Sustainable materials acceleration platform reveals stable and efficient wide-bandgap metal halide perovskite alloys

Abstract

The vast chemical space of emerging semiconductors, like metal halide perovskites, and their varied requirements for semiconductor applications have rendered trial-and-error environmentally unsustainable. In this work, we demonstrate RoboMapper, a materials acceleration platform (MAP), that achieves 10-fold research acceleration by formulating and palletizing semiconductors on a chip, thereby allowing high-throughput (HT) measurements to generate quantitative structure-property relationships (QSPRs) considerably more efficiently and sustainably. We leverage the RoboMapper to construct QSPR maps for the mixed ion FA1−yCsyPb(I1−xBrx)3 halide perovskite in terms of structure, bandgap, and photostability with respect to its composition. We identify wide-bandgap alloys suitable for perovskite-Si hybrid tandem solar cells exhibiting a pure cubic perovskite phase with favorable defect chemistry while achieving superior stability at the target bandgap of ∼1.7 eV. RoboMapper’s palletization strategy reduces environmental impacts of data generation in materials research by more than an order of magnitude, paving the way for sustainable data-driven materials research.

Publication
Matter
Lucía Serrano-Luján
Lucía Serrano-Luján
Associate Professor

Lucía Serrano-Luján is an Associate Professor in the Department of Computer Science. Her research field is multidisciplinary. She developed a Life Cycle Assessment methodology to assess renewable energies and applied AI to their data. Her main goal is to impact energy-related materials production and find a more sustainable way to develop them. She has applied LCA to reduce graphene oxide and perovskites solar cells, build integrated photovoltaics, etc.