A general variable neighborhood search for the cyclic antibandwidth problem

Resumen

Graph Layout Problems refer to a family of optimization problems where the aim is to assign the vertices of an input graph to the vertices of a structured host graph, optimizing a certain objective function. In this paper, we tackle one of these problems, named Cyclic Antibandwidth Problem, where the objective is to maximize the minimum distance of all adjacent vertices, computed in a cycle host graph. Specifically, we propose a General Variable Neighborhood Search which combines an efficient Variable Neighborhood Descent with a novel destruction–reconstruction shaking procedure. Additionally, our proposal takes advantage of two new exploration strategies for this problem: a criterion for breaking the tie of solutions with the same objective function and an efficient evaluation of neighboring solutions. Furthermore, two new neighborhood reduction strategies are proposed. We conduct a thorough computational experience by comparing the algorithm proposed with the current state-of-the-art methods over a set of previously reported instances. The associated results show the merit of the introduced algorithm, emerging as the best performance method in those instances where the optima are unknown. These results are further confirmed with nonparametric statistical tests.

Publicación
Computational Optimization and Applications
Sergio Cavero
Sergio Cavero
Artificial Intelligence Phd Student

Sergio Cavero nació en Madrid (España) el 24 de septiembre de 1997. Se graduó en Ingeniería del Software por la Universidad Politécnica de Madrid en 2019. Durante sus estudios de grado realizó una estancia en la Universidad de Bradford (Reino Unido). Además, fue galardonado en dos ocasiones con la Beca de Excelencia de la Comunidad de Madrid, así como con el premio al Mejor Proyecto Fin de Carrera. Posteriormente, realizó un Máster en Inteligencia Artificial en la misma universidad (UPM) obteniendo los premios al Mejor Expediente Académico (‘Premio José Cuena’) y al Mejor Trabajo Fin de Máster. Sus resultados académicos le permitieron ser beneficiario de una de las ‘Ayudas para la Formación de Profesorado Universitario (FPU)’, financiadas por el Gobierno español. Actualmente realiza su tesis doctoral en la Universidad Rey Juan Carlos, dirigida por los profesores Abraham Duarte y Eduardo G. Pardo. Sus principales intereses de investigación se centran en la interfaz entre las Ciencias de la Computación, la Inteligencia Artificial y la Investigación Operativa. La mayoría de sus publicaciones tratan sobre el desarrollo de procedimientos metaheurísticos para problemas de optimización modelados por grafos.

Eduardo García Pardo
Eduardo García Pardo
Profesor Titular de Universidad

Miembro fundador del grupo de investigación GRAFO, cuya línea de investigación principal es el desarrollo de algoritmos para abordar problemas de optimización, temática sobre la que versa la Tesis Doctoral del investigador y en la que se enmarcan sus publicaciones más destacadas.

Abraham Duarte
Abraham Duarte
Catedrático de Universidad

Mi carrera investigadora se ha centrado en el desarrollo de nuevos algoritmos y técnicas de Inteligencia Computacional (metaheurísticas) y su aplicación a diferentes problemas en Ciencia e Ingeniería desde que me incorporé a la Universidad Rey Juan Carlos (URJC) en el octubre del año 2000.