Identification of models for glucose blood values in diabetics by grammatical evolution


One the most relevant application areas of artificial intelligence and machine learning in general is medical research. We here focus on research dedicated to diabetes, a disease that affects a high percentage of the population worldwide and that is an increasing threat due to the advance of the sedentary life in the big cities. Most recent studies estimate that it affects about more than 410 million people in the world. In this chapter we discuss a set of techniques based on GE to obtain mathematical models of the evolution of blood glucose along the time. These models help diabetic patients to improve the control of blood sugar levels and thus, improve their quality of life. We summarize some recent works on data preprocessing and design of grammars that have proven to be valuable in the identification of prediction models for type 1 diabetics. Furthermore, we explain the data augmentation method which is used to sample new data sets.

Handbook of Grammatical Evolution
J. Manuel Colmenar
J. Manuel Colmenar
Profesor Titular de Universidad

Mis intereses de investigación se centran en las metaheurísticas aplicadas a problemas de optimización. He trabajado en diferentes problemas de optimización combinatoria aplicando algoritmos trajectoriales como GRASP o VNS. Además, estoy muy interesado en las aplicaciones de la Evolución Gramatical, específicamente en el dominio de los modelos y la predicción, como alternativa a los enfoques de aprendizaje automático.