On the Analysis of the Influence of the Evaluation Metric in Community Detection over Social Networks

Abstract

Community detection in social networks is becoming one of the key tasks in social network analysis, since it helps with analyzing groups of users with similar interests. As a consequence, it is possible to detect radicalism or even reduce the size of the data to be analyzed, among other applications. This paper presents a metaheuristic approach based on Greedy Randomized Adaptive Search Procedure (GRASP) methodology for detecting communities in social networks. The community detection problem is modeled as an optimization problem, where the objective function to be optimized is the modularity of the network, a well-known metric in this scientific field. The results obtained outperform classical methods of community detection over a set of real-life instances with respect to the quality of the communities detected.

Publication
Electronics
Sergio Pérez-Peló
Sergio Pérez-Peló
Artificial Intelligence Phd Student

PhD student at Universidad Rey Juan Carlos

Jesús Sánchez-Oro
Jesús Sánchez-Oro
Associate Professor

Associate Professor at the Computer Science Department, being one of the senior researchers of the Group for Research on Algorithms For Optimization GRAFO.

Raúl Martín Santamaría
Raúl Martín Santamaría
Artificial Intelligence Phd Student

My research interests include…

Abraham Duarte
Abraham Duarte
Full Professor

Abraham Duarte is Full Professor in the Computer Science Department at the Rey Juan Carlos University (Madrid, Spain). He has done extensive research in the interface between computer science, artificial intelligence, and operations research to develop solution methods based on Computational Intelligence (metaheuristics) for practical problems in operations-management areas such as logistics and supply chains, telecommunications, decision-making under uncertainty and optimization of simulated systems.