A quick GRASP-based method for influence maximization in social networks

Abstract

The evolution and spread of social networks have attracted the interest of the scientific community in the last few years. Specifically, several new interesting problems, which are hard to solve, have arisen in the context of viral marketing, disease analysis, and influence analysis, among others. Companies and researchers try to find the elements that maximize profit, stop pandemics, etc. This family of problems is collected under the term Social Network Influence Maximization problem (SNIMP), whose goal is to find the most influential users (commonly known as seeds) in a social network, simulating an influence diffusion model. SNIMP is known to be an NP-hard problem and, therefore, an exact algorithm is not suitable for solving it optimally in reasonable computing time. The main drawback of this optimization problem lies on the computational effort required to evaluate a solution. Since each node is infected with a certain probability, the objective function value must be calculated through a Monte Carlo simulation, resulting in a computationally complex process. The current proposal tries to overcome this limitation by considering a metaheuristic algorithm based on the Greedy Randomized Adaptive Search Procedure (GRASP) framework to design a quick solution procedure for the SNIMP. Our method consists of two distinct stages: construction and local search. The former is based on static features of the network, which notably increases its efficiency since it does not require to perform any simulation during construction. The latter involves a local search based on an intelligent neighborhood exploration strategy to find the most influential users based on swap moves, also aiming for an efficient processing. Experiments performed on 7 well-known social network datasets with 5 different seed set sizes confirm that the proposed algorithm is able to provide competitive results in terms of quality and computing time when comparing it with the best algorithms found in the state of the art.

Publication
Journal of Ambient Intelligence and Humanized Computing
Isaac Lozano-Osorio
Isaac Lozano-Osorio
Phd in Artificial Intelligence

Isaac Lozano graduated with a double degree in Computer Engineering and Computer Engineering from the Universidad Rey Juan Carlos, where he was awarded the prize for the Best Final Project. Subsequently, he completed a Master in Artificial Intelligence Research (UIMP). His main research interests are focused on the interface between Computer Science, Artificial Intelligence and Operations Research. Most of his publications deal with the development of metaheuristic procedures for graph modeled optimization problems.

Jesús Sánchez-Oro
Jesús Sánchez-Oro
Associate Professor

Associate Professor at the Computer Science Department, being one of the senior researchers of the Group for Research on Algorithms For Optimization GRAFO.

Abraham Duarte
Abraham Duarte
Full Professor

Abraham Duarte is Full Professor in the Computer Science Department at the Rey Juan Carlos University (Madrid, Spain). He has done extensive research in the interface between computer science, artificial intelligence, and operations research to develop solution methods based on Computational Intelligence (metaheuristics) for practical problems in operations-management areas such as logistics and supply chains, telecommunications, decision-making under uncertainty and optimization of simulated systems.