A general variable neighborhood search approach for the minimum load coloring problem

Resumen

The minimum load coloring problem consists of finding a 2-coloring function that assign either a color red or blue to each node of a graph such that the (maximum) load is minimized, i.e., to reduce as much as possible the number of edges with, at least, one endpoint colored in red (symmetrically, in blue). This NP-complete problem arises in Wavelength Division Multiplexing (WDM) technology and it has been used for broadcast WDM networks. In this paper, several procedures based on the Variable Neighborhood Search (VNS) methodology are proposed and compared on a set of random graphs and DIMACS benchmarks. Experimental results show that the proposed VNS variant exhibits a remarkable performance in comparison with the state-of-the-art methods. In particular, our approach achieves the best results in 48 out of 52 considered instances by employing, on average, less than 7 seconds. These results are further confirmed by conducting statistical tests.

Publicación
Optimization Letters
Alberto Herrán González
Alberto Herrán González
Profesor Contratado Doctor
J. Manuel Colmenar
J. Manuel Colmenar
Artificial Intelligence Professor

Mis intereses de investigación se centran en las metaheurísticas aplicadas a problemas de optimización. He trabajado en diferentes problemas de optimización combinatoria aplicando algoritmos trajectoriales como GRASP o VNS. Además, estoy muy interesado en las aplicaciones de la Evolución Gramatical, específicamente en el dominio de los modelos y la predicción, como alternativa a los enfoques de aprendizaje automático.

Abraham Duarte
Abraham Duarte
Catedrático de Universidad

Mi carrera investigadora se ha centrado en el desarrollo de nuevos algoritmos y técnicas de Inteligencia Computacional (metaheurísticas) y su aplicación a diferentes problemas en Ciencia e Ingeniería desde que me incorporé a la Universidad Rey Juan Carlos (URJC) en el octubre del año 2000.