Joint topology optimization, power control and spectrum allocation for intra-vehicular multi-hop sensor networks using dandelion-encoded heuristics


In the last years the interest in multi-hop communications has gained momentum within the research community due to the challenging characteristics of the intra-vehicular radio environment and the stringent robustness imposed on critical sensors within the vehicle. As opposed to point-to-point network topologies, multi-hop networking allows for an enhanced communication reliability at the cost of an additional processing overhead. In this context this manuscript poses a novel bi-objective optimization problem aimed at jointly minimizing (1) the average Bit Error Rate (BER) of sensing nodes under a majority fusion rule at the central data collection unit; and (2) the mean delay experienced by packets forwarded by such nodes due to multi-hop networking, frequency channel switching time multiplexing at intermediate nodes. The formulated paradigm is shown to be computationally tractable via a combination of evolutionary meta-heuristic algorithms and Dandelion codes, the latter capable of representing tree-like structures like those modeling the multi-hop routing approach. Simulations are carried out for realistic values of intra-vehicular radio channels and co-channel interference due to nearby IEEE 802.11 signals. The obtained results are promising and pave the way towards assessing the practical performance of the proposed scheme in real setups.

European Conference on the Applications of Evolutionary Computation
Antonio Gonzalez-Pardo
Antonio Gonzalez-Pardo
Associate Professor

Lecturer at the Computer Science Department. Main research interests are related to Computational Intelligence and Metaheuristics applied to Social Networks Analysis, and the optimization of graph-based problems.