable neighbor-

hood search approach for cyclic bandwidth sum problem. Knowledge-Based Systems,

246:108680, 2022 [33].

Moreover, a presentation has been made at a national conference. This presentation, al-

though it could also be associated with the two previous problems (CCMP and CAB),

collects, from a more general point of view, the lessons learned in the study of previous

CGLP. The paper is specified next:

2. E. G. Pardo, S. Cavero, and A. Duarte. Un enfoque metaheurı́stico para problemas

de ordenación circular. XXXIX Congreso Nacional de Estadı́stica e Investigación

Operativa (SEIO 2022), in Granada, Spain, 2021 [189].

The article, titled: titled “A variable neighborhood search approach for cyclic band-

width sum problem” [33], is published in a JCR journal. Figure 9.1 compiles some infor-

mation about the journal. Note that, in addition to the Ph.D. candidate and his supervisors,

Professor Eduardo Rodriguez-Tello from the Cinvestav Tamaulipas (Mexico) also collab-

orated in this research. The CBS was previously studied from an exact perspective for

169

170 Chapter 9. Cyclic Bandwidth Sum Problem

some types of graphs with a regular structure. Additionally, previous heuristic procedures

have been proposed for general random graphs. In particular, the heuristic approaches are

based on GVNS, MA, and a combination of the previous MA with the Multi-Armed Ban-

dit framework. In this research, we introduce a new algorithm to address the CBS based

on two key components: a new greedy constructive procedure and an efficient local search

method. The main components of the algorithm proposed are summarized next:

• Two-phase greedy constructive procedure. The first phase determines the next ver-

tex to be added to the solution based on the adjacency of the vertices and a weighted

version of the greedy criteria proposed in previous works [34, 168]. Then, a greedy

function based on the objective function of the problem is used to locate the selected

vertex in the host graph.

• Local search that efficiently explores the insert neighborhood following a best im-

provement strategy. Specifically, the exploration consists of using a chain of swap

moves whose result is equivalent to inserting a vertex into all vertices of the host

graph. This idea, combined with an efficient calculation of the objective function af-

ter a move, allows the method to drastically reduce the complexity of the exploration.

• The solutions generated by the constructive method are further improved by a pro-

cedure based on the BVNS metaheuristic. This metaheuristic combines local search

with perturbations of the solution using the shake procedure.

Finally, it is worth mentioning that our best algorithmic variant has been favorably

compared to the best previous method in the state of the art. The results of these compar-

isons have been supported by statistical tests that corroborate the merit of our proposal and

establish it as the new state-of-the-art method for the CBS.

To conclude this chapter, we include a copy of the most relevant paper published for

the CBS in the context of this Doctoral Thesis.

Chapter 9. Cyclic Bandwidth Sum Problem 171

A VNS approach for the cyclic bandwidth sum problem

Sergio Cavero, Eduardo G. Pardo, Abraham Duarte and Eduardo Rodriguez-Tello

Knowledge-Based Systems. Volume 246(2), 108680, 2022.

https://link.springer.com/article/10.1007/s10589-021-00334-y

Journal Information

Research Areas:

• Computer Science, Artificial Intelligence

Category Rank:

• Computer Science, Artificial Intelligence 24/144 (Q1)

Journal Impact Factor: 8.139
Data obtained from Journal Citation Reports 2021

Figure 9.1 Information related to the publication [33].

https://link.springer.com/article/10.1007/s10589-021-00334-y

Knowledge-Based Systems 246 (2022) 108680

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A variable neighborhood search approach for cyclic bandwidth sum
problem
Sergio Cavero a, Eduardo G. Pardo a,∗, Abraham Duarte a, Eduardo Rodriguez-Tello b

a Universidad Rey Juan Carlos, Department of Computer Sciences, C/Tulipán s/n, 28903, Madrid, Spain
b Unidad Tamaulipas, Cinvestav, Km. 5.5 Carretera Victoria - Soto La Marina, Victoria, 87130, Tamps., Mexico

a r t i c l e i n f o

Article history:
Received 3 September 2021
Received in revised form 23 March 2022
Accepted 25 March 2022
Available online 6 April 2022

Keywords:
Cyclic bandwidth sum
Graph layout problem
Variable Neighborhood search
Greedy algorithm
Combinatorial optimization

a b s t r a c t

In this paper, we tackle the Cyclic Bandwidth Sum Problem, consisting in minimizing the sum of the
bandwidth of the edges of an input graph computed in a cycle-structured host graph. This problem has
been widely studied in the literature due to its multiple real-world applications, such as circuit design,
migration of telecommunication networks, or graph drawing, among others. Particularly, we tackle this
problem by proposing a multistart procedure whose main components are a new greedy constructive
algorithm and an intensification strategy based on the Variable Neighborhood Search metaheuristic.
The constructive procedure introduces two different greedy criteria to determine each step of the
construction phase, which can be used for other related problems. Additionally, we illustrate how to
perform an efficient exploration of the neighborhood structure by using an alternative neighborhood.
Our algorithmic proposal is evaluated over a set of 40 instances previously studied in the literature
and over a new proposed set of 66 well-known instances introduced in this paper. The obtained
results have been satisfactory compared with the ones obtained by the best previous algorithm in
the state of the art. The statistical tests performed indicate that the differences between the methods
are significant.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In this research, we deal with the Cyclic Bandwidth Sum
Problem (CBSP), a NP-hard combinatorial optimization problem
belonging to the graph layout family of problems [1]. From a theo-
retical perspective, a graph layout problem consists in embedding
an input graph G = (VG, EG) into a host graph H = (VH , EH)
such that a certain objective function is optimized. Particularly,
an embedding is defined through the use of two functions: the
first one, denoted as ϕ, maps the vertices of G into the vertices of
H (ϕ : VG → VH); the second one, denoted as ψ , associates the
edges of G to a path in H (ψ : EG → PH), being PH all feasible
paths of H . It is worth mentioning that a path, denoted as p(u, v),
is a unique-ordered sequence of edges or vertices with endings in
u and v. Particularly, in this paper, a path is defined as a sequence
of edges.

The most studied problems within the graph layout fam-
ily are those where the host graph is a regular graph, such as
path graphs [2,3], cycle graphs [4–6], tree graphs [7,8], or grid
graphs [9], among others.

∗ Corresponding author.
E-mail addresses: sergio.cavero@urjc.es (S. Cavero), eduardo.pardo@urjc.es

(E.G. Pardo), abraham.duarte@urjc.es (A. Duarte), ertello@cinvestav.mx
(E. Rodriguez-Tello).

The Cyclic Bandwidth Sum problem was originally proposed
in [10], where it was proved to be NP-hard. Since then, re-
searchers have focused their work on solving the problem exactly
for some particular graphs with regular structure. The most rel-
evant contributions study the CBSP for paths, cycles, wheels,
power of cycles, and complete bipartite graphs [11,12]. These
results are extended by establishing upper bounds based on the
Cartesian product of some graphs (specifically, for paths, cycles
and complete graphs [12]). However, as far as we know, there is
not a method able to solve the problem for general graphs due to
its computational complexity.

Recently, researchers have focused on the proposal of heuristic
algorithms to address the CBSP for any type of input graph.
Among the techniques used in the literature to tackle the CBSP
and other related Graph Layout Problems we can find either
trajectory-based metaheuristics (e.g., Greedy Randomized Adap-
tive Search Procedure [13], Variable Neighborhood Search [14], or
Tabu Search [4], etc.) and computational intelligence algorithms
(e.g., Particle Swarm Optimization [15], Ant Colony Optimiza-
tion [16], or Artificial Bee Colony [17], etc.). Among the different
methods, Variable Neighborhood Search methodology has been
particularly successful for this kind of problems, mainly due to
two key factors: the change of neighborhood during the search,
and the combination of deterministic and stochastic explorations.

https://doi.org/10.1016/j.knosys.2022.108680
0950-7051/© 2022 Elsevier B.V. All rights reserved.

172 Chapter 9. Cyclic Bandwidth Sum Problem

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

The first heuristic approach found in the literature for the CBSP
is based on the General Variable Neighborhood Search (GVNS)
metaheuristic [18]. In this research, the authors proposed two
local search methods and six different shake procedures. Ad-
ditionally, the initial solutions provided to the algorithm were
generated with a random constructive paired with a Reduced
Variable Neighborhood Search. This first proposal was able to
find solutions tighter than the previous upper bounds established
in [12].

Later, in [19], authors proposed a constructive procedure, de-
noted as MACH, that finds better solutions than those obtained
by the GVNS procedure proposed in [18]. This constructive was
inspired by the Jaccard similarity index [20] and the Depth First
Search algorithm [21]. The solutions obtained by the MACH pro-
posal were later improved with a Memetic Algorithm (MA) which
operators were adaptively adjusted by a Dynamic Multi-Armed
Bandit (DMAB) framework [22], denoted DMAB+MA. Some of
the ideas implemented in the final configuration of DMAB+MA
had already been introduced in [5,23]. Particularly, in [5], the
authors performed a depth comparative analysis of three new
alternative objective functions for the CBSP. Furthermore, in [23],
a total 24 MA versions were presented, and the results, altogether,
were successfully compared with the previous state-of-the-art
algorithm.

DMAB+MA can be considered as the current state-of-the-art
method for solving the CBSP. Particularly, this algorithm is able
to find the optimal solution for those instances with a known
optimum and, additionally, it is able to find the best-known
values for the rest of the instances tested in the literature.

Further than the aforementioned procedures devoted to the
CBSP, it is also worth mentioning the relations of the CBSP to
other similar problems, such as the Cyclic Cutwidth Minimiza-
tion Problem (CCMP) [4,24] or the Minimum Linear Arrangement
Problem (MinLA) [25,26]. Specifically, the CCMP is also a graph
layout problem where the host graph is a cycle graph and looks
for minimizing the maximum number of paths that contain a
particular host edge, while the CBSP looks for minimizing the sum
of the paths that traverse every host edge. Therefore, an upper
bound for the CBSP can be derived from the CCMP, CBS(G) ≤
n ·CCMP(G), where n is the number of vertices of the input graph
(|VG|).

On the other hand, the MinLA and the CBSP look for the
optimization of the same objective function, but differ in the type
of graph used as a host graph (i.e., a path graph in the case of
the MinLA, and a cycle graph in the case of the CBSP). Therefore,
upper and lower bounds for the CBSP can be derived from the

MinLA. In mathematical terms, given a graph G,
MinLA(G)

2
≤

CBS(G) ≤ MinLA(G).
The main contribution of this work is the introduction of new

heuristic algorithms to find high-quality solutions to the CBSP.
Our proposal includes a novel greedy constructive procedure that
exploits the structural properties of the input graphs, as well
as an efficient intensification strategy based on the Basic Vari-
able Neighborhood Search (BVNS) methodology. The inspiration
behind this approach is based on the previous results obtained
with this combination of strategies. Specifically, both strategies
can be used to find high-quality solutions for other related op-
timization problems belonging to the graph layout family. The
contribution of each proposed component in our final algorithm is
justified through a set of preliminary experiments. Furthermore,
the resultant procedure is satisfactorily compared with the best
previous method identified in the state of the art. In particular,
our proposal is able to find better quality solutions (supported by
statistical tests) in less computing time.

The rest of the paper is organized as follows. Next, in Section 2,
we formalize the CBSP. In Section 3, we introduce the main

algorithmic multistart scheme proposed in this paper to handle
the CBSP. First, we provide a detailed description of the new con-
structive procedure proposed for the problem (Section 3.1). Then,
we introduce the BVNS procedure used to improve the solutions
(Section 3.2). Additionally, we also introduce an efficient strategy
to perform an exhaustive exploration of the solution space. In
Section 4, we perform a set of computational experiments de-
voted to tuning the parameters of our proposed algorithm, and
we compare our best variant with the best previous algorithm
in the literature. Finally, in Section 5, we present the conclusions
drawn from this work.

2. Problem definition

The CBSP is a graph layout problem where the host graph,
denoted as H , is restricted to be a cycle. Then H is a 2-regular,
Eulerian, Hamiltonian, and unit distance graph, and it satisfies
that |VH | = |EH | = |VG|. Moreover, in this particular problem,
ψ depends on ϕ, since we can express ψ in terms of ϕ:

ψ((u, v)) = argmin{|p(ϕ(u), ϕ(v))|, |p(ϕ(v), ϕ(u))|}
∀ (u, v) ∈ EG and {p(ϕ(u), ϕ(v)), p(ϕ(v), ϕ(u))} ⊂ PH .

(1)

Therefore, to simplify the notation, in the rest of the paper,
we refer to a solution or embedding just by the ϕ function.
Additionally, since H is a cycle, for every edge (u, v) ∈ EG there
are two possible paths in PH with endings in ϕ(u) and ϕ(v)
(i.e., p(ϕ(u), ϕ(v)) and p(ϕ(v), ϕ(u))). Intuitively, in a graphical
representation, we consider the path p(ϕ(u), ϕ(v)) as the one
starting in ϕ(u) and ending in ϕ(v) following a clockwise order.
Similarly, we consider p(ϕ(v), ϕ(u)) as the path starting in ϕ(v)
and ending in ϕ(u) following a counterclockwise order. It is worth
mentioning that the length of each of the two paths (deter-
mined by the number of edges that contains) might be different.
However, they satisfy that p(ϕ(u), ϕ(v)) ∪ p(ϕ(v), ϕ(u)) = EH .

Once the concept of embedding has been introduced, we de-
fine the bandwidth (bw) of an edge (u, v) ∈ EG for an embedding
ϕ as follows:

bw((u, v), ϕ) = min{|p(ϕ(u), ϕ(v))|, |p(ϕ(v), ϕ(u))|}, (2)

Then, the evaluation of the objective function of the CBSP for
a particular embedding ϕ of the input graph G, is computed as a
sum of the length of the paths in the host graph, associated with
each edge of the input graph. More formally:

cbs(G, ϕ) =
∑

(u,v)∈EG

bw((u, v), ϕ) (3)

Finally, the objective of CBSP is to find an embedding ϕ⋆
among all possible embeddings, Φ , that minimizes Eq. (3). In
mathematical terms:

ϕ⋆ ← argmin
ϕ∈Φ

{cbs(G, ϕ)} (4)

In Fig. 1, we illustrate the concepts presented in this section
with an example. Particularly, in Fig. 1(a) we show an input graph
G with VG = {A, B, C,D, E, F}, and EG = {(A, B), (B, C), (B,D),
(C, F), (D, E), (E, F)}. Therefore, |VG| = 6 and |EG| = 7. In Fig. 1(b)
we represent the host graph H for the graph G since |VG| = |VH | =

|EH | = 6. Then, in Fig. 1(c) we show an embedding, ϕ, of G
into H . Particularly, the ϕ function is defined by the assignments:
ϕ(A) = 1, ϕ(B) = 2, ϕ(C) = 3, ϕ(D) = 6, ϕ(E) = 5, and
ϕ(F) = 4. Then, the edges of EG are assigned to paths of H
by the ψ function, that, as stated before, can be derived from
ϕ. As an example, given the edge (D, F) ∈ EG, there are two
possible paths that can be assigned to this edge (p(ϕ(D), ϕ(F)) or
p(ϕ(F), ϕ(D))), which are depicted in Fig. 1(d). Since ϕ(D) = 6 and
ϕ(F) = 4, we are looking for the path in the host graph with the

2

Chapter 9. Cyclic Bandwidth Sum Problem 173

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

Fig. 1. (a) An input graph, G. (b) A host graph, H . (c) An example of an embedding. (d) The two possible paths that can be assigned to edge (D,F).

smallest cardinality. Particularly, |p(6, 4)| = |{(6, 5), (5, 4)}| =
2 < |p(4, 6)| = |{(6, 1), (1, 2), (2, 3), (2, 4)}| = 4. Therefore,
p(6, 4) is assigned to edge (D, F), and so on for the rest of the
edges in EG.

Finally, to calculate the objective function of this particular
embedding ϕ, we sum the length of the paths (i.e., the bw)
assigned to each edge of the input graph:

cbs(G, ϕ) = bw((A, B), ϕ)+ bw((B, C), ϕ)+ bw((B,D), ϕ)

+ bw((C, F), ϕ)+ bw((D, E), ϕ)+ bw((D, F), ϕ)

+ bw((E, F), ϕ)

= |p(1, 2)| + |p(2, 3)| + |p(6, 2)| + |p(3, 4)| + |p(5, 6)|

+ |p(4, 6)| + |p(4, 5)|

= 1+ 1+ 2+ 1+ 1+ 2+ 1 = 9.

(5)

3. Algorithmic approach

In this section, we introduce our algorithmic proposal to tackle
the Cyclic Bandwidth Sum Problem. Particularly, we present a
multistart procedure which consists of two phases: the construc-
tive phase, based on a greedy procedure (see Section 3.1), and the
improvement phase, based on the Variable Neighborhood Search
methodology (see Section 3.2). The rationale behind a multistart
method is to diversify the search by restarting the procedure
from a different initial point of the solution space. Moreover,
the construction and improvement phases are repeatedly applied
until a termination criterion is met.

The general scheme of our proposal, named MS-BVNS, is pre-
sented in Algorithm 1. The procedure receives three input pa-
rameters: a graph (G), the maximum number of consecutive

iterations without amelioration (imax), and the maximum number
of neighborhoods to explore (kmax) in the improvement phase.
The termination criteria of the algorithm (step 4) is determined
by the parameter imax. In each iteration, the construction and
improvement phases are sequentially executed, and the solution
found is compared with the best solution found in any previous
iteration (step 7). When the procedure stops, the best solution
found among all iterations is returned (step 14).

Algorithm 1 Multistart procedure
1: Procedure MS-BVNS (G, imax, kmax)
2: i← 0 ▷ # iterations without amelioration
3: ϕ⋆ ← ∅
4: while i < imax do
5: ϕ← GreedyConstructive(G)
6: ϕ′ ← BVNS(ϕ, kmax)
7: if cbs(G, ϕ′) < cbs(G, ϕ⋆) then
8: ϕ⋆ ← ϕ′

9: i← 0
10: else
11: i← i+ 1
12: end if
13: end while
14: return ϕ⋆

3

174 Chapter 9. Cyclic Bandwidth Sum Problem

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

3.1. Greedy constructive

We propose a new constructive procedure to generate feasible
initial solutions for the CBSP. This procedure consists of three
steps: (1) select an unassigned vertex u of the input graph; (2)
select an unassigned vertex v of the host graph; and (3) assign
u to v (i.e., ϕ(u) = v). These steps are repeated until all vertices
of the input graph are assigned to a different vertex of the host
graph.

The first iteration of the constructive procedure selects u and v
at random. Then, in the following iterations, two greedy criteria,
computed by the greedy functions g1 and g2, are used to select u
and v, respectively.

Next, we formally define the two greedy functions g1 and
g2. Let AG be the subset of vertices of G that have already been
assigned, and UG be the subset of vertices of G that remains
unassigned. Additionally, let dAG (u) = |{v ∈ AG : (u, v) ∈ EG}| and
dUG (u) = |{v ∈ UG : (u, v) ∈ EG}|, such that, the degree of u ∈ VG,
denoted by d(u), satisfies d(u) = dAG (u)+ dUG (u).

Then, for any u ∈ UG, we define the greedy function g1 as
follows:

g1(u) = m · dAG (u)− dUG (u), (6)

where m ∈ N (including 0) is a search parameter. Particularly, if
m > 1 it favors the selection of those unassigned input vertices
with a larger number of adjacent vertices already assigned. On the
other hand, ifm = 1 the equation is similar to the idea introduced
in [25]. Finally, if m = 0 the selection of the next vertex depends
only on the number of unassigned adjacent vertices to u. The
configuration of m is empirically studied in Section 4.2.

Notice that once all unassigned input vertices have been eval-
uated with g1, we select the vertex which maximizes the value
returned by g1, with ties broken at random.

The rationale behind the g1 function is to measure the imme-
diacy of an unassigned vertex of the input graph to be embed-
ded next. Generally speaking, for a particular candidate vertex,
the larger number of adjacent vertices previously assigned, the
greater the immediacy of the vertex to be assigned. The g1 func-
tion is inspired by the ideas presented in a previous work [25]
where the authors used a similar function for the same task
applied to MinLA. The usefulness of these ideas was also extended
in [4,27] where the function was again used in the context of the
CCMP and its linear version, the Cutwidth Minimization Problem
(CMP), respectively. As we presented in Section 1, the MinLA and
CCMP are closely related problems to the CBSP. However, in this
paper we contribute to the literature of graph layout problems
with a novel approach, the introduction of the parameter m in the
Eq. (6). The idea of letting m be a search parameter also increases
its applicability to other problems, since greater values ofmmight
be better for some problems than others.

Next, we formally define the greedy function g2. Let AH be the
subset of vertices of H that have already been assigned, and UH
be the subset of vertices of H that remain unassigned. Among the
vertices in UH , we define the subset of candidate host vertices
to be assigned next, denoted as CH , as follows: CH = {v ∈

UH : (v,w) ∈ EH ∧ w ∈ AH}. Then, given an input vertex u to
be assigned, we define the greedy function g2, to evaluate any
v ∈ CH , as follows:

g2(u, v)=
∑

w∈AH
min{|p(v, ϕ(w))|, |p(ϕ(w), v)|},with (u, w)

∈ EG, and {p(v, ϕ(w)) , p(ϕ(w), v)} ⊂ PH .

(7)

Notice that once all unassigned host vertices in CH have been
evaluated with g2, we select the host vertex which minimizes the
value returned by g2, with ties broken at random.

The logic behind the g2 function is to determine the best
host vertex assignation for a particular input vertex. At the first
iteration, all host vertices have the same chance of being selected,
therefore one host vertex is chosen at random. The rest of the
iterations (except the last one, when there is only one candidate
host vertex) there are two possible candidate host vertices. Then,
g2 measures the contribution of the input vertex to the objective
function if the vertex is assigned to any of the available candidate
host vertices. Algorithm 2 summarizes the greedy constructive
procedure. The method receives a graph (G) as an input parame-
ter. First, we generate and empty initial solution and we initialize
the sets needed to calculate the functions g1 and g2 (step 2).

Then, the first vertices of both the input graph and the host
graph are selected at random (steps 3–4) and the initial random
assignment is performed (step 5). Next, the sets AG, UG, AH , UH
and CH are updated (steps 6–7).

As long as the set U is not empty (i.e., there are input vertices
remaining to be assigned), the following assignments are made
using the two greedy criteria previously described. Particularly,
we select the vertex u∗ that maximizes the greedy function g1
(see (Eq. (6))). Next, given u∗, g2 is calculated (see Eq. (7)), de-
termining the vertex v∗ of the host graph that will be assigned
to u∗. Finally, the assignation ϕ(u∗) = v∗ is performed (step 11)
and the corresponding sets are updated (steps 12–13. Finally, the
constructed solution is returned (step 15).

Algorithm 2 Greedy constructive procedure
1: Procedure GreedyConstructive (G)
2: ϕ← ∅, A← ∅,U ← VG, AH ← ∅,UH ← VH , CH ← ∅

3: u← random(U)
4: v← random(VH)
5: ϕ← ϕ ∪ {ϕ(u) = v}
6: A← A ∪ {u},U ← U \ {u}, AH ← AH ∪ {v},UH ← UH \ {v}

7: CH ← CH \ {v} ∪ {w ∈ UH : (v,w) ∈ EH}
8: while U ̸= ∅ do
9: u∗ ← argmax

u∈VG
g1(u)

10: v∗ ← argmin
v∈CH

g2(u∗, v)

11: ϕ← ϕ ∪ {ϕ(u∗) = v∗}
12: A ← A ∪ {u∗},U ← U \ {u∗}, AH ← AH ∪ {v

∗
},UH ←

UH \ {v
∗
}

13: CH ← CH \ {v} ∪ {w ∈ UH : (v,w) ∈ EH}
14: end while
15: return ϕ

In Fig. 2 we depict, with an example, the steps followed by
the greedy procedure proposed to construct an initial solution.
Specifically, we consider the input graph illustrated in Fig. 1(a). In
this case, the constructive procedure needs six steps to generate
a feasible solution for the problem. For each step, we show which
elements constitute the sets: AG, UG, AH and CH .

In the first step, the input vertex B and the host vertex 1 are
selected at random and ϕ(B) = 1. The partial solution obtained is
depicted in Fig. 2(a). As it can be observed, sets AG and CH , contain
vertices B and 1, respectively. Set UG contains all non-assigned
vertices of the input graph (VC \ {B}), and set CH the two possible
vertices that meet the condition {v ∈ UH : (v, 1) ∈ EH ∧ 1 ∈ AH},
2 and 6. Then, g1 function is calculated for each of the vertices
of UG. Since A presents the larger value among all the vertices, it
is selected as the next vertex to be assigned of the input graph
(let us consider for this example the search parameter k = 5).
Then, the function g2 is calculated for vertices 2 and 6. Since
both have the same quality, the vertex 2 is chosen at random
and the assignment ϕ(A) = 2 is performed. We illustrate the

4

Chapter 9. Cyclic Bandwidth Sum Problem 175

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

Fig. 2. Example of a step-by-step greedy construction of an initial solution.

resultant partial solution in Fig. 2(b). These steps are repeated
until a feasible solution is obtained (see Fig. 2(f)).

3.2. Variable neighborhood search

The solutions generated by our constructive method are fur-
ther improved by an efficient procedure based on the Variable
Neighborhood Search (VNS) metaheuristic. VNS was proposed
by Mladenović and Hansen as a general method to solve hard
combinatorial optimization problems [28,29]. The basic principle
of this methodology is to perform systematic changes in the
neighborhood structure to escape from local optima traps. Based
on the general idea of VNS, it is possible to find many variants.
Some of the best known are: Reduced VNS (RVNS) [30], Basic
VNS (BVNS) [28], Variable Neighborhood Descent (VND) [30],
General VNS (GVNS) [30], Parallel VNS (PVNS) [31], or Variable
Formulation Search (VFS) [14], among others.

In this paper, we propose the use of the BVNS variant as an
improving method. The general scheme of BVNS is illustrated
in Algorithm 3. Particularly, BVNS receives the input graph (G),
a feasible solution (ϕ) and the largest neighborhood to be ex-
plored (kmax). The method is conformed by three main steps:
a shake procedure which helps to escape from local minima
traps (step 5); a local search procedure based on the exploita-
tion of a neighborhood structure (step 6); and the neighbor-
hood change procedure, which determines which neighborhood

is explored next (step 7) depending on the improvements found
in the current neighborhood. These three steps are repeated until
reaching the maximum number of neighborhoods explored, kmax.
The neighborhoods proposed, the shake procedure, and the local
search procedure are detailed next. The neighborhood change
procedure follows an standard design (see [29]) which increases
the value of k in 1 unit when there is not an improvement in
the current iteration and it resets the value of k to 1 when an
improvement is found.

Algorithm 3 Basic Variable Neighborhood Search Procedure
1: Procedure BVNS (G, ϕ, kmax)
2: ϕ← ∅
3: k← 1
4: while k ≤ kmax do
5: ϕ′ ← Shake(ϕ, k)
6: ϕ′′ ← LocalSearch(G, ϕ′)
7: ϕ← NeighborhoodChange(ϕ, ϕ′′, k)
8: end while
9: return ϕ

3.2.1. Neighborhood structures
Any VNS must define the neighborhoods to be explored ei-

ther in a stochastic or in a systematic way. In this paper, we

5

176 Chapter 9. Cyclic Bandwidth Sum Problem

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

Fig. 3. Example of an embedding ϕ1 and the resultant embedding ϕ2 obtained after the operation Ins(ϕ1,A, 4).

Fig. 4. Example of an embedding ϕ1 and the resultant embedding ϕ3 obtained after the operation Sw(ϕ1,A, E).

define two different neighborhood structures for the CBSP: insert
neighborhood and swap neighborhood.

The first neighborhood is defined by the insert move, formally
denoted as Ins(ϕ, u, v). Given a vertex u ∈ VG, such that ϕ(u) = v
(with v ∈ VH) the insert move consists in removing u from its
current assignation v and assigning it (i.e., inserting) into another
vertex z ∈ VH (i.e., ϕ(u) = z). Additionally, an insert move implies
a counterclockwise shift of a set of affected vertices.

Let us illustrate the insert move with an example. In Fig. 3, we
show an example of an embedding ϕ1 of the graph introduced
in Fig. 1(a). Then, we show the resultant embedding ϕ2 after
the insert operation Ins(ϕ1,A, 4). In particular, vertex A of VG is
inserted in vertex 4 of VH . As it can be observed, to perform this
operation, the vertices E and D are shifted in the embedding to
make room for vertex A.

Considering the aforementioned insert move, we define the
associated neighborhood (NI) as the set of solutions that can be
reached by applying the insert operator for each u ∈ VG and
v ∈ VH . Mathematically:

NI (ϕ) = {Ins(ϕ, u, v) : ∀ u ∈ VG,∀ v ∈ VH , v ̸= ϕ(u)}. (8)

The second neighborhood proposed in this paper is defined by
the swap move, and it is formally denoted as Sw(ϕ, u, w). Given
two vertices u, w ∈ VG, such that ϕ(u) = v and ϕ(w) = z (with
v, z ∈ VH) the swap move consists in exchanging the assignation
of vertices u and w (i.e., ϕ(u) = z and ϕ(w) = v).

Again, let us illustrate the swap move with an example. In
Fig. 4, we show the embedding ϕ1 of the input graph depicted in
Fig. 1(a) and the embedding ϕ3 of the same input graph, obtained
after the swap operation Sw(ϕ1,A, E). In ϕ1, vertices A and E of VG
are assigned to vertices 2 and 4 of VH , respectively. Then, in ϕ3,
vertices A and E exchange their assigned host vertices, resulting
in ϕ3(A) = 4 and ϕ3(E) = 2.

Considering the aforesaid swapmove, we define the associated
neighborhood (NS) as the set of solutions that can be reached by
applying the swap operator for each u, w ∈ VG. More formally:

NS(ϕ) = {Sw(ϕ, u, w) : ∀ u, w ∈ VG, u ̸= w}. (9)

3.2.2. Shake procedure
The shake procedure is aimed to perform stochastic moves

in a particular neighborhood despite the quality of the solution
obtained after the move. The rationale behind this procedure is
to let the BVNS to explore other regions of interest further than
the current basin of attraction. Notice that the shake procedure
(further than the first iteration) is usually run after the local
search procedure, which ends in a local optimum with respect
to a particular neighborhood.

Particularly, we propose a simple shake procedure based on
the swap neighborhood (NS(ϕ)) detailed in Eq. (9). In this case,
at each iteration, the method performs k swaps of two random
vertices u, w ∈ VG. Notice that the value of k is updated at each
iteration in the NeighborhoodChange procedure of Algorithm
3. Particularly, it is increased in one unit every non-improving
iteration until kmax value is reached. On the other hand, the value
of k is reset to 1 every improving iteration.

3.2.3. Local search procedure
The local search strategy systematically explores a particular

neighborhood, starting from a given feasible solution and per-
forming predefined moves. Its objective is to traverse the neigh-
borhood structure searching for better solutions than the current
one. Once a better solution has been identified in the neighbor-
hood of the current solution, the procedure has to determine if
the search should continue from this new solution (following a
first improvement strategy) or should explore the whole neigh-
borhood of the current solution, before deciding which solution
should be the next one for continuing the search (following a best

6

Chapter 9. Cyclic Bandwidth Sum Problem 177

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

improvement strategy). We refer the reader to [32] for further
details about these two strategies. The process continues until the
local search finds a local optimum (i.e., none of the solutions in
the neighborhood of the best solution found improves it).

The local search procedure proposed in this paper explores
the insertion neighborhood (NI) previously introduced. We sum-
marize the steps of this procedure in Algorithm 4. The method
receives an input graph and a feasible solution ϕ as the input
parameters. Then, it combines the first improvement and best
improvement strategies to explore NI using the insert move. Since
the vertices of the solution are randomly scanned one by one (see
step 7) the first improvement strategy is related to performing
the insert move of the first vertex able to improve the current
solution. On the other hand, for each explored vertex v, the
best improvement strategy is referred to only considering the
best insert move for v, among all possible insertions (see step
8) in the current iteration of the algorithm. The procedure stops
when no further improvements can be performed by applying any
insert move to the vertices of the current solution. Therefore, the
returned solution ϕ∗ is a local minimum with respect to NI .

