A novel parallel framework for scatter search

Resumen

Scatter search (SS) is a well-established metaheuristic for hard combinatorial optimization problems. SS is characterized by its versatility and ease of context adaptation and implementation. Although the literature includes SS parallelization schemes for specific problems, a general parallel framework for scatter search has not been developed and tested. We introduce three SS parallel designs, each focusing on a different task, namely, reducing computational time, increasing search exploration, and balancing search intensification and diversification. The proposed designs are tested on problems where the state of the art is a traditional (sequential) SS approach. This testing platform helps us assess the contributions of the parallel computing strategies to solution speed and quality. Our publicly available code is designed to be adapted to optimization problems that are not considered here. The results show promising avenues for establishing a general framework of SS parallelization.

Publicación
Knowledge-Based Systems
Alejandra Casado
Alejandra Casado
Estudiante de Doctorado en Inteligencia Artificial

Mi investigación se centra en el uso de metaheuristicas y la resolución de problemas de optimización combinatoria.

Sergio Pérez-Peló
Sergio Pérez-Peló
Doctor en Inteligencia Artificial

Estudiante de doctorado en la Universidad Rey Juan Carlos

Jesús Sánchez-Oro
Jesús Sánchez-Oro
Profesor Titular de Universidad

Profesor Titular del Departamento de Informática, siendo uno de los investigadores principales del Grupo de Investigación de Algoritmos para la Optimización GRAFO.

Abraham Duarte
Abraham Duarte
Catedrático de Universidad

Mi carrera investigadora se ha centrado en el desarrollo de nuevos algoritmos y técnicas de Inteligencia Computacional (metaheurísticas) y su aplicación a diferentes problemas en Ciencia e Ingeniería desde que me incorporé a la Universidad Rey Juan Carlos (URJC) en el octubre del año 2000.