The cutwidth minimization problem consists of finding a linear layout of a graph so that the maximum linear cut of edges is minimized. This NP-hard problem has applications in network scheduling, automatic graph drawing and information retrieval. We propose a heuristic method based on the Scatter Search (SS) methodology for finding approximate solutions to this optimization problem. This metaheuristic explores solution space by evolving a set of reference points. Our SS method is based on a GRASP constructive algorithm, a local search strategy based on insertion moves and voting-based combination methods. We also introduce a new measure to control the diversity in the search process. Empirical results with 252 previously reported instances indicate that the proposed procedure compares favorably to previous metaheuristics for this problem, such as Simulated Annealing and Evolutionary Path Relinking.