Algorithm 4 Local search procedure
1: Procedure LocalSearch (G, ϕ)
2: ϕ∗ ← ϕ

3: improved← true
4: while improved do
5: improved← false
6: V← shuffle(VG)
7: for u ∈ V do
8: ϕ← argmin

v∈VH
Ins(ϕ∗, u, v)

9: if cbs(G, ϕ) < cbs(G, ϕ⋆) then
10: ϕ⋆ ← ϕ

11: improved← true
12: break
13: end if
14: end for
15: end while
16: return ϕ∗

The size of this neighborhood is n · (n − 1), being n the
number of vertices of the input graph (which is also the number
of vertices of the host graph). Hence, just considering the compu-
tational complexity of evaluating a solution (O(|EG|), using Eq. (3)
as the evaluation function), a straightforward implementation of
a scheme that entirely explores this neighborhood (such as the
best improvement strategy) would result in an algorithm with a
computational complexity of at least O(n2

|EG|) (only considering
the evaluation of all solutions in the neighborhood). Therefore, in
those cases where the number of vertices and edges of the input
graph are relatively large, it would require a significant compu-
tational time to explore the whole neighborhood. To reduce the
local search execution time, in the following section, we propose
two advanced strategies to speed up this procedure considerably.

3.3. Advanced strategies

Despite the benefits of using local search procedures, in terms
of quality of the solutions found, the exploration of a whole
neighborhood is usually the most computationally demanding
component of a heuristic search procedure.

Inspired by the ideas presented in [3,33–35], we propose two
strategies to perform an efficient exploration of the neighborhood
NI . The first strategy aims to transform a movement based on the
insert move in a sequence of consecutive swap moves of vertices

assigned to adjacent vertices in the host graph. The second strat-
egy introduces a procedure for efficiently calculating the objective
function when a solution is obtained from a previous solution
(already evaluated) and the insertion is performed as a sequence
of swap moves.

3.3.1. An insert move through a chain of swap moves
Let us define the operation denoted as consecutive swap (CS)

as a particular case of the swap move, where the input vertices
involved in the swap are embedded into two adjacent vertices of
the host graph. More formally:

CS(ϕ, u, w) = {Sw(ϕ, u, w) : u, w ∈ VG ∧ (ϕ(u), ϕ(w)) ∈ EH}. (10)

Notice that since the graph is a cycle, for every input vertex
embedded there are only two possible CS. Then, any insert move
can be performed with a chain of consecutive swap moves. Since
there are two possible chains of CS to perform the insert move, to
simplify the notation, we always consider the sequence of CS that
follows a clockwise order, in the graphical representation. Let us
illustrate it with an example. In Fig. 5, we show the steps followed
to perform the insert move Ins(ϕ1,A, 4) by a chain of consecutive
swap moves. Particularly, the operation Ins(ϕ1,A, 4) is equivalent
to the chain of consecutive swap moves {ϕ′1 ← CS(ϕ1,A,D), ϕ2 ←
CS(ϕ′1,A, E)}. Therefore, in this case, the insert operation can be
performed with two consecutive swaps and, as we can observe, the
obtained solution after the chain of consecutive swaps is the same
as ϕ2, represented in Fig. 3, which was obtained after applying
the Ins(ϕ1,A, 4) move.

The rationale behind using a chain of consecutive swaps in-
stead of an insert move introduces two main advantages. First,
an efficient calculation of the objective function value of the re-
sultant solution after a consecutive swap. Second, the exploration
of the intermediate solutions of the chain of consecutive swaps,
when traversing an insert neighborhood, which eases the use of
a best improvement strategy.

3.3.2. Efficient evaluation of a solution after a consecutive swap
move

A local search procedure typically evaluates a solution after
performing a move, to determine if the search direction is ad-
equate to continue the search or not. A naive evaluation would
recalculate the value of the objective function from scratch. How-
ever, an efficient evaluation can be addressed for certain moves,
based on the evaluation of the solution prior to the move. The
idea is to isolate the components used in the evaluation of the
objective function and to determine which of them have not
changed after the move, avoiding its revaluation.

Particularly, based on Eq. (3), the evaluation of a solution for
the CBSP is obtained as the sum of the bandwidth bw of each edge
of the input graph. Therefore, the solution obtained after a move
can be evaluated just by updating the bandwidth of the edges
affected by the move.

In this case, when considering a consecutive swap move,
CS(ϕ, u, w), only the bandwidth bw of the edges with endpoints
in u or w are affected. Let Eu

G (analogously EwG) be the subset of
edges from the input graph with an endpoint in u (i.e., Eu

G =

{(u, u′) ∈ EG, ∀ u′ ∈ VG}). Then, the objective function of
a solution ϕ′ ← CS(ϕ, u, w), obtained after the move, can be
efficiently calculated as follows:

cbs(G, ϕ′) = cbs(G, ϕ)+
∑

e∈{EuG∪E
w
G }

(bw(e, ϕ′)− bw(e, ϕ)) (11)

Observing the computational complexity of Eq. (11), which is
O(n), we noticed that it could be further improved to be O(1) by
storing and updating the relative position in the embedding of
the adjacent vertices to any input vertex.

7

178 Chapter 9. Cyclic Bandwidth Sum Problem

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

Fig. 5. Example of an embedding ϕ1 and the resultant embeddings ϕ′1 and ϕ2 obtained after the operations CS(ϕ1,A,D) and CS(ϕ′1,A, E).

Particularly, for each input vertex, we are interested in identi-
fying the host vertex placed in the antipodal point of the graphical
representation of the host graph. Given an input vertex u, let us
denote ϕ(u) as the host vertex placed at the antipodal point to
ϕ(u) in the host graph. More formally,

ϕ(u)← arg
v∈VH

(
|p(ϕ(u), v)| =

⌈
|VG|

2

⌉)
. (12)

The host vertex ϕ(u) is used to determine the sets of input ver-
tices LuG, R

u
G and Ou

G. These sets contain the input vertices adjacent
to u, which are embedded at the left, right, and antipodal point
host vertices, respectively, in the graphical representation of a
solution. These sets are used to perform the efficient evaluation
and they are mathematically defined as follows:

LuG = {w ∈ VG : ϕ(w) ∈ p(ϕ(u), ϕ(u))∧(u, w) ∈ EG∧ϕ(w) ̸= ϕ(u)}.

(13)

Ru
G =

⎧⎨⎩ {w ∈ VG : ϕ(w) /∈ p(ϕ(u), ϕ(u)) ∧
(u, w) ∈ EG ∧ ϕ(w) ̸= ϕ(u)}, if |VG| is even;
{w ∈ VG : ϕ(w) /∈ p(ϕ(u), ϕ(u)) ∧ (u, w) ∈ EG}, otherwise.

(14)

Ou
G =

{
{w ∈ VG : (u, w) ∈ EG ∧ ϕ(w) = ϕ(u)}, if |VG| is even;
∅, otherwise.

(15)

Notice that p(ϕ(u), ϕ(u)) ̸= p(ϕ(u), ϕ(u)), and the path starting
at ϕ(u) and ending at ϕ(u) considers a clockwise order in the
graphical representation of the solution. Moreover, given the set
of adjacent vertices to u, denoted as V u

G , these sets satisfy that
LuG ∪ Ru

G ∪ Ou
G = V u

G . It is worth mentioning that each time a move
is performed, it is necessary to update these sets. However, this
update, despite the first time, can be made in O(1).

Then, with the previous information at hand, we can simplify
the update of the objective function after a consecutive swap
move. In particular, we calculate the increase/decrease of the
objective function, denoted as ∆CS(ϕ, u, w), as follows:

∆CS(ϕ, u, w) = |Ru
G| − |L

u
G \ {w}|− |O

u
G| + |L

w
G | − |R

w
G \ {u}|− |O

w
G |,

(16)

with w ∈ {p(ϕ(u), ϕ(u))} and u /∈ {p(ϕ(w), ϕ(w))}.
Therefore, the evaluation of the objective function of the so-

lution ϕ′ ← CS(ϕ, u, w), introduced in Eq. (11), can be simplified
as follows:

cbs(G, ϕ′) = cbs(G, ϕ)+∆CS(ϕ, u, w). (17)

Let us illustrate this strategy with an example. Considering the
solution ϕ1 (previously depicted in Figs. 3, 4, and 5) we show
how to efficiently calculate the objective function of the solution
ϕ′ ← Ins(ϕ1,A, 1). In particular, Ins(ϕ1,A, 1) = {CS(ϕ1,A,D),
CS(ϕ′1,A, E), CS(ϕ

′

2,A, F), CS(ϕ
′

3,A, C), CS(ϕ4′ ,A, B)}.
Then, in Table 1 we show the evaluation of each consecutive

swap, obtained through the operation Ins(ϕ1,A, 1). For each row,
we present: the cardinality of the sets LuG, R

u
G, O

u
G, L

w
G , R

w
G and

OwG , before the CS is performed; the increase in the objective
function, ∆CS, after the CS is performed; and the resulting value
of the objective function, cbs(G, ϕ′i), after the CS is performed.
Focusing on the first row of Table 1, given the solution ϕ1, the
cbs(G, ϕ1) = 9, we perform the operation CS(ϕ1,A,D). The re-
sultant solution, ϕ′1, is evaluated by aggregating ∆CS(ϕ1, u, w) to
the objective function value. In this case, cbs(G, ϕ′1) = cbs(G, ϕ1)+
∆CS(ϕ1, u, w) = 9 + (1 + 2 − 1) = 9 + 2 = 11. Similarly, given
ϕ′1, we evaluate the solution ϕ′2, etc.

As a final remark, it is worth mentioning that when perform-
ing the move Ins(ϕ1,A, 1) by means of swaps, all solutions are
evaluated in the path from ϕ1 to ϕ′ are evaluated. Therefore, we
can take advantage of this technique to exhaustively explore a
neighborhood (i.e., to follow an efficient best improving strategy
for each vertex) in the local search procedure.

4. Experimental results

In this section, we compile the computational experiments
carried out in this research. First, we present the sets of instances
used in our experiments, then we introduce the preliminary
experiments used to tune our MS-BVNS proposal. Finally, we
compare our best strategy with the best method identified in the
state of the art of the CBSP (DMAB+MA [22]).

All experiments were performed in a virtual CPU AMD EPYC
7282 16-Core and 16 GB of RAM. The operating system used was
Ubuntu 20.04.2 64 bit LTS, and the algorithms were implemented
in Java 13.

4.1. Instances

The computational tests have been performed over 40 in-
stances previously reported in the literature in the context of
the CBSP [19,22]. This set is conformed by topologically diverse
graphs that have been often used in similar graph layout prob-
lems [1,4]. Particularly, this set includes 16 regular-structured
graphs: 2 paths, 2 cycles, 2 wheels, 4 kth powers of a cycle, and
6 Cartesian products of graphs; and 24 sparse matrices from the
Harwell-Boeing collection [36].

Since the set of instances can be considered small and the
methods compared were able to find the optimal solution for
many of them, in addition to the previous data set, we extended

8

Chapter 9. Cyclic Bandwidth Sum Problem 179

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

Table 1
Evaluation of the objective function of the solutions obtained by means of consecutive swap moves, needed to achieve
operation Ins(ϕ,A, 1).

|LuG| |Ru
G| |Ou

G| |LwG | |RwG | |OwG | ∆CS cbs(G, ϕ′i)

ϕ′1 ← CS(ϕ1,A,D) 0 1 0 2 1 0 2 9+ 2 = 11
ϕ′2 ← CS(ϕ′1,A, E) 0 1 0 1 1 0 1 11+ 1 = 12
ϕ′3 ← CS(ϕ′2,A, F) 0 0 1 1 1 1 −2 12− 2 = 10
ϕ′4 ← CS(ϕ′3,A, C) 1 0 0 1 1 0 −1 10− 1 = 9
ϕ′ ← CS(ϕ′4,A, B) 1 0 0 1 2 0 0 9− 0 = 9

the previous instances with 66 additional instances derived from
the Harwell-Boeing collection [36] for a better understanding of
the performance of the methods tested.

To ease future comparisons, all instances have been made pub-
licly available at https://heuristicas.es/problems/cyclic-bandwidth-
sum.

4.2. Preliminary testing

The goal of our preliminary testing is to study the performance
of the strategies proposed in this paper for the CBSP. In addi-
tion, we tried to identify its contribution to the final algorithmic
design, which is compared to the best previous state-of-the-art
method. Finally, we used the preliminary experiments to find
the most effective configuration of the parameters within the
MS-BVNS.

All preliminary experiments have been carried out on a re-
duced subset of instances consisting of 18 graphs (approximately
the 17% of all problem instances considered in this paper). Here-
inafter, we refer to this subset as the preliminary data set.

To compare the performance of the algorithms proposed, in
each experiment, we report the averaged value of the objective
function (Avg. cbs) for all instances tested, the deviation from the
best solution found in the experiment (Dev. (%)), the number of
best solutions found in the experiment (#Best) and the running
time in seconds (CPU Time (s)).

To start the preliminary experiments, we study the perfor-
mance of the constructive procedure described in Section 3.1.
Particularly, the constructive procedure uses two greedy func-
tions (g1 and g2) devoted to select, respectively, the next input
vertex to embed, and the associated host vertex for the embed-
ding. This constructive was inspired by a naive version (proposed
in [25]) that only considered a greedy function to select the next
input vertex. Therefore, we study the influence of the two new
strategies proposed in this paper. In Table 2, we start by com-
paring the impact on the performance of introducing the greedy
selection of the host vertex. Despite the fact that the proposed
constructive is a greedy algorithm, the ties are randomly broken.
Therefore, in Table 2 we report the best result found after per-
forming 1000 executions of our greedy constructive procedure.
Furthermore, the parameter m (studied next) has been set to 1
to isolate its influence in the experiment. As we can observe,
the introduction of g2 in the constructive procedure (denoted as
Cg1+g2) considerably improves the results obtained by the original
constructive method, finding 14 best solutions out of 18 and a
deviation of 0.36% when comparing the two procedures.

The next experiment is devoted to test the influence of the
value of the parameter m, introduced in this paper, in the greedy
selection of the next input vertex to embed. In particular, in
Table 3, we report the results obtained after 1000 constructions
when fixing the value of this parameter (m = {0, 1, 2, 4, 6, 9})
and also the results of choosing a random value for each construc-
tion (m ∈ U(0, 9)). As we can observe, the original configuration
of the procedure (equivalent to m = 1) is outperformed in terms
of deviation by any other value larger than 1. The reason for
this behavior is that when m > 1 the procedure favors those

Table 2
Influence of the greedy selection g2 of the host
vertex, in the performance of the constructive
procedure.

Cg1 [25] Cg1 + g2
Avg. cbs 18116.61 16838.72
Dev. (%) 5.93 0.36
Best 4 14
CPU T. (s) 1.35 1.46

unassigned vertices with a larger number of adjacent vertices
already embedded. However, since we could not find a clear
pattern of the best fixed configuration for this parameter, we
tested the random selection of m ∈ U(0, 9) for each construction,
which turned out to be the best overall method (the smaller
deviation, the larger number of best solutions found and a similar
CPU time).

To complement the previous experiments, in Fig. 6 we report
the influence of the number of independent executions on the
performance of the proposed greedy constructive procedure. In
particular, we have reported three of the previous configurations
of the constructive method. As we can observe in the figure,
the performance of the procedure drastically improves in the
first 100 executions for any of the variants. We also observe a
moderate improvement for up to 1000 executions and a marginal
improvement for a larger number of executions. However, the
behavior of the procedure is very similar with the independence
of the value of m chosen.

Since an increase in the number of executions also implies an
increase in the CPU time, we chose 1000 executions (made in
1.38 s on average) as a balance between quality and computing
time to configure our multistart procedure.

Our next preliminary experiment is devoted to testing the
performance of the advanced strategies proposed to explore the
neighborhood structure (NI) defined for the local search proce-
dure. In Table 4, we report the comparison between the naive
exploration of NI (denoted as LS − NI) and the efficient explo-
ration of the neighborhood based on consecutive swap moves
(denoted as LS − NCS). Both methods started from the same
random construction. As expected, both strategies were able to
reach the same solutions in terms of quality; however, the naive
exploration needed an average of 732.26 s to reach them, while
the advanced strategy was able to explore the neighborhood in
2.81 s. Note that this time corresponds only to one construction
+ one improvement.

The aim of the next experiment is to evaluate the influence
of the kmax parameter in the proposed BVNS procedure. Again,
we started from a random solution and we configured the local
search procedure with the advanced strategies included. Partic-
ularly, we considered six different values for kmax (5, 10, 15, 20,
25, and 30). The results obtained were very similar for kmax ≥ 20,
being kmax = 30 the best configuration, but also the most time
consuming. Since the differences between the methods were very
small for kmax ≥ 20, and kmax = 20 was the fastest, we chose this
value as a balance between the quality of the solution reached
and the CPU time expended.

9

180 Chapter 9. Cyclic Bandwidth Sum Problem

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

Fig. 6. Evolution of the average objective function value (cbs) when increasing the number of independent executions of the proposed greedy constructive procedure.

Table 3
Influence of the value of the parameter m in the performance of the constructive procedure.

m = 0 m = 1 m = 2 m = 4 m = 6 m = 9 m ∈ U(0, 9)

Avg. cbs 30225.83 16838.72 15151.00 15135.39 14933.78 15435.17 14842.22
Dev. (%) 132.36 25.50 3.77 2.77 2.85 3.79 0.61
Best 1 6 1 0 2 0 9
CPU T. (s) 1.63 1.46 1.41 1.36 1.52 1.44 1.30

Table 4
Differences in the performance between the naive
exploration of the NI neighborhood and the ef-
ficient exploration based on consecutive swap
moves.

LS− NI LS− NCS

Avg. cbs 20340.78 20340.78
Dev. (%) 0.00 0.00
Best 18 18
CPU T. (s) 732.26 2.81

As a final experiment, we evaluated the contribution of each
of the components included in the final algorithmic proposal. In
particular, in Table 5, we compare the tuned greedy constructive
(Greedy), the efficient local search (LS−NCS) and the tuned BVNS
procedure (BVNS). The constructive was configured with m ∈
U(0, 9) and the use of the second greedy function g2. The method
was run for 1000 constructions and the best solution was re-
ported. The local search procedure started from the best solution
found by the constructive and uses the advanced exploration
strategy based on the consecutive swap moves. Notice that the
quality of the initial solution provided to LS − NCS (Table 5) is
better than the random initial solution provided to LS−NCS in the
previous experiment (Table 4). As we can observe, starting the
search from a solution obtained with a greedy constructive allows
the search to reach much better quality solutions than starting
from the solution provided by a random constructive procedure.
Finally, the BVNS starts from the same best solution found by the
constructive procedure and is configured with kmax = 20.

As expected, the BVNS is the best method of the comparison,
but also the most time-consuming one. Although the difference
between LS − NCS and BVNS is significantly smaller than the
quality difference of the solution between Greedy and LS − NCS,
the BVNS can find 14 better solutions than LS−NCS, resulting in a
robust and effective method of dealing with CBSP. Moreover, we
conclude that all components included in the final configuration

Table 5
Contribution of each component included in the final algorithmic design.

Greedy
m ∈ U(0, 9)

LS− NCS BVNS

Avg. cbs 14842.22 13324.50 12627.67
Dev. (%) 9.39 2.53 0.00
Best 0 4 18
CPU T. (s) 1.30 3.33 118.78

of our proposal contribute to the overall performance of the
method.

4.3. Comparison with the state of the art

Finally, we compare our tuned procedure with the best previ-
ous algorithm in the state of the art, the Dynamic Multi Armed
Bandit + Memetic Algorithm (DMAB+MA) [22], that was described
in the literature review of this paper. Notice that we have com-
pared our procedure with the original source code implemented
by the authors in [22]. To perform the fairest possible comparison,
the DMAB+MA procedure was run with the configuration indi-
cated by the authors, and the reported quality values are the best
ones obtained after 31 runs. On the other hand, our multistart
procedure, denoted as MS-BVNS, has been executed with the
configuration established in Section 4.2. Notice that the whole
procedure is executed only once per instance and the termination
criterion is self-adaptive, being set to 50 consecutive iterations
without improvement. To complement this information, we ob-
served that our method stopped, on average, after 56.46 iterations
in the experiments reported in this section.

First, we report, in Table 6, the results obtained after executing
both procedures over the set of instances previously reported in
the state of the art. In this comparison, we reported: the average
value of the objective function (Avg. cbs); the deviation to the
best solution in the experiment (Dev. (%)); the number of best
solutions found in the experiment (# Best); and two different
running times, the total running time (CPU T. (s)) and the time

10

Chapter 9. Cyclic Bandwidth Sum Problem 181

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

Table 6
Comparison of MS-BVNS with the best state-of-the-art method, DMAB+MA [22],
over previously studied instances.

DMAB+MA [22] MS-BVNS

Regular structure (16)

Avg. cbs 2796.81 2796.81
Dev. (%) 0.00 0.00
Best 16 16
CPU T. (s) 18600.47 116.63
CPU T. Best (s) 116.59 2.34

Harwell-Boeing (24)

Avg. cbs 12022.38 11227.63
Dev. (%) 7.67 0.00
Best 12 24
CPU T. (s) 18600.43 4834.71
CPU T Best (s) 7089.77 1220.30

Total (40)

Avg. cbs 8332.15 7855.30
Dev. (%) 4.60 0.00
Best 28 40
CPU T. (s) 18600.45 2947.48
CPU T. Best (s) 4300.50 733.12

to the best solution found (CPU T. Best (s)). The results in Table 6
are reported separately by graph type (i.e, regular-structured
graphs, or Harwell-Boeing graphs) and also grouped altogether
(Total).

Based on the results reported in Table 6 we observe that both
compared methods, DMAB+MA and MS-BVNS, were able to find
all optimal values for graphs with regular structure. However,
the time needed by MS-BVNS was two orders of magnitude
smaller than that of DMAB+MA in this set of instances. On the
other hand, the performance of MS-BVNS is better than that of
DMAB+MA on the Harwell-Boeing instances. Particularly, the MS-
BVNS algorithm finds the best solutions for all studied graphs in
less computational time. Finally, when considering all instances
together, the best overall method is MS-BVNS based on the de-
viation and the number of best solutions found. Particularly, MS-
BVNS has a deviation of 0.00%, while the deviation of DMAB+MA
reaches the 4.61%. It is also worth mentioning that MS-BVNS is
able to find the best solution for all instances tested. As a final
remark, we would like to point out that both the total CPU time
and the time to the best solution found expended by MS-BVNS is
considerably smaller than that used by DMAB+MA.

To complement the previous experiment, we conducted a
Wilcoxon Signed-Rank Test. The resulting p-value of 0.002 con-
firms the better performance of MS-BVNS over DMAB+MA for the
tested instances.

Although the statistical tests performed justify the existence
of significant differences between the methods compared, to cor-
roborate our findings, we extended the data set of instances used
by introducing 66 new hard instances belonging to the Harwell-
Boeing collection [36]. The results of both methods, run with
the same setup as in the previous experiment, are presented in
Table 7. This time, MS-BVNS found the best solutions in 60 out
of 66 instances, while DMAB+MA was only able to reach the best
solution in 22 out of 66 graphs. The computing time needed by
MS-BVNS was again considerably smaller (in both CPU T. (s) and
CPU T. Best (s)). Finally, the obtained average deviation of the MS-
BVNS with respect to the best solution found in the experiment
was 0.17%, while DMAB+MA had a deviation of 7.20%.

Again, we used Wilcoxon’s signed rank test to determine if
the identified differences between the objective function values
of the best solutions found by DMAB+MA and MS-BVNS are signif-
icant. The resultant p-value < 0.001 indicates a strong rejection
of the null hypothesis with a reasonable level of significance.

To ease future comparisons, in the appendix of this paper
we include the best individual results per instance found by the
compared methods on the Harwell-Boeing set of instances.

Table 7
Comparison of MS-BVNS with the best state-of-the-art method,
DMAB+MA [22], over the new data set of Harwell-Boeing instances.
Harwell-Boeing (66) DMAB+MA [22] MS-BVNS

Avg. cbs 91649.53 90653.11
Dev. (%) 7.08 0.17
Best 22 60
CPU T. (s) 18600.54 5294.63
CPU T. Best (s) 7061.36 1941.50

5. Conclusions

In this paper, we have studied the Cyclic Bandwidth Sum
Problem by proposing heuristic strategies to find high-quality
solutions for the problem. The CBSP consists in finding an em-
bedding of an input graph into a cycle (denoted as host graph)
which minimizes the sum of the bandwidth of each edge of the
input graph. This problem has been previously studied from an
exact perspective for some types of graphs with regular structure.
Additionally, previous heuristic procedures have been proposed
for general random graphs.

In this research, we introduced a new algorithm to address the
CBSP. The CBSP and other related Graph Layout Problems, have
been commonly addressed with traditional optimization proce-
dures such as trajectory-based metaheuristics. However, other
novel computational intelligence algorithms such as the ones
introduced in [37–39] could be also applied to solve this family of
problems. Furthermore, we hope this paper motivates the interest
of researchers in the field to propose those and other computa-
tional intelligence approaches for the problem. Our proposal has
two key features that make it an effective and efficient method
for finding high-quality solutions for the CBSP: a new greedy
constructive procedure and an efficient local search method. The
constructive procedure proposed introduces two novel strategies
for the construction of solutions for graph layout problems. Par-
ticularly, it makes use of two greedy criteria to determine the
next vertex to be embedded in the solution and to determine
the most suitable host vertex for that particular input vertex.
This strategy can be useful for other related problems, especially
those where the host graph is a cycle. The exploration strategy
of the local search also introduces a novel contribution, the ef-
ficient exploration of the neighborhood defined by the insertion
move, through the use of sets of consecutive swap moves. This
idea lets the method to drastically reduce the complexity of the
exploration, since the evaluation of a new solution obtained from
a previous one can be efficiently evaluated. Again, this strategy
has general applicability and could be adapted to accelerate other
local search procedures in different contexts.

Finally, it is worth mentioning that our best algorithmic vari-
ant has been favorably compared to the best previous method
in the state of the art, over both previously studied and newly
introduced sets of instances. The results of these comparisons
have been supported by statistical tests that corroborate the
merit of our proposal and establish it as the new state-of-the-art
method for the CBSP.

CRediT authorship contribution statement

Sergio Cavero: Conceptualization, Investigation, Data curation,
Writing– original draft, Software. Eduardo G. Pardo: Conceptual-
ization, Methodology, Investigation, Validation, Writing – original
draft. Abraham Duarte: Supervision, Writing – review & edit-
ing, Funding acquisition. Eduardo Rodriguez-Tello: Supervision,
Formal analysis, Writing – Review & editing.

11

182 Chapter 9. Cyclic Bandwidth Sum Problem

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research has been partially supported by the Ministerio
de Ciencia, Innovación y Universidades (Grant Ref. PGC2018-
095322-B-C22, PID2021-125709OA-C22, and FPU19/04098) and
by Comunidad de Madrid and European Regional Development
Fund (Grant Ref. P2018/TCS-4566). We would also like to thank
E. Rodriguez-Tello et al., authors of the best previous method in
the state of the art [22] for sharing their code and their findings
with us.

Appendix

See Table A.1.

Table A.1
Individual results per instance obtained by the compared methods over the
Harwell-Boeing data set [36].
Instance DMAB+MA MS+BVNS Instance DMAB+MA MS+BVNS

494_bus 5405 4306 ibm32 405 405
662_bus 11822 7930 impcol_a 5570 5566
685_bus 14576 8851 impcol_b 1822 1822
arc130 14397 14397 impcol_c 3351 3350
ash292 6479 6399 impcol_d 12192 12147
ash85 913 913 impcol_e 15510 15489
bcspwr01 98 98 jgl011 141 141
bcspwr02 148 148 lns__131 2053 2067
bcspwr03 663 662 lns__511 20197 19961
bcspwr04 4199 4256 lund_a 10165 10165
bcspwr05 5082 4395 lund_b 10160 10160
bcsstk01 936 936 mbeacxc 4099540 4085555
bcsstk02 35937 35937 mcca 23018 23018
bcsstk04 29812 29812 nnc261 8539 9170
bcsstk05 11059 11059 nnc666 38620 37773
bcsstk06 52096 51686 nos1 624 624
bcsstk20 9531 4933 nos2 7688 2544
bcsstk22 811 811 nos4 1031 1031
bcsstm07 47653 47176 nos5 55902 55649
can__144 1776 1776 nos6 15042 11225
can__161 4998 4998 plat362 33789 33661
can__292 15117 15102 plskz362 6595 6467
can__445 26873 26619 pores_1 349 349
can__715 63070 60314 pores_3 12434 11425
can___24 182 182 saylr1 2574 2545
curtis54 411 411 saylr3 20494 18298
dwt__209 6383 6350 sherman4 15970 14988
dwt__221 3782 3774 shl__200 122410 119899
dwt__234 957 958 shl__400 125027 120149
dwt__245 3899 3880 shl____0 118780 114036
dwt__310 6455 6454 steam1 23486 23486
dwt__361 12085 12061 steam2 158742 158236
dwt__419 15335 14422 steam3 1416 1416
dwt__503 37754 37404 str__200 94750 95772
dwt__592 25729 25019 str__600 105541 105048
fs_183_1 16779 16777 str____0 64232 63801
fs_541_1 98614 88735 west0132 4769 4784
fs_680_1 13995 7837 west0156 4605 4604
gent113 5605 5605 west0167 5518 5517
gre_216a 7318 7314 west0381 100755 100244
gre__115 2130 2130 west0479 71423 70109
gre__185 5153 5153 west0497 47262 46527
gre__343 16192 16148 west0655 145605 143167
gre__512 32433 31568 will199 13708 13705
hor__131 30625 30441 will57 335 335

References

[1] E.G. Pardo, R. Martí, A. Duarte, Linear layout problems, in: R. Martí, P.
Panos, M. Resende (Eds.), Handbook of Heuristics, Springer International
Publishing, Cham, 2016, pp. 1–25.

[2] R. Martí, J. Pantrigo, A. Duarte, E. Pardo, Branch and bound for the cutwidth
minimization problem, Comput. Oper. Res. 40 (1) (2013) 137–149.

[3] E. Rodriguez-Tello, J.-K. Hao, J. Torres-Jimenez, An improved simulated
annealing algorithm for bandwidth minimization, European J. Oper. Res.
185 (3) (2008) 1319–1335.

[4] S. Cavero, E.G. Pardo, M. Laguna, A. Duarte, Multistart search for the cyclic
cutwidth minimization problem, Comput. Oper. Res. 126 (2021) 105–116.

[5] E. Rodriguez-Tello, F. Lardeux, A. Duarte, V. Narvaez-Teran, Alternative
evaluation functions for the cyclic bandwidth sum problem, European J.
Oper. Res. 273 (3) (2019) 904–919.

[6] S. Cavero, E.G. Pardo, A. Duarte, A general variable neighborhood search
for the cyclic antibandwidth problem, Comput. Optim. Appl. (2022) 1–31.

[7] G. Ding, B. Oporowski, Some results on tree decomposition of graphs, J.
Graph Theory 20 (4) (1995) 481–499.

[8] T.C. Hu, Optimum communication spanning trees, SIAM J. Comput. 3 (3)
(1974) 188–195.

[9] M.A. Rodríguez-García, J. Sánchez-Oro, E. Rodriguez-Tello, E. Monfroy, A.
Duarte, Two-dimensional bandwidth minimization problem: Exact and
heuristic approaches, Knowl.-Based Syst. 214 (2021) 106651.

[10] J. Yuan, Cyclic arrangement of graphs, in: Graph Theory Notes of New York,
New York Academy of Sciences, New York, NY, USA, 1995, pp. 6–10.

[11] Y.-D. Chen, J.-H. Yan, A study on cyclic bandwidth sum, J. Comb. Optim.
14 (2) (2007) 295–308.

[12] H. Jianxiu, Cyclic bandwidth sum of graphs, Appl. Math. A J. Chin. Univ.
16 (2) (2001) 115–121.

[13] A. Duarte, R. Martí, M.G.C. Resende, R.M.A. Silva, GRASP with path re-
linking heuristics for the antibandwidth problem, Networks 58 (3) (2011)
171–189.

[14] E.G. Pardo, N. Mladenović, J.J. Pantrigo, A. Duarte, Variable formulation
search for the cutwidth minimization problem, Appl. Soft Comput. 13 (5)
(2013) 2242–2252.

[15] A. Lim, J. Lin, F. Xiao, Particle swarm optimization and hill climbing for
the bandwidth minimization problem, Appl. Intell. 26 (3) (2007) 175–182.

[16] A. Lim, J. Lin, B. Rodrigues, F. Xiao, Ant colony optimization with hill
climbing for the bandwidth minimization problem, Appl. Soft Comput. 6
(2) (2006) 180–188.

[17] M. Lozano, A. Duarte, F. Gortázar, R. Martí, A hybrid metaheuristic for the
cyclic antibandwidth problem, Knowl.-Based Syst. 54 (2013) 103–113.

[18] D. Satsangi, K. Srivastava, Gursaran, General variable neighbourhood search
for cyclic bandwidth sum minimization problem, in: 2012 Students
Conference on Engineering and Systems, 2012, pp. 1–6.

