Max-min dispersion with capacity and cost for a practical location problem

Resumen

Diversity and dispersion problems deal with selecting a subset of elements from a given set in such a way that their diversity is maximized. This study considers a practical location problem recently proposed in the context of max–min dispersion models. It is called the generalized dispersion problem, and it models realistic applications by introducing capacity and cost constraints. We propose two effective linear formulations for this problem, and develop a hybrid metaheuristic algorithm based on the variable neighborhood search methodology, to solve real instances. Extensive numerical computational experiments are performed to compare our hybrid metaheuristic with the state-of-art heuristic, and with integer linear programming formulations (ILP). Results on public benchmark instances show the superiority of our proposal with respect to the previous algorithms. Our extensive experimentation reveals that ILP models are able to optimally solve medium-size instances with the Gurobi optimizer, although metaheuristics outperform ILP both in running time and quality in large-size instances.

Publicación
Expert Systems with Applications
Isaac Lozano-Osorio
Isaac Lozano-Osorio
Artificial Intelligence Phd Student

Isaac Lozano se graduó en el Doble grado de Ingeniería Informática e Ingeniería de Computadores por la Universidad Rey Juan Carlos.Al finalizar el doble grado, fue galardonado con el premio al Mejor Proyecto Fin de Carrera. Posteriormente, realizó un Máster en Investigación en Inteligencia Artificial (UIMP). Actualmente realiza su tesis doctoral en la Universidad Rey Juan Carlos, dirigida por los profesores Abraham Duarte y Jesús Sánchez-Oro Sus principales intereses de investigación se centran en la interfaz entre las Ciencias de la Computación, la Inteligencia Artificial y la Investigación Operativa. La mayoría de sus publicaciones tratan sobre el desarrollo de procedimientos metaheurísticos para problemas de optimización modelados por grafos.

Abraham Duarte
Abraham Duarte
Catedrático de Universidad

Mi carrera investigadora se ha centrado en el desarrollo de nuevos algoritmos y técnicas de Inteligencia Computacional (metaheurísticas) y su aplicación a diferentes problemas en Ciencia e Ingeniería desde que me incorporé a la Universidad Rey Juan Carlos (URJC) en el octubre del año 2000.