Basic variable neighborhood search for the minimum sitting arrangement problem

Abstract

The minimum sitting arrangement (MinSA) problem is a linear layout problem consisting in minimizing the number of errors produced when a signed graph is embedded into a line. This problem has been previously tackled by theoretical and heuristic approaches in the literature. In this paper we present a basic variable neighborhood search (BVNS) algorithm for solving the problem. First, we introduce a novel constructive scheme based on the identification of cliques from the input graph, when only the positive edges are considered. The solutions obtained by the constructive procedure are then used as a starting point for the proposed BVNS algorithm. Efficient implementations of the several configurations of the local search procedure within the BVNS are described. The algorithmic proposal is then compared with previous approaches in the state of the art for the MinSA over different sets of referred instances. The obtained results supported by non-parametric statistical tests, indicate that BVNS can be considered as the new state-of-the-art algorithm for the MinSA.

Publication
Journal of Heuristics
Eduardo García Pardo
Eduardo García Pardo
Associate Professor

Miembro fundador del grupo de investigación GRAFO, cuya línea de investigación principal es el desarrollo de algoritmos para abordar problemas de optimización, temática sobre la que versa la Tesis Doctoral del investigador y en la que se enmarcan sus publicaciones más destacadas.

Abraham Duarte
Abraham Duarte
Full Professor

Abraham Duarte is Full Professor in the Computer Science Department at the Rey Juan Carlos University (Madrid, Spain). He has done extensive research in the interface between computer science, artificial intelligence, and operations research to develop solution methods based on Computational Intelligence (metaheuristics) for practical problems in operations-management areas such as logistics and supply chains, telecommunications, decision-making under uncertainty and optimization of simulated systems.