[19] R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, Relabelling vertices accord-
ing to the network structure by minimizing the cyclic bandwidth sum, J.
Complex Netw. 4 (4) (2016) 534–560.

[20] P. Jaccard, The distribution of the flora in the alpine zone. 1, New Phytol.
11 (2) (1912) 37–50.

[21] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput.
1 (2) (1972) 146–160.

[22] E. Rodriguez-Tello, V. Narvaez-Teran, F. Lardeux, Dynamic multi-armed
bandit algorithm for the cyclic bandwidth sum problem, IEEE Access 7
(2019) 40258–40270.

[23] E. Rodriguez-Tello, V. Narvaez-Teran, F. Lardeux, Comparative study of
different memetic algorithm configurations for the cyclic bandwidth sum
problem, in: A. Auger, C.M. Fonseca, N. Lourenço, P. Machado, L. Paquete, D.
Whitley (Eds.), Parallel Problem Solving from Nature – PPSN XV, in: Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2018,
pp. 82–94.

[24] S. Cavero, E.G. Pardo, A. Duarte, Influence of the alternative objective func-
tions in the optimization of the cyclic cutwidth minimization problem, in:
Conference of the Spanish Association for Artificial Intelligence, Springer,
2021, pp. 139–149.

[25] A.J. McAllister, A New Heuristic Algorithm for the Linear Arrangement
Problem, Tech. Rep. TR-99-126a, Faculty of Computer Science, University
of New Brunswick, 1999.

[26] E. Rodriguez-Tello, J.-K. Hao, J. Torres-Jimenez, An effective two-stage sim-
ulated annealing algorithm for the minimum linear arrangement problem,
Part Special Issue: Search-based Software Engineering, Comput. Oper. Res.
35 (10) (2008) 3331–3346.

[27] J.J. Pantrigo, R. Martí, A. Duarte, E.G. Pardo, Scatter search for the cutwidth
minimization problem, Ann. Oper. Res. 199 (1) (2012) 285–304.

[28] P. Hansen, N. Mladenović, Variable neighborhood search: Principles and
applications, European J. Oper. Res. 130 (3) (2001) 449–467.

[29] P. Hansen, N. Mladenović, R. Todosijević, S. Hanafi, Variable neighborhood
search: basics and variants, EURO J. Comput. Optim. 5 (3) (2017) 423–454.

12

Chapter 9. Cyclic Bandwidth Sum Problem 183

S. Cavero, E.G. Pardo, A. Duarte et al. Knowledge-Based Systems 246 (2022) 108680

[30] P. Hansen, N. Mladenović, Variable neighborhood search, in: Handbook of
Heuristics, Springer International Publishing, Cham, 2018, pp. 759–787.

[31] A. Duarte, J.J. Pantrigo, E.G. Pardo, J. Sánchez-Oro, Parallel variable neigh-
bourhood search strategies for the cutwidth minimization problem, IMA J.
Manag. Math. 27 (1) (2016) 55–73.

[32] P. Hansen, N. Mladenović, First vs. best improvement: An empirical study,
IV ALIO/EURO Workshop on Applied Combinatorial Optimization, Discrete
Appl. Math. 154 (5) (2006) 802–817.

[33] A. Herrán, J.M. Colmenar, A. Duarte, An efficient metaheuristic for the
K-page crossing number minimization problem, Knowl.-Based Syst. 207
(2020) 106–352.

[34] G. Palubeckis, Fast local search for single row facility layout, European J.
Oper. Res. 246 (3) (2015) 800–814.

[35] M. Rubio-Sánchez, M. Gallego, F. Gortázar, A. Duarte, GRASP with path
relinking for the single row facility layout problem, Knowl.-Based Syst.
106 (2016) 1–13.

[36] I.S. Duff, R.G. Grimes, J.G. Lewis, Sparse matrix test problems, ACM Trans.
Math. Software 15 (1) (1989) 1–14.

[37] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris
hawks optimization: Algorithm and applications, Future Gener. Comput.
Syst. 97 (2019) 849–872.

[38] G.-G. Wang, S. Deb, L.d.S. Coelho, Elephant herding optimization, in: 2015
3rd International Symposium on Computational and Business Intelligence,
IEEE, 2015, pp. 1–5.

[39] G.-G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput.
Appl. 31 (7) (2019) 1995–2014.

13

184 Chapter 9. Cyclic Bandwidth Sum Problem

Chapter 10

Two-Dimensional Bandwidth
Minimization Problem

The Two-Dimensional Bandwidth Minimization Problem is the last GLP studied in this

Doctoral Thesis and it was previously introduced in Section 2.4. Moreover, the 2DBMP is

the only problem studied in which the host graph is a grid instead of a cycle. As a result of

the research conducted, one article has been published:

1. S. Cavero, E. G. Pardo, and A. Duarte. Efficient iterated greedy for the two-dimensional

bandwidth minimization problem. European Journal of Operational Research, 306(3):

1126–1139, 2023 [32].

Moreover, a presentation has been made at a national conference:

2. A. Duarte, S. Cavero, and E. G. Pardo. Heurı́sticas aplicadas al 2D bandwidth prob-

lem. XXXIX Congreso Nacional de Estadı́stica e Investigación Operativa (SEIO

2022), in Granada, Spain, 2021 [57].

The article, titled: “Efficient Iterated Greedy for the Two-Dimensional Bandwidth Min-

imization Problem” [32], was published in a JCR journal. Figure 10.1 compiles some in-

formation about the journal. The 2DBMP was previously approached from an exact per-

spective, based on CSP, and from a heuristic perspective, based on VNS. In order to further

improve the results obtained by the two previous approaches, we developed an efficient

185

186 Chapter 10. Two-Dimensional Bandwidth Minimization Problem

and effective IG algorithm. The main components of the algorithm proposed to address

2DBMP are summarized next:

• Three-phase greedy constructive procedure. The first phase initializes the solution

by determining the first assignation of a vertex of the input graph to a vertex of the

host graph. Then, the next vertex to be added to the solution is determined in the

second phase. This phase is inspired by the weighted greedy criteria proposed in the

previous work [33]. Then, in the third and last phase, a greedy function based on

the objective function of the problem is used to locate the selected vertex in the host

graph.

• Local search that explores the swap neighborhood following a first improvement

strategy. Additionally, the improvement method incorporates again the three advanced

strategies used for the CGLP: an efficient way to evaluate the objective function of

neighbor solutions, a tiebreak criterion to deal with “flat landscapes”, and a neigh-

borhood reduction technique.

• IG is the metaheuristic used to combine the heuristic procedures proposed to tackle

this problem. IG incorporates two main phases: the destruction and reconstruction

phases, which have been implemented as a way to perturb the incumbent solution

and explore other regions of the solution space.

Finally, the best algorithmic variant of our proposal has been compared to the best

previous method in the state of the art, over a previously reported set of instances. The

obtained results, supported by statistical tests, corroborate the merit of our proposal and

establish it as a new state-of-the-art algorithm for the 2DBMP.

To conclude this chapter, we include a copy of the most relevant paper published for

the 2DBMP in the context of this Doctoral Thesis.

Chapter 10. Two-Dimensional Bandwidth Minimization Problem 187

Efficient IG for the two-dimensional bandwidth minimization problem

Sergio Cavero, Eduardo G. Pardo and Abraham Duarte

European Journal of Operational Research. Volume 306(1), 126-1139, 2023.

https://doi.org/10.1016/j.ejor.2022.09.004

Journal Information

Research Areas:

• Operations Research & Management Science

Category Rank:

• Operations Research & Management Science: 17/87 (Q1)

Journal Impact Factor: 6.363
Data obtained from Journal Citation Reports 2021

Figure 10.1 Information related to the publication [32].

https://doi.org/10.1016/j.ejor.2022.09.004

European Journal of Operational Research 306 (2023) 1126–1139

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Efficient iterate d gree dy for the two-dimensional bandwidth

minimization problem

Sergio Cavero, Eduardo G. Pardo

∗, Abraham Duarte

Universidad Rey Juan Carlos, C/Tulipán, s/n, Mstoles, 28933, Madrid, Spain

a r t i c l e i n f o

Article history:

Received 21 January 2022

Accepted 5 September 2022

Available online 9 September 2022

Keywords:

Heuristics

Graph layout problem

Iterated greedy

Combinatorial optimization

Bandwidth

a b s t r a c t

Graph layout problems are a family of combinatorial optimization problems that consist of finding an em-

bedding of the vertices of an input graph into a host graph such that an objective function is optimized.

Within this family of problems falls the so-called Two-Dimensional Bandwidth Minimization Problem

(2DBMP). The 2DBMP aims to minimize the maximum distance between each pair of adjacent vertices of

the input graph when it is embedded into a grid host graph. In this paper, we present an efficient heuris-

tic algorithm based on the Iterated Greedy (IG) framework hybridized with a new local search strategy to

tackle the 2DBMP. Particularly, we propose different designs for the main IG procedures (i.e., construction,

destruction, and reconstruction) based on the trade-off between intensification and diversification. Addi-

tionally, the improvement method incorporates three advanced strategies: an efficient way to evaluate the

objective function of neighbor solutions, a tiebreak criterion to deal with “flat landscapes”, and a neigh-

borhood reduction technique. Extensive experimentation was carried out to assess the IG performance

over state-of-the-art methods, emerging our approach as the most competitive algorithm. Specifically, IG

finds the best solutions for all instances considered in considerably less execution time. Statistical tests

corroborate the merit of our proposal.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The Two-Dimensional Bandwidth Minimization Problem

(2DBMP) belongs to a family of combinatorial optimization prob-

lems denoted as Graph Layout Problems (GLP). GLPs consist of

embedding an input graph (also known as a candidate graph) into

a host graph by defining a mathematical function that relates (or

assigns) the vertices of the input graph to the vertices of the host

graph, optimizing a particular objective function. These problems

can be classified according to the structure of the host graph.

Particularly, the most studied GLPs are those that consider a

regular host graph, such as: a path (Pardo, García-Sánchez, Sevaux,

& Duarte, 2020; Pardo, Mladenovi ́c, Pantrigo, & Duarte, 2013),

a cycle (Cavero, Pardo, Laguna, & Duarte, 2021b; Cavero, Pardo,

& Duarte, 2022a), or a grid (Lin & Lin, 2010; Rodríguez-García,

Sánchez-Oro, Rodriguez-Tello, Monfroy, & Duarte, 2021), among

others. Also, GLPs can be classified according to the optimized

objective function. Among the most studied ones, we can find the

minimization of: the maximum cutwidth (Cavero et al., 2021b;

∗ Corresponding author.

E-mail addresses: sergio.cavero@urjc.es (S. Cavero), eduardo.pardo@urjc.es (E.G.

Pardo), abraham.duarte@urjc.es (A. Duarte) .

Pardo et al., 2013), the linear arrangement (Petit, 2004; Rodriguez-

Tello, Hao, & Torres-Jimenez, 2008a), the maximum Bandwidth

(Ren, Hao, Rodriguez-Tello, Li, & He, 2020; Rodriguez-Tello, Hao,

& Torres-Jimenez, 2008b), or the sum of the Bandwidth (Cavero,

Pardo, Duarte, & Rodriguez-Tello, 2022b; Rodriguez-Tello, Narvaez-

Teran, & Lardeux, 2019), among others. We refer the interested

reader to surveys (Díaz, Petit, & Serna, 2002) and (Pardo, Martí, &

Duarte, 2016) for further references about GLPs.

In this paper, we deal with the 2DBMP, which consists of mini-

mizing the Bandwidth of the input graph when embedding it into

a grid host graph. The 2DBMP has a large interest for the scientific

community from either a practical and theoretical perspective. On

the one hand, real-world applications have been devised in the lit-

erature related to the problem, as compiled in Section 1.2 . On the

other hand, from a theoretical perspective, there is a wide family of

optimization problems related to the embedding of graphs in reg-

ular structures (Ren, Hao, & Rodriguez-Tello, 2019; Rodriguez-Tello

et al., 2008b). In this sense, the algorithmic strategies proposed for

the 2DBMP have interest, not only for this problem, but also for

other related variants. In the following sections, we formally de-

fine the 2DBMP (Section 1.1), as well as we review the state of the

art of the problem (Section 1.2).

https://doi.org/10.1016/j.ejor.2022.09.004

0377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

188 Chapter 10. Two-Dimensional Bandwidth Minimization Problem

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 1. (a) An input graph, G . (b) A host graph, H. (c) An example of an embedding.

1.1. Problem statement

Before formalizing this problem, we introduce a basic notation.

Let G (V G , E G) be a connected, unweighted and undirected input

graph where the set of vertices is denoted as V G (with | V G | = n)

and its edge set as E G .

Similarly, let H = (V H , E H) be a two-dimensional grid host graph

where the set of vertices is denoted as V H (with | V H | = � √

n � ·
� √

n �) and its edge set as E H . Grid graphs are a common type of

lattice graph, whose drawing in a Euclidean space R

2 forms a regu-

lar tiling. These graphs satisfy the requirement that each vertex can

be represented as a 2-tuple (i, j) that corresponds to a point in the

plane, where 1 ≤ i, j ≤ � √

n � . Two vertices are connected with an

edge as long as the corresponding points are at distance 1. There-

fore, this particular host graph is a unit-distance, median, and bi-

partite graph.

In Fig. 1 a, we depict an example of an input graph, G ,

with 7 vertices (V G = { A , B , C , D , E , F , G }) and 9 edges (E G =

{ (A , B) , (A , D) , (A , E) , (A , F) , (B , F) , (B , G) , (C , D) , (D , E) , (F , G) }).
Similarly, in Fig. 1 b, we show the host graph, H, needed

for the embedding of the graph depicted in Fig. 1 a (i.e.,

| V H | = 9 = � √

7 � · � √

7 �). In this case, vertices are denoted by

their (i, j) coordinates (i.e., V H = { (1 , 1) , (1 , 2) , . . . , (3 , 3) }), and

there is an edge between them if they are at distance 1.

As it was aforementioned, an embedding consists of defining a

mathematical function that assigns each vertex of the input graph

to a vertex of the host graph. In mathematical terms, let ϕ be an

injective function such that:

ϕ : V G → V H , ∀ u ∈ V G ∃ ! v ∈ V H | ϕ(u) = v . (1)

Since each vertex v ∈ V H is defined by a 2-tuple (i, j) , for the

sake of convenience, we reformulate ϕ as follows:

ϕ : V G → V H , ∀ u ∈ V G ∃ ! (i, j) ∈ V H | ϕ(u) = (i, j) . (2)

with i, j ∈ [1 , . . . , � √

n �] .
Then, given an embedding ϕ of an input graph G , the objective

function of the 2DBMP, denoted as BW, is defined as follows:

BW (G, ϕ) = max
(u, v) ∈ E G

{ d(ϕ (u) , ϕ (v)) } , (3)

where d is a function that measures the distance between two ad-

jacent vertices. In the related literature, d is computed with the

L 1 -norm (Lin & Lin, 2010; Rodríguez-García et al., 2021), which is

also known as Taxicab norm distance or Manhattan distance (Craw,

2010; Lin & Lin, 2010). That is, the distance between two points

(i, j) , (i ′ , j ′) ∈ V H is

d((i, j) , (i ′ , j ′)) = | i − i ′ | + | j − j ′ | . (4)

Finally, the Two-Dimensional Bandwidth Minimization Problem

(2DBMP) for a graph G consists of finding an embedding ϕ

� that

minimizes Eq. (3) . More formally,

ϕ

� ← 2DBMP (G) = min

ϕ∈ �
{ BW (G, ϕ) } , (5)

where � represents the set of all possible embeddings of the prob-

lem.

In Fig. 1 c, we show a possible embedding ϕ of G (Fig. 1 a) in H

(Fig. 1 b). As can be observed, all vertices of V G have been assigned

to a vertex of V H through the definition of ϕ . For example, ϕ (A) =

(2 , 2) indicates that vertex A ∈ V G is assigned to vertex (2 , 2) ∈ V H .

Similarly, ϕ(B) = (2 , 3) indicates that vertex B ∈ V G is assigned to

vertex (3 , 2) ∈ V H , and so on.

In order to evaluate the objective function of the example de-

scribed in Fig. 1 , it is required to calculate the distance between

each pair of adjacent vertices in V G (i.e., for each edge of E G)

by using Eq. (4) . For instance, considering vertices A and B, with

ϕ(A) = (2 , 2) and ϕ(B) = (2 , 3) , the associated distance | 2 − 2 | +

| 2 − 3 | = 1 . Similarly, the distance between vertices A and D is

2, since ϕ(D) = (1 , 3) , and | 2 − 1 | + | 2 − 3 | = 2 . This calculation is

performed over the rest of the edges of G . Then, the value of the

objective function is the maximum across all distances, which is 3

in this example. Therefore, in mathematical terms, the evaluation

of BW (G, ϕ) in Fig. 1 c is computed as follows:

BW (G, ϕ) = max { d(ϕ(A) , ϕ(B)) , d(ϕ(A) , ϕ(D)) , d(ϕ(A) , ϕ(E)) ,

d(ϕ(A) , ϕ(F)) , d(ϕ(B) , ϕ(F)) , d(ϕ(B) , ϕ(G)) ,

d(ϕ(C) , ϕ(D)) , d(ϕ(D) , ϕ(E)) , d(ϕ(F) , ϕ(G)) }
= max { 1 , 2 , 1 , 2 , 1 , 1 , 1 , 3 , 2 } = 3 . (6)

1.2. Literature review

The 2DBMP has been widely used to formulate a variety of

real-world applications. In particular, it has a direct application

in the design of telecommunication architectures, where grid net-

work topologies have gained relevance. These networks are com-

monly used due to their simple structure, becoming a design that

is easy to build and extend (Bezrukov, Chavez, Harper, Röttger,

& Schroeder, 1998). The 2DBMP has also been used for very

large-scale integration (VLSI) circuit modeling (Bhatt & Thom-

son Leighton, 1984; Chung, 1988). Indeed, the L 1 -norm distance

was originally derived from circuit design models where connec-

tors are placed in horizontal or vertical directions, although the

paths in the VLSI design cannot overlap each other (Bhatt & Thom-

son Leighton, 1984; Lin & Lin, 2010). Other practical applications

include job scheduling for parallel processing computers, solving

systems of equations, or performing matrix decomposition, among

others (Lai & Williams, 1999; Rodríguez-García et al., 2021).

The 2DBMP is closely related to other optimization problems

belonging to the Graph Layout family, such as the Bandwidth Min-

imization Problem (BMP) and the Cyclic Bandwidth Problem (CBP).

Differences among these three problems reside on the host graph.

Specifically, in the BMP, the host graph is a path, while in the CBP

it is a cycle, and in the 2DBMP it is a grid.

1127

Chapter 10. Two-Dimensional Bandwidth Minimization Problem 189

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

BMP and CBP have been widely studied by the scientific com-

munity. The former was proved to be N P -complete for general

graphs in Papadimitriou (1976) and it has been approached from

both, exact (Del Corso & Manzini, 1999; Gurari & Sudborough,

1984) and heuristic perspectives (Mladenovic, Urosevic, Pérez-

Brito, & García-González, 2010; Rodriguez-Tello et al., 2008b). Sim-

ilarly, the CBP is also N P -complete for general graphs as proven

in Lin (1994) . It has been mainly approached by considering spe-

cial graphs (such as grids, trees, or planar graphs, among others)

and determining either lower or upper bounds (Hromkovi ̌c, Müller,

S ̀ykora, & Vrt’o, 1992; Jinjiang & Sanming, 1995). Recently, in Ren

et al. (2019 , 2020) two advanced metaheuristics have been pro-

posed for the CBP.

In this paper, we focus on the 2DBMP, originally proposed in

Chung (1988) , that belongs to the N P -complete class (Bhatt &

Thomson Leighton, 1984; Lin & Lin, 2010). This optimization prob-

lem has been studied from different points of view. In particu-

lar, lower bounds for regular-structured graphs were introduced

in Lin & Lin (2010, 2011) . More recently, three Constraint Satis-

faction Programming (CSP) models (Tsang, 2014) were described

in Rodríguez-García et al. (2021) . The best model, denoted as M3,

is able to solve small and regular-structured graphs, providing

a lower bound (not necessarily tight) for medium and large in-

stances. The best previous metaheuristic procedure identified in

the related literature was introduced in Rodríguez-García et al.

(2021) . Specifically, the authors described an algorithm based on

the combination of the Greedy Randomized Adaptive Search Proce-

dure (GRASP) (Feo & Resende, 1995) and the Basic Variable Neigh-

borhood Search (BVNS) (Hansen & Mladenovi ́c, 2006) methodolo-

gies. This procedure follows a multi-start strategy, where many

initial points are generated with GRASP and then improved with

BVNS. The constructive procedure uses a greedy criterion based on

the quality of the objective function, while the BVNS, based on the

idea of systematic changes of neighborhood the structure within

the search, uses two neighborhoods and a random perturbation to

escape from local optima. This procedure is currently considered

the state of the art for the 2DBMP.

1.3. Our contributions

The main contribution of this work is the proposal of

an efficient procedure based on the Iterated Greedy frame-

work. The proposed algorithm includes novel construc-

tion/destruction/reconstruction strategies, as well as advanced

improvement methods. These techniques are designed from a

general perspective, i.e., they are not only valid for the 2DBMP,

but also for any other related optimization problem. Specifi-

cally, the proposed construction, destruction, and reconstruction

strategies vary from totally random to totally greedy approaches.

In addition, a straightforward design of a local search for the

2DBMP is enriched by: a tiebreak criterion to distinguish between

same-quality solutions; fast evaluation of the objective function;

and neighborhood reduction techniques.

The proposed method is configured by a set of preliminary ex-

periments, which allow us tuning the search parameters as well

as to evaluate the influence of the proposed mechanisms. Finally,

the best identified variant is compared with state-of-the-art algo-

rithms through competitive tests. The merit of the results obtained

is supported by statistical tests.

The rest of the paper is organized as follows: Section 2 de-

scribes our algorithmic proposal. Section 3 introduces several ad-

vanced search strategies. Section 4 presents and analyses the re-

sults of the computational experiments carried out. Finally, the

conclusions are drawn in Section 5 .

2. Algorithmic proposal: Iterated greedy

In this paper, we propose a procedure based on the Iterated

Greedy (IG) metaheuristic (Ruiz & Stützle, 2007; Stützle & Ruiz,

2018). IG is a search method where solutions are gradually im-

proved through the repeated application of two main phases: a

partial destruction of a solution followed by a reconstruction to

reach a new feasible solution. These two phases are usually re-

peated for a fixed number of iterations, for a maximum number

of iterations without finding an improvement, or even for a com-

bination of the two previous criteria.

IG can be easily hybridized with other strategies, such as lo-

cal search procedures or other metaheuristics. In this case, the

destruction and reconstruction phases of IG can be understood

as a way to perturb the incumbent solution, similarly to other

well-known metaheuristics such as Iterated Local Search (ILS)

(Lourenço, Martin, & Stützle, 2003) or Variable neighborhood

Search (VNS) (Hansen, Mladenovi ́c, Todosijevi ́c, & Hanafi, 2017).

However, in the IG methodology, an important part of the pro-

cess, the reconstruction phase, uses greedy decisions rather than

stochastic ones. See Stützle & Ruiz (2018) for further details.

In this paper, we propose the hybridization of IG with an ef-

ficient local search procedure. The pseudocode of the proposed

method is presented in Algorithm 1 . The procedure receives as

Algorithm 1 General procedure based on IG algorithm.

1: Procedure IteratedGreedy (G , maxIter , maxNotImprIter)

2: iter = 0 , notImprIter = 0

3: ϕ = GreedyConstructive (G)

4: ϕ ← LocalSearch (G, ϕ)

5: while iter < maxIter do

6: iter = iter + 1 , notImprIter = notImprIter + 1

7: ϕ

′ ← Destruction (notImprIter , ϕ)

8: ϕ

′′ ← Reconstruction (G, ϕ

′)
9: ϕ

′′′ ← LocalSearch (G, ϕ

′′)
10: if BW (G, ϕ

′′′) < BW (G, ϕ) then

11: ϕ ← ϕ

′′′
12: notImprIter = 0

13: end if

14: if notImprIter > maxNotImprIter then

15: break
16: end if

17: end while

18: return ϕ

parameters: the input graph, G ; the maximum number of itera-

tions, maxIter ; and the number of iterations without improvement

maxNotImprIter . The algorithm starts by generating an initial so-

lution with the greedy constructive procedure (line 3) that will

be introduced in Section 2.1 . Then, after obtaining an improved

solution through the local search procedure (line 4), described in

Section 2.2 , the procedure enters a loop (lines 5 to 17). In each it-

eration, some elements are removed from the current solution us-

ing the destruction method (line 7). Next, the solution is greedily

reconstructed (line 8) and improved again by the local search pro-

cedure (line 9). Both destruction and reconstruction methods, are

described in Section 2.3 . In each iteration, IG determines (steps 10

to 13) whether the perturbed and improved solution (ϕ

′′′) is better

than the incumbent one (ϕ). If so, ϕ and notImprIter are updated

accordingly. These three last steps (destruction, reconstruction, and

local search) are repeated until a maximum number of iterations

is reached, unless the procedure is not able to improve the current

best solution for a number of iterations (line 14). Once the termi-

nation condition is met, IG returns the best solution found (step

18).

1128

190 Chapter 10. Two-Dimensional Bandwidth Minimization Problem

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

2.1. Greedy constructive procedure

Constructing a solution for the 2DBMP from a greedy perspec-

tive consists of performing the best possible assignation of the ver-

tices of the input graph to the vertices of the host graph (i.e., defin-

ing ϕ). To do this, we need to answer three questions: #1 which

vertices (from either the host or the input graphs) are more suit-

able to start with; #2 given a partial solution, which vertex (u)

of the input graph should be assigned next; and #3 given a par-

tial solution and u , which vertex v of the host graph should be

assigned to u . To answer each of these questions, we propose dif-

ferent strategies, which are described below.

We start by selecting a random vertex from the input graph.

Then, to perform its assignation, we need to select a ver-

tex from the host graph. In this case, we study three alter-

natives: a random vertex; a vertex placed in a corner of the

grid (i.e., (1 , 1) , (1 , � √

n �) , (� √

n � , 1) , (� √

n � , � √

n �); or a vertex

placed in the center of the grid (i.e., (� �
√

n �
2 � , � �

√

n �
2 �) if � √

n � is

odd; or (� �
√

n �
2 � , � �

√

n �
2 �) , (� �

√

n �
2 � + 1 , � �

√

n �
2 �) , (� �

√

n �
2 � , � �

√

n �
2 � +

1) , (� �
√

n �
2 � + 1 , � �

√

n �
2 � + 1) if n is even).

Given the first assignation, we already have a partial solution.

Then, we propose a greedy function, inspired by McAllister et al.

(1999) and denoted as g 1 , to determine which vertices of the input

graph should be assigned in the following steps to a partial solu-

tion ϕ. In other words, g 1 is used to evaluate the “urgency” of any

unassigned vertex from the input graph to be assigned next.

Let us introduce some notation before defining g 1 . We define

the subset U G ⊂ V G as the set of vertices of the input graph that

have not been assigned yet in ϕ. Then, given a vertex u ∈ U G ,

we define A (u) as the set of adjacent vertices to u already as-

signed. More formally, A (u) = { v ∈ V G : v / ∈ U G ∧ (u, v) ∈ E G } . Simi-

larly, we define R (u) as the set of vertices adjacent to u that re-

main unassigned. In mathematical terms, R (u) = { v ∈ V G : v ∈ U G ∧

(u, v) ∈ E G } . It is worth mentioning that A (u) ∪ R (u) is the set of

adjacent vertices to u . Then, g 1 is defined in Eq. (7) as follows:

g 1 (u, ϕ) = w 1 · | A (u) | − w 2 · | R (u) | , (7)

where w 1 and w 2 are parameters that should be tuned experimen-

tally and satisfy 0 ≤ w 1 , w 2 ≤ 1 and w 1 + w 2 = 1 . These two pa-

rameters balance the relevance of having a large number of ad-

jacent vertices assigned (w 1 > w 2) or a reduced number of adja-

cent vertices unassigned (w 1 < w 2). Notice that if w 1 = w 2 , then

the strategy is equivalent to the original proposal introduced in

McAllister et al. (1999) . Then, all unassigned vertices from the in-

put graph are evaluated, and the vertex with the largest g 1 value

is chosen to be assigned next (with ties broken at random).

Once the vertex of the input graph has been chosen, the second

proposed question is answered. Then, an available vertex from the

host graph must be selected to embed the selected vertex of the

input graph. In this case, we propose two approaches: one based

on graphical patterns and the other based on a greedy function.

The first approach determines the order in which host vertices are

selected on the basis of a graphical pattern. Moreover, in this work

we study three patterns: Sequential, Diagonal, and Zigzag, which

are illustrated in Fig. 2 (a)–(c), respectively. In each of the figures,

the sequence is indicated by green arrows and numbers inside

each of the host vertices, being the number 1 the vertex selected

in the first iteration and number 9 the vertex selected in the last

iteration.

The second approach to select a vertex of the host graph is

based on a new greedy function, denoted as g 2 , that evaluates

the variation of the objective function when assigning a vertex

of the input graph. As it is well documented in the related liter-

ature (Cavero et al., 2021b), some successful strategies in graph

layout problems are related to the closeness/remoteness of adja-

cent vertices. In this case, g 2 is used to place every candidate

vertex as close as possible to its adjacent vertices. Let C H ⊆ V H
be the set of vertices which distance (see Eq. (4)) to the already

assigned host vertices is 1. More formally, C H (ϕ) = { (i, j) ∈ V H :

∀ v / ∈ U G , d(ϕ(v) , (i, j)) = 1 } . Then, given a vertex u ∈ U G , a vertex

(i, j) ∈ C H , and a partial solution ϕ, g 2 is formally defined as:

g 2 (ϕ, u, (i, j)) = max
v ∈ A (u)

{ d((i, j) , ϕ(v)) } . (8)

Thus, all unassigned vertices from the host graph are evaluated and

the vertex (i, j) ∈ C H (ϕ) that minimizes g 2 is selected to host the

input graph vertex u , i.e., ϕ(u) = (i, j) . The rationale behind this

strategy is that the returned value from g 2 corresponds to the con-

tribution of the evaluated vertex to the objective function. There-

fore, the best host vertex for an input vertex is the one that mini-

mizes Eq. (8) .

In Algorithm 2 we show the pseudocode of a general greedy

Algorithm 2 Greedy constructive procedure.

1: Procedure GreedyConstructive (G , H)

2: u ← random (V G)
3: (i, j) = GetInitialHostGraphVertex (V H) � Answer to question

#1

4: ϕ(u) ← (i, j)

5: U G ← V G \ { u }
6: while U G � = ∅ do

7: u ← GetNextInputGraphVertex (ϕ, U G) � Answer to question

#2

8: (i, j) ← GetNextHostGraphVertex (ϕ, u)� Answer to question

#3

9: ϕ(u) ← (i, j)

10: U G ← U G \ { u }
11: end while

12: return ϕ

constructive procedure which can use any of the greedy strategies

described in this section. Particularly, it receives an input graph

G = (V G , E G) and a host graph H = (V H , E H) as input parameters.

The method starts by selecting a vertex u of the input graph at

random (line 2). According to the aforementioned Question #1, in

line 3, the procedure identifies the vertex of the host graph to em-

bed u . Then, the first assignation is performed (line 4). The set of

unassigned vertices U G for the partial solution ϕ is constructed in

line 5. While there are still elements in U G , the greedy construc-

tive procedure selects a vertex according to g 1 (see Question #2)

in line 8. Next, this selected vertex is assigned to one vertex in the

host graph (see Question #3), either based on patterns (Fig. 2) or

based on g 2 . Finally, the partial solution and the set of unassigned

vertices are updated in lines 10 and 11, respectively. Lines 7 to 12

are repeated until generating a complete feasible solution, which is

returned at the end of the procedure (line 13). To complement the

pseudocode, we graphically illustrate the steps of the constructive

procedure in the flowchart depicted in Fig. 3 . This flowchart fol-

lows the activity diagram standard described in the Unified Mod-

eling Language (Booch, 2005). Therefore, each rectangle describes

a task or activity, while each diamond expresses a condition of

the constructive procedure. Once the solution has been fully con-

structed, the evaluation of the solution is performed from scratch

following the procedure described at the end of Section 1.1 .

The choice of the first vertex of the input graph might influ-

ence deeply the quality of the generated solution. Moreover, our

constructive procedure is not fully deterministic since random de-

cisions are also made to break ties in both g 1 and g 2 . Therefore,

we propose to execute the constructive procedure for a fixed num-

ber of iterations, selecting as initial solution the best one among

1129

Chapter 10. Two-Dimensional Bandwidth Minimization Problem 191

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 2. Examples of the order followed to assign vertices of the input graph to vertices of the host graph using the Sequential (a), Diagonal (b) and Zigzag (c) patterns.

