BVNS for Overlapping Community Detection

Abstract

Nowadays, social networks are one of the most important sources of information available on the Internet, since new users and relationships between them emerge every day in this type of networks. For this reason, it is important to have procedures and mechanisms to obtain, process and analyze the information extracted from them and transform it into useful data. This situation has given rise to new hard combinatorial optimization problems related to social networks, such as influence analysis, sentimental analysis or polarization. All these topics are grouped under the research field of Social Networks Analysis (SNA). In this paper, we focus on one of these topics: the Community Detection Problem (CDP). Specifically, we will deal with a variant of the CDP known as the Overlapping Community Detection Problem (OCDP), in which the same user can be assigned to more than one community simultaneously, which cannot occur in the classical Community Detection Problem. The problem is approached from a heuristic point of view, applying a Greedy Randomized Adaptive Search Procedure (GRASP) combined with a Basic Variable Neighborhood Search (BVNS) algorithm. The proposal is compared with the best method found in the literature, a Density Peaks based algorithm. Synthetic instances are used to evaluate the performance of the proposal. To analyze the quality of the obtained solutions, an evaluation metric that has been adapted from the well-known modularity metric has been used: the overlapping modularity.

Publication
Variable Neighborhood Search
Sergio Pérez-Peló
Sergio Pérez-Peló
Phd in Artificial Intelligence

PhD student at Universidad Rey Juan Carlos

Jesús Sánchez-Oro
Jesús Sánchez-Oro
Associate Professor

Associate Professor at the Computer Science Department, being one of the senior researchers of the Group for Research on Algorithms For Optimization GRAFO.

Antonio Gonzalez-Pardo
Antonio Gonzalez-Pardo
Associate Professor

Lecturer at the Computer Science Department. Main research interests are related to Computational Intelligence and Metaheuristics applied to Social Networks Analysis, and the optimization of graph-based problems.

Abraham Duarte
Abraham Duarte
Full Professor

Abraham Duarte is Full Professor in the Computer Science Department at the Rey Juan Carlos University (Madrid, Spain). He has done extensive research in the interface between computer science, artificial intelligence, and operations research to develop solution methods based on Computational Intelligence (metaheuristics) for practical problems in operations-management areas such as logistics and supply chains, telecommunications, decision-making under uncertainty and optimization of simulated systems.