Short and Medium Term Blood Glucose Prediction Using Multi-objective Grammatical Evolution

Resumen

In this paper we investigate the benefits of applying a multi-objective approach for solving a symbolic regression problem by means of grammatical evolution. In particular, we continue with previous research about finding expressions to model the glucose levels in blood of diabetic patients. We use here a multi-objective Grammatical Evolution approach based on NSGA-II algorithm, considering the root mean squared error and an ad-hoc fitness function as objectives. This ad-hoc function is based on the Clarke Error Grid analysis, which is useful for showing the potential danger of mispredictions. Experimental results show that the multi-objective approach improves previous results in terms of Clarke Error Grid analysis reducing the number of dangerous mispredictions.

Publicación
International Conference on the Applications of Evolutionary Computation (Part of EvoStar)
J. Manuel Colmenar
J. Manuel Colmenar
Catedrático de Universidad

Mis intereses de investigación se centran en las metaheurísticas aplicadas a problemas de optimización. He trabajado en diferentes problemas de optimización combinatoria aplicando algoritmos trajectoriales como GRASP o VNS. Además, estoy muy interesado en las aplicaciones de la Evolución Gramatical, específicamente en el dominio de los modelos y la predicción, como alternativa a los enfoques de aprendizaje automático.