Fig. 3. Activity diagram of the constructive procedure..

them. It is worth mentioning that this strategy has been success-

fully used not only in IG (Huerta-Muñoz, Ríos-Mercado, & Ruiz,

2017; Stützle & Ruiz, 2018) but also in combination with VNS

(López-Sánchez, Sánchez-Oro, & Hernández-Díaz, 2019; Pérez-Peló,

Sánchez-Oro, Gonzalez-Pardo, & Duarte, 2021), or TS (Abdinnour-

Helm & Hadley, 20 0 0; Delmaire, Díaz, Fernández, & Ortega, 1999),

among others. To ensure the construction of diverse solutions, the

number of iterations is always set to a value larger than the num-

ber of vertices of the input graph, guaranteeing that at least one

construction is performed starting from every vertex of the input

graph.

2.2. Improvement strategy

Local search is a heuristic method widely used to solve hard op-

timization problems due to its ability to trade solution quality with

computation time. This procedure is based on systematic moves

from one solution to another with better quality, until reaching

a locally optimal solution (Michiels, Aarts, & Korst, 2018). Given a

predefined move operation, the set of feasible solutions reachable

by the local search starting from that solution is usually known as

neighborhood.

In the related literature, there have been proposed two different

neighborhoods for the 2DBMP based on exchange and insert moves

(see Rodríguez-García et al., 2021 for further details). However, the

definition of these neighborhoods do not include the possibility of

exploring the vertices of the host graph that have not been as-

signed to vertices of the input graph in the construction phase.

In this paper, we propose a more flexible move operator, which

explores those host vertices not initially assigned, resulting in a

larger neighborhood space. Specifically, the number of vertices in

the host graph (| V H | = � √

n � · � √

n �) is always larger than or equal

to the number of vertices in the input graph (| V G | = n). Therefore,

ϕ is an injective function, since there may exist vertices in V H
that do not host a vertex of V G . The move operator considers this

property as follows: given a solution ϕ, a vertex u ∈ V G assigned

to (i, j) ∈ V H (i.e., ϕ(u) = (i, j)), and a vertex (i ′ , j ′) ∈ V H the move

operator Move (ϕ, u, (i ′ , j ′)) assigns u to (i ′ , j ′) (i.e., ϕ(u) = (i ′ , j ′)).
In the case that a vertex v ∈ V G was assigned to (i ′ , j ′) prior the

move, this move would also perform a new assignment for the ver-

tex v (i.e., ϕ(v) = (i, j)). Otherwise, (i, j) will not host any vertex.

This move produces a new feasible solution, which is denoted as

ϕ

′ ← Move (ϕ, u, (i ′ , j ′)) .
Let us illustrate this move with an example. Departing from the

solution represented in Fig. 1 c, we show in Fig. 4 a the situation

before performing Move (ϕ, B , (2 , 3)) , where vertex B of the input

graph is assigned to vertex (3,2) prior the move. Then, in Fig. 4 b,

we depict the resulting solution after the move, where B is as-

signed to (2,3) leaving (3,2) without any assignation.

Considering the aforementioned move operator, the proposed

neighborhood for the 2DBMP is defined as follows:

N(ϕ) = { Move (ϕ, u, (i ′ , j ′)) : ∀ u ∈ V G , (i ′ , j ′) ∈ V H , ϕ(u) � = (i ′ , j ′) } .
(9)

The size of N(ϕ) can be determined depending on the number

of vertices of the input graph. Specifically, given an input graph

with | V G | = n vertices and the associated host graph with | V H | =

� √

n � · � √

n � vertices, the size of N(ϕ) is 1
2 n (�

√

n � 2 − 1) .

In this research, we study two well-known strategies to explore

the proposed neighborhood: best improvement and first improve-

ment (Hansen & Mladenovi ́c, 2006). If a local search follows the

best improvement strategy it selects, at each iteration, the best pos-

1130

192 Chapter 10. Two-Dimensional Bandwidth Minimization Problem

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 4. (a) Example of an embedding ϕ. (b) The resultant embedding ϕ ′ obtained after the operation Move (ϕ, B , (2 , 3)) (b).

sible move which produces an improvement of the current neigh-

borhood; otherwise, in the first improvement strategy, it selects the

first solution that improves the current solution. Any of them stop

the search when no further improving moves can be performed.

We study the effectiveness of both strategies in the experiments

reported in Section 4.1 .

2.3. Destruction and reconstruction procedures

The two main procedures of any IG algorithm are the destruc-

tion and reconstruction phases. The IG proposed in the context of

2DBMP, first removes a determined number of assignations of ver-

tices of the input graph to vertices of the host graph, during the

destruction phase. Then, the reconstruction phase applies a greedy

heuristic to reassign the unassigned vertices until reaching a new

feasible solution.

The number of assignations that should be removed is dynami-

cally defined depending on the current number of iterations with-

out improvement (see lines 6 and 7 of Algorithm 1). The rationale

behind this decision is to have a trade-off between search intensi-

fication and diversification. In particular, when the number of iter-

ations without improvement is large, it is expected that the proce-

dure gets stuck in a “deep basin of attraction”. Therefore, a large

number of assignations are removed (with the corresponding re-

construction steps), with the aim of moving to rather distant so-

lutions in the solution space. On the contrary, when the number

of iterations without improvement is small, a few assignations are

removed, which leads to a more localized search Stützle & Ruiz

(2018) . In addition, to avoid the complete destruction of the solu-

tion, we set a maximum number of assignations that can be re-

moved. Specifically, this value is set to 25% of the vertices of the

instance under consideration.

In this paper, we propose three different destruction strategies.

The first one, denoted as fully randomized destruction , is a straight-

forward adaptation of the IG framework. Specifically, it consists of

randomly selecting and then removing a determined number of

assignations of vertices of the input graph to vertices of the host

graph. The second strategy, denoted as random area destruction , fo-

cuses on a specific area of the host graph. More precisely, it selects

a vertex of the host graph at random and then removes its assig-

nation, and also the assignation of all adjacent host graph vertices

(i.e., those at distance 1 to the selected initial vertex, according to

Eq. (4)). This strategy keeps on removing host adjacent vertices to

the unassigned area following a proximity criterion (i.e., first those

at distance 2, then those at distance 3, etc.) until reaching the ex-

pected number of unassigned vertices. The third strategy, denoted

as greedy destruction , focuses on those vertices that determine the

value of the objective function. Notice that the 2DBMP consists of

minimizing a maximum value; then, the objective function is usu-

ally determined by a reduced number of assignations. This destruc-

tion strategy removes the assignation of the vertex that determines

the value of the objective function, also removing the assignations

of all its adjacent host graph vertices. As in the second strategy, it

keeps on removing vertices and their adjacent vertices in the host

graph following a proximity criterion, until reaching the expected

number of unassigned vertices.

As far as the reconstruction strategy is concerned, the Iterated

Greedy framework Stützle & Ruiz (2018) suggests that the recon-

struction should be governed by a greedy heuristic and, typically,

deterministic (except random tiebreaking). We therefore do not ex-

plore any random reconstruction strategy. Specifically, given a par-

tial solution obtained as the result of a destruction phase, the re-

construction of the solution is performed by following a greedy

strategy. To this end, we propose the use of three strategies, based

on the greedy criteria presented in Section 2.1 : 1) unassigned ver-

tices of the input graph are selected according to g 1 function and

then are randomly assigned to any of the available host graph ver-

tices; 2) unassigned vertices of the input graph are randomly se-

lected and then assigned to its best host graph vertex according to

g 2 function; and 3) the best vertex of the input graph is selected

according to g 1 and it is assigned to the best host vertex selected

according to g 2 function.

3. Advanced search strategies for exploring the neighborhoods

As it is well documented in the related literature, most of

the computing time of a heuristic algorithm is spent by the lo-

cal search procedure. Particularly, a local search heuristic selects,

at each iteration, a move to a neighbor solution, if it results in an

improvement of the objective function. Then, it needs to explore

multiple neighbor solutions, evaluating each of them, to determine

which move should be done next. In this section, we provide three

new advanced strategies devoted to increasing the efficiency of the

proposed local search: first, we introduce an efficient strategy to

reduce the number of solutions to explore in a given neighborhood

(see Section 3.1); second, once the number of moves has been re-

duced, we propose a technique to speed up the search by opti-

mizing the calculation of the objective function after a move (see

1131

Chapter 10. Two-Dimensional Bandwidth Minimization Problem 193

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 5. Definition of the PSV of A for a solution ϕ, with BW (G, ϕ) = 2 .

Section 3.2); finally, when the move results in a tie, in terms of

the objective function value, we propose a way of distinguishing

between two solutions with the same quality (see Section 3.3). It

is worth mentioning that some of these strategies can be applied

or adapted with a few modifications, not only for other Graph Lay-

out Problems, but also for other optimization problems.

3.1. Neighborhood reduction strategy

The neighborhood proposed in Section 2.2 for the 2DBMP has a

size of 1
2 n (�

√

n � 2 − 1) , being n the number of vertices of the input

graph. In the worst case, an exhaustive exploration requires to tra-

verse the whole neighborhood. In this section, we propose a strat-

egy to focus the search on promising solutions, avoiding to waste

time in the evaluation of solutions which produce a deterioration

in the objective function.

For each vertex of the input graph u ∈ V G , we can define a set

of vertices of the host graph, denoted as Promising Set of Vertices

(PSV) which can host u satisfying that the distance d (in the host

graph) from u to any of its neighbors in the input graph is equal

or smaller to the objective function value.

Given a solution ϕ, and an input vertex v ∈ V G , let us define S
ϕ
v

as the set of host vertices which satisfy that the distance d from

ϕ(v) to any of them is smaller or equal to the BW (G, ϕ) . More

formally:

S
ϕ
v = { (i, j) ∈ V H : d(ϕ(v) , (i, j)) ≤ BW (G, ϕ) } . (10)

Then, once we have defined the set S
ϕ
v for a single input vertex, we

can define the set PSV for an input vertex u ∈ V G as the intersection

of the sets S
ϕ
v for all adjacent vertices to u in the input graph (i.e.,

v ∈ A (u)). More formally:

PSV (u, ϕ) =

⋂

v ∈ A (u)

S
ϕ
v . (11)

In Fig. 5 we show an example of the definition of PSV of the

vertex A. Particularly, vertices B and C are adjacent to A in the in-

put graph. For the sake of clarity, the rest of the input vertices, not

adjacent to A, have not been represented in the figure. Moreover,

let us suppose that the value of the objective function for the so-

lution ϕ, represented in the figure is 2 (i.e., BW (G, ϕ) = 2).

In Fig. 5 a we have highlighted with light blue color

the set of host vertices placed at a distance 2 or minor

from the host vertex (2,3), which hosts B. Specifically, S
ϕ
B

=

{ (1 , 2) , (1 , 3) , (1 , 4) , (2 , 1) , (2 , 2) , (2 , 3) , (2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) ,

(3 , 4) , (4 , 3) } . Additionally, in Fig. 5 a we have indicated, with

a number inside each host vertex, the distance d to (2,3).

Similarly, in Fig. 5 b we have highlighted in light orange

the set of host vertices placed at a distance 2 or minor

from the host vertex (3,4), which hosts C. Particularly, S
ϕ
C

=

{ (1 , 4) , (2 , 3) , (2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) , (3 , 4) , (3 , 5) , (4 , 3) , (4 , 4) ,

(4 , 5) , (5 , 4) } . Finally, in Fig. 5 c we show the set PSV of A, ob-

tained as the intersection of the two previous sets, which contains

the host vertices placed at distance 2 or minor to any of the

adjacent vertices to A. More formally, PSV (A , ϕ) = S
ϕ
B

∩ S
ϕ
C

=

{ (1 , 4) , (2 , 3)(2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) , (3 , 4) , (4 , 3) } . Therefore,

if A is assigned to any of the vertices in PSV(A), the maximum

distance with respect to its adjacent vertices will be equal or

smaller than the BW of ϕ.

Finally, we formally define N R (ϕ) , as the restricted neighbor-

hood of N(ϕ) as follows:

N R (ϕ) = { Move (ϕ, u, (i, j)) : ∀ u ∈ V G , (i, j) ∈ PSV (u) ,

ϕ(u) � = (i, j) } . (12)

Then, we propose the exploration of the reduced neighborhood

instead of the whole neighborhood defined by the move operator

introduced in Section 2.2 .

3.2. Efficient move calculation

For the 2DBMP, a naive straightforward evaluation of a solution

after a move consists in recalculating the value of the objective

function from scratch. This means that the contribution of every

input vertex has to be updated. However, an intelligent evaluation

could avoid reevaluating the whole solution by just updating the

elements that have been affected by the move. Therefore, we pro-

pose an efficient local search method, based on the move operator

defined in Section 2.2 , which applies an efficient evaluation after a

move. Given an input graph G , a host graph H, and a solution ϕ,

this move considers the vertex u ∈ V G (hosted in vertex (i, j) ∈ V H),

and assigns it to vertex (i ′ , j ′) ∈ V H . As it was aforementioned, if

there were a vertex v hosted in (i ′ , j ′) , i.e., ϕ(v) = (i ′ , j ′) , this

move would also assign v to (i, j) . Therefore, an efficient objective

function revaluation just needs to update the distance assigned to

those edges with u (also v when existing) as an endpoint.

To define the Efficient Bandwidth calculation, denoted as EBW,

of an input graph G and a solution ϕ

′ obtained by a move

Move (ϕ, u, (i, j)) , we first define the set of edges I
ϕ
u, (i, j)

involved

in the move denoted as follows:

I
ϕ
u, (i, j)

= { (u, w) ∈ E G : ∀ w ∈ V G }
∪{ (v , w) ∈ E G : ∀ v , w ∈ V G ∧ ϕ(v) = (i, j) } . (13)

1132

194 Chapter 10. Two-Dimensional Bandwidth Minimization Problem

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Then, the EBW (G, Move (ϕ, u, (i ′ , j ′)) , I) can be computed as:

EBW (G, Move (ϕ, u, (i ′ , j ′) , I ϕ
u, (i, j)

) =

max { max
(w,z) ∈ E G \ I ϕ u, (i, j)

)
{ d(ϕ(w) , ϕ(z)) }

︸ ︷︷ ︸
Not updated

, max
(w,z) ∈ I ϕ

u, (i, j)
)
{ d(ϕ(w) , ϕ(z)) }}

︸ ︷︷ ︸
Updated

.

(14)

Notice that the distances of the edges that do not need to be

updated in Eq. (14) can be easily evaluated by storing the distance

associated with each edge before the move. Specifically, we use an

array of sets, where the range of the array is determined by the

possible distance values, while in each set it is stored all edges

with a the same distance value. When we consider together the

use of the aforementioned data structure and the efficient move

calculation, the running time can be reduced in two orders of mag-

nitude, on average, as we will show in the computational experi-

ence.

Let us illustrate this with an example. Particularly, we consider

again the move ϕ

′ ← Move (ϕ, B , (2 , 3)) depicted in Fig. 4 . In order

to evaluate the objective function of the resulting solution ϕ

′ it is

just needed to update the distance associated to the edges with

an endpoint in B, since (2,3) is not hosting any vertex of the in-

put graph. More precisely, the edges with an endpoint in B are

(A , B) , (B , F) , and (B , G) . Then, only the distance of those edges

needs to be re-evaluated, being the BW (G, ϕ

′) calculated as fol-

lows:

BW (G, ϕ

′) = max { d(ϕ(A) , ϕ(D)) , d(ϕ(A) , ϕ(E)) , d(ϕ(A) , ϕ(F)) ,

d(ϕ(C) , ϕ(D)) , d(ϕ(D) , ϕ(E)) , d(ϕ(F) , ϕ(G)) ,

d(ϕ

′ (A) , ϕ

′ (B)) , d(ϕ

′ (B) , ϕ

′ (F)) , d(ϕ

′ (B) , ϕ

′ (G)) }
= max { 2 , 1 , 2 , 1 , 3 , 2 ︸ ︷︷ ︸

Not updated

1 , 3 , 1 ︸ ︷︷ ︸
Updated

} = 3 . (15)

Notice that, in this particular example, the number of edges

evaluated is 3, while evaluating the whole solution requires 9 up-

dates. Reasonably, the impact of this strategy is larger when deal-

ing with instances composed by many vertices.

3.3. Tiebreak criterion for solutions with the same objective function

value

An optimization problem consists of maximizing or minimizing

a particular objective function. In some cases, this mathematical

function consists of computing either the maximum or minimum

value of a set of elements. Therefore, regardless the size of this

set, the maximum or the minimum value, which determines the

value of the objective function, is usually reached in more than one

element. When the goal of a problem is to minimize a function

based on a maximum value, we denote it as min-max problem.

Similarly, when the goal of a problem is to maximize a minimum

function, it is denoted as max-min problem. Max-min and min-

max problems are quite common in optimization and become a

challenge for heuristic methods because there may be many dif-

ferent solutions with the same objective function value, despite

they are different solutions. This fact is usually known as “flat land-

scape ” (Martí, Pantrigo, Duarte, & Pardo, 2013; Pardo et al., 2013).

When this happens, it is difficult to determine the search direction

since there is no way, according to the objective function, to de-

termine which solution is more promising. To mitigate this prob-

lem, researchers have opted for tiebreaking criteria or alternative

objective functions (Cavero, Pardo, & Duarte, 2021a; Cavero et al.,

2021b).

The 2DBMP is a min-max optimization problem and prelim-

inary experiments corroborate the existence of flat landscapes

throughout the solution space. Furthermore, for an input graph

with n = | V G | vertices and a host graph with m = � √

n � · � √

n �
vertices, the number of solutions in the search space is upper

bounded by m ! / (m − n)! , but the range of values obtained as the

evaluation with the objective function for that solutions are inte-

ger numbers in the interval [1 , 2 · (� √

n � − 1)] . Let us remember

that the evaluation of the objective function of the 2DBMP is di-

rectly related to the distance of adjacent input vertices measured

in the host graph (see Eq. (4)). Then, the number of possible ob-

jective function values is considerably smaller than the number of

solutions. Therefore, there might be many solutions with the same

value of the objective function. To overcome this difficulty, we pro-

pose a tiebreak criterion based on the frequency of a particular dis-

tance in a solution. More formally, given an input graph G (V G , E G)

and a solution ϕ, we define f l as the number of edges (u, v) of E G
with an associated distance in the host graph equal to l:

f l = |{ (u, v) ∈ E G : d(ϕ (u) , ϕ (v)) = l}| . (16)

Let l max be the maximum distance among all adjacent vertices

in the graph. It trivially holds that l max corresponds to the objective

function value of the problem for a particular solution (i.e., l max =

BW (G, ϕ)). Then, given an input graph G and an embedding ϕ, we

propose a tiebreaking function t defined as follows:

t(G, ϕ) =

l max ∑

l=1

n

l · f l . (17)

This equation is inspired by previous works related to circular

layout problems (Cavero et al., 2021a; Cavero et al., 2021b). It takes

into consideration not only the maximum distance of an embed-

ding, but also additional semantic information related to promising

solutions. Specifically, when the objective function value of two so-

lutions is equal, both solutions are evaluated using the function t .

The solution with the lower value of t is then chosen as the most

promising one. The rationale behind this decision is to penalize

those solutions with many edges with an associated distance close

to the value of the objective function. It is worth mentioning that

if the t value for two solutions is the same, they are considered as

equivalent (in terms of the tiebreak criterion).

Let us illustrate the use of the tiebreak criterion with an

example. To do so, we consider three different solutions ϕ 1 ,

ϕ 2 , and ϕ 3 . Let us assume that the objective function for

each solution is BW (G, ϕ 1) = max { 1 , 3 , 1 , 2 , 3 } = 3 , BW (G, ϕ 2) =

max { 1 , 2 , 1 , 2 , 3 } = 3 , and BW (G, ϕ 3) = max { 2 , 2 , 1 , 2 , 3 } = 3 , re-

spectively. Then, these three solutions are equal according to the

objective function of the problem (i.e., the maximum value across

all elements, which is 3). However, if we evaluate them with the

tiebreak criterion, we appreciate differences among the solutions:

t(G, ϕ 1) = 5

1 · 2 + 5

2 · 1 + 5

3 · 2 = 10 + 25 + 250 = 285 .

t(G, ϕ 2) = 5

1 · 2 + 5

2 · 2 + 5

3 · 1 = 10 + 50 + 125 = 185 .

t(G, ϕ 3) = 5

1 · 1 + 5

2 · 3 + 5

3 · 1 = 5 + 75 + 125 = 205 .

In this case, since t(G, ϕ 2) < t(G, ϕ 3) < t(G, ϕ 1) , we would con-

sider ϕ 2 as the most promising one. Similarly, we consider ϕ 3 more

promising than ϕ 1 .

4. Computational results

In this section, we present the experiments carried out to em-

pirically evaluate the algorithmic proposals introduced in this pa-

per. Particularly, we first propose a set of preliminary experiments

to configure the best variant of our algorithm and to illustrate the

influence of the advanced search strategies. Then, our best vari-

ant is compared with the best previous algorithm identified in the

state of the art.

1133

Chapter 10. Two-Dimensional Bandwidth Minimization Problem 195

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Table 1

Influence of the initial host vertex (answer to

Question #1 in Section 2.1).

Random Corner Center

Avg. OF 13.23 13.00 u8

CPU Time (s) 0.37 0.37 0.38

Dev. (%) 6.92 5.02 11.55

#Best 7 8 6

The computational tests have been performed over 90 in-

stances previously reported in the related literature on the 2DBMP

(Rodríguez-García et al., 2021). These instances are grouped into

two different subsets which include: 45 topologically diverse small

graphs (with | V G | ∈ [5 , 21] and | E G | ∈ [6 , 190]); and 45 represen-

tative graphs from the Harwell-Boeing collection (with | V G | ∈

[48 , 960] and | E G | ∈ [78 , 7442]). To ease future comparisons, all

instances have been made publicly available at https://www.

heuristicas.es/ .

All experiments have been performed on an AMD EPYC 7282

16-core virtual CPU with 16GB of RAM. The operating system used

was Ubuntu 20.04.2 64 bit LTS, and all algorithms were imple-

mented in Java 16.

4.1. Preliminary experiments

In this section, we identify the best configuration of the com-

ponents of the Iterated Greedy procedure proposed in this pa-

per. Also, we illustrate the merit of the proposed advanced search

strategies. The preliminary experiments have been performed over

a reduced set of instances consisting of 15% of the total considered

instances (i.e., 13 graphs). We will refer to this subset of instances

as the preliminary set.

For each of the experiments carried out, we report the follow-

ing metrics: the average value of the objective function (Avg. OF),

the total execution time in seconds (CPU Time (s)), the average de-

viation to the best solution found in the experiment (Dev. (%)) and

the number of best solutions found in the experiment (#Best).

The first set of experiments performed is devoted to configure

the best variant of the greedy constructive procedure described

in Section 2.1 , by trying to find the best answer to the questions

raised in that section. Notice that the parameters are studied one

by one, varying the values for the selected parameter and fixing

the value for the rest of parameters.

Particularly, in Table 1 we analyse the proposed strategies to

determine which is the most suitable host vertex to perform

the first assignation (denoted as the answer to Question #1 in

Section 2.1). The results reported in Table 1 correspond to a 100

of constructions where the input vertex has been chosen at ran-

dom, g 1 is configured with w 1 = 0 . 5 and w 2 = 0 . 5 (i.e., both have

the same weight), and g 2 is used as the criterion to determine the

host vertices in the following assignations. With this configuration,

starting the construction from a corner host vertex seems to be the

best alternative, since the constructive procedure is able to reach

the largest number of best solutions and the smallest deviation to

the best solution.

In this case, we do not need to perform an experiment to select

the most suitable input vertex to start the construction. This issue

has been solved by starting the construction, at least, once from

every input vertex.

Then, we analyse the influence of the parameters w 1 and w 2 in

g 1 which determine the selection of the following input vertices

further than the first assignation (denoted as the answer to Ques-

tion #2 in Section 2.1). Let us remember, that w 1 and w 2 balance

the influence of the adjacent assigned/unassigned vertices respec-

tively, for every input vertex being evaluated with g1 . Particularly,

Table 2

Influence of the host vertex selected after the first assignation

based on the weights w 1 and w 2 in g 1 (answer to Question #3

in Section 2.1).

Diagonal Sequential ZigZag g 2

Avg. OF 34.23 21.46 18.77 10.08

CPU Time (s) 4.68 4.51 4.48 5.79

Dev. (%) 283.19 138.11 89.66 6.15

#Best 0 0 1 12

in Fig. 6 we depict the average performance of the constructive

procedure for five different configurations of these two parame-

ters, when the number of constructions increases from 1 to 2500.

Notice that in this experiment the input/host vertices of the first

assignation are selected following the best configuration found in

the previous experiment. As we can observe in the figure, the com-

bination w 1 = 1 . 00 , w 2 = 0 . 00 is systematically the best configura-

tion and therefore it will be selected for future experiments. Since

the sum of w 1 and w 2 equals 1, the selected configuration indicates

that, for this problem, the value of g 1 is fully determined by the al-

ready assigned adjacent vertices to the vertex being evaluated. Fur-

thermore, the benefits obtained by performing multiple construc-

tions do not improve significantly after 1500 constructions.

Finally, we analyze the influence of the strategies proposed to

select the host vertex in every assignation but the first (denoted as

the answer to Question #3 in Section 2.1). Particularly, in Table 2 ,

we evaluate the four strategies proposed for this task. The reported

results are obtained as the average of the best solutions found for

each instance after 1500 constructions. Again, the input/host ver-

tices of the first assignation are selected following the best config-

uration found with the criteria previously defined, and g 1 is con-

figured with w 1 = 1 and w 2 = 0 .

On the one hand, according to the selection of the vertices of

the host graph, g 2 is easily recognized as the best strategy since

it finds the best quality solutions (lower average of the objec-

tive function, lower deviation, and larger number of best solutions

found). Among the pattern-based strategies, zigzag is the most

prominent.

To sum up, the final configuration of our constructive procedure

has been set to be executed for 1500 constructions, and the best

overall solution is selected. Each construction starts from a differ-

ent initial input vertex (if all vertices have been used at least once,

the procedure selects a repeated vertex to start with). The initial

host vertex is set to be one of the corner vertices of the grid. The

following input vertices are selected one by one with g 1 config-

ured with w 1 = 1 and w 2 = 0 . Finally, g 2 is selected as the method

to determine the host vertices for any assignation performed after

the first one.

Our next preliminary experiment is devoted to test the influ-

ence of the advanced strategies proposed in Section 3 in the local

search procedure described in Section 2.2 . First, we evaluated the

exploration of the neighborhood defined by the move operator fol-

lowing both: a first improvement and a best improvement strategy.

We found that both strategies reached the same average quality of

the objective function (32.54) for the preliminary data set. How-

ever, the CPU time of the local search using a best improvement

strategy was 5 times larger than using a first improvement strat-

egy. Then, we configured our local search procedure with a first

improvement strategy.

In Table 3 , we report the results obtained when incorporat-

ing each of the three proposed advanced strategies to the local

search procedure (i.e., the tiebreak criterion (T), the efficient move

calculation (E), and the neighborhood reduction strategy (R)). We

also include in the comparison the original local search procedure

in isolation (LS). The results provided in the table are obtained

1134

196 Chapter 10. Two-Dimensional Bandwidth Minimization Problem

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 6. Evolution of the average objective function value when increasing the number of constructions for different values of w 1 and w 2 in g 1 .

Table 3

Contribution of advanced strategies to the local search.

LS LS + T LS + T+E LS + T+E+R

Avg. OF 32.54 7.77 7.77 7.85

CPU Time (s) 72.51 7873.28 22.76 2.18

Dev. (%) 350.04 4.62 4.62 7.05

#Best 0 8 8 9

after a single execution of each method, where the initial solu-

tion was the same for all compared methods and it was randomly

constructed.

As we can observe in Table 3 the inclusion of the tiebreak

criterion (LS+T) drastically improves the quality of the solutions

obtained with respect to the original local search (LS) although

the time increases considerably. This increase in the time needed

by the method is due to the larger exploration of solutions per-

formed by the LS+T. As expected, LS+T and LS+T+E were able to

reach the same solutions in terms of quality, however, then the ef-

ficient move calculation reduces the time needed to reach them

in 99.71%. Finally, the method including the proposed neighbor-

hood reduction strategy, LS+T+E+R, is able to reduce by one or-

der of magnitude the time needed by LS+T+E, slightly deteriorat-

ing the average quality of the solutions obtained. Both behaviors

are explained by the fact that the number of solutions explored

is considerably smaller. We consider that LS+T+E+R is the most

promising combination as a balance between computing time and

quality.

Next, we study the best procedures for the destruction and

reconstruction phase. In this experiment, we analyse all possible

combinations of the strategies proposed in Section 2.3 . Specifically,

we evaluate three destruction strategies: random assignations (ran-

dom), assignations of random areas (random area), and assigna-

tions of areas contributing to the objective function of the solu-

tion (greedy area). Additionally, as far as the reconstruction phase

is concerned, we evaluate three proposals: g 1 + random, random

+ g 2 , and g 1 + g 2 . Each proposal includes two strategies to deter-

mine the next assignation. The first strategy selects an input unas-

signed vertex, while the second strategy selects an available host

vertex.

In Table 4 , we present the results of this experiment. Particu-

larly, each Iterated Greedy configuration has been executed for a

maximum of 300 iterations, with the additional condition that the

method is halted if it does not find an improvement of the best

solution found in the last 150 iterations. The best configuration is

obtained when the destruction is made greedily (“Greedy area” in

the table) and the reconstruction is made by using the “random

+ g 2 ” criterion. The second best variant is the one where the de-

struction is made at random (“Random” in the table) and the re-

construction uses “random + g 2 ”. However, this variant finds very

similar solutions in terms of quality in half time. Therefore, as a

trade-off between quality and time, we have selected this second

configuration for our final proposed procedure.

Finally, it is important to remark that we performed a fine-

tuning experiment to adjust the parameters: maximum number of

iterations (maxIter) and the maximum number of iterations with-

out improving (maxNotImprIter) introduced in the Algorithm 1 .

Particularly, we tested different values of maxIter in the range

[100 , 1000] in steps of 50. Similarly, we studied the behavior of

maxNotImprIter) with different percentages (0.25, 0.5, and 0.75) of

the maxIter . For the sake of brevity, we do not include all the val-

ues of this experiment in here. However, among the proposed con-

figurations, we selected maxIter = 300 and maxNotImprIter = 0 . 75 ·
maxIter = 225 for our final design, as a balance of quality and CPU

time.

To conclude the preliminary experiments, we compare our

three main algorithmic proposals to verify if an increase in the

complexity of the method also results in an improvement in the

obtained results. Specifically, we propose two executing scenar-

ios: a single run of each method and running each method iter-

atively for 100 seconds. Notice that in this experiment, the solu-

tion produced by the greedy constructive is provided to the local

search and to the Iterated Greedy procedure. The results obtained

are reported in Table 5 . As expected, in the single execution sce-

nario, the IG is the best method in terms of average of the ob-

jective function, deviation and # Best solutions found. However, it

is also the most time-consuming procedure. On the other hand,

when running all methods for 100 seconds, the differences among

the results obtained are reduced, but IG is still the best overall

method.

1135

Chapter 10. Two-Dimensional Bandwidth Minimization Problem 197

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Table 4

Influence of the destruction and reconstruction strategies in the performance of the greedy constructive

procedure.

Destruction Reconstruction Avg. OF CPU Time (s) Dev. (%) #Best

Random g 1 + random 5.46 154.21 9.29 8

random + g 2 5.23 60.20 3.85 11

g 1 + g 2 5.46 43.13 7.37 8

Random

area

g 1 + random 5.38 145.25 6.41 9

random + g 2 5.31 110.44 4.81 10

g 1 + g 2 5.46 65.79 7.37 8

Greeedy

area

g 1 + random 5.31 147.90 4.81 10

random + g 2 5.15 119.62 0.96 12

g 1 + g 2 5.38 63.62 6.09 9

Table 5

Behaviour of the proposed strategies in a single execution and running for 100 seconds.

Single execution 100 seconds

Constructive LS + T+E+R IG Constructive LS + T+E+R IG

Avg. OF 10.08 6.00 5.23 9.08 5.38 5.23

CPU Time (s) 6.05 6.43 84.71 102.79 106.86 106.90

Dev. (%) 95.69 13.32 0.00 75.62 4.49 1.92

#Best 0 5 13 0 10 12

Table 6

Results obtained by the compared methods on the 41 instances of the Small graphs data set with a known optimal, and on the 45 instances of the Harwell-

Boeing data set.

