Study of backscattering in alpha-particle sources wit the new code AlfaMC

Abstract

The activity of alpha-particle sources with negligible thickness can be absolutely determined using 2π counting geometry detectors, requiring corrections for backscattering from the source backing. The experimental determination of these corrections is subject to large uncertainties, because the contribution of the backscattered alpha particles to the total counting is generally very low. An interesting alternative is then to use Monte Carlo methods which simulate the transport of alpha-particles into the source. The programme AlfaMC, a new Monte Carlo code developed to simulate specifically the transport of alpha particles, was here applied to the study of the backscattering in alpha-particle sources. Energy and angular distributions for the backscattered alpha particles were deeply analysed based on a multiple scattering process, as a result of a large number of weak collisions with atomic electrons. Some calculated values for the backscattering coefficient were compared with experimental values, showing a good agreement.

Publication
Radiation Physics and Chemistry
Alfonso Fernandez Timon
Alfonso Fernandez Timon
Associate Professor

Alfonso Fernández Timón is Associate Professor and one of the senior researchers of the Optimization Algorithms Research Group GRAFO at the Universidad Rey Juan Carlos. Previously he was a fellow of the Metrological Stations Network and of the Radiological Surveillance Plan of the CSN at the University of Extremadura. His research interests range from the application of metaheuristics to solve combinatorial optimization problems to nuclear radiation metrology.