Quantifying the impact of dynamic memory managers into memory-intensive applications

Resumen

Modern portable devices execute multimedia applications that exhibit high resource utilization. To efficiently execute these applications in embedded systems, the dynamic memory subsystem needs to be optimized. This complex task can be tackled designing custom dynamic memory management mechanisms. Currently, several automatic methodologies to optimize custom Dynamic Memory Managers (DMMs) have been proposed. However, these approaches are mainly related to improve application performance. In this paper we propose a methodology to automatically evaluate the impact of any DMM into an application considering four different metrics: performance, memory usage, temperature and energy consumption. This methodology is applied to Lea, a well-known general-purpose memory allocator. Our experimental results over five different memory-intensive applications show that, on average, Lea consumes a 43.25% and 22.90% of execution time and memory usage, respectively. In addition, the memory temperature and energy consumed, related only to the memory device, are increased by 0.39% and 0.48%, respectively.

Publicación
Proceedings of the 2011 Summer Computer Simulation Conference
J. Manuel Colmenar
J. Manuel Colmenar
Artificial Intelligence Professor

Mis intereses de investigación se centran en las metaheurísticas aplicadas a problemas de optimización. He trabajado en diferentes problemas de optimización combinatoria aplicando algoritmos trajectoriales como GRASP o VNS. Además, estoy muy interesado en las aplicaciones de la Evolución Gramatical, específicamente en el dominio de los modelos y la predicción, como alternativa a los enfoques de aprendizaje automático.