Small graphs (41) Harwell-Boeing (45)

M3 (Rodríguez-García et al., 2021) BVNS (Rodríguez-García et al., 2021) IG BVNS (Rodríguez-García et al., 2021) IG

Avg. OF 2.17 2.32 2.17 7.11 4.84

CPU Time (s) 1957.65 3.64 0.02 439.63 102.01

Dev. (%) 0.00 12.20 0.00 51.77 0.00

#Best 41 35 41 5 45

4.2. Final experiments

In this section, we compare our best Iterated Greedy (IG) vari-

ant with the best previous algorithms in the state of the art: the

best Constraint Satisfaction Programming (CSP) model proposed in

Rodriguez-Tello et al. (2019) (denoted M3) and the Basic Variable

Neighborhood Search (BVNS) proposed in Rodríguez-García et al.

(2021) . Both procedures were described in the literature review.

Notice that we have compared our procedure with the original

source code implemented and provided by the authors. To make

the fairest comparison possible, instead of directly using the re-

sults reported in Rodríguez-García et al. (2021) , the BVNS proce-

dure was run again with the configuration indicated by the au-

thors, in the same execution environment as the one used for our

code.

In Table 6 we report the quality indicators presented in the pre-

liminary experiment: the average deviation, the average execution

time, and the number of best solutions found for each of the sub-

sets of instances studied: the diverse small graph subset and the

Harwell-Boeing subset.

In particular, on the left side of Table 6 , we compare our IG

with the BVNS and M3 over the set of diverse small graphs. Note

that M3 was unable to complete the search for 4 instances out of

45 within the established time limit (72h). Therefore, we have re-

moved those instances from this comparison to fairly illustrate the

behavior of the proposed algorithm. Additionally, in Table A.1 we

include the individual results per instance for each of the 45 in-

stances of the complete subset. We observe in Table 6 that M3

and IG were able to reach the optimal solution for the 41 instances

studied, followed by BVNS with 35. However, the time required by

IG was 5 orders of magnitude shorter than M3 and 2 orders of

magnitude shorter than BVNS.

Similarly, on the right side of Table 6 , we compare IG and BVNS

over the Harwell-Boeing subset. In this case, M3 was not able to

finish within the maximum time limit and therefore it has been

excluded from this comparison. Again, to ease future comparisons,

we include the individual of each instance in Table A.2 . Based on

the results reported in Table 6 we observe that IG finds the best

solution for all the graphs studied (45) in less computational time

(102.01 s) than the BVNS procedure (439.63 s). Consequently, the

average value of the objective function is lower in the solutions

obtained by IG than in the solutions obtained by BVNS. Finally, we

highlight that BVNS has a 51.77% deviation from the best solutions

found, obtaining only five best solutions out of 45 instances.

To complement the previous experiment, we conducted a

Wilcoxon signed rank test. The resulting p -value < 0 . 0 0 0 01 con-

firms the significance of the results obtained when comparing the

methods for the tested instances.

5. Conclusions

In this paper, we tackle the Two-Dimensional Bandwidth Mini-

mization Problem by proposing several efficient heuristic strategies

to find high-quality solutions for the problem. The 2DBMP belongs

to the graph layout family of problems, and it has been previously

approached from an exact perspective, based on Constraint Satis-

faction Programming, and from a heuristic perspective, based on

the Variable Neighborhood Search metaheuristic.

We have developed an efficient and effective Iterated Greedy al-

gorithm to deal with the 2DBMP, including an exhaustive study of

multiple greedy criteria at the destruction and reconstruction steps

within the IG framework. In addition, we introduce a novel local

search procedure based on swap moves of vertices, which includes

three advanced enhancement strategies. It is worth mentioning

that several of the strategies proposed in this paper have further

1136

198 Chapter 10. Two-Dimensional Bandwidth Minimization Problem

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

applicability to other optimization problems, especially those re-

lated to Graph Layout Problems.

The results obtained in this paper emphasize the importance of

using a tiebreak criterion to guide the search through flat land-

scape regions. This is a key strategy when the objective function is

not useful in distinguishing between two solutions with the same

objective function value. Also, we identified that classical move op-

erators applied to Graph Layout Problems, such as the 2DBMP, usu-

ally drive to extensive neighborhoods. In this kind of scenario, lo-

cal search procedures might be inefficient when the time limit is

short. To overcome this drawback, we propose two general strate-

gies with applicability to other problems: a speed-up technique to

evaluate the objective function of neighbor solutions; and a neigh-

borhood reduction technique based on the exploration of the most

promising neighbor solutions. Moreover, the graph structure of ei-

ther the input and host graphs is key in determining the best

heuristic strategy in the context of GLPs. Particularly, the number

of adjacent vertices of each vertex tends to contribute to relevant

information at the time of constructing new solutions.

Finally, we would like to highlight that the best algorithmic

variant of our proposal has been compared to the best previous

method in the state of the art, over a previously reported set of

instances. The obtained results, supported by statistical tests, cor-

roborate the merit of our proposal and establish it as a new state-

of-the-art algorithm for the 2DBMP.

Acknowledgment

This research has been partially supported by the Ministerio de

Ciencia, Innovación y Universidades (Grant Ref. PGC2018-095322-

B-C22, PID2021-125709OA-C22 and FPU19/04098) and by the Co-

munidad de Madrid and the European Regional Development Fund

(Grant Ref. P2018/TCS-4566). We also thank M.A. Rodrguez et al.,

authors of the previous most competitive method in the state of

the art Rodríguez-García et al. (2021) for sharing their code with

us.

Appendix A. Individual results per instance

In Table A.1 and Table A.2 we report the individual results per

instance for the Small and Harwell-Boeing data sets. These values

were used to calculate the values presented in Table 6 .

Table A.1

Individual results per instance obtained from the small data set. Note that a symbol “-” in the table indicates that the algorithm was

not able to solve the instance in a maximum CPU time of 72h.

M3 BVNS IG

Instance Best OF CPU Time (s) Dev. (%) OF CPU Time (s) Dev. (%) OF CPU Time (s) Dev. (%)

p2p3 1 1 0.20 0.00 2 0.11 1.00 1 0.01 0.00

p3p3 1 1 0.26 0.00 2 0.38 1.00 1 0.01 0.00

p4p5 1 1 0.22 0.00 2 7.84 1.00 1 0.03 0.00

p2c3 2 2 0.24 0.00 2 0.16 0.00 2 0.01 0.00

p3c3 2 2 0.20 0.00 2 0.54 0.00 2 0.01 0.00

p4c5 2 2 0.53 0.00 3 7.55 0.50 2 0.03 0.00

c3c3 2 2 0.24 0.00 2 0.83 0.00 2 0.02 0.00

c3c4 2 2 0.28 0.00 2 2.13 0.00 2 0.03 0.00

c4c5 2 2 0.28 0.00 3 9.26 0.50 2 0.04 0.00

k3k4 3 3 0.55 0.00 3 2.59 0.00 3 0.02 0.00

k4k5 4 4 74192.71 0.00 4 20.00 0.00 4 0.05 0.00

c3k4 3 3 0.60 0.00 3 2.83 0.00 3 0.03 0.00

c4k5 3 3 2.18 0.00 3 17.86 0.00 3 0.05 0.00

p3k4 2 2 0.27 0.00 2 2.58 0.00 2 0.02 0.00

p4k5 3 3 1.93 0.00 3 14.81 0.00 3 0.04 0.00

path10 1 1 0.30 0.00 1 0.44 0.00 1 0.01 0.00

path15 1 1 0.35 0.00 2 1.32 1.00 1 0.02 0.00

path20 1 1 0.31 0.00 1 4.04 0.00 1 0.02 0.00

cycle10 1 1 0.24 0.00 1 0.40 0.00 1 0.01 0.00

cycle15 2 2 0.50 0.00 2 1.19 0.00 2 0.02 0.00

cycle20 1 1 0.28 0.00 1 4.30 0.00 1 0.03 0.00

wheel5 2 2 0.21 0.00 2 0.12 0.00 2 0.00 0.00

wheel7 2 2 0.23 0.00 2 0.35 0.00 2 0.01 0.00

wheel10 2 2 0.41 0.00 2 1.17 0.00 2 0.02 0.00

wheel15 3 3 4444.86 0.00 3 4.11 0.00 3 0.02 0.00

wheel20 3 - - - 3 11.93 0.00 4 0.03 0.33

cyclePow10-2 2 2 0.25 0.00 2 1.12 0.00 2 0.02 0.00

cyclePow15-2 2 2 0.28 0.00 2 3.58 0.00 2 0.02 0.00

cyclePow20-2 2 2 0.30 0.00 2 9.15 0.00 2 0.04 0.00

cyclePow10-10 4 4 0.21 0.00 4 3.74 0.00 4 0.02 0.00

cyclePow15-10 6 - - - 6 15.01 0.00 6 0.04 0.00

cyclePow20-10 6 - - - 6 20.00 0.00 6 0.08 0.00

bipartite3-3 2 2 0.26 0.00 2 0.18 0.00 2 0.01 0.00

bipartite3-4 3 3 0.33 0.00 3 0.28 0.00 3 0.02 0.00

bipartite4-4 3 3 0.33 0.00 3 0.56 0.00 3 0.02 0.00

bipartite5-5 3 3 0.78 0.00 3 1.46 0.00 3 0.02 0.00

bipartite7-8 4 4 1050.31 0.00 4 9.03 0.00 4 0.04 0.00

bipartite10-10 5 - - - 5 20.00 0.00 5 0.21 0.00

petersen 2 2 0.31 0.00 2 0.77 0.00 2 0.01 0.00

complete5 2 2 0.28 0.00 2 0.12 0.00 2 0.01 0.00

complete10 4 4 14.03 0.00 4 4.15 0.00 4 0.02 0.00

tree2-2 1 1 0.31 0.00 1 0.11 0.00 1 0.01 0.00

tree2-3 2 2 0.31 0.00 2 0.99 0.00 2 0.01 0.00

tree3-2 2 2 0.25 0.00 2 1.25 0.00 2 0.02 0.00

tree2-4 2 2 546.79 0.00 2 5.93 0.00 2 0.04 0.00

1137

Chapter 10. Two-Dimensional Bandwidth Minimization Problem 199

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Table A.2

Individual results per instance obtained from the Harwell-Boeing data set.

BVNS (Rodríguez-García et al., 2021) IG

Instance Best OF CPU Time (s) Dev. (%) OF CPU Time (s) Dev. (%)

bcsstk01 5 5 48.00 0.00 5 0.35 0.00

can___62 2 3 62.00 50.00 2 0.22 0.00

nos4 4 4 100.01 0.00 4 1.13 0.00

bcspwr03 3 4 118.01 33.33 3 0.97 0.00

bcsstk04 8 9 132.01 12.50 8 33.24 0.00

bcsstk22 3 4 138.01 33.33 3 1.76 0.00

can__144 4 5 144.01 25.00 4 2.84 0.00

bcsstk05 7 7 153.01 0.00 7 13.82 0.00

can__161 4 6 161.01 50.00 4 4.31 0.00

dwt__198 4 5 198.01 25.00 4 6.49 0.00

dwt__209 5 6 209.01 20.00 5 12.95 0.00

dwt__221 4 5 221.01 25.00 4 7.26 0.00

can__229 5 7 229.01 40.00 5 11.65 0.00

dwt__234 4 4 234.01 0.00 4 11.46 0.00

nos1 3 4 237.01 33.33 3 4.68 0.00

dwt__245 4 6 245.02 50.00 4 8.69 0.00

lshp_265 3 6 265.00 100.00 3 9.31 0.00

bcspwr04 4 7 274.02 75.00 4 13.05 0.00

ash292 4 6 292.00 50.00 4 9.84 0.00

can__292 6 7 292.00 16.67 6 31.82 0.00

dwt__307 5 7 307.00 40.00 5 25.23 0.00

dwt__310 4 5 310.00 25.00 4 10.78 0.00

dwt__361 5 8 361.01 60.00 5 25.45 0.00

plat362 7 8 362.01 14.29 7 110.03 0.00

bcsstk07 6 9 420.01 50.00 6 298.42 0.00

bcspwr05 5 5 443.01 0.00 5 29.52 0.00

can__445 7 9 445.01 28.57 7 59.74 0.00

bcsstk20 4 6 485.01 50.00 4 39.75 0.00

494_bus 5 6 494.01 20.00 5 41.65 0.00

dwt__503 6 8 503.01 33.33 6 83.16 0.00

lshp_577 5 8 577.00 60.00 5 63.92 0.00

dwt__607 5 9 607.00 80.00 5 107.66 0.00

662_bus 5 7 662.01 40.00 5 56.83 0.00

nos6 5 14 960.01 180.00 5 49.94 0.00

685_bus 5 8 685.01 60.00 5 51.32 0.00

can__715 8 11 715.01 37.50 8 698.93 0.00

nos7 6 10 729.01 66.67 6 174.52 0.00

dwt__758 5 7 758.01 40.00 5 127.15 0.00

lshp_778 4 9 778.01 125.00 4 142.28 0.00

bcsstk19 6 9 817.00 50.00 6 399.65 0.00

dwt__878 5 9 878.00 80.00 5 192.83 0.00

gr_30_30 2 9 900.01 350.00 2 45.41 0.00

dwt__918 6 9 918.01 50.00 6 431.28 0.00

nos2 4 6 957.01 50.00 4 106.14 0.00

nos3 7 14 960.01 100.00 7 1032.95 0.00

References

Abdinnour-Helm, S., & Hadley, S. W. (20 0 0). Tabu search based heuristics for multi-

-floor facility layout. International Journal of Production Research, 38 (2), 365–383 .
Bezrukov, S. L., Chavez, J. D., Harper, L. H., Röttger, M., & Schroeder, U. P. (1998).

Embedding of hypercubes into grids. In L. Brim, J. Gruska, & J. Zlatuka (Eds.),
Mathematical foundations of computer science 1998 . In Lecture notes in computer

science (pp. 693–701). Berlin, Heidelberg: Springer .
Bhatt, S. N., & Thomson Leighton, F. (1984). A framework for solving VLSI graph

layout problems. Journal of Computer and System Sciences, 28 (2), 300–343 .

Booch, G. (2005). The unified modeling language user guide . Pearson Education India .
Cavero, S., Pardo, E. G., & Duarte, A. (2021a). Influence of the alternative objec-

tive functions in the optimization of the cyclic cutwidth minimization prob-
lem. In Advances in artificial intelligence . In Lecture notes in computer science

(pp. 139–149). Cham: Springer International Publishing .
Cavero, S., Pardo, E. G., Laguna, M., & Duarte, A. (2021b). Multistart search for the

cyclic cutwidth minimization problem. Computers & Operations Research, 126 ,

105116 .
Cavero, S., Pardo, E. G., & Duarte, A. (2022a). A general variable neighborhood search

for the cyclic antibandwidth problem. Computational Optimization and Applica-
tions, 81 (2), 657–687 .

Cavero, S., Pardo, E. G., Duarte, A., & Rodriguez-Tello, E. (2022b). A variable neigh-
borhood search approach for cyclic bandwidth sum problem. Knowledge-Based

Systems, 246 , 108680 .

Chung, F. (1988). Labelings of graphs. Selected topics in graph theory, 3 , 151–168 .
Craw, S. (2010). Manhattan distance (pp. 639–639)). Boston, MA: Springer US .

Del Corso, G. M., & Manzini, G. (1999). Finding exact solutions to the bandwidth
minimization problem. Computing, 62 (3), 189–203 .

Delmaire, H., Díaz, J. A., Fernández, E., & Ortega, M. (1999). Reactive grasp and tabu

search based heuristics for the single source capacitated plant location problem.
INFOR: Information Systems and Operational Research, 37 (3), 194–225 .

Díaz, J., Petit, J., & Serna, M. (2002). A survey of graph layout problems. ACM Com-
puting Surveys (CSUR), 34 (3), 313–356 .

Feo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6 (2), 109–133 .
Gurari, E. M., & Sudborough, I. H. (1984). Improved dynamic programming algo-

rithms for bandwidth minimization and the mincut linear arrangement prob-
lem. Journal of Algorithms, 5 (4), 531–546 .

Hansen, P., & Mladenovi ́c, N. (2006). First vs. best improvement: An empirical study.
Discrete Applied Mathematics, 154 (5), 802–817 .

Hansen, P., Mladenovi ́c, N., Todosijevi ́c, R., & Hanafi, S. (2017). Variable neighbor-

hood search: Basics and variants. EURO Journal on Computational Optimization,
5 (3), 423–454 .

Hromkovi ̌c, J., Müller, V., S ̀ykora, O., & Vrt’o, I. (1992). On embedding interconnec-
tion networks into rings of processors. In International conference on parallel ar-

chitectures and languages Europe (pp. 51–62). Springer .
Huerta-Muñoz, D. L., Ríos-Mercado, R. Z., & Ruiz, R. (2017). An iterated greedy

heuristic for a market segmentation problem with multiple attributes. European

Journal of Operational Research, 261 (1), 75–87 .
Jinjiang, Y., & Sanming, Z. (1995). Optimal labelling of unit interval graphs. Applied

Mathematics, 10 (3), 337–344 .
Lai, Y.-L., & Williams, K. (1999). A survey of solved problems and applications

on bandwidth, edgesum, and profile of graphs. Journal of Graph Theory, 31 (2),
75–94 .

Lin, L., & Lin, Y. (2010). Two models of two-dimensional bandwidth problems. Infor-

mation Processing Letters, 110 (11), 469–473 .

1138

200 Chapter 10. Two-Dimensional Bandwidth Minimization Problem

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Lin, L., & Lin, Y. (2011). Square-root rule of two-dimensional bandwidth problem.
RAIRO-Theoretical Informatics and Applications, 45 (4), 399–411 .

Lin, Y. (1994). The cyclic bandwidth problem. Journal of Systems Science and Com-
plexity, 7 (3), 282–288 . Cited By 12

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In Handbook
of metaheuristics (pp. 320–353). Springer .

López-Sánchez, A., Sánchez-Oro, J., & Hernández-Díaz, A. (2019). GRASP and VNS for
solving the p-next center problem. Computers & Operations Research, 104 , 295–

303 .

Martí, R., Pantrigo, J. J., Duarte, A., & Pardo, E. G. (2013). Branch and bound for
the cutwidth minimization problem. Computers & Operations Research, 40 (1),

137–149 .
McAllister, A. et al. (1999). A new heuristic algorithm for the linear arrangement

problem.
Michiels, W., Aarts, E. H., & Korst, J. (2018). Theory of local search. In Handbook of

heuristics (pp. 299–339). Springer .

Mladenovic, N., Urosevic, D., Pérez-Brito, D., & García-González, C. G. (2010). Vari-
able neighbourhood search for bandwidth reduction. European Journal of Opera-

tional Research, 200 (1), 14–27 .
Papadimitriou, C. H. (1976). The np-completeness of the bandwidth minimization

problem. Computing, 16 (3), 263–270 .
Pardo, E. G., García-Sánchez, A., Sevaux, M., & Duarte, A. (2020). Basic variable

neighborhood search for the minimum sitting arrangement problem. Journal of

Heuristics, 26 (2), 24 9–26 8 .
Pardo, E. G., Martí, R., & Duarte, A. (2016). Linear layout problems. In R. Martí,

P. Panos, & M. G. Resende (Eds.), Handbook of heuristics (pp. 1–25). Cham:
Springer International Publishing .

Pardo, E. G., Mladenovi ́c, N., Pantrigo, J. J., & Duarte, A. (2013). Variable formulation
search for the cutwidth minimization problem. Applied Soft Computing, 13 (5),

2242–2252 .

Pérez-Peló, S., Sánchez-Oro, J., Gonzalez-Pardo, A., & Duarte, A. (2021). A fast vari-
able neighborhood search approach for multi-objective community detection.

Applied Soft Computing, 112 , 107838 .
Petit, J. (2004). Experiments on the minimum linear arrangement problem. ACM

Journal of Experimental Algorithmics, 8 , 2.3 .
Ren, J., Hao, J.-K., & Rodriguez-Tello, E. (2019). An iterated three-phase search ap-

proach for solving the cyclic bandwidth problem. IEEE Access, 7 , 98436–98452 .
Ren, J., Hao, J.-K., Rodriguez-Tello, E., Li, L., & He, K. (2020). A new iterated local

search algorithm for the cyclic bandwidth problem. Knowledge-Based Systems,

203 , 106136 .
Rodriguez-Tello, E., Hao, J.-K., & Torres-Jimenez, J. (2008a). An effective two-stage

simulated annealing algorithm for the minimum linear arrangement problem.
Computers & Operations Research, 35 (10), 3331–3346 .

Rodriguez-Tello, E., Hao, J.-K., & Torres-Jimenez, J. (2008b). An improved simulated
annealing algorithm for bandwidth minimization. European Journal of Opera-

tional Research, 185 (3), 1319–1335 .

Rodriguez-Tello, E., Narvaez-Teran, V., & Lardeux, F. (2019). Dynamic multi-armed
bandit algorithm for the cyclic bandwidth sum problem. IEEE Access, 7 ,

40258–40270 .
Rodríguez-García, M. A., Sánchez-Oro, J., Rodriguez-Tello, E., Monfroy, E., &

Duarte, A. (2021). Two-dimensional bandwidth minimization problem: Exact
and heuristic approaches. Knowledge-Based Systems, 214 , 106651 .

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for

the permutation flowshop scheduling problem. European Journal of Operational
Research, 177 (3), 2033–2049 .

Stützle, T., & Ruiz, R. (2018). Iterated greedy (pp. 547–577)). Cham: Springer Interna-
tional Publishing .

Tsang, E. (2014). Foundations of constraint satisfaction: The classic text . Books on De-
mand .

1139

Chapter 10. Two-Dimensional Bandwidth Minimization Problem 201

Chapter 11

Other related publications

This chapter collects some additional publications, and papers under review, which are not

part of this Doctoral Thesis, but they are closely related and has being performed during

the period that the Ph.D. candidate was performing his Doctoral Thesis.

These articles and publications provide relevant information on related topics and can

be a useful complement to the main conclusions of the Doctoral Thesis, even if they are

not directly related to the research conducted. The purpose of this chapter is to provide the

reader with a sample of these articles and publications for further reading and reference.

Next, we present the references to the articles along with a brief description.

1. M. Robles, S. Cavero, and E. G. Pardo. BVNS for the Minimum Sitting Arrangement

problem in a cycle. In Advances in Artificial Intelligence: 9th International Confer-

ence on Variable Neighborhood Search (ICVNS2022), in Abu Dhabi, U.A.E., 2022.

In press.

In this research, we study a particular CGLP where the input graph is denoted as a

“signed graph”. This kind of graphs is characterized by adding a weight to the edges of the

graph (in this case, the weight can be +1/-1). This input graph is embedded in a cycle host

graph trying to minimize the number of negative adjacent vertices closer than a positive

adjacent vertex, for each vertex of the input graph. Specifically, when such a situation

occurs, it is denoted as “error”. Finally, the objective is to minimize the sum of errors of an

embedding. This problem is a variant of the Minimum Sitting Arrangement Problem [190].

203

204 Chapter 11. Other related publications

This work is a preliminary investigation and was submitted to the 9th International

Conference on Variable Neighborhood Search, (ICNVS), held in Abu Dhabi (U.A.E). The

article has been accepted for publication and it is currently in press at the journal Advances

in Artificial Intelligence as part of the collection Lecture Notes in Computer Science (SJR /

Q2).

2. S. Cavero, E. G. Pardo, F. Glover and R. Martı́. SOS Tabu Search for Improved

Hierarchical Graph Drawing. Expert Systems With Applications. Under review.

As mentioned in Section 1.2.3, one of the main applications of GLPs is the drawing

of graphs. During the international stay at the University of Colorado, a collaboration with

two renowned researchers on hierarchical graph drawings was performed. This problem,

although it does not belong to the GLP family, is closely related to them and many of the

strategies and algorithms can be transferred to this area.

In particular, in this research we tackle the drawing of hierarchical graphs that consist

of representing a graph based on the alignment of its edges, while reducing the number

of crossing. The work developed was collected in an article that has been submitted to

the journal Expert Systems With Applications (JCR / Q1) and, at the time of writing this

dissertation, is under review.

3. R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, and J. M. Colmenar. A prac-

tical methodology for reproducible experimentation: an application to the double-row

facility layout problem. Evolutionary Computation, 1–35, 2022 [161].

In this research, we do not work on any problem belonging to the GLP family, but

we propose a methodology that promotes reproducible experimentation. Therefore, despite

the fact that from the point of view of the problems approached, it does not have a close

relationship with GLPs, from the methodological point of view it is of great interest and

the knowledge learned in this research was applied in the projects developed later.

This work has been developed with colleagues from the group GRAFO and it proposes

a practical methodology to favor reproducibility in optimization problems tackled with

stochastic methods, such as the one addressed in this Doctoral Thesis. This methodology

is organized into three main steps, in which the researcher is helped by specific tools that

Chapter 11. Other related publications 205

use state-of-the-art methods for this process. In particular, in this research, we work on

concepts that in this Doctoral Thesis have been given special importance such as parameter

adjustment, and the selection of a preliminary set of instances or metrics to compare the

performance of various algorithms.

The article has been published in “Evolutionary Computation journal”, indexed in the

JCR index under the categories “Computer Science, Artificial Intelligence” (Q2) and “Com-

puter Science, Theory and Methods” (Q1) [161].

Part III

Appendix

207

Appendix A

Example of solution visualizations

There are two main objectives when visualizing a solution in the context of this Doctoral

Thesis. The first one is to graphically analyze the process of construction and improve-

ment of solutions until the final solution is reached. For example, Figure A.1 illustrates

the evolution of the search process when moving from the solution obtained from greedy

constructive procedure until the best solution found for the CCMP is reached.

The second objective is two to illustrate the solutions that may be optimal, or may

be thought to be optimal, in order to analyze their structure and find possible properties

that may be useful for proposing more effective methods. Figure A.2 illustrates the best

solutions found for three instances of the CAB.

209

210 Appendix A. Example of solution visualizations

41

10

8

9

7

6

12

13

11

14
16

18151720
23

19

22

24

21

25

27

34

26

28

32

2

3

5

4

29

30

31

33

37

35

39
36

43 38 42 44
40

45

46

49

47

48

50

51

53

52

54

55

1

(a)

47

48

51

53

52

54

10

7

6

12
13

11161815
17

20

19

22

24

21

25

27

34

28

32

2

49

50

31

14

29

8

3

23

55

46
26

9 41 5 4
30

33

37

35

39

36

43

38

42

44

40

45

1

(b)

37

35

39

36

43

38

42

44

40

45
53

525476
12

13

16

18

15

17

20

19

22

28

32

2

49

50

31

14

29

8

24

25

21

10
51

3 11 34 27
48

47

23

55

46

26

9

41

5

4

30

33

1

(c)

14

26

7

4

44

22

48

47

50

29
18

381941
39

8

9

40

37

28

54

51

21

42

17

24

16

23

52

20

27

30

15

34

53
10

35 45 43 6
12

11

25

49

5

13

55

46

32

31

33

36

1

2

3

(d)

Figure A.1 Solutions obtained after the construction phase (a) and during the improve-
ment process (b), (c), and (d) of the CompleteSplit graph when solving the Cyclic
Cutwidth Minimization Problem. This graph has 55 vertices and 260 edges. The best
objective function value (ccw) found is 68 corresponding to solution (d).

Appendix A. Example of solution visualizations 211

10

11

35

33

34

31

32

7

8

30

27

28

29

5

6

24

25

26

21

22

23

3

4

18

19

20

15

16

17

1

2

12

13

149

0

(a)

44

45

19

20

21

22

17

18

23

24

15

16

25

26

13

14

27

28

11

12

29

30

9

10

31

32

7

8

33

34

5

6

35

36

3

4

37

38

1

2

39

40

49

41

42

47

48

43 46

0

(b)

5

2

14

29

18

8

15

7

20

23

0

22

16

21

26

6

3

28

9

24

31

13
4

1

30

17

25
27

12

10

11

19

(c)

Figure A.2 Example of solutions for the caterpillar 9 4 (a), cycle 50 (b) and ibm32
(c) graphs when solving the Cyclic Antibandwidth Problem.

Appendix B

Resumen en castellano

El desarrollo de esta Tesis Doctoral se enmarca en la disciplina de la optimización heurı́stica.

Esta disciplina aborda la búsqueda de la mejor solución posible a un problema de opti-

mización, de manera aproximada. Un problema de optimización se define como la max-

imización o minimización de una o varias funciones objetivo, donde las soluciones satis-

facen un conjunto de restricciones. La optimización heurı́stica tiene especial interés en la

resolución de problemas computacionalmente difı́ciles (como son aquellos pertenecientes

a la clase de complejidad NP-difı́cil) con aplicación práctica en industria, transporte, inge-

nierı́a y otras disciplinas. El tratamiento de estos problemas requiere un modelado previo

para poder ser tratados computacionalmente. En este sentido, muchos de los problemas de

optimización son modelados mediante grafos, que son estructuras de datos comúnmente

utilizadas en medios computacionales para modelar sistemas de la vida real y otras abstrac-

ciones. Entre los problemas de optimización modelados mediante grafos se encuentra una

familia de problemas denominada como problemas de embebido o etiquetado de grafos

(GLP, del inglés, Graph Layout Problem) [65], los cuales han sido ampliamente estudia-

dos en la literatura debido al gran número de aplicaciones prácticas que tienen. Ejemplo de

estas aplicaciones son: el diseño de circuitos, la gestión del espectro de retransmisión de

redes inalámbricas, el dibujado de grafos o la migración de redes de telecomunicaciones

[191]. Sin embargo, dado que esta familia de problemas pertenece a la clase de problemas

NP-difı́cil, la resolución de los mismos mediante técnicas exactas, cuando el tamaño de

la entrada es grande, resulta completamente ineficiente. Por esa razón, esta Tesis Doctoral

213

214 Appendix B. Resumen en castellano

se centra en el estudio de los problemas de embebidos de grafos desde un punto de vista

aproximado, concretamente mediante algoritmos heurı́sticos y metaheurı́sticos.

A continuación, en la Sección B.1 se realiza una introducción a los problemas de

embebido de grafos. En la Sección B.2 se recogen los trabajos más relevantes del área.

Seguidamente, en la Sección B.3, se presentan los objetivos y la hipótesis planteada. La

metodologı́a propuesta en la Sección B.4 y los elementos principales de la propuesta algo-

rı́tmica planteada en la Sección B.5. Por último, en la Sección B.6, se recogen los resultados

más relevantes de esta investigación, concluyendo, en la Sección B.7, con las principales

conclusiones.

B.1 Introducción

Esta Tesis Doctoral se centra en el estudio de problemas de optimización combinatoria

utilizando técnicas heurı́sticas. En concreto, se estudian los denominados, Graph Layout

Problem (GLP), consistentes en proyectar un grafo de entrada en otro grafo, generalmente

denominado grafo huésped. Esta proyección es generalmente conocida como embebido o

etiquetado, y consiste en definir dos funciones matemáticas. La primera de ellas relaciona

los vértices del grafo de entrada con los vértices del grafo huésped. La segunda asigna a

cada arista del grafo de entrada un camino en el grafo huésped (es decir, un conjunto de

aristas). Pese a que cualquier grafo puede ser utilizado como grafo huésped, son aquellos

que presentan una topologı́a conocida (lı́neas, ciclos, árboles, rejillas, etc.) los que han

despertado un mayor interés en la comunidad cientı́fica.

Formalmente, un grafo de entrada es denotado como G = (VG ,EG) donde VG y EG

representan el conjunto de vértices y aristas respectivamente. De manera similar, un grafo

huésped es denotado como H = (VH ,EH) donde VH y EH representan el conjunto de

vértices y aristas, respectivamente.

A continuación, se ilustran los conceptos explicados hasta el momento. En concreto, la

Figura B.1(a) muestra un grafo de entrada G , con VG = {A,B,C,D,E} y EG = {(A,B),

(A,C),(A,E),(B,C),(C,D),(C,E),(D,E)}. Por otro lado, las Figuras B.1(b), B.1(c) y

B.1(d) muestran, respectivamente, ejemplos de grafos con estructura de camino, ciclo y

rejilla que podrı́an ser utilizados como grafos huésped para el grafo de entrada en la Figura

Appendix B. Resumen en castellano 215

E
A

CD

B

(a)

1 2 4 53

(b)

1

25

4 3
(c)

1 2 3

4 5 6

7 8 9

(d)

Figura B.1 (a) Ejemplo de un grafo de entrada G formado por 5 vértices y 7 aristas.
(b) Ejemplo de un grafo huésped camino, PH . (c) Ejemplo de un grafo huésped ciclo,
CH . (d) Ejemplo de un grafo huésped rejilla, GH .

