Fixed versus variable time window warehousing strategies in real time

Resumen

Warehousing includes many different regular activities such as receiving, batching, picking, packaging, and shipping goods. Several authors indicate that the picking operation might consume up to 55% of the total operational costs. In this paper, we deal with a subtask arising within the picking task in a warehouse, when the picking policy follows the order batching strategy (i.e., orders are grouped into batches before being collected) and orders are received online. Particularly, once the batches have been compiled it is necessary to determine the moment in the time when the picker starts collecting each batch. The waiting time of the picker before starting to collect the next available batch is usually known as time window. In this paper, we compare the performance of two different time window strategies: Fixed Time Window and Variable Time Window. Since those strategies cannot be tested in isolation, we have considered: two different batching algorithms (First Come First Served and a Greedy algorithm based on weight); one routing algorithm (S-Shape); and a greedy selection algorithm for choosing the next batch to collect based on the weight.

Publicación
Progress in Artificial Intelligence
Eduardo García Pardo
Eduardo García Pardo
Catedrático de Universidad

Miembro fundador del grupo de investigación GRAFO, cuya línea de investigación principal es el desarrollo de algoritmos para abordar problemas de optimización, temática sobre la que versa la Tesis Doctoral del investigador y en la que se enmarcan sus publicaciones más destacadas.

Abraham Duarte
Abraham Duarte
Catedrático de Universidad

Mi carrera investigadora se ha centrado en el desarrollo de nuevos algoritmos y técnicas de Inteligencia Computacional (metaheurísticas) y su aplicación a diferentes problemas en Ciencia e Ingeniería desde que me incorporé a la Universidad Rey Juan Carlos (URJC) en el octubre del año 2000.