GRASP with Variable Neighborhood Descent for the online order batching problem

Abstract

The Online Order Batching Problem (OOBP) is a variant of the well-known Order Batching Problem (OBP). As in the OBP, the goal of this problem is to collect all the orders that arrive at a warehouse, following an order batching picking policy, while minimizing a particular objective function. Therefore, orders are grouped in batches, of a maximum predefined capacity, before being collected. Each batch is assigned to a single picker, who collects all the orders within the batch in a single route. Unlike the OBP, this variant presents the peculiarity that the orders considered in each instance are not fully available in the warehouse at the beginning of the day, but they can arrive at the system once the picking process has already begun. Then, batches have to be dynamically updated and, as a consequence, routes must too. In this paper, the maximum turnover time (maximum time that an order remains in the warehouse) and the maximum completion time (total collecting time of all orders received in the warehouse) are minimized. To that aim, we propose an algorithm based in the combination of a Greedy Randomized Adaptive Search Procedure and a Variable Neighborhood Descent. The best variant of our method has been tested over a large set of instances and it has been favorably compared with the best previous approach in the state of the art.

Publication
Journal of Global Optimization
Eduardo García Pardo
Eduardo García Pardo
Full Professor

One of the founders of the investigation group GRAFO, whose main line of research is the development of algorithms to tackle optimization problems, the topic of the researcher’s Doctoral Thesis and which their most notable publications are framed.

Abraham Duarte
Abraham Duarte
Full Professor

Abraham Duarte is Full Professor in the Computer Science Department at the Rey Juan Carlos University (Madrid, Spain). He has done extensive research in the interface between computer science, artificial intelligence, and operations research to develop solution methods based on Computational Intelligence (metaheuristics) for practical problems in operations-management areas such as logistics and supply chains, telecommunications, decision-making under uncertainty and optimization of simulated systems.