B.1(a). En particular, el grafo huésped camino, denotado como HP , es ilustrado en la Figura

B.1(b) y está formado por VHP
= {1,2,3,4,5} y EHP

= {(1,2),(2,3),(3,4),(4,5)}. Del

mismo modo, el grafo huésped de ciclo, denotado como HC , representado en B.1(c) está

formado por VHC
= {1,2,3,4,5} y EHC

= {(1,2),(2,3),(3,4),(4,5),(5,1)}. Por último,

el grafo huésped rejilla, denotado HG , representado en B.1(d) está formado por VHG
=

{1,2,3,4,5,6,7,8,9} y EHC
= {(1,2),(1,4),(2,3),(2,5),(3,6),(4,5),(4,7),(5,6),(5,8),

(6,9),(7,8),(8,9)}.
Dado un grafo de entrada, G y un grafo huésped H , un embebido o proyección con-

siste en definir dos funciones matemáticas. La primera función relaciona los vértices del

conjunto VG con los vértices del conjunto VH , de modo que, a cada vértice del conjunto

VG le corresponde un único vértice del conjunto VH y viceversa. Formalmente ϕ es una

función biyectiva tal que ϕ : VG→VH . La segunda función asigna aristas del conjunto EG

216 Appendix B. Resumen en castellano

a caminos del grafo huésped, denotados como PH . Formalmente, esta segunda función, de-

notada como ψ es una función inyectiva tal que ψ : EG → PH . La definición de la función

ψ depende del problema a abordar. Generalmente, ψ asigna una arista (u,v) ∈ EG , al

camino en PH con extremos en ϕ(u) y ϕ(v), que tiene una menor cardinalidad.

En la Figura B.2 se muestran dos posibles embebidos del grafo G de la Figura B.1(a),

en un grafo ciclo, Figura B.2(a), y en un grafo rejilla, Figura B.2(b). La definición de ϕ en

ambos ejemplos es equivalente: ϕ = {ϕ(A)= 1,ϕ(B)= 2,ϕ(C)= 3,ϕ(D)= 4,ϕ(E)= 5}.
La definición de ψ depende del problema estudiado. A modo de ejemplo, ψ asignará el

camino con menor cardinalidad a cada arista del grafo de entrada. Considerando el grafo

huésped ciclo, la arista (C,E) es asignada al camino más corto entre los vértices ϕ(C) =

3 y ϕ(E) = 5. Concretamente, ψ(C,E) = {(3,4),(4,5)}. Considerando el grafo huésped

rejilla, en este caso hay dos posibles caminos con la menor cardinalidad entre los vértices

asignados a C y E, ψ(C,E) = {{(3,6),(6,5)},{(3,2),(2,5)}}.

1

25

4 3

E

A

CD

B

(a)

1 2 3

4 5 6

7 8 9

A B

ED

C

(b)

Figura B.2 Ejemplo de un embebdido en un grafo huésped ciclo y un grafo huésped
de rejilla (b).

Esta Tesis Doctoral se centra en el estudio de varios GLPs donde el embebido se re-

aliza en ciclos. De esta manera, al centrar la investigación en un conjunto de problemas

que guardan una estrecha relación es posible detectar propiedades similares y aplicar el

Appendix B. Resumen en castellano 217

conocimiento adquirido a medida que avanza el proceso de investigación. Además, las es-

trategias o algoritmos propuestos pueden ser adaptados con mayor facilidad a problemas

pertenecientes a la misma familia. Para determinar los problemas a abordar en la Tesis

Doctoral se ha realizado un estudio previo del estado del arte de todos los problemas en-

marcados en la familia de los GLP cuyo grafo huésped es un ciclo. Posteriormente, se han

seleccionado aquellos problemas con mayor interés y relevancia en la literatura. En con-

creto, se han estudiado tres problemas de embebidos en ciclos los cuales se especifican a

continuación.

• Cyclic Cutwidth Minimization Problem (CCMP): consiste en la minimización del

número de aristas del grafo candidato que concurren con una arista del grafo huésped.

Más formalmente, el problema se puede formular como:

CCMP = argmin
(ϕ,ψ) ∈ Φ

{ argmax
(w ,z) ∈ EH

{cut(ϕ,ψ,(w ,z))}}, (B.1)

donde cut(ϕ,ψ,(w ,z)) es una función que calcula el número de aristas del grafo de

entrada que concurren en la arista (w ,z) del grafo huésped, y Φ es el conjunto de

todas las soluciones (ϕ,ψ).

En la Figura B.3 se ilustra la evaluación de la solución presentada previamente en la

Figura B.2(a) del grafo de entrada ilustrado en la Figura B.1(a). La evaluación de una

solución para el CCMP, implica el cálculo del corte (es decir, de la función cut) aso-

ciado a cada arista del grafo huésped. Por ejemplo, para calcular el corte de la arista

(1,2) primero es necesario obtener los caminos asociados a las aristas del grafo de

entrada que contienen la arista (1,2). En este ejemplo, hay dos caminos que cumplen

esta condición: ψ(A,B) = {(1,2)} y ψ(A,C) = {(1,2),(2,3)}. La Figura B.3 resalta

la arista (A,B) y su camino asociado en amarillo. Del mismo modo, la arista (A,C)

se ha resaltado en verde. Por tanto, cut((1,2),ϕ,ψ) = |{(A,B),(A,B)}| = 2. Esta

función es calculada para cada una de las aristas del grafo huésped (Figura B.3(b)).

Finalmente, el valor de la función objetivo para el CCMP es el máximo de todos los

cortes. Para esta solución, max{2,2,2,2,1}= 2.

218 Appendix B. Resumen en castellano

1

25

4 3

E

A

CD

B

2

(a)

1

25

4 3

E

A

CD

B

2

2

2

2

1

(b)

Figura B.3 (a) Evaluación del corte de la arista (1,2) ∈ EH . (b) Evaluación de la
función objetivo de una solución para el CCMP.

• Cyclic Antibandwidth Problem (CAB): consiste en la maximización de la distancia

(también conocida como bandwidth, en inglés) a la que se encuentran los vértices

adyacentes del grafo de entrada, medida en el ciclo. Más formalmente, el problema

se puede formular como:

CAB = argmax
(ϕ,ψ) ∈ Φ

{ argmin
(u,v) ∈ EG

{bw(ϕ,ψ,(u,v)}}, (B.2)

donde bw(ϕ,ψ,(u,v)) es una función que calcula la cardinalidad del camino asig-

nado a la arista (u,v) ∈ EG .

Considerando nuevamente la solución presentada anteriormente en la Figura B.2(a)

del grafo de entrada ilustrado en la Figura B.1(a), en la Figura B.4 se representa la

evaluación de la función objetivo de este problema para dicha solución. En concreto,

para calcular el bandwidth de una arista, se calcula la cardinalidad del camino que

tiene asignado a través de la función ψ . Por ejemplo, en la Figura B.4(a), el band-

width de la arista (A,C) se calcula como |ψ(A,C)| = |{(1,2),(2,3)}| = 2. Tanto la

arista como su camino asignado aparecen resaltados en verde en la Figura B.4. De

manera similar, el bandwidth de la arista |ψ(D,E)|= |{(4,5)}|= 1, es representado

Appendix B. Resumen en castellano 219

1

25

4 3

E

A

CD

B2

1

(a)

1

25

4 3

E

A

CD

B2

1

1

1

1

1

2

(b)

Figura B.4 (a) Evaluación del bandwidth de las aristas (A,C),(D,E) ∈ EG . (b) Evalu-
ación del bandwidth de todas las aristas del grafo de entrada en el grafo huésped ciclo.

en amarillo en la misma figura. Por último, en la Figura B.4(b), se indica el valor del

bandwidth de cada arista, necesario para calcular la función objetivo. Concretamente,

el valor de la función objetivo es el mı́nimo de todas del bandwidth de todas las aris-

tas, que es 1 en este ejemplo. En términos matemáticos: min{1,2,1,1,1,2,1}= 1.

• Cyclic Bandwidth Sum Problem (CBS): consiste en la minimización de la suma

de la distancia a la que se encuentran los vértices adyacentes del grafo de entrada,

medida en el ciclo. Más formalmente, el problema se puede formular como:

CBS = argmin
(ϕ,ψ) ∈ Φ

{ ∑
(u,v) ∈ EG

bw(ϕ,ψ,(u,v)}. (B.3)

De nuevo, se hace uso de la Figura B.4. En este caso, la función objetivo del CBS se

calcula como la suma del bandwidth de cada arista del grafo de entrada. En términos

matemáticos: 1+2+1+1+1+2+1 = 9.

Como se comentó anteriormente, el objetivo principal de esta Tesis Doctoral se centra

en la propuesta de algoritmos heurı́sticos y metaheurı́sticos para los problemas de embe-

bidos en ciclos. Sin embargo, tras abordar con éxito los tres problemas anteriormente men-

cionados, se decidió extender la aplicación de los conocimientos aprendidos a problemas

220 Appendix B. Resumen en castellano

de embebidos en otros grafos huésped. Concretamente, se optó por abordar un problema

cuyo embebido es realizado en un grafo huésped rejilla el cual se define a continuación:

• Two-Dimensional Bandwidth Minimization Problem (2DBMP): consiste en la mi-

nimización de la suma de la distancia a la que se encuentran los vértices adyacentes,

medida en la rejilla. Más formalmente, el problema se puede formular como:

2DBMP = argmin
(ϕ,ψ) ∈ Φ

{ max
(u,v) ∈ EG

bw(ϕ,ψ,(u,v)} (B.4)

A continuación, se muestra un ejemplo del cálculo de la función objetivo del 2DBMP

haciendo uso de la solución presentada en la Figura B.2(b). Para evaluar la función

objetivo de una solución es necesario calcular la distancia entre cada para cada arista

de EG por medio de la función bandwidth. Por ejemplo, se considera la arista (C,D).

Tres caminos pueden ser asignados a esa arista por medio de la función ψ . Para

este problema, dado que la distancia de los tres caminos es la misma, la elección

de uno de ellos no influye en el cálculo del bandwidth. Por lo tanto, se selecciona

uno de ellos al azar. En concreto, ψ(C,D) = {(3,6),(6,5),(5,4)}, que aparece re-

saltado en verde en la Figura B.5(a). Por tanto, bw(ϕ,ψ,(C,D)) = 3. Del mismo

modo, el bandwidth de la arista (A,C), resaltada en amarillo en la misma figura,

es bw(ϕ,ψ,(A,C)) = {(1,2),(1,3)} = 2. Este cálculo se realiza sobre el resto de

las aristas de G (Figura B.5(b)). Finalmente, el valor de la función objetivo es el

máximo de todas las distancias, que es 3 en este ejemplo. En términos matemáticos:

max{1,2,2,1,3,2,1}= 3.

En la siguiente sección se recogen los estudios previos que se han realizado sobre los

problemas de embebido de grafos. Además, se hace especial hincapié en aquellos trabajos

que abordan los cuatro problemas estudiados en esta Tesis Doctoral.

B.2 Antecedentes

Los grafos se usan comúnmente para representar aplicaciones reales mediante puntos co-

nectados con lı́neas. Además de visualizar sistemas del mundo real, también se utilizan

Appendix B. Resumen en castellano 221

1 2 3

4 5 6

7 8 9

A B

ED

C
2

3

(a)

1 2 3

4 5 6

7 8 9

A B

ED

C
2

3

2

2

1

1 1

(b)

Figura B.5 (a) Evaluación del bandwidth de las aristas (A,C),(C,D) ∈ EG . (b) Eva-
luación del bandwidth de todas las aristas del grafo de entrada en el grafo huésped
rejilla.

para modelar problemas de optimización que pueden ser resueltos por computadora. En los

últimos años, ha habido un creciente interés en estudiar los problemas de embebidos de

grafos, especialmente en el contexto del diseño de circuitos VLSI [44, 65].

Tras la primera motivación, basada en el diseño de VLSI, los GLP han surgido como

una familia de problemas combinatorios cuyo objetivo principal es proyectar o embeber

un grafo en un grafo huésped predefinido. Esta proyección también se ha denotado como

layout. [63, 191], etiquetado [42, 130], numeración [41, 191], u ordenación [25, 81, 194,

206].

La mayorı́a de los trabajos abordan los GLP desde un punto de vista teórico: estudian-

do su complejidad computacional, proponiendo ecuaciones para determinar el valor de la

solución óptima, determinando los lı́mites inferiores y superiores, o encontrando relaciones

entre problemas, etc. Por lo general, este tipo de trabajos se centran en el estudio de una

función objetivo para un grafo huésped. Por otro lado, los investigadores también estudian

estos problemas desde una perspectiva más general, para lo que proponen algoritmos exac-

tos y aproximados para cualquier tipo de grafo de entrada. A continuación, se recogen los

trabajos más relevantes para cada uno de los problemas estudiados.

222 Appendix B. Resumen en castellano

El CCMP ha sido ampliamente estudiado desde un punto de vista teórico. General-

mente, los trabajos se centran en el estudio de la solución óptima para grafos de entrada

con topologı́a conocida. Entre estas investigaciones se destacan las siguiente: [1, 8, 27, 34,

43, 68, 125, 128, 203, 223, 224, 222]. Hasta el momento, el CCMP no ha sido resultado

de manera exacta, sin embargo, sı́ que se pueden encontrar varios trabajos que lo abordan

desde un punto de vista aproximado, especı́ficamente heurı́stico: [28, 34, 110, 124].

El CAB, el segundo problema abordado en esta Tesis Doctoral, ha sido trabajado, al

igual que el problema anterior, de manera teórica [54, 146, 172, 199, 237] y aproximada

[12, 31, 157], ya que, por el momento, no ha sido resuelto por algoritmos exactos.

El CBS tampoco ha sido abordado mediante algoritmos exactos, aunque sı́ que se

pueden encontrar estudios teóricos [37, 126, 259] y propuestas de algoritmos heurı́sticos

[33, 98, 208, 209, 221].

Por último, el 2DBMP es el único problema estudiado en esta investigación cuyo em-

bebido no es realizado en un grafo huésped ciclo. Este problema ha sido estudiado de

manera teórica [42, 149, 150], desde una perspectiva exacta [211] y desde un punto de

vista heurı́stico [32, 211].

Entre los trabajos teóricos recogidos en esta sección, cabe destacar aquellos que pre-

tenden demostrar la complejidad de los problemas. En concreto, el trabajo clave sobre

la complejidad de los GLP se centra en demostrar que el Cutwidth Minimization Prob-

lem (CMP), variante del CCMP en el que el embebido es realizado en un grafo huésped

camino, es NP-completo [82, 83, 84]. Estudios posteriores de la complejidad computa-

cional del CMP condujeron a la demostración de que es NP-completo para algún grafo de

entrada especı́fico [64, 159, 177]. Una vez demostrada la pertenencia de un GLP a la clase

de complejidad NP-completo, otros investigadores demostraron la pertenencia de proble-

mas similares, en los que el embebido se realiza en grafo caminos, a esa misma clase de

complejidad [187]. Como puede verse, la complejidad de los problemas cuyo embebido

se realiza en grafos camino ha sido ampliamente estudiada. Sin embargo, apenas se en-

cuentran trabajos de este tipo cuando se pasa a otros GLP, donde el grafo huésped no es

un camino. Generalmente, los autores abordan esta cuestión simplemente relacionando la

complejidad de un problema concreto con otro cuya clase de complejidad es conocida. Sin

embargo, sı́ es posible encontrar estudios para grafos especı́ficos.

Appendix B. Resumen en castellano 223

B.3 Hipótesis y objetivos

De manera más concreta, una vez identificado el conjunto de problemas que se pretenden

abordar en esta Tesis Doctoral, y revisado el estado del arte de los mismos, se enuncia una

hipótesis general válida para todos ellos.

“Los algoritmos heurı́sticos, utilizados conjuntamente con técnicas metaheurı́sticas,

son métodos capaces de encontrar soluciones de alta calidad, potencialmente

cercanas a la solución óptima, a problemas de optimización modelados por

grafos que consisten en embeber un grafo candidato en un grafo huésped con

estructura circular.”

Derivado de la hipótesis anterior, el objetivo principal de esta Tesis Doctoral se enuncia

de la siguiente manera:

“Diseñar e implementar algoritmos heurı́sticos, utilizados junto con técnicas

metaheurı́sticas, para abordar problemas de optimización modelados medi-

ante grafos consistentes en el embebido de grafos de tipo ciclo”.

Para alcanzar el objetivo principal planteado, es necesario cubrir los siguientes objetivos

especı́ficos:

• Revisar y analizar el estado del arte de los GLP, haciendo especial hincapié en a-

quellos trabajos cuyo embebido se realiza en un grafo huésped ciclo. Este objetivo

también incluye el estudio de las estrategias, algoritmos y procedimientos utilizados

para abordar problemas relacionados que puedan transferirse a los problemas en los

que se centra esta Tesis Doctoral. Por último, se recopilarán los conjuntos de instan-

cias sobre los que se han probado los algoritmos propuestos.

• Identificar las propiedades y caracterı́sticas estructurales de cada problema. Dado

que los procedimientos heurı́sticos son dependientes del problema, conocer las ca-

racterı́sticas especı́ficas de estos puede ayudar a proponer técnicas más avanzadas y

eficientes.

224 Appendix B. Resumen en castellano

• Modelar el problema de forma que pueda ser abordado computacionalmente. Para

ello se utilizará el lenguaje de programación Java [7].

• Diseñar y desarrollar un algoritmo heurı́stico para resolver el problema. Para ello

se utilizarán técnicas heurı́sticas y metaheurı́sticas. Este objetivo incluye la identi-

ficación de los algoritmos heurı́sticos y metaheurı́sticos más apropiados para cada

problema.

• Comparar experimentalmente el algoritmo propuesto con los algoritmos del estado

del arte. Se ejecutarán los algoritmos del estado del arte identificados para realizar

una comparación exhaustiva y justa, sobre un conjunto de instancias previamente

utilizadas.

• Elaborar un documento que recoja el trabajo realizado y las conclusiones de los re-

sultados obtenidos. En la fase final de la investigación se redactará la memoria de la

Tesis Doctoral, en la que se describirán los problemas identificados y abordados.

• Difundir los resultados mediante su publicación en foros de investigación tales como:

revistas, congresos o jornadas cientı́ficas. Los resultados del trabajo de investigación

serán sometidos a un proceso de revisión por instituciones independientes que culmi-

nará con su publicación en revistas o congresos de prestigio nacional e internacional

en el área.

B.4 Metodologı́a

El desarrollo de esta Tesis Doctoral se fundamenta en el método cientı́fico como metodologı́a

para generar nuevo conocimiento. Concretamente, este método se basa en la observación,

medición, experimentación, formulación y modificación de una hipótesis. Además, este

método puede ser aplicado a cualquier área cientı́fica cuyo fin sea el de aportar conocimiento

nuevo. En este caso, el método cientı́fico es utilizado como guı́a para proponer algorit-

mos heurı́sticos y metaheurı́sticos para abordar un problema de optimización combinatoria

como son los pertenecientes a la familia de los GLP.

Appendix B. Resumen en castellano 225

Formular el
problema

Obtener
instancias

Identificar
algoritmos

previosEstudiar el
estado del arte

Formular una
hipótesis

Heurística

Metaheurística

Estrategias
avanzadas

Proponer un
algoritmo

Diseminar los
resultados

Identificar las
propiedades
del problema

1

4

Ejecutar un
experimento

Ajuste de
parámetros

Comparación
con los métodos

previos

6

Validar la
hipótesis

7

2

3

5

8

Figura B.6 Representación de la adaptación del método cientı́fico al contexto de la
Tesis Doctoral.

226 Appendix B. Resumen en castellano

En la Figura B.6, se representa el proceso de investigación propuesto en la Tesis Doc-

toral. El proceso comienza con el planteamiento del problema (fase 1). A continuación, se

lleva a cabo el estudio del estado del arte, es decir, se recogen los avances más recientes del

problema en cuestión (fase 2). En esta misma etapa se destacan las tareas de identificación

de los algoritmos previos y obtención de las instancias (también conocidas como entradas

o casos de prueba) puesto que son fundamentales para el correcto desarrollo de la inves-

tigación. Las siguientes cinco fases del proceso de investigación, detallado en la Figura

B.6, son repetidas iterativamente (fases 3, 4, 5, 6 y 7). Partiendo del planteamiento de una

hipótesis (fase 3), se realiza un estudio del problema que permita la extracción de caracte-

rı́sticas y su modelado (fase 4). A continuación, se propone y se implementa un algoritmo

para abordar el problema en cuestión. Generalmente, los algoritmos implementados serán:

algoritmos heurı́sticos, algoritmos metaheurı́sticos, o estrategias avanzadas que aumenten

la eficiencia o robustez del algoritmo propuesto (fase 5). Tras la implementación de un al-

goritmo es necesario analizar su rendimiento mediante un conjunto de experimentos (fase

6). Estos experimentos son clasificados en: experimentos preliminares, si el objetivo es

establecer la mejor configuración de los parámetros del algoritmo propuesto; o bien en ex-

perimentos competitivos, destinados a comparar el algoritmo propuesto con los algoritmos

del estado del arte. Finalmente, se valida la hipótesis de partida (fase 7). Los resultados

más relevantes de la investigación realizada son diseminados por medio de publicaciones

en revistas o conferencias o workshops (fase 8).

Cabe desacatar que cada una de las fases del proceso de investigación descrito en la

Figura B.6 se relacionan con uno o varios de los objetivos planteados en la Sección B.3.

Concretamente las fases 1 y 2 se corresponden con el objetivo 1. De manera similar, el

objetivo 2 se corresponde con la fase 4, los objetivos 5, 6 y 7 con la fase 5, el objetivo 7 con

la fase 6 y, finalmente, los objetivos 8 y 9 se corresponden con la fase 8. Las fases 3 y 7,

consistentes en el planteamiento y validación de la hipótesis, condicionan el diseño general

del proceso de investigación.

Appendix B. Resumen en castellano 227

B.5 Propuesta algorı́tmica

En esta Tesis Doctoral, se proponen diferentes procedimientos heurı́sticos y metaheurı́sticos

para abordar cuatro problemas de embebidos de grafos.

Los algoritmos heurı́sticos son métodos de resolución de problemas que se basan en

la experiencia y el conocimiento más que en principios formales. Suelen utilizarse cuando

no se puede encontrar una solución óptima o se tarda demasiado en calcularla, o cuando

un problema es demasiado complejo para resolverlo con métodos exactos. La heurı́stica se

suele utilizar para encontrar buenas soluciones rápidamente y puede ser muy eficaz en situa-

ciones prácticas. Algunas heurı́sticas y metaheurı́sticas habituales son los procedimientos

constructivos y los de mejora. Mientras que las metaheurı́sticas son estrategias o enfoques

de nivel superior que guı́an el uso de heurı́sticas para resolver un problema. A continuación,

se recogen los aspectos más relevantes de los algoritmos heurı́sticos propuestos (es decir,

los procedimientos constructivos y de mejora) y las metaheurı́sticas empleadas.

Los procedimientos constructivos son los métodos utilizados para la generación de solu-

ciones, que se utilizarán como punto de partida de los métodos de mejora. Generalmente,

los procedimientos constructivos parten de una solución parcial vacı́a y terminan con una

solución completa, es decir, una solución factible.

La construcción de una solución para un GLP consiste en definir las funciones mate-

máticas ϕ y ψ . Vale la pena recordar que la función ϕ asigna a cada vértice del grafo de

entrada a un vértice del grafo huésped, mientras que la función ψ asigna a cada arista del

grafo de entrada un camino del grafo huésped. Generalmente, la función ψ depende de la

función ϕ ya que el camino asignado a cada arista es arbitrario. Por lo canto, cualquier

definición de la función ϕ que satisfaga que cada vértice del grafo de entrada esté asignado

a un vértice del grafo huésped será una solución factible del problema.

En este trabajo, más allá de proponer un algoritmo constructivo especı́fico para cada

uno de los problemas estudiados. se propone un esquema o marco general para la definición

de cualquier algoritmo constructivo para la familia de problemas de embebido de grafos.

En concreto, la definición de un algoritmo constructivo para un GLP debe considerar los

siguientes pasos:

228 Appendix B. Resumen en castellano

1. Generar un conjunto de vértices candidatos a partir de los vértices del grafo de en-

trada que todavı́a no han sido asignados.

2. Generar un conjunto de vértices candidatos a partir de los vértices del grafo huésped.

3. Seleccionar un vértice del conjunto de vértices candidatos del grafo de entrada.

4. Seleccionar un vértice del conjunto de vértices candidatos del grafo huésped.

5. Asignar el vértice del grafo huésped al vértice del grafo de entrada.

6. Actualizar los conjuntos de vértices candidatos.

Estos pasos son repetidos hasta obtener una solución factible. Para cada uno de los

problemas abordados se proponen criterios especı́ficos en cada uno de los pasos. Estos

criterios son generalmente funciones matemáticas que dependen de la adyacencia de los

vértices del grafo de entrada y de la función objetivo del problema. Cada uno de los criterios

planteados se puede encontrar en los artı́culos que se adjuntan a este documento en la Parte

II.

En general, el objetivo principal de un procedimiento constructivo es generar soluciones

de la mejor calidad posible, es decir, generar la solución óptima del problema o acercarse

lo más posible a ella para que otros métodos de intensificación, como la búsqueda local,

puedan alcanzarla rápidamente. Sin embargo, a veces puede ser conveniente aplicar repeti-

damente el procedimiento de construcción para obtener soluciones de partida diversas. En

este sentido, la diversificación podrı́a proporcionar soluciones de menor calidad pero más

diversas, permitiendo explorar más regiones del espacio de soluciones. Este tipo de estrate-

gias en las que se fomenta la diversidad son especialmente interesantes cuando se combinan

con metaheurı́sticas multiarranque o poblacionales.

Para fomentar la diversidad de las soluciones generadas, se utilizan varias de las ideas

o principios de la metodologı́a GRASP, que es una metaheurı́stica multiarranque que com-

bina decisiones voraces y aleatorias en cada una de las soluciones construidas [71, 72].

Dada una solución, esta es generalmente mejorada por un procedimiento de intensifi-

cación. Sin duda, el más relevante es la búsqueda local. Este procedimiento ha sido imple-

mentado en todas las investigaciones desarrolladas dentro de esta Tesis Doctoral y consiste

Appendix B. Resumen en castellano 229

en la exploración de vecindarios para realizar movimientos sistemáticos a soluciones de

mejor calidad.

El planteamiento de una búsqueda local implica la definición de una o varias estruc-

turas de vecindad. Una vecindad es un conjunto de soluciones que pueden ser obtenidas

por medio de un movimiento, una ligera variación en algún aspecto de la solución. En el

contexto de la optimización combinatoria en grafos, dos de los movimientos más utilizados

son la inserción y el intercambio. Ambos movimientos han sido implementados para los

problemas estudiados.

El movimiento de inserción consiste en quitar un vértice del grafo de entrada de su

asignación actual y asignarlo (es decir, insertarlo) a otro vértice del grafo huésped. Este

movimiento implica un “desplazamiento” de algunos vértices para “hacer sitio” al vértice

que se va a insertar. Por otro lado, el movimiento de intercambio consiste en intercambiar

la asignación de dos vértices.

Dada una estructura de vecindad, un algoritmo de búsqueda local intenta encontrar una

solución que mejore la calidad de la mejor solución encontrada hasta el momento. Si es

capaz de encontrar una mejor, sustituye la mejor solución encontrada por la nueva. Este

proceso se repite hasta alcanzar una solución óptima con respecto a su vecindad, denom-

inada comúnmente óptimo local. A la hora de explorar un vecindario, dos estrategias son

comúnmente utilizadas: la estrategia de primera mejora (en inglés, first improvement), y

la estrategia de mejor mejora (en inglés, best improvement). La primera de las estrategias

realiza el primer movimiento que mejora la calidad de la mejor solución encontrada hasta

el momento. Por el contrario, la estrategia de mejor mejora, realiza el mejor movimiento

posible de la vecindad.

Los procedimientos de mejora o búsqueda presentados en esta sección pueden ser mejo-

rados si son combinados con tres estrategias avanzadas. Pese a que estas estrategias hayan

sido diseñadas en el contexto de la resolución de GLP, pueden ser aplicadas a otros proble-

mas. Concretamente, se plantean tres estrategias: el cálculo eficiente de la función objetivo,

un criterio de desempate cuando dos soluciones presentan el mismo valor de función obje-

tivo y técnicas para reducir el tamaño de los vecindarios.

La primera estrategia explora formas para realizar un cálculo eficiente de la función

objetivo tras realizar un movimiento. Esto es de especial importancia cuando se trabaja con

230 Appendix B. Resumen en castellano

vecindarios extensos, o bien cuando computar la función objetivo es costoso. Por ello, los

investigadores han propuesto una evaluación inteligente o eficiente de la función objetivo

que evite revaluar toda la solución mediante la actualización de aquellos elementos que se

han visto afectados por el movimiento [157].

La segunda de las estrategias trata de abordar los conocidos como horizontes de bús-

queda planos por medio de funciones objetivo alternativas o criterios de desempate. Los

horizontes de búsqueda planos o mesetas ocurren, generalmente, en problemas de opti-

mización formulados como problemas max-min (o min-max), donde la función objetivo

consiste en maximizar un valor mı́nimo (o minimizar un valor máximo). Generalmente,

este tipo de problemas tiene numerosas soluciones asociadas al mismo valor de la función

objetivo. Cuando esto ocurre, es difı́cil determinar cuál de las soluciones comparadas es

más prometedora para continuar la búsqueda. En ese caso, el valor de la función objetivo

por sı́ solo no proporciona información suficiente para encontrar direcciones de búsqueda

eficaces. A priori, dos soluciones con la misma función objetivo son iguales para un pro-

cedimiento de búsqueda local, pero su estructura puede ser diferente y puede haber ciertas

propiedades que determinen que una solución es mejor que otra. Algunas de las propuestas

que se pueden encontrar en la literatura para mitigar el impacto de este problema consisten

en utilizar una o varias funciones objetivo como criterios de desempate [186, 192, 207].

En esta investigación se proponen varios criterios para determinar, en caso de empate en la

función objetivo principal, qué solución es más prometedora.

Por último, teniendo en cuenta que para los problemas de interés los vecindarios son

generalmente de tamaño inmenso, parece necesario considerar técnicas más avanzadas para

la exploración de estos vecindarios. En concreto, para cada uno de los problemas estudiados

se propone técnicas de reducción de las vecindades. Idealmente, una técnica de reducción

se centra en soluciones prometedoras, evitando la pérdida de tiempo en la evaluación de

soluciones que producen un deterioro en la función objetivo. Sin embargo, en la práctica,

dada la complejidad de los vecindarios, algunas técnicas se limitan a reducir su tamaño

estableciendo un porcentaje o un número fijo de soluciones a explorar.

Los algoritmos heurı́sticos presentados (los procedimientos constructivos y los proced-

imientos de mejora) son comúnmente combinados en esquemas más inteligentes, como

son los algoritmos metaheurı́sticos. Dado que las metaheurı́sticas son estrategias genéricas

Appendix B. Resumen en castellano 231

que no dependen del problema, los algoritmos que a continuación se presentan han podido

ser utilizados para para abordar múltiples problemas en el contexto de esta Tesis Doctoral.

Concretamente, se han utilizado procedimientos multiarranque, búsqueda tabú (en inglés,

Tabu Search), búsqueda en vecindades variables (en inglés, Variable Neighborhood Search)

y procedimientos voraces iterativos (en inglés, Iterated Greedy).

Las estrategias multiarranque se utilizan para escapar de los óptimos locales, puntos

del espacio de búsqueda donde los algoritmos heurı́sticos quedan atrapados. Se basan en la

idea de aplicar una estrategia de intensificación a diferentes puntos de partida en el espacio

de búsqueda. Son, por lo tanto, estrategias donde la construcción de soluciones juega un

papel destacado y donde, en cada iteración se construye una nueva solución que actuará

como punto de partida para la búsqueda.

Tabu Search (TS) es una metaheurı́stica introducida por F. Glover en 1986 como una

forma de mejorar los algoritmos tradicionales de búsqueda local [88]. La idea principal

de TS es combinar la búsqueda local con estrategias basadas en la memoria para explorar

el espacio de búsqueda de forma más eficiente y escapar de los óptimos locales. El algo-

ritmo funciona manteniendo una lista tabú, que es una lista de soluciones que se consideran

“tabú” o prohibidas durante un cierto número de iteraciones. La lista tabú actúa como una

memoria de soluciones que han sido visitadas y ayuda al algoritmo a evitar volver a visitar-

las. Esto permite al algoritmo escapar de los óptimos locales y seguir explorando el espacio

de búsqueda. Muchas ideas y extensiones de este método se discuten en [87, 90, 91].

