Two-phase GRASP for the Multi-Constraint Graph Partitioning problem

Abstract

The Multi-Constraint Graph Partitioning (MCGP) problem seeks a partition of the node set of a graph into a fixed number of clusters such that each cluster satisfies a collection of node-weight constraints and the total cost of the edges whose end nodes are in the same cluster is minimized. In this paper we propose a two-phase reactive GRASP heuristic to find near-optimal solutions to the MCGP problem. Our proposal is able to reach all the best known results for state-of-the-art instances, obtaining all the certified optimum values while spending only a fraction of the time in relation to the previous methods. To reach these results we have implemented an efficient computation method applied in the improvement phase. Besides, we have created a new set of larger instances for the MCGP problem and provided detailed results for future comparisons.

Publication
Computers & Operations Research
Alberto Herrán González
Alberto Herrán González
Associate Professor
J. Manuel Colmenar
J. Manuel Colmenar
Full Professor

My research interests are focused on metaheuristics applied to optimization problems. I have worked on different combinatorial optimization problems applying trajectorial algorithms such us GRASP or VNS. Besides, I am very interested in applications of Grammatical Evolution, specifically in model and prediction domain, as alternative to machine learning approaches.