PILOH – Desarrollo de una herramienta software para la resolución de problemas de ingeniería lingüística mediante optimización heurística

Investigador principal: Abraham Duarte Entidades financiadoras: URJC y Comunidad de Madrid (URJC-CM-2006-CET-0603) Duración: 01/01/2007 - 31/12/2007

Resumen:

El tratamiento y organización de la enorme cantidad de información en formato electrónico de la que se dispone actualmente se han convertido en una necesidad dentro de esta Sociedad de la Información en la que vivimos. En consecuencia, no tendría sentido disponer de grandes repositorios de información de carácter lingüístico en los que no pudiéramos extraer un conocimiento útil. Este proyecto se enmarca dentro del área de la optimización heurística aplicada a problemas del Procesamiento de Lenguaje Natural e Ingeniería Lingüística. En este proyecto se desarrollará un software para la optimización de diferentes problemas de optimización con el objetivo de dar solución a dos de los grandes problemas a los que se enfrenta actualmente el campo del Procesamiento del Lenguaje Natural: la clasificación automática y el agrupamiento, o clustering, de documentos.

Los problemas que se pretenden abordar están basados en modelos estructurados; es decir, en los que se conoce una descripción o formulación matemática completa. Se propondrán diferentes modelos de resolución eficientes basados en procedimientos metaheurísticos. Los métodos que se propongan serán comparados con los mejores métodos de resolución existentes para ese tipo de problemas, tanto en el ámbito académico como en el comercial. Se pretende que esto dé lugar, tanto a una aplicación que proporcione soluciones de gran calidad, como a publicaciones científicas de impacto internacional.

Nicolás Rodríguez Uribe
Nicolás Rodríguez Uribe
Doctor en Inteligencia Artificial

Nicolás Rodríguez Uribe se graduó como Ingeniero en Informática en la Universidad Rey Juan Carlos en 2015. Posteriormente, completó el Máster Universitario en Ingeniería de Sistemas de Decisión en 2018 y obtuvo su Doctorado en Inteligencia Artificial por la misma universidad en 2022. Sus principales intereses de investigación se enfocan en heurísticas y metaheurísticas, optimización combinatoria, algoritmos trayectoriales, algoritmos genéticos y problemas multiobjetivo. Es miembro del grupo de investigación de alto rendimiento en algoritmos de optimización (GRAFO) de la Universidad Rey Juan Carlos. La mayoría de sus publicaciones tratan sobre el desarrollo de procedimientos heurísticos y metaheurísticos para resolver problemas complejos de optimización.