Variable Neighborhood Search (VNS) fue propuesto por N. Mladenović y P. Hansen

como un método general para resolver problemas difı́ciles de optimización combinatoria

[99, 100, 102]. El principio básico de esta metodologı́a es realizar cambios sistemáticos

en la estructura de vecindad para escapar de los óptimos locales. En el momento de su

aparición (1997), el uso de diferentes estructuras de vecindad era una idea novedosa, ya que

los procedimientos clásicos de búsqueda generalmente operaban con una única estructura

de vecindad. A partir de estas ideas es posible encontrar muchas variantes de VNSen la lit-

eratura. Algunas de las más relevantes son: Reduced Variable Neighborhood Search, Basic

Variable Neighborhood Search, Variable Neighborhood Descent, General Variable Neigh-

borhood Search, Parallel Variable Neighborhood Search, o Variable Formulation Search,

entre otras [59, 99, 101, 192].

232 Appendix B. Resumen en castellano

Por último Iterated Greedy (IG) es una metaheurı́stica basada en la aplicación repetida

de dos fases principales: una destrucción parcial de una solución seguida de una recon-

strucción para alcanzar una nueva solución factible. Estas dos fases suelen repetirse hasta

que se cumplen los criterios de terminación [216, 235]. En la fase de destrucción, se de-

struye parcialmente una solución para crear una nueva solución factible. La fase de recon-

strucción recibe una solución parcialmente destruida, y la restaura para crear una nueva

solución factible que sea mejor que la actual. Generalmente, esta estrategia es combinada

con procedimientos de mejora como la búsqueda local.

B.6 Resultados

Esta sección resume y sintetiza la experimentación llevada a cabo en esta Tesis Doctoral.

Analizar el rendimiento de un algoritmo es esencial para evaluar su eficacia y eficiencia

en la resolución de un problema. Sin embargo, no suele ser suficiente basarse únicamente

en un enfoque teórico para evaluarlos. Los algoritmos heurı́sticos y metaheurı́sticos buscan

soluciones buenas pero no necesariamente óptimas. Sin embargo, su desempeño puede ser

afectado por factores difı́ciles de identificar mediante análisis teóricos.

Para evaluar adecuadamente los algoritmos heurı́sticos y metaheurı́sticos propuestos ha

sido necesario realizar un análisis empı́rico, en el que el algoritmo se ejecuta en una serie

de casos de prueba y su rendimiento se mide utilizando métricas de rendimiento adecuadas.

Por lo tanto, en primer lugar ha sido necesario recopilar y analizar los conjuntos de prueba

que se utilizarán para analizar los algoritmos. Estos casos de prueba son conocidos como

“instancias” y se corresponden con los grafos de entrada de los GLP.

Una vez identificados los conjuntos de prueba, se realiza una experimentación prelimi-

nar con el fin de ajustar los diversos parámetros de los algoritmos propuestos. Además, dado

que los valores de los parámetros serán los mismos para todas las instancias, resultan de-

terminantes en el rendimiento final del algoritmo. El ajuste de parámetros de un algoritmo

de este estilo es tan complejo que puede ser considerado un problema de optimización en

sı́ mismo.

Los investigadores, utilizan dos tipos de técnicas para abordar el ajuste de parámetros:

el ajuste de parámetros manual y el automático. Ambas aproximaciones han sido usadas en

Appendix B. Resumen en castellano 233

el trascurso de esta investigación. La primera de ellas se fundamenta en el “diseño factorial

de experimentos” [18]. Aunque esta estrategia manual requiere de tiempo y no garantiza

encontrar la mejor configuración del algoritmo, es muy importante desde el punto de vista

cientı́fico, ya que proporciona un mayor control y comprensión del proceso de ajuste y de

las estrategias propuestas. Por otro lado, el ajuste de parámetros automático no requiere la

intervención del investigador durante el proceso. En concreto, en esta investigación se ha

utilizado la herramienta software irace [153].

Tras obtener el mejor algoritmo posible para el conjunto de datos preliminar se realiza

una experimentación competitiva. Esta experimentación se utiliza para evaluar la eficacia

de distintos enfoques o estrategias. En concreto, consiste en enfrentar diferentes algoritmos

entre sı́ para determinar cuál es el más eficiente. En el contexto de esta tesis, las pruebas

competitivas comparan el rendimiento de los mejores algoritmos del estado del arte a la

hora de encontrar las mejores soluciones para un conjunto de datos de entrada.

Para concluir este apartado, en la Tabla B.1 se presenta un resumen de las pruebas com-

petitivas realizadas en cada problema estudiado, comparando el mejor algoritmo del estado

del arte en ese momento con nuestra propuesta. Nótese que para el CAB se comparan dos

algoritmos del estado del arte, y el objetivo era maximizar el valor de una función objetivo.

Para cada problema se compara el promedio del valor de la función objetivo (ccmp, cab,

cbs y 2dbmp, respectivamente), la desviación con respecto a las mejores soluciones encon-

tradas (Desv. (%)), el número de mejores soluciones encontradas (#Mejores (≪nº total de

instancias≫) y el tiempo de cómputo (T. CPU (s)).

En general, los resultados obtenidos por cada uno de los algoritmos propuestos para

cada problema sugieren que nuestra propuesta es superior al algoritmo del estado del arte

en términos de calidad de la solución. Estos resultados llevan a afirmar que el algoritmo

propuesto es un enfoque prometedor para la resolución del problema abordado. Esta afir-

mación es respaldada por pruebas estadı́sticas que pueden ser consultadas en los artı́culos

correspondientes.

234 Appendix B. Resumen en castellano

Estado del arte Nuestra propuesta

CCMP

ccmp 57.94 57.24
Desv. (%) 3.54 0.69
#Mejores (179) 141 157
T. CPU (s) 1434.01 177.42

CAB

cab 149.39 164.70 164.09
Desv. (%) 21.11 7.57 5.45
#Mejores (267) 99 94 167
T. CPU (s) 150.00 150.00 150.00

CBS

cbs 60209.01 59408.65
Desv. (%) 6.14 0.10
#Mejores (106) 50 100
T. CPU (s) 6019.53 1485.50

2DBMP

2dbmp 4.82 3.57
Desv. (%) 32.90 0.00
#Mejores (86) 40 86
T. CPU (s) 231.77 53.39

Tabla B.1 Resumen de la comparación de los mejores algoritmos propuestos con los
mejores algoritmos del estado del arte para el CCMP, CAB, CBS y 2DBMP, respecti-
vamente.

Appendix B. Resumen en castellano 235

B.7 Conclusiones

En esta Tesis Doctoral se han abordado cuatro problemas de optimización pertenecientes a

la familia de problemas de embebido de grafos, más conocidos como GLP. Estos problemas

consisten en encontrar un embebido de un grafo de entrada en un grafo huésped, de forma

que se optimice una función objetivo dada. En particular, tres de los problemas estudiados

realizan el embebido en un grafo huésped ciclo, mientras que el otro lo hace en un grafo

huésped de rejilla. Además, las funciones objetivo a optimizar se basan en dos funciones

matemáticas, bandwidth y cutwidth.

La familia de problemas GLP es una clase amplia y diversa de problemas de opti-

mización que tiene muchas aplicaciones prácticas, incluyendo el diseño de redes, la asig-

nación de recursos y el dibujado de grafos. Resolver estos problemas de forma eficiente y

exacta es un reto importante, ya que la mayorı́a de ellos podrı́an incluirse en la categorı́a

NP-difı́cil. Dado que los algoritmos exactos son ineficientes para resolver este tipo de prob-

lemas, es necesario proponer otro tipo de técnicas que, aunque no sean capaces de certificar

si las soluciones encontradas son óptimas, obtengan soluciones de alta calidad en tiempos

de computación reducidos. Entre las posibles técnicas para abordar estos problemas, los al-

goritmos heurı́sticos y metaheurı́sticos han demostrado ser muy eficaces. En consecuencia,

en esta investigación se proponen algoritmos heurı́sticos y metaheurı́sticos para abordar los

GLP estudiados.

Estas ideas son las que dan lugar a la hipótesis de partida planteada en esta Tesis Doc-

toral. En concreto, la hipótesis se ha basado en la propuesta de técnicas heurı́sticas y meta-

heurı́sticas para la resolución de problemas de embebido de grafos en grafos huésped con

estructura cı́clica. Esta hipótesis ha sido validada satisfactoriamente para los tres problemas

estudiados: el Cyclic Cutwidth Minimization Problem, el Cyclic Antibandwidth Problem y

el Cyclic Bandwidth Sum Problem. Posteriormente se amplı́a esta hipótesis modificando

el grafo huésped en el que se realiza el embebido, en concreto, se propone esta misma

hipótesis para grafos huésped de rejilla. Del mismo modo, esta hipótesis es validada para

el Two-Dimensional Bandwidth Minimization Problem.

Para corroborar que la hipótesis inicial es cierta, se han planteado diferentes objetivos.

Estos objetivos han sido la guı́a de esta investigación, marcando cada uno de los pasos

236 Appendix B. Resumen en castellano

a realizar para los problemas abordados. En conjunto, se puede afirmar que los objetivos

planteados al inicio de esta Tesis Doctoral han sido logrados. Además, los resultados más

relevantes han sido de interés para la comunidad cientı́fica, ya que han sido difundidos

en diferentes foros cientı́ficos. En concreto, se destacan las publicaciones realizadas en

revistas indexadas en el ı́ndice JCR:

• S. Cavero, E. G. Pardo, M. Laguna, and A. Duarte. Multistart search for the cyclic

cutwidth minimization problem. Computers & Operations Research, 126:105116,

2021 [34].

• S. Cavero, E. G. Pardo, and A. Duarte. A general variable neighborhood search for

the cyclic antibandwidth problem. Computational Optimization and Applications,

81(2):657–687, 2022 [31].

• S. Cavero, E. G. Pardo, A. Duarte, and E. Rodriguez-Tello. A variable neighbor-

hood search approach for cyclic bandwidth sum problem. Knowledge-Based Systems,

246:108680, 2022 [33].

• S. Cavero, E. G. Pardo, and A. Duarte. Efficient iterated greedy for the two-dimensional

bandwidth minimization problem. European Journal of Operational Research, 306(3):

1126–1139, 2023 [32].

Cabe mencionar que, en la Parte II de esta Tesis Doctoral, se adjunta una copia de cada

una de las publicaciones mencionadas.

Independientemente del cumplimiento de los objetivos de la investigación, el plante-

amiento de los algoritmos ha permitido obtener conocimientos y experiencia que pueden

ser aplicados a otros problemas o en futuras investigaciones, no necesariamente ligadas

a los GLP. Las conclusiones más relevantes extraı́das de esta investigación se resumen a

continuación

• Este trabajo presenta una formalización general de los problemas de embebido de

grafos, que implica definir el problema en términos precisos y matemáticos.

• Los horizontes de búsqueda en problemas max/min o min/max requieren funciones

objetivo alternativas.

Appendix B. Resumen en castellano 237

• Existen estrategias comunes que pueden aplicarse a múltiples problemas relaciona-

dos. Esto sugiere que puede ser posible desarrollar algoritmos de propósito general

o enfoques que sean eficaces en una gama de diferentes problemas de embebido de

grafos.

• La estrategia para construir una solución inicial es clave en todos los algoritmos

propuestos en esta investigación.

• La combinación de un constructivo voraz con un esquema multiarranque es un en-

foque eficaz para resolver problemas de optimización, en particular cuando se com-

bina con la búsqueda local.

• Los vecindarios clásicos, como los intercambios y las inserciones, son eficientes en

la resolución de GLP. Además, su combinación con el cálculo eficiente de la función

objetivo o las técnicas de reducción de vecindades los convierten en elementos clave

para abordar problemas de estas caracterı́sticas.

• En general, no es necesario explorar exhaustivamente un vecindario para encontrar

una buena solución. En concreto, suele ser suficiente explorar un subconjunto de

soluciones potenciales para encontrar una mejora.

• Los vecindarios planteados tienen un gran tamaño, esto se debe, en gran medida, a la

existencia de muchas soluciones equivalentes.

• Las estrategias de búsqueda avanzada, como las que se proponen en esta investi-

gación, son un aspecto importante de la resolución de problemas de optimización y

pueden considerarse una combinación de conocimientos de programación y expe-

riencia cientı́fica.

• Se carece de algoritmos exactos para la resolución de GLP. Dada la complejidad de

los problemas, parece razonable que apenas se haya propuesto ninguno para resolver

este tipo de problemas. Sin embargo, es interesante considerar otras perspectivas para

comprobar la calidad de las soluciones encontradas.

238 Appendix B. Resumen en castellano

• Por último, la representación de las soluciones mediante su dibujo es fundamental

para analizar el correcto funcionamiento del algoritmo y proponer estrategias más

efectivas.

Para finalizar, este resumen en español se recogen algunas lı́neas de investigación abier-

tas, que pueden ser un punto de partida alternativo para futuras investigaciones. Como

resultado del proceso de investigación iniciado con esta Tesis Doctoral, se proponen los

siguientes trabajos futuros:

• La investigación futura puede centrarse en el desarrollo de métodos exactos para

resolver algunas instancias y problemas. Esto puede implicar el desarrollo de algorit-

mos de “ramificación y poda” (branch-and-bound, en inglés) o modelos matemáticos.

Estas técnicas se pueden combinar con algoritmos heurı́sticos que acaben dando lu-

gar a algoritmos mateheurı́sticos.

• Realizar una revisión exhaustiva de la literatura para identificar las principales con-

tribuciones y tendencias en el contexto de los problemas de embebidos de grafos

para otras estructuras de grafo huésped, y sintetizar esta información en una visión

coherente del estado actual del campo.

• Estudiar otros problemas de embebidos de grafos. Esto puede implicar explorar dife-

rentes tipos de grafos de entrada y funciones objetivo, ası́ como examinar la viabili-

dad de embeber grafos en otros grafos huésped.

• Proponer un algoritmo de caja negra o similar que recoja y combine los conocimien-

tos adquiridos en investigaciones anteriores con el fin de crear una solución más

completa y eficaz, para grafos de entrada y huésped más generales.

• Plantear un enfoque multiobjetivo para abordar múltiples funciones objetivo en el

contexto de los problemas de embebidos de grafos.

• Estudiar cómo las soluciones equivalentes pueden afectar al rendimiento y eficacia

de las soluciones de los algoritmos. Esto podrı́a implicar la investigación en el uso

de técnicas como la ruptura de simetrı́a o el uso de restricciones adicionales que

Appendix B. Resumen en castellano 239

podrı́an reducir significativamente el tamaño de los vecindarios y, consecuentemente,

del espacio de búsqueda.

• Por último, desarrollar y publicar un software de dibujado de grafos. El desarrollo de

esta herramienta combinarı́a los conocimientos adquiridos por los cientı́ficos en este

ámbito y permitirı́a a un público general visualizar soluciones grafos genéricos.

Bibliography

[1] H. L. Abbott. Hamiltonian circuits and paths on the n-cube. Canadian Mathematical

Bulletin, 9(5):557–562, 1966.

[2] B. Acharya and M. Gill. On the index of gracefulness of a graph and the gracefulness

of two-dimensional square lattice graphs. Indian J. Math, 23(81-94):14, 1981.

[3] G. Alway and D. Martin. An algorithm for reducing the bandwidth of a matrix of

symmetrical configuration. The Computer Journal, 8(3):264–272, 1965.

[4] A. R. Amaral. A mixed 0-1 linear programming formulation for the exact solution

of the minimum linear arrangement problem. Optimization Letters, 3(4):513–520,

2009.

[5] N. Andersen, J. G. Bramness, and I. O. Lund. The emerging covid-19 research: dy-

namic and regularly updated science maps and analyses. BMC Medical Informatics

and Decision Making, 20(1):1–7, 2020.

[6] N. H. Anderson. Scales and statistics: parametric and nonparametric. Psychological

bulletin, 58(4):305, 1961.

[7] K. Arnold, J. Gosling, and D. Holmes. The Java programming language. Addison

Wesley Professional, 2005.

[8] R. Aschenbrenner. A proof for the cyclic cutwidth of Q5. Technical report, Califor-

nia State University, 2001.

[9] D. Auber. Tulip—a huge graph visualization framework. In Graph drawing soft-

ware, pages 105–126. Springer, 2004.

241

242 BIBLIOGRAPHY

[10] S. Baluja. Population-based incremental learning. a method for integrating ge-

netic search based function optimization and competitive learning. Technical report,

Carnegie Mellon University, 1994.

[11] R. Bansal and K. Srivastava. Memetic algorithm for the antibandwidth maximization

problem. Journal of Heuristics, 17(1):39–60, 2011.

[12] R. Bansal and K. Srivastava. A memetic algorithm for the cyclic antibandwidth

maximization problem. Soft Computing, 15(2):397–412, 2011.

[13] R. Bar-Yehuda, G. Even, J. Feldman, and J. Naor. Computing an optimal orientation

of a balanced decomposition tree for linear arrangement problems, pages 387–413.

World Scientific, 2004.

[14] S. T. Barnard, A. Pothen, and H. Simon. A spectral algorithm for envelope reduction

of sparse matrices. Numerical linear algebra with applications, 2(4):317–334, 1995.

[15] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. Resende, and W. R. Stewart. Design-

ing and reporting on computational experiments with heuristic methods. Journal of

heuristics, 1(1):9–32, 1995.

[16] M. Basseur and A. Goëffon. Climbing combinatorial fitness landscapes. Applied

Soft Computing, 30:688–704, 2015.

[17] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[18] D. Berengut. Statistics for experimenters: Design, innovation, and discovery. The

American Statistician, 60(4):341–342, 2006.

[19] J. Blythe, C. McGrath, and D. Krackhardt. The effect of graph layout on inference

from social network data. In International symposium on graph drawing, pages

40–51. Springer, 1995.

[20] A. Bodaghi, S. Goliaei, and M. Salehi. The number of followings as an influential

factor in rumor spreading. Applied Mathematics and Computation, 357:167–184,

2019.

BIBLIOGRAPHY 243

[21] J. A. Bondy, U. S. R. Murty, et al. Graph theory with applications, volume 290.

Macmillan London, 1976.

[22] G. Booch. The unified modeling language user guide. Pearson Education India,

2005.

[23] P. Briest, D. Brockhoff, B. Degener, M. Englert, C. Gunia, O. Heering, T. Jansen,

M. Leifhelm, K. Plociennik, H. Röglin, et al. Experimental supplements to the theo-

retical analysis of eas on problems from combinatorial optimization. In International

Conference on Parallel Problem Solving from Nature, pages 21–30. Springer, 2004.

[24] Broadcom. Dónde colocar el appliance en su red para obtener mejores resultados.

https://techdocs.broadcom.com. Accessed: 27-12-2022.

[25] V. Campos, F. Glover, M. Laguna, and R. Martı́. An experimental evaluation of

a scatter search for the linear ordering problem. Journal of Global Optimization,

21(4):397–414, 2001.

[26] A. Caprara, A. N. Letchford, and J.-J. Salazar-González. Decorous lower bounds

for minimum linear arrangement. INFORMS Journal on Computing, 23(1):26–40,

2011.

[27] C. Castillo. A proof for the cyclic cutwidth of q6. REU Project, Cal State Univ., San

Bernardino, 2003.

[28] S. Cavero, E. G. Pardo, and A. Duarte. Influence of the alternative objective func-

tions in the optimization of the cyclic cutwidth minimization problem. In Advances

in Artificial Intelligence: 19th Conference of the Spanish Association for Artificial

Intelligence, CAEPIA 2020/2021, Málaga, Spain, September 22–24, 2021, Proceed-

ings, page 139–149. Springer, 2021.

[29] S. Cavero, E. G. Pardo, and A. Duarte. Influence of the alternative objective func-

tions in the optimization of the cyclic cutwidth minimization problem. XIX Confer-

encia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2021), in

Malaga, Spain, 2021.

https://techdocs.broadcom.com

244 BIBLIOGRAPHY

[30] S. Cavero, E. G. Pardo, and A. Duarte. A vns approach for a variant of the antiband-

width problem. 8th International Conference on Variable Neighborhood Search

(ICVNS2021), in Abu Dhabi, U.A.E., 2021.

[31] S. Cavero, E. G. Pardo, and A. Duarte. A general variable neighborhood search for

the cyclic antibandwidth problem. Computational Optimization and Applications,

81(2):657–687, 2022.

[32] S. Cavero, E. G. Pardo, and A. Duarte. Efficient iterated greedy for the two-

dimensional bandwidth minimization problem. European Journal of Operational

Research, 306(3):1126–1139, 2023.

[33] S. Cavero, E. G. Pardo, A. Duarte, and E. Rodriguez-Tello. A variable neighborhood

search approach for cyclic bandwidth sum problem. Knowledge-Based Systems,

246:108680, 2022.

[34] S. Cavero, E. G. Pardo, M. Laguna, and A. Duarte. Multistart search for the cyclic

cutwidth minimization problem. Computers & Operations Research, 126:105116,

2021.

[35] T. Charitou, K. Bryan, and D. J. Lynn. Using biological networks to integrate, visu-

alize and analyze genomics data. Genetics Selection Evolution, 48(1):1–12, 2016.

[36] J. D. Chavez and R. Trapp. The cyclic cutwidth of trees. Discrete Applied Mathe-

matics, 87(1-3):25–32, 1998.

[37] Y.-D. Chen and J.-H. Yan. A study on cyclic bandwidth sum. Journal of Combina-

torial Optimization, 14(2):295–308, 2007.

[38] R. Cheng, M. Gent, and T. Tosawa. Genetic algorithms for designing loop lay-

out manufacturing systems. Computers & Industrial Engineering, 31(3-4):587–591,

1996.

[39] S. Cheng, Y. Shi, and Q. Qin. On the performance metrics of multiobjective op-

timization. In International Conference in Swarm Intelligence, pages 504–512.

Springer, 2012.

BIBLIOGRAPHY 245

[40] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and P. Mutzel. The

Open Graph Drawing Framework (OGDF). Handbook of graph drawing and visu-

alization, 2011:543–569, 2013.

[41] P. Z. Chinn, J. Chvátalová, A. K. Dewdney, and N. E. Gibbs. The bandwidth problem

for graphs and matrices — a survey. Journal of Graph Theory, 6(3):223–254, 1982.

[42] F. R. Chung. Labelings of graphs. Selected topics in graph theory, 3(25):151–168,

1988.

[43] D. W. Clarke. The cyclic cutwidth of mesh cubes. PhD thesis, California State

University, 2002.

[44] J. P. Cohoon and S. Sahni. Heuristics for backplane ordering. Journal of VLSI and

computer systems, 2(1-2):37–60, 1987.

[45] W. Commons. The VLSI VL82C106 is a I/O chip for x86 computers. https:

//commons.wikimedia.org/wiki/File:VLSI_Chip.jpg, 2009. Ac-

cessed: 29-11-2022.

[46] S. Craw. Manhattan Distance, pages 639–639. Springer US, Boston, MA, 2010.

[47] G. B. Dantzig. Origins of the Simplex Method, page 141–151. Association for

Computing Machinery, New York, NY, USA, 1990.

[48] R. C. de Andrade, T. d. O. e Bonates, M. Campêlo, and M. da Silva Ferreira. A

compact quadratic model and linearizations for the minimum linear arrangement

problem. Discrete Applied Mathematics, 323:134–148, 2022.

[49] M. G. de Carvalho Resende and D. V. Andrade. Method and system for network

migration scheduling, Mar. 20 2012. US Patent 8,139,502.

[50] M. De Domenico, M. A. Porter, and A. Arenas. Muxviz: a tool for multilayer anal-

ysis and visualization of networks. Journal of Complex Networks, 3(2):159–176,

2015.

https://commons.wikimedia.org/wiki/File:VLSI_Chip.jpg
https://commons.wikimedia.org/wiki/File:VLSI_Chip.jpg

246 BIBLIOGRAPHY

[51] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.

Technical report, University of Michigan, 1975.

[52] E. De Klerk, M. E.-Nagy, and R. Sotirov. On semidefinite programming bounds for

graph bandwidth. Optimization Methods and Software, 28(3):485–500, 2013.

[53] R. Diestel. Graph theory. Graduate texts in mathematics, 173:33, 2005.

[54] S. Dobrev, R. Královič, D. Pardubská, L. Török, and I. Vrt’o. Antibandwidth

and cyclic antibandwidth of Hamming graphs. Discrete Applied Mathematics,

161(10):1402–1408, 2013.

[55] M. Dorigo. Optimization, learning and natural algorithms. PhD thesis, Politecnico

di Milano, 1992.

[56] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE computa-

tional intelligence magazine, 1(4):28–39, 2006.

[57] A. Duarte, S. Cavero, and E. G. Pardo. Heurı́sticas aplicadas al 2d bandwidth prob-

lem. XXXIX Congreso Nacional de Estadı́stica e Investigación Operativa (SEIO

2022), in Granada, Spain, 2021.

[58] A. Duarte, R. Martı́, M. G. Resende, and R. M. Silva. GRASP with path relinking

heuristics for the antibandwidth problem. Networks, 58(3):171–189, 2011.

[59] A. Duarte, J. J. Pantrigo, E. G. Pardo, and J. Sánchez-Oro. Parallel variable neigh-

bourhood search strategies for the cutwidth minimization problem. IMA Journal of

Management Mathematics, 27(1):55, 2016.

[60] A. Duarte, J. Sánchez-Oro, N. Mladenović, and R. Todosijević. Variable Neighbor-

hood Descent, pages 341–367. Springer International Publishing, Cham, 2018.

[61] I. S. Duff, R. G. Grimes, and J. G. Lewis. User’s guide for the Harwell-Boeing

sparse matrix collection (release 1). RAL, Chilton, 1992.

[62] T. Duff. Plutarch’s Lives: exploring virtue and vice. Oxford University Press, 1999.

BIBLIOGRAPHY 247

[63] V. Dujmović and D. R. Wood. On linear layouts of graphs. Discrete Mathematics

and Theoretical Computer Science, 6(2):339–358, 2004.

[64] J. Dı́az, M. D. Penrose, J. Petit, and M. Serna. Approximating layout problems on

random geometric graphs. Journal of Algorithms, 39(1):78–116, 2001.

[65] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Computing

Surveys (CSUR), 34(3):313–356, 2002.

[66] J. Edmonds. Matroids and the greedy algorithm. Mathematical programming,

1(1):127–136, 1971.

[67] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull. Graphviz—open

source graph drawing tools. In International Symposium on Graph Drawing, pages

483–484. Springer, 2001.

[68] J. Erbele, J. D. Chavez, and R. Trapp. The cyclic cutwidth of qn. Manuscript,

California State University, San Bernardino USA, 2003.

[69] H. Eves. An introduction to the history of mathematics. Saunders College Publish-

ing, 1983.

[70] O. Ezenwoye. What language?-the choice of an introductory programming lan-

guage. In 2018 IEEE Frontiers in Education Conference (FIE), pages 1–8. IEEE,

2018.

[71] T. A. Feo and M. G. Resende. A probabilistic heuristic for a computationally difficult

set covering problem. Operations research letters, 8(2):67–71, 1989.

[72] T. A. Feo and M. G. Resende. Greedy randomized adaptive search procedures.

Journal of global optimization, 6(2):109–133, 1995.

[73] E. Ferrara, P. De Meo, S. Catanese, and G. Fiumara. Detecting criminal organiza-

tions in mobile phone networks. Expert Systems with Applications, 41(13):5733–

5750, 2014.

248 BIBLIOGRAPHY

[74] A. Field. Discovering statistics using IBM SPSS statistics. SAGE Publications Ltd,

4th edition, 2013.

[75] M. Fischetti and M. Fischetti. Matheuristics. In Handbook of heuristics, pages 121–

153. Springer, 2018.

[76] L. J. Fogel. Toward inductive inference automata. In IFIP Congress, volume 62,

pages 395–400, 1962.

[77] M. Fourment and M. R. Gillings. A comparison of common programming languages

used in bioinformatics. BMC bioinformatics, 9(1):1–9, 2008.

[78] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement.

Software: Practice and experience, 21(11):1129–1164, 1991.

[79] E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot. Technical report,

AT&T Research, 2006.

[80] E. R. Gansner. Drawing graphs with Graphviz. Technical report, Graphviz, 2009.

[81] C. G. Garcia, D. Pérez-Brito, V. Campos, and R. Martı́. Variable neighbor-

hood search for the linear ordering problem. Computers & operations research,

33(12):3549–3565, 2006.

[82] M. R. Garey. A guide to the theory of NP-Completeness. Computers and intractabil-

ity, 1979.

[83] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete prob-

lems. In Proceedings of the sixth annual ACM symposium on Theory of computing,

pages 47–63, 1974.

[84] F. Gavril. Some NP-complete problems on graphs. In Proceedings of the eleventh

conference on information sciences and systems, pages 91–95, 1977.

[85] A. Ghavasieh and M. De Domenico. Statistical physics of network structure and

information dynamics. Journal of Physics: Complexity, 3(1):011001, 2022.

BIBLIOGRAPHY 249

[86] N. E. Gibbs, W. G. Poole, Jr, and P. K. Stockmeyer. An algorithm for reducing the

bandwidth and profile of a sparse matrix. SIAM Journal on Numerical Analysis,

13(2):236–250, 1976.

[87] F. Glover. Heuristics for integer programming using surrogate constraints. Decision

sciences, 8(1):156–166, 1977.

[88] F. Glover. Future paths for integer programming and links to artificial intelligence.

Computers & operations research, 13(5):533–549, 1986.

[89] F. Glover, V. Campos, and R. Martı́. Tabu search tutorial. A graph drawing applica-

tion. Top, 29(2):319–350, 2021.

[90] F. Glover and M. Laguna. Tabu search. In Handbook of combinatorial optimization,

pages 2093–2229. Springer, 1998.

[91] F. Glover, M. Laguna, and R. Martı́. Fundamentals of scatter search and path relink-

ing. Control and cybernetics, 29(3):653–684, 2000.

[92] F. W. Glover and G. A. Kochenberger. Handbook of metaheuristics, volume 57.

Springer Science & Business Media, 2006.

[93] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal of the

ACM (JACM), 42(6):1115–1145, 1995.

[94] T. F. Gonzalez. Handbook of approximation algorithms and metaheuristics. Chap-

man and Hall/CRC, 2007.

[95] J. L. Gross, J. Yellen, and M. Anderson. Graph theory and its applications. Chapman

and Hall/CRC, 2018.

[96] S. Gueye, S. Michel, and M. Moeini. Adjacency variables formulation for the min-

imum linear arrangement problem. In International Conference on Operations Re-

search and Enterprise Systems, pages 95–107. Springer, 2014.

[97] Gurobi Optimization LLC. Gurobi Optimizer Reference Manual, 9th edition, 2020.

250 BIBLIOGRAPHY

[98] R. Hamon, P. Borgnat, P. Flandrin, and C. Robardet. Relabelling vertices accord-

ing to the network structure by minimizing the cyclic bandwidth sum. Journal of

Complex Networks, 4(4):534–560, 2016.

[99] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and appli-

cations. European journal of operational research, 130(3):449–467, 2001.

[100] P. Hansen and N. Mladenović. Variable Neighborhood Search, pages 211–238.

Springer US, Boston, MA, 2005.

[101] P. Hansen and N. Mladenović. Variable Neighborhood Search, pages 759–787.

Springer International Publishing, Cham, 2018.

[102] P. Hansen, N. Mladenović, R. Todosijević, and S. Hanafi. Variable neighbor-

hood search: basics and variants. EURO Journal on Computational Optimization,

5(3):423–454, 2017.

[103] J. Hao. Maximum cutwidth problem for graphs. Applied Mathematics-A Journal of

Chinese Universities, 18(2):235–242, 2003.

[104] M. C. Hao, U. Dayal, M. Hsu, T. Sprenger, and M. H. Gross. Visualization of

directed associations in e-commerce transaction data. In Data Visualization 2001,

pages 185–192. Springer, 2001.

[105] L. H. Harper. Optimal assignments of numbers to vertices. Journal of the Society

for Industrial and Applied Mathematics, 12(1):131–135, 1964.

[106] L. H. Harper. Optimal numberings and isoperimetric problems on graphs. Journal

of Combinatorial Theory, 1(3):385 – 393, 1966.

[107] J. P. Hart and A. W. Shogan. Semi-greedy heuristics: An empirical study. Operations

Research Letters, 6(3):107–114, 1987.

[108] M. M. Hassan. Machine layout problem in modern manufacturing facilities. The

International Journal of Production Research, 32(11):2559–2584, 1994.

BIBLIOGRAPHY 251

[109] D. M. Hawkins. The problem of overfitting. Journal of chemical information and

computer sciences, 44(1):1–12, 2004.

