Variable Neighborhood Descent.

Resumen

Local search heuristic that explores several neighborhood structures in a deterministic way is called variable neighborhood descent (VND). Its success is based on the simple fact that different neighborhood structures do not usually have the same local minimum. Thus, the local optima trap problem may be resolved by deterministic change of neighborhoods. VND may be seen as a local search routine and therefore could be used within other metaheuristics. In this chapter, we discuss typical problems that arise in developing VND heuristic: what neighborhood structures could be used, what would be their order, what rule of their change during the search would be used, etc. Comparative analysis of usual sequential VND variants is performed in solving traveling salesman problem.

Abraham Duarte
Abraham Duarte
Catedrático de Universidad

Mi carrera investigadora se ha centrado en el desarrollo de nuevos algoritmos y técnicas de Inteligencia Computacional (metaheurísticas) y su aplicación a diferentes problemas en Ciencia e Ingeniería desde que me incorporé a la Universidad Rey Juan Carlos (URJC) en el octubre del año 2000.

Jesús Sánchez-Oro
Jesús Sánchez-Oro
Profesor Titular de Universidad

Profesor Titular del Departamento de Informática, siendo uno de los investigadores principales del Grupo de Investigación de Algoritmos para la Optimización GRAFO.