Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring


Diabetes mellitus is a disease that affects more than three hundreds million people worldwide. Maintaining a good control of the disease is critical to avoid not only severe long-term complications but also dangerous short-term situations. Diabetics need to decide the appropriate insulin injection, thus they need to be able to estimate the level of glucose they are going to have after a meal. In this paper we use machine learning techniques for predicting glycemia in diabetic patients. The algorithms utilize data collected from real patients by a continuous glucose monitoring system, the estimated number of carbohydrates, and insulin administration for each meal. We compare (1) non-linear regression with fixed model structure, (2) identification of prognosis models by symbolic regression using genetic programming, (3) prognosis by k-nearest-neighbor time series search, and (4) identification of prediction models by grammatical evolution. We consider predictions horizons of 30, 60, 90 and 120 minutes.

Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion
J. Manuel Colmenar
J. Manuel Colmenar
Associate Professor

My research interests are focused on metaheuristics applied to optimization problems. I have worked on different combinatorial optimization problems applying trajectorial algorithms such us GRASP or VNS. Besides, I am very interested in applications of Grammatical Evolution, specifically in model and prediction domain, as alternative to machine learning approaches.