Determining good solutions and validating them with a metaheuristic approach in social network influence minimization problems

Resumen

The evolution of social networks has given rise to significant challenges associated with the overwhelming amount of information available. These challenges encompass various areas such as viral marketing, disease management, and misinformation control. Crafting effective strategies for minimizing influence is heavily influenced by factors like network topology, user behavior, and the dynamics of information propagation. As social networks become more intricate, the imperative to utilize data-driven insights becomes increasingly apparent. The Social Influence Minimization Problems (IMIN) aims to identify and strategically block users to limit the spread of information. Extracting structural insights through data-mining techniques can guide the development of efficient heuristics and the identification of influential users to be targeted for blocking. To address the NP-hard nature of the IMIN problem, a robust metaheuristic algorithm based on the Greedy Randomized Adaptive Search (GRASP) framework has been introduced. This method is derived from a deep understanding of how network features contribute to impactful solutions, proving to be effective and cost-efficient when compared to state-of-the-art methods.

Publicación
European Journal of Operational Research
Isaac Lozano-Osorio
Isaac Lozano-Osorio
Doctor en Inteligencia Artificial

Isaac Lozano se graduó en el Doble grado de Ingeniería Informática e Ingeniería de Computadores por la Universidad Rey Juan Carlos. Al finalizar el doble grado, fue galardonado con el premio al Mejor Proyecto Fin de Carrera. Posteriormente, realizó un Máster en Investigación en Inteligencia Artificial (UIMP) y es doctor por la Universidad Rey Juan Carlos. Sus principales intereses de investigación se centran en la interfaz entre las Ciencias de la Computación, la Inteligencia Artificial y la Investigación Operativa. La mayoría de sus publicaciones tratan sobre el desarrollo de procedimientos metaheurísticos para problemas de optimización modelados por grafos.

Jesús Sánchez-Oro
Jesús Sánchez-Oro
Profesor Titular de Universidad

Profesor Titular del Departamento de Informática, siendo uno de los investigadores principales del Grupo de Investigación de Algoritmos para la Optimización GRAFO.