Ant Colony Optimization (ACO) has been successfully applied to a wide number of complex and real domains. From classical optimization problems to video games, these kind of swarm-based approaches have been adapted, to be later used, to search for new meta-heuristic based solutions. This paper presents a simple ACO algorithm that uses a specifically designed heuristic, called common-sense, which has been applied in the classical video game Lemmings. In this game a set of lemmings must reach the exit point of each level, using a subset of finite number of skills, taking into account the contextual information given from the level. The paper describes both the graph model and the context-based heuristic, designed to implement our ACO approach. Afterwards, two different kind of simulations have been carried out to analyse the behaviour of the ACO algorithm. On the one hand, a micro simulation, where each ant is used to model a lemming, and a macro simulation where a swarm of lemmings is represented using only one ant. Using both kind of simulations, a complete experimental comparison based on the number and quality of solutions found and the levels solved, is carried out to study the behaviour of the algorithm under different game configurations.