[110] M. He, Q. Wu, and Y. Lu. Breakout local search for the cyclic cutwidth minimization

problem. Journal of Heuristics, 28(5):583–618, 2022.

[111] T. L. Heath et al. The thirteen books of Euclid’s Elements. Courier Corporation,

1956.

[112] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# language specification. Addison-

Wesley Longman Publishing Co., Inc., 2003.

[113] Heuristic. The Merriam-Webster Dictionary. Merriam-Webster, 11th edition, 2019.

[114] Heurı́stica. Diccionario de la lengua española. Real Academia Española, 23.6

edition, 2022.

[115] D. S. Hochba. Approximation algorithms for NP-hard problems. ACM Sigact News,

28(2):40–52, 1997.

[116] J. H. Holland. Outline for a logical theory of adaptive systems. Journal of the ACM

(JACM), 9(3):297–314, 1962.

[117] T. Hoskin. Parametric and nonparametric: Demystifying the terms. In Mayo Clinic,

volume 5, pages 1–5, 2012.

[118] D. C. Howell. Statistical methods for psychology. PWS-Kent Publishing Co, 1992.

[119] J. Hromkovič, V. Müller, O. Sỳkora, and I. Vrt’o. On embedding interconnection

networks into rings of processors. In International Conference on Parallel Architec-

tures and Languages Europe, pages 51–62. Springer, 1992.

[120] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization

for general algorithm configuration. In International conference on learning and

intelligent optimization, pages 507–523. Springer, 2011.

252 BIBLIOGRAPHY

[121] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an automatic algo-

rithm configuration framework. Journal of Artificial Intelligence Research, 36:267–

306, 2009.

[122] IBM Corp. IBM ILOG CPLEX Optimization StudioCPLEX User’s Manual, version

12 release 8 edition, 2017.

[123] L. W. Jacobs and M. J. Brusco. Note: A local-search heuristic for large set-covering

problems. Naval Research Logistics (NRL), 42(7):1129–1140, 1995.

[124] P. Jain, K. Srivastava, and G. Saran. Minimizing cyclic cutwidth of graphs using a

memetic algorithm. Journal of Heuristics, 22(6):815–848, 2016.

[125] B. James. The cyclical cutwidth of the three-dimensional and fourdimensional

cubes. Cal State Univ., San Bernardino McNair Scholar’s Program Summer Re-

search Journal, 1996.

[126] H. Jianxiu. Cyclic bandwidth sum of graphs. Applied Mathematics-A Journal of

Chinese Universities, 16(2):115–121, 2001.

[127] Y. Jinjiang and Z. Sanming. Optimal labelling of unit interval graphs. Applied

Mathematics, 10(3):337–344, 1995.

[128] M. Johnson. The linear and cyclic cutwidth of the complete bipartite graph. REU

Project, Cal State Univ., San Bernardino, 2003.

[129] M. Jünger and P. Mutzel. Graph drawing software. Springer Science & Business

Media, 2012.

[130] M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of graphs. Discrete

Applied Mathematics, 36(2):153–168, 1992.

[131] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of

ICNN’95-international conference on neural networks, volume 4, pages 1942–1948.

IEEE, 1995.

BIBLIOGRAPHY 253

[132] B. W. Kernighan and D. M. Ritchie. The C programming language. Pearson Educa-

tion, 2006.

[133] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results

for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357,

2007.

[134] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated anneal-

ing. science, 220(4598):671–680, 1983.

[135] B. Koohestani. On the solution of the graph bandwidth problem by means of search

methods. Applied Intelligence, pages 1–17, 2022.

[136] Y. Koren and D. Harel. A multi-scale algorithm for the linear arrangement prob-

lem. In International Workshop on Graph-Theoretic Concepts in Computer Science,

pages 296–309. Springer, 2002.

[137] M. Koutrouli, E. Karatzas, D. Paez-Espino, and G. A. Pavlopoulos. A guide to

conquer the biological network era using graph theory. Frontiers in bioengineering

and biotechnology, page 34, 2020.

[138] J. R. Koza. Genetic programming as a means for programming computers by natural

selection. Statistics and computing, 4(2):87–112, 1994.

[139] J. R. Koza. Genetic programming II: automatic discovery of reusable programs.

MIT press, 1994.

[140] M. Laguna. Tabu search. In Handbook of heuristics, pages 741–758. Springer, 2018.

[141] P. C. Lam, W. C. Shiu, and W. H. Chan. Characterization of graphs with equal

bandwidth and cyclic bandwidth. Discrete mathematics, 242(1-3):283–289, 2002.

[142] P. Larrañaga and J. A. Lozano. Estimation of distribution algorithms: A new tool for

evolutionary computation, volume 2. Springer Science & Business Media, 2001.

[143] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations

research, 14(4):699–719, 1966.

254 BIBLIOGRAPHY

[144] C. K. Leung, V. V. Kononov, A. G. Pazdor, and F. Jiang. Pyramidviz: visual analyt-

ics and big data visualization for frequent patterns. In 2016 IEEE 14th Intl Conf on

Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelli-

gence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and

Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),

pages 913–916. IEEE, 2016.

[145] C. K.-S. Leung, P. P. Irani, and C. L. Carmichael. Wifisviz: effective visualization

of frequent itemsets. In 2008 eighth IEEE international conference on data mining,

pages 875–880. IEEE, 2008.

[146] J. Y.-T. Leung, O. Vornberger, and J. D. Witthoff. On Some Variants of the Band-

width Minimization Problem. SIAM Journal on Computing, 13(3):650–667, 1984.

[147] R. R. Levary and S. Kalchik. Facilities layout—a survey of solution procedures.

Computers & Industrial Engineering, 9(2):141–148, 1985.

[148] A. Lim, J. Lin, and F. Xiao. Particle swarm optimization and hill climbing for the

bandwidth minimization problem. Applied Intelligence, 26(3):175–182, 2007.

[149] L. Lin and Y. Lin. Two models of two-dimensional bandwidth problems. Informa-

tion Processing Letters, 110(11):469–473, 2010.

[150] L. Lin and Y. Lin. Square-root rule of two-dimensional bandwidth problem. RAIRO-

Theoretical Informatics and Applications, 45(4):399–411, 2011.

[151] Y. Lin. The cyclic bandwidth problem. In Chinese Science Abstracts Series A,

volume 2, 1995.

[152] Y. Lin. Minimum bandwidth problem for embedding graphs in cycles. Networks:

An International Journal, 29(3):135–140, 1997.

[153] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle. The

irace package: Iterated racing for automatic algorithm configuration. Operations

Research Perspectives, 3:43–58, 2016.

BIBLIOGRAPHY 255

[154] M. C. López-Locés, N. Castillo-Garcı́a, H. J. F. Huacuja, P. Bouvry, J. E. Pecero,

R. A. P. Rangel, J. J. G. Barbosa, and F. Valdez. A new integer linear programming

model for the cutwidth minimization problem of a connected undirected graph. In

Recent Advances on Hybrid Approaches for Designing Intelligent Systems, pages

509–517. Springer, 2014.

[155] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In Handbook of

metaheuristics, pages 320–353. Springer, 2003.

[156] M. Lozano, A. Duarte, F. Gortázar, and R. Martı́. Variable neighborhood search with

ejection chains for the antibandwidth problem. Journal of Heuristics, 18(6):919–

938, 2012.

[157] M. Lozano, A. Duarte, F. Gortázar, and R. Martı́. A hybrid metaheuristic for the

cyclic antibandwidth problem. Knowledge-Based Systems, 54:103–113, 2013.

[158] J. Luttamaguzi, M. Pelsmajer, Z. Shen, and B. Yang. Integer programming solu-

tions for several optimization problems in graph theory. Technical report, Center for

Discrete Mathematics and Theoretical Computer Science, DIMACS, 2005.

[159] F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough. Topological bandwidth.

SIAM Journal on Algebraic Discrete Methods, 6(3):418–444, 1985.

[160] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the traveling

salesman problem. Citeseer, 1991.

[161] R. Martı́n-Santamarı́a, S. Cavero, A. Herrán, A. Duarte, and J. M. Colmenar. A prac-

tical methodology for reproducible experimentation: an application to the double-

row facility layout problem. Evolutionary Computation, pages 1–35, 2022.

[162] V. G. Martins Santos and A. M. Moreira de Carvalho. Tailored heuristics in adaptive

large neighborhood search applied to the cutwidth minimization problem. European

Journal of Operational Research, 2019.

[163] R. Martı́. Multi-start methods. In Handbook of metaheuristics, pages 355–368.

Springer, 2003.

256 BIBLIOGRAPHY

[164] R. Martı́, V. Campos, and E. Piñana. A branch and bound algorithm for the matrix

bandwidth minimization. European Journal of Operational Research, 186(2):513–

528, 2008.

[165] R. Martı́, M. Laguna, F. Glover, and V. Campos. Reducing the bandwidth of a sparse

matrix with tabu search. European Journal of Operational Research, 135(2):450–

459, 2001.

[166] R. Martı́, J. A. Lozano, A. Mendiburu, and L. Hernando. Multi-start methods. In

Handbook of heuristics, pages 155–175. Springer, 2018.

[167] R. Martı́, J. J. Pantrigo, A. Duarte, and E. G. Pardo. Branch and bound for the

cutwidth minimization problem. Computers & Operations Research, 40(1):137 –

149, 2013.

[168] A. J. Mcallister. A new heuristic algorithm for the linear arrangement problem.

Technical report, New Brunswick, CA: University of New Brunswick, 1999.

[169] C. McCreary, C. Combs, D. Gill, and J. Warrenz. An automated graph drawing

system using graph decomposition. In ALCOM International Workshop on Graph

Drawing, page 80, 1993.

[170] R. D. Meller and K.-Y. Gau. The facility layout problem: recent and emerging trends

and perspectives. Journal of manufacturing systems, 15(5):351–366, 1996.

[171] W. Michiels, E. H. L. Aarts, and J. Korst. Theory of Local Search, pages 299–339.

Springer International Publishing, Cham, 2018.

[172] Z. Miller and D. Pritikin. On the separation number of a graph. Networks, 19(6):651–

666, 1989.

[173] A. K. Mishra, J. Choi, M. F. Rabbee, and K.-H. Baek. In silico genome-wide analysis

of the atp-binding cassette transporter gene family in soybean (glycine max l.) and

their expression profiling. BioMed research international, 2019, 2019.

BIBLIOGRAPHY 257

[174] N. Mladenović. A variable neighborhood algorithm-a new metaheuristic for com-

binatorial optimization. In Papers Presented at Optimization Days, volume 112,

1995.

[175] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & opera-

tions research, 24(11):1097–1100, 1997.

[176] N. Mladenović, D. Urosevic, D. Pérez-Brito, and C. G. Garcı́a-González. Variable

neighbourhood search for bandwidth reduction. European Journal of Operational

Research, 200(1):14–27, 2010.

[177] B. Monien and I. H. Sudborough. Min cut is np-complete for edge weighted trees.

Theoretical Computer Science, 58(1-3):209–229, 1988.

[178] E. Montero, M.-C. Riff, and B. Neveu. A beginner’s guide to tuning methods. Ap-

plied Soft Computing, 17:39–51, 2014.

[179] P. Moscato et al. On evolution, search, optimization, genetic algorithms and martial

arts: Towards memetic algorithms. Caltech concurrent computation program, C3P

Report, 826:1989, 1989.

[180] F. Neri, C. Cotta, and P. Moscato. Handbook of memetic algorithms, volume 379.

Springer, 2011.

[181] A. R. Newton. Computer-aided design of vlsi circuits. Proceedings of the IEEE,

69(10):1189–1199, 1981.

[182] M. Oliveira and J. Gama. An overview of social network analysis. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, 2(2):99–115, 2012.

[183] D. B. Owen. The power of student’s t-test. Journal of the American Statistical

Association, 60(309):320–333, 1965.

[184] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-

scale symmetric traveling salesman problems. SIAM review, 33(1):60–100, 1991.

258 BIBLIOGRAPHY

[185] G. Palubeckis. A branch-and-bound algorithm for the single-row equidistant facility

layout problem. OR Spectrum, 34(1):1–21, Jan 2012.

[186] J. J. Pantrigo, R. Martı́, A. Duarte, and E. G. Pardo. Scatter search for the cutwidth

minimization problem. Annals of Operations Research, 199(1):285–304, 2012.

[187] C. H. Papadimitriou. The NP-completeness of the bandwidth minimization problem.

Computing, 16(3):263–270, 1976.

[188] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1998.

[189] E. G. Pardo, S. Cavero, and A. Duarte. Un enfoque metaheurı́stico para problemas

deordenación circular. XXXIX Congreso Nacional de Estadı́stica e Investigación

Operativa (SEIO 2022), in Granada, Spain, 2021.

[190] E. G. Pardo, A. Garcı́a-Sánchez, M. Sevaux, and A. Duarte. Basic variable neighbor-

hood search for the minimum sitting arrangement problem. Journal of Heuristics,

26(2):249–268, 2020.

[191] E. G. Pardo, R. Martı́, and A. Duarte. Linear layout problems. In Handbook of

Heuristics, pages 1025–1049. Springer, 2018.

[192] E. G. Pardo, N. Mladenović, J. J. Pantrigo, and A. Duarte. Variable formulation

search for the cutwidth minimization problem. Applied Soft Computing, 13(5):2242–

2252, 2013.

[193] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kossida,

J. Aerts, R. Schneider, and P. G. Bagos. Using graph theory to analyze biological

networks. BioData mining, 4:1–27, 2011.

[194] J. Petit. Experiments on the minimum linear arrangement problem. Journal of

Experimental Algorithmics (JEA), 8, 2003.

[195] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm intelli-

gence, 1(1):33–57, 2007.

BIBLIOGRAPHY 259

[196] L. Prechelt. An empirical comparison of seven programming languages. Computer,

33(10):23–29, 2000.

[197] H. C. Purchase, R. F. Cohen, and M. James. Validating graph drawing aesthetics. In

International Symposium on Graph Drawing, pages 435–446. Springer, 1995.

[198] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, 2022.

[199] A. Raspaud, H. Schröder, O. Sýkora, L. Torok, and I. Vrt’o. Antibandwidth

and cyclic antibandwidth of meshes and hypercubes. Discrete Mathematics,

309(11):3541–3552, 2009.

[200] A. Raspaud, O. Sýkora, and I. Vrt’o. Congestion and Dilation, Similarities and Dif-

ferences: a Survey. In Proceedings of the 7th International Colloquium on Structural

Information and Communication Complexity, page 14, 2000.

[201] J. Ren, J.-K. Hao, and E. Rodriguez-Tello. An iterated three-phase search approach

for solving the cyclic bandwidth problem. IEEE Access, 7:98436–98452, 2019.

[202] J. Ren, J.-K. Hao, E. Rodriguez-Tello, L. Li, and K. He. A new iterated local

search algorithm for the cyclic bandwidth problem. Knowledge-Based Systems,

203:106136, 2020.

[203] F. Rios. Complete graphs as a first step toward finding the cyclic cutwidth of the n-

cube. Cal State Univ., San Bernardino McNair Scholar’s Program Summer Research

Journal, 1996.

[204] E. Rodriguez-Tello and L. C. Betancourt. An improved memetic algorithm for the

antibandwidth problem. In International Conference on Artificial Evolution (Evolu-

tion Artificielle), pages 121–132. Springer, 2011.

[205] E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez. Memetic algorithms for the

minla problem. In International Conference on Artificial Evolution (Evolution Arti-

ficielle), pages 73–84. Springer, 2005.

260 BIBLIOGRAPHY

[206] E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez. An effective two-stage simu-

lated annealing algorithm for the minimum linear arrangement problem. Computers

& Operations Research, 35(10):3331–3346, 2008.

[207] E. Rodriguez-Tello, F. Lardeux, A. Duarte, and V. Narvaez-Teran. Alternative eval-

uation functions for the cyclic bandwidth sum problem. European Journal of Oper-

ational Research, 273(3):904–919, 2019.

[208] E. Rodriguez-Tello, V. Narvaez-Teran, and F. Lardeux. Comparative Study of Differ-

ent Memetic Algorithm Configurations for the Cyclic Bandwidth Sum Problem. In

A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, and D. Whitley, ed-

itors, Parallel Problem Solving from Nature – PPSN XV, Lecture Notes in Computer

Science, vol 11101, pages 82–94, Cham, 2018. Springer International Publishing.

[209] E. Rodriguez-Tello, V. Narvaez-Teran, and F. Lardeux. Dynamic Multi-Armed Ban-

dit Algorithm for the Cyclic Bandwidth Sum Problem. IEEE Access, 7:40258–

40270, 2019.

[210] E. Rodriguez-Tello, H. Romero-Monsivais, G. Ramirez-Torres, and F. Lardeux. Tabu

search for the cyclic bandwidth problem. Computers & Operations Research, 57:17–

32, 2015.

[211] M. A. Rodrı́guez-Garcı́a, J. Sánchez-Oro, E. Rodriguez-Tello, E. Monfroy, and

A. Duarte. Two-dimensional bandwidth minimization problem: Exact and heuris-

tic approaches. Knowledge-Based Systems, 214:106651, 2021.

[212] J. Rolim, O. Sỳkora, and I. Vrt’o. Optimal cutwidths and bisection widths of 2-and

3-dimensional meshes. In International Workshop on Graph-Theoretic Concepts in

Computer Science, pages 252–264. Springer, 1995.

[213] H. Romero-Monsivais, E. Rodriguez-Tello, and G. Ramı́rez. A new branch and

bound algorithm for the cyclic bandwidth problem. In Mexican International Con-

ference on Artificial Intelligence, pages 139–150. Springer, 2012.

BIBLIOGRAPHY 261

[214] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier,

2006.

[215] D. Rouvray and D. Bonchev. Chemical graph theory: introduction and fundamen-

tals. Abacus Press, 1991.

[216] R. Ruiz and T. Stützle. A simple and effective iterated greedy algorithm for the per-

mutation flowshop scheduling problem. European journal of operational research,

177(3):2033–2049, 2007.

[217] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, 2nd edition, 2003.

[218] J. Sánchez-Oro, J. J. Pantrigo, and A. Duarte. Combining intensification and diversi-

fication strategies in vns. an application to the vertex separation problem. Computers

& Operations Research, 52:209–219, 2014.

[219] M. Saravanan and S. Ganesh Kumar. Different approaches for the loop layout prob-

lems: a review. The International Journal of Advanced Manufacturing Technology,

69(9):2513–2529, 2013.

[220] SAS Institute Inc. SAS/STAT 15.1 User’s Guide, 15.1 edition, 2018.

[221] D. Satsangi, K. Srivastava, and Gursaran. General variable neighbourhood search

for cyclic bandwidth sum minimization problem. In 2012 Students Conference on

Engineering and Systems, pages 1–6, 2012.

[222] H. Schröder, O. Sỳkora, and I. Vrt’o. Cyclic cutwidths of the two-dimensional ordi-

nary and cylindrical meshes. Discrete applied mathematics, 143(1):123–129, 2004.

[223] H. Schröder, O. Sỳykoa, and I. Vrt’o. Cyclic cutwidth of the mesh. In International

Conference on Current Trends in Theory and Practice of Computer Science, pages

449–458. Springer, 1999.

[224] V. Sciortino, J. D. Chavez, and R. Trapp. The cyclic cutwidth of a p2× p2× pn

mesh. REU Project, Cal State Univ., San Bernardino, 2002.

262 BIBLIOGRAPHY

[225] T. D. Seeley. The wisdom of the hive: the social physiology of honey bee colonies.

Harvard University Press, 2009.

[226] S. C. Shapiro. Generalized augmented transition network grammars for generation

from semantic networks. American Journal of Computational Linguistics, 8(1):12–

26, 1982.

[227] E. A. Silver, R. Victor, V. Vidal, and D. de Werra. A tutorial on heuristic methods.

European Journal of Operational Research, 5(3):153–162, 1980.

[228] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM Journal on

Scientific Computing, 18(5):1436–1445, 1997.

[229] S. S. Skiena. The algorithm design manual, volume 2. Springer, 1998.

[230] K. Smith-Miles and L. Lopes. Measuring instance difficulty for combinatorial opti-

mization problems. Computers & Operations Research, 39(5):875–889, 2012.

[231] K. Sörensen and F. Glover. Metaheuristics. Encyclopedia of operations research

and management science, 62:960–970, 2013.

[232] K. Sörensen, M. Sevaux, and F. Glover. A history of metaheuristics. In Handbook

of heuristics, pages 791–808. Springer, 2018.

[233] H. Stegherr, M. Heider, and J. Hähner. Classifying metaheuristics: Towards a unified

multi-level classification system. Natural Computing, pages 1–17, 2020.

[234] B. Stroustrup. The C++ programming language. Pearson Education India, 2000.

[235] T. Stützle and R. Ruiz. Iterated Greedy, pages 547–577. Springer International

Publishing, Cham, 2018.

[236] K. Sugiyama and K. Misue. A simple and unified method for drawing graphs:

Magnetic-spring algorithm. In International Symposium on Graph Drawing, pages

364–375. Springer, 1994.

BIBLIOGRAPHY 263

[237] O. Sýkora, L. Torok, and I. Vrt’o. The Cyclic Antibandwidth Problem. Electronic

Notes in Discrete Mathematics, 22:223–227, 2005.

[238] E.-G. Talbi. Metaheuristics: from design to implementation. John Wiley & Sons,

2009.

[239] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability

of diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):61–79,

1988.

[240] D. W. H. Ten, S. Manickam, S. Ramadass, and H. A. Al Bazar. Study on advanced

visualization tools in network monitoring platform. In 2009 Third UKSim European

Symposium on Computer Modeling and Simulation, pages 445–449. IEEE, 2009.

[241] D. M. Thilikos, M. Serna, and H. L. Bodlaender. Cutwidth ii: Algorithms for partial

w-trees of bounded degree. Journal of Algorithms, 56(1):25–49, 2005.

[242] Q. D. Truong, Q. B. Truong, and T. Dkaki. Graph methods for social network anal-

ysis. In International Conference on Nature of computation and Communication,

pages 276–286. Springer, 2016.

[243] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor

Wiskunde en Informatica Amsterdam, 1995.

[244] V. V.Cernỳ. Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of optimization theory and applications,

45(1):41–51, 1985.

[245] J. Venn. I. on the diagrammatic and mechanical representation of propositions and

reasonings. The London, Edinburgh, and Dublin philosophical magazine and jour-

nal of science, 10(59):1–18, 1880.

[246] M. Vidoni. Beyond hard and soft or: operational research from a software engi-

neering perspective. Journal of the Operational Research Society, 73(4):693–715,

2022.

264 BIBLIOGRAPHY

[247] C. Voudouris. Guided local search—an illustrative example in function optimisation.

BT Technology Journal, 16(3):46–50, 1998.

[248] C. Voudouris and E. Tsang. Function optimization using guided local search. Uni-

versity of Essex, Technical Report CSM-249, Colchester, UK, 1995.

[249] Y. Weili, L. Xiaoxu, and Z. Ju. Dual bandwidth of some special trees. Journal-

zhengzhou University Natural Science Edition, 35(3):16–19, 2003.

[250] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles—visualization and automatic

layout of graphs. In Graph Drawing Software, pages 173–191. Springer, 2004.

[251] F. Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in

statistics, pages 196–202. Springer, 1992.

[252] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cam-

bridge university press, 2011.

[253] A. Wolff. Drawing subway maps: A survey. Informatik-Forschung und Entwicklung,

22:23–44, 2007.

[254] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE

transactions on evolutionary computation, 1(1):67–82, 1997.

[255] D. H. Wolpert, W. G. Macready, et al. No free lunch theorems for search. Technical

report, Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[256] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster. IEEE Transac-

tions on Evolutionary computation, 3(2):82–102, 1999.

[257] X. Ying. An overview of overfitting and its solutions. In Journal of physics: Con-

ference series, volume 1168. IOP Publishing, 2019.

[258] Y. Yonezawa and T. Kikuchi. Ecological algorithm for optimal ordering used by

collective honey bee behavior. In MHS’96 Proceedings of the Seventh International

Symposium on Micro Machine and Human Science, pages 249–256. IEEE, 1996.

BIBLIOGRAPHY 265

[259] J. Yuan. Cyclic arrangement of graphs. In Graph Theory Notes of New York, pages

6–10, New York, NY, USA, 1995. New York Academy of Sciences.

[260] S. H. Zanakis and J. R. Evans. Heuristic “optimization”: Why, when, and how to use

it. Interfaces, 11(5):84–91, 1981.

[261] S. H. Zanakis, J. R. Evans, and A. A. Vazacopoulos. Heuristic methods and applica-

tions: a categorized survey. European Journal of Operational Research, 43(1):88–

110, 1989.

[262] W. Zeng, C.-W. Fu, S. M. Arisona, A. Erath, and H. Qu. Visualizing mobility of pub-

lic transportation system. IEEE transactions on visualization and computer graph-

ics, 20(12):1833–1842, 2014.

[263] P. Zhang and Y. Itan. Biological network approaches and applications in rare disease

studies. Genes, 10(10):797, 2019.

[264] S. Zhou. Bounding the bandwidths for graphs. Theoretical computer science,

249(2):357–368, 2000.

[265] D. W. Zimmerman and B. D. Zumbo. Relative power of the wilcoxon test, the

friedman test, and repeated-measures anova on ranks. The Journal of Experimental

Education, 62(1):75–86, 1993.

Glossary

Symbols
CLG , 48–50, 57

CLH , 48, 50, 58

ε-approximation algorithm, 8

γ , 51, 52

γw , 52, 57

λ , 56

ψ , 21, 22, 48

ϕ , 21, 48

cab, 96

2dbmp, 44, 96

bw, 42, 43

cab, 42

cbs, 43, 96

ccw, 40, 96

, 69

A
advanced strategies, 35, 38, 66, 72, 90, 92

alternative objective function, 69, 92, 115

antibandwidth, 42, 135

approximate algorithm, 6, 7, 18, 95

approximation algorithm, 6–8

arc, 18, 78

arrangement, 20, 25, 31

assignation, 21–23, 25, 40, 48, 56

automatic tuning, 89, 92

B
bandwidth, 25, 41, 42, 44, 70

best improvement strategy, 11, 60, 67

branch and bound algorithm, 7

breadth first search algorithm, 53, 58

C
cardinality of a path, 22, 25, 41, 42, 44, 48

Circular Graph Layout Problems, 24, 39

class diagram, 75

competitive test, 94, 95

complexity, 26, 28, 68, 71, 84, 87

complexity class, 5

complexity class NP, 5

complexity class NP-complete, 5, 28

complexity class NP-hard, 6

complexity class P, 5

congestion, 39

constraint programming, 7, 28

constraints, 4

constructive heuristic, 10, 47, 49

continuous variable, 5

CPLEX, 18

cut of an edge, 25, 39, 69

267

268 GLOSSARY

cutwidth, 25, 39, 69

cycle graph, 21, 24

cycle host graph, 21, 23, 24, 27, 39, 41, 42

cyclic antibandwidth, 42, 135

cyclic cutwidth, 39, 40

D
degree of a vertex, 21

deterministic metaheuristics, 16

discrete variables, 5

diversification, 16, 17, 57, 63, 65, 66

dynamic programming, 7

E
edge, 18, 20, 21, 78

edge bisection, 25

embedding, 20, 21, 23, 28, 48

exact algorithm, 6, 26, 28, 33, 47

exchange move, 58, 59, 68, 72

exchange neighborhood, 59

F
Facility Layout Problems, 32

feasible solution, 4, 47

first improvement strategy, 11, 60

fitness landscape, 12, 69

flat landscape, 12, 69

FPTAS class, 8

Friedman test, 89

G
global optimal solution, 6

global optimum, 4

graph, 18, 20

graph drawing, 29, 30, 78, 204

Graph Layout Problems, 18, 21

graph visualization, 29

graph-drawing system, 30

graphical patterns, 54

greedy constructive procedure, 10, 50, 72

greedy criterion, 50, 52–54, 56

Greedy Randomized Adaptive Search Procedure,

17, 57

grid graph, 24

grid host graph, 21, 23, 24, 27, 44

Gurobi, 18

H
heuristic, 7–9

heuristic algorithm, 9, 47, 60, 72

host graph, 21, 23, 24, 26

I
improving methods, 58

input graph, 21, 23–26

insert move, 58, 68, 71, 90

insert neighborhood, 59, 71

instance, 28, 85

instance selection, 85, 86

intensification, 17, 57, 58, 61, 63, 66

Iterated Greedy, 16, 65

J
Java, 75

L
labeling, 20

lattice graph, 21, 25

GLOSSARY 269

layout, 20, 30–32

local search, 10, 13, 58, 59, 62, 64, 66, 69, 72

M
manual tuning, 89

mathematical programming, 18

matheuristic, 18, 101, 102

max-min optimization problem, 12, 42, 69

maximization optimization problem, 4, 42

measuring metric, 87

memory-based metaheuristic, 15, 62

metaheuristic, 13, 14, 47, 60, 72

metaheuristics inspiration, 15

min-max optimization problem, 12, 40, 69

minimization optimization problem, 4, 40, 43,

44

move, 10, 13, 15, 16, 71

multistart metaheuristic, 13, 57, 61, 114

N
nature-inspired metaheuristic, 15

neighborhood, 10, 12, 13, 58, 59, 63

neighborhood exploration, 11, 59, 90

neighborhood reduction techniques, 13, 70

No Free Lunch Theorem, 17

node, 18, 78

numbering, 20

O
objective function, 3, 4, 25, 26, 69

optimal solution, 9, 16, 33

optimization problem, 3, 4

combinatorial optimization problem, 5, 20,

58

continuous optimization problem, 5

ordering, 20

overfitting, 85

P
parameter tuning, 83, 89, 92

path, 21, 23

path graph, 21, 24

path host graph, 21, 23, 24, 26, 28

perturbation movement, 16, 17

preliminary test, 89–92, 94

problem dependent, 8, 13, 34, 60

projection, 20, 21, 48

PTAS class, 8

Q
quality metric, 87, 90

R
random constructive procedure, 49

research methodology, 35

S
scientific method, 35

search space, 4, 5, 7, 12, 16, 17, 62, 100

sequential pattern, 54

single neighborhood structure, 16, 63

slow convergence, 12

solution space, 4, 57

spanning tree, 53, 58

statistical test, 81, 84, 85, 88, 89

stochastic metaheuristics, 16

suboptimal solutions, 12

swap move, 58, 59, 68, 72, 90

270 GLOSSARY

swap neighborhood, 59, 72

T
tabu memory, 16, 62, 114

Tabu Search, 15, 62, 114

termination criteria, 12, 61, 65, 90, 92

tiebreak criterion, 69

U
undirected edge, 21

V
Variable Neighborhood Search, 16, 63, 64

vertex, 18, 20, 78

VLSI circuit, 19, 29

W
Wilcoxon test, 89

	Acknowledgments
	Abstract
	Resumen
	Contents
	List of tables
	List of figures
	List of acronyms
	I PhD Dissertation
	Introduction
	Optimization
	Optimization problems
	Optimization methods

	Graph Layout Problems
	Definitions and notation
	Literature review
	Historical perspectives and applications

	Hypothesis and objectives
	Hypothesis
	Objectives
	Research methodology

	Structure of the document

	Studied Graph Layout Problems
	Cyclic Cutwidth Minimization Problem
	Cyclic Antibandwidth Problem
	Cyclic Bandwidth Sum Problem
	Two-Dimensional Bandwidth Minimization Problem

	Algorithmic proposal
	Constructive procedures
	Criteria for selecting a vertex of the input graph
	Criteria for selecting a set of vertices of the input graph
	Criteria for selecting a vertex of the host graph
	Randomization of the procedures

	Improving methods
	Metaheuristics
	Multistart procedures
	Tabu Search
	Variable Neighborhood Search
	Iterated Greedy

	Advanced strategies
	Efficient evaluation of a solution after a move
	Tiebreak criterion for solutions with the same objective function value
	Neighborhood reduction strategy

	Final proposals
	Software development
	Implementation issues
	Solution visualization
	Resources used

	Joint discussion of results
	Analysis of the performance of the algorithms
	Instances
	Metrics

	Preliminary testing
	Competitive testing

	Conclusions and future work
	General conclusions
	Future lines of research

	II Publications
	Overview
	Cyclic Cutwidth Minimization Problem
	Cyclic Antibandwidth Problem
	Cyclic Bandwidth Sum Problem
	Two-Dimensional Bandwidth Minimization Problem
	Other related publications

	III Appendix
	Example of solution visualizations
	Resumen en castellano
	Introducción
	Antecedentes
	Hipótesis y objetivos
	Metodología
	Propuesta algorítmica
	Resultados
	Conclusiones

	Bibliography
	Glossary

