Parallel variable neighborhood search for the min--max order batching problem

Abstract

Warehousing is a key part of supply chain management. It primarily focuses on controlling the movement and storage of materials within a warehouse and processing the associated transactions, including shipping, receiving, and picking. From the tactical point of view, the main decision is the storage policy, that is, to decide where each product should be located. Every day a warehouse receives several orders from its customers. Each order consists of a list of one or more items that have to be retrieved from the warehouse and shipped to a specific customer. Thus, items must be collected by a warehouse operator. We focus on situations in which several orders are put together into batches, satisfying a fixed capacity constraint. Then, each batch is assigned to an operator, who retrieves all the items included in those orders grouped into the corresponding batch in a single tour. The objective is then to minimize the maximum retrieving time for any batch. In this paper, we propose a parallel variable neighborhood search algorithm to tackle the so-called min–max order batching problem. We additionally compare this parallel procedure with the best previous approach. Computational results show the superiority of our proposal, confirmed with statistical tests.

Publication
International Transactions in Operational Research
Eduardo García Pardo
Eduardo García Pardo
Associate Professor

Miembro fundador del grupo de investigación GRAFO, cuya línea de investigación principal es el desarrollo de algoritmos para abordar problemas de optimización, temática sobre la que versa la Tesis Doctoral del investigador y en la que se enmarcan sus publicaciones más destacadas.

Jesús Sánchez-Oro
Jesús Sánchez-Oro
Associate Professor

Associate Professor at the Computer Science Department, being one of the senior researchers of the Group for Research on Algorithms For Optimization GRAFO.

Abraham Duarte
Abraham Duarte
Full Professor

Abraham Duarte is Full Professor in the Computer Science Department at the Rey Juan Carlos University (Madrid, Spain). He has done extensive research in the interface between computer science, artificial intelligence, and operations research to develop solution methods based on Computational Intelligence (metaheuristics) for practical problems in operations-management areas such as logistics and supply chains, telecommunications, decision-making under uncertainty and optimization of simulated systems.