AI-Generated Context for Teaching Robotics to Improve Computational Thinking in Early Childhood Education

Resumen

This study investigates the impact of AI-generated contexts on preservice teachers’ computational thinking (CT) skills and their acceptance of educational robotics. This article presents a methodology for teaching robotics based on AI-generated contexts aimed at enhancing CT. An experiment was conducted with 122 undergraduate students enrolled in an Early Childhood Education program, aged 18–19 years, who were training in the Computer Science and Digital Competence course. The experimental group utilized a methodology involving AI-generated practical assignments designed by their lecturers to learn educational robotics, while the control group engaged with traditional teaching methods. The research addressed five key factors: the effectiveness of AI-generated contexts in improving CT skills, the specific domains of CT that showed significant improvement, the perception of student teachers regarding their ability to teach with educational robots, the enhancement in perceived knowledge about educational robots, and the overall impact of these methodologies on teaching practices. Findings revealed that the experimental group exhibited higher engagement and understanding of CT concepts, with notable improvements in problem-solving and algorithmic thinking. Participants in the AI-generated context group reported increased confidence in their ability to teach with educational robots and a more positive attitude toward technology integration in education. The findings highlight the importance of providing appropriate context and support when encouraging future educators to build confidence and embrace educational technologies. This study adds to the expanding research connecting AI, robotics, and education, emphasizing the need to incorporate these tools into teacher training programs. Further studies should investigate the lasting impact of such approaches on computational thinking skills and teaching methods in a variety of educational environments.

Publicación
Education Sciences
Sergio Cavero
Sergio Cavero
Doctor en Inteligencia Artificial

Sergio Cavero nació en Madrid (España) el 24 de septiembre de 1997. Se graduó en Ingeniería del Software por la Universidad Politécnica de Madrid en 2019. Durante sus estudios de grado realizó una estancia en la Universidad de Bradford (Reino Unido). Además, fue galardonado en dos ocasiones con la Beca de Excelencia de la Comunidad de Madrid, así como con el premio al Mejor Proyecto Fin de Carrera. Posteriormente, realizó un Máster en Inteligencia Artificial en la misma universidad (UPM) obteniendo los premios al Mejor Expediente Académico (‘Premio José Cuena’) y al Mejor Trabajo Fin de Máster. Sus resultados académicos le permitieron ser beneficiario de una de las ‘Ayudas para la Formación de Profesorado Universitario (FPU)’, financiadas por el Gobierno español. Actualmente realiza su tesis doctoral en la Universidad Rey Juan Carlos, dirigida por los profesores Abraham Duarte y Eduardo G. Pardo. Sus principales intereses de investigación se centran en la interfaz entre las Ciencias de la Computación, la Inteligencia Artificial y la Investigación Operativa. La mayoría de sus publicaciones tratan sobre el desarrollo de procedimientos metaheurísticos para problemas de optimización modelados por grafos.