Evolving energy demand estimation models over macroeconomic indicators

Resumen

Energy is essential for all countries, since it is in the core of social and economic development. Since the industrial revolution, the demand for energy has increased exponentially. It is expected that the energy consumption in the world increases by 50% by 2030 [17]. As such, managing the demand of energy is of the uttermost importance. The development of tools to model and accurately predict the demand of energy is very important to policy makers. In this paper we propose the use of the Structured Grammatical Evolution (SGE) algorithm to evolve models of energy demand, over macro-economic indicators. The proposed SGE is hybridised with a Differential Evolution approach in order to obtain the parameters of the models evolved which better fit the real energy demand. We have tested the performance of the proposed approach in a problem of total energy demand estimation in Spain, where we show that the SGE is able to generate extremely accurate and robust models for the energy prediction within one year time-horizon.

Publicación
Proceedings of the 2020 Genetic and Evolutionary Computation Conference
J. Manuel Colmenar
J. Manuel Colmenar
Artificial Intelligence Professor

Mis intereses de investigación se centran en las metaheurísticas aplicadas a problemas de optimización. He trabajado en diferentes problemas de optimización combinatoria aplicando algoritmos trajectoriales como GRASP o VNS. Además, estoy muy interesado en las aplicaciones de la Evolución Gramatical, específicamente en el dominio de los modelos y la predicción, como alternativa a los enfoques de aprendizaje automático.