On a generalized name entity recognizer based on Hidden Markov Models

Resumen

This paper presents a Named Entity Recognition (NER) system based on Hidden Markov Models. The system design is language independent, and the target language and scope of the NER is determined by the training corpus. The NER is formed by two subsystems that detect and label the entities independently. Each subsystem implements a different approach of that statistical theory, showing that each component may complement the results of the other one. Unlike most of the previous works, two labels are returned when the components provide different results. This redundancy is an advantage when human supervision is mandatory at the end of the process such as in intelligence environments.

Publicación
2011 11textsuperscriptth International Conference on Intelligent Systems Design and Applications
J. Manuel Colmenar
J. Manuel Colmenar
Catedrático de Universidad

Mis intereses de investigación se centran en las metaheurísticas aplicadas a problemas de optimización. He trabajado en diferentes problemas de optimización combinatoria aplicando algoritmos trajectoriales como GRASP o VNS. Además, estoy muy interesado en las aplicaciones de la Evolución Gramatical, específicamente en el dominio de los modelos y la predicción, como alternativa a los enfoques de aprendizaje automático.

Alberto Herrán González
Alberto Herrán González
Profesor Titular de Universidad