Analysis of the performance of Genetic Programming on the Blood Glucose Level Prediction Challenge.

Resumen

In this paper we present results for the Blood Glucose Level Prediction Challenge for the Ohio2020 dataset. We have used four variants of genetic programming to build white-box models for predicting 30 minutes and 60 minutes ahead. The results are compared to classical methods including multi-variate linear regression, random forests, as well as two types of ARIMA models. Notably, we have included future values of bolus and basal into some of the models because we assume that these values can be controlled. Additionally, we have used a convolution filter to smooth the information in the bolus volume feature. We find that overall tree-based GP performs well and better than multi-variate linear regression and random forest, while ARIMA models performed worst on the here analyzed dat

Publicación
KDH@ ECAI
J. Manuel Colmenar
J. Manuel Colmenar
Artificial Intelligence Professor

Mis intereses de investigación se centran en las metaheurísticas aplicadas a problemas de optimización. He trabajado en diferentes problemas de optimización combinatoria aplicando algoritmos trajectoriales como GRASP o VNS. Además, estoy muy interesado en las aplicaciones de la Evolución Gramatical, específicamente en el dominio de los modelos y la predicción, como alternativa a los enfoques de aprendizaje automático.