Case of study: Photovoltaic faults recognition method based on data mining techniques

Resumen

Data Mining techniques have been applied to data collected from a 222 kWp CdTe (Cadmium Telluride) photovoltaic (PV) generator to predict faults or special conditions that occurs due to shadows, bad weather, soiling, and technical faults. Five types of errors have been distinguished and its impact on the PV system performance has been evaluated. Up to date, this computing approach has needed the simultaneous measurement of environmental attributes that an array of sensors collected. This study presents a model to assess the state of the PV (photovoltaic) generator and an algorithm that classifies its state without measuring ambient conditions. The result of a 222 kWp CdTe PV case study shows how the application of computing learning algorithms can be used to improve the management and performance of the photovoltaic generators and underlines the environmental parameters as clue attributes to find faults during the PV performance. Although the application of this method requires computational effort, the result deals with an easy-implementing decision tree, which can be installed in small device

Publicación
Journal of Renewable and Sustainable Energy
Lucía Serrano-Luján
Lucía Serrano-Luján
Contratada Doctor Interina

Lucía Serrano-Luján es Profesora Contratada Doctor interina en el Departamento de Informática y Estadística. Su campo de investigación es multidisciplinar. Es experta en la aplicación de la metodología de Análisis del Ciclo de Vida para evaluar las energías renovables y ha aplicado la IA a sus datos. Su principal objetivo es influir en la producción de materiales relacionados con la energía y encontrar una forma más sostenible de desarrollarlos. Ha aplicado el ACV para reducir el óxido de grafeno y las células solares de perovskita, construir sistemas fotovoltaicos integrados, etc.