A case study on grammatical-based representation for regular expression evolution

Abstract

Regular expressions, or simply regex, have been widely used as a powerful pattern matching and text extractor tool through decades. Although they provide a powerful and flexible notation to define and retrieve patterns from text, the syntax and the grammatical rules of these regex notations are not easy to use, and even to understand. Any regex can be represented as a Deterministic or Non-Deterministic Finite Automata; so it is possible to design a representation to automatically build a regex, and a optimization algorithm able to find the best regex in terms of complexity. This paper introduces both, a graph-based representation for regex, and a particular heuristic-based evolutionary computing algorithm based on grammatical features from this language in a particular data extraction problem.

Publication
Trends in Practical Applications of Agents and Multiagent Systems
Antonio Gonzalez-Pardo
Antonio Gonzalez-Pardo
PhD Computer Science

Lecturer at the Computer Science Department. Main research interests are related to Computational Intelligence and Metaheuristics applied to Social Networks Analysis, and the optimization of graph-based problems.