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ABSTRACT 
Scatter search (SS) is an evolutionary approach for optimization.  It has been applied to 
problems with continuous and discrete variables and with a single or multiple objectives.  The 
success of scatter search as an optimization technique is well documented in a constantly 
growing number of journal articles and book chapters.  This chapter first focuses on the basic 
scatter search framework, which is responsible for most of the outcomes reported in the 
literature, and then covers advanced elements that have been introduced in a few selected 
papers, such as the hybridization with tabu search, a well-known memory-based metaheuristic.  
We consider the maximum diversity problem to illustrate the search elements, methods and 
strategies described here. 
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1. Introduction 
Scatter Search (SS) is an evolutionary method that has been successfully applied to hard 
optimization problems.  SS was first introduced by Prof. Fred Glover as a heuristic for integer 
programming and it was based on strategies presented at a management science and 
engineering management conference held in Austin, Texas in September of 1967.  Unlike 
genetic algorithms, it operates on a small set of solutions and employs diversification strategies 
of the form proposed in Tabu Search (Glover and Laguna, 1997), which give precedence to 
strategic learning based on adaptive memory, with limited recourse to randomization.   

The fundamental concepts and principles were first proposed in 1977 (Glover 1977) as an 
extension of formulations, dating back to the 1960s, for combining decision rules and problem 
constraints. (The constraint combination approaches, known as surrogate constraint methods, 
now independently provide an important class of relaxation strategies for global optimization.) 
The Scatter Search framework is flexible, allowing the development of alternative 
implementations with varying degrees of sophistication. In addition, SS can be combined with 
other methods to enhance their effectiveness. For example SS has been integrated with Particle 
Swarm Optimization and adaptive memory strategies of Tabu Search to produce a method 
called Cyber Swarm Optimization that has provided improvements over its particle swarm 
component (Yin et al., 2010). 

As described in Glover (1998) and Laguna and Martí (2003), SS consists of five methods: 

1. Diversification Generation 
2. Improvement 
3. Reference Set Update 
4. Subset Generation 
5. Solution Combination 

The diversification generation method is used to generate a set of diverse solutions that are the 
basis for initializing the search.  The most effective diversification methods are those capable of 
creating a set of solutions that balances diversification and quality.  It has been shown that SS 
produces better results when the diversification generation method is not purely random and 
constructs solutions by reference to both a diversification measure and the objective function. 

The improvement method transforms solutions with the goal of improving quality (typically 
measured by the objective function value) or feasibility (typically measured by some degree of 
constraint violation).  The input to the improvement method is a single solution that may or may 
not be feasible.  The output is a solution that may or may not be better (in terms of quality or 
feasibility) than the original solution.  The typical improvement method is a local search with the 
usual rule of stopping as soon as no improvement is detected in the neighborhood of the 
current solution.  There is the possibility of basing the improvement method on procedures that 
use a neighborhood search but that they are able to escape local optimality.  Tabu search, 
simulated annealing and variable neighborhood search qualify as candidates for such a design.  
This may seem as an attractive option as a general approach for an improvement method, 
however, these procedures do not have a natural stopping criterion.  The end result is that 
choices need to be made to control the amount of computer time that is spent improving 
solutions (by running a metaheuristic-based procedure) versus the time spent outside the 
improvement method (e.g., combining solutions).  In general, local search procedures seem to 
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work well and most SS implementations do not include mechanisms to escape local optimality 
within the process of improving a solution. 

The reference set update method refers to the process of building and maintaining a reference 
set of solutions that are used in the main iterative loop of any scatter search implementation.  
While there are several implementation options, this element of scatter search is fairly 
independent from the context of the problem.  The first goal of the reference update method is 
to build the initial reference set of solutions from the population of solutions generated with the 
diversification method.  Subsequent calls to the reference update method serve the purpose of 
maintaining the reference set.  The typical design of this method builds the first reference set by 
blending high quality solutions and diverse solutions.  While choosing diverse solution, reference 
needs to be made to a distance metric that typically depends on the solution representation.  
That is, if the problem context is such that continuous variables are used to represent solutions, 
then diversification may be measured with Euclidean distances.  Other solution representations 
(e.g., binary variables or permutations) result in different ways of calculating distances and in 
turn diversification.  The updating of the reference set during the scatter search iterations is 
customarily done on the basis of solution quality. 

The subset generation method produces subsets of reference solutions which become the input 
to the combination method.  The typical implementation of this method consists of generating 
all possible pairs of solutions.  The scatter search framework considers also the generation of 
larger subsets of reference solutions; however, most SS implementations have been limited to 
operate on pairs of solutions.  Clearly, no context information is needed to implement the 
subset generation method. 

The solution combination method uses the output from the subset generation method to 
create new solutions.  New trial solutions are the results of combining, typically two but possibly 
more, reference solutions.  The combination of reference solutions is usually designed to exploit 
problem context information and solution representation.  The strategic use of linear 
combinations of solutions in heuristic search has often been employed for discrete and 
nonlinear optimization problems, since such uses were first proposed in Glover (1977). Several 
proposals for combining solutions represented by permutations have also been applied (Martí, 
Laguna and Campos 2005).  The strategy known as path relinking, originally proposed within the 
tabu search methodology (Glover and Laguna 1997), has also played a relevant role in designing 
combination methods for scatter search implementations. 

As mentioned above, we will describe both the main scatter search elements and the advanced 
search strategies, and use the maximum diversity problem, MDP, (Gallego et al., 2009) to 
illustrate some implementation details. The MDP consists of selecting a subset of m elements 
from a set of n elements in such a way that the sum of the distances between the chosen 
elements is maximized.  The definition of distance between elements is customized to specific 
applications.  As mentioned in Kuo, Glover and Dhir (1993) and Glover, Kuo and Dhir (1998), the 
maximum diversity problem has applications in plant breeding, social problems, ecological 
preservation, pollution control, product design, capital investment, workforce management, 
curriculum design and genetic engineering.  In most applications, it is assumed that each 
element can be represented by a set of attributes.  Let sik be the state or value of the kth 
attribute of element i, where k = 1, …, K.  Then the distance between elements i and j may be 
defined as: 
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In this case, dij is simply the Euclidean distance between i and j.  The distance values are then 
used to formulate the MDP as a quadratic binary problem, where variable xi takes the value 1 if 
element i is selected and 0 otherwise, i = 1, ..,n: 
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We finally would like to highlight the Scatter Search library provided in Laguna and Martí (2003). 
It consists of a C code that implements the search mechanisms that are discussed throughout 
their book.  The C code can be used “as is” to replicate practical illustrations or can be modified 
and adapted to other optimization problems of interest.  Several SS applications have been 
implemented from that source code. 

2. Basic SS Design 
Laguna (2009) summarizes the basic scatter search framework as follows (see Figure 1).  The 
search starts with the application of the diversification and improvement methods (step 1 in 
Figure 1).  The typical outcome consists of a set of about 100 solutions that is referred to as the 
population (denoted by P).  In most implementations, the diversification generation method is 
applied first followed by the improvement method.  If the application of the improvement 
method results in the shrinking of the population (due to more than one solution converging to 
the same local optimum) then the diversification method is applied again until the total number 
of improved solutions reaches the desired target.  Other implementations construct and 
improve solutions, one by one, until reaching the desired population size. 

 

1. Diversification generation and improvement methods 
2. while (stopping criteria not satisfied) { 
3.  Reference set update method 
4.  while(new reference solutions) { 
5.  Subset generation method 
6.  Combination method 
7.  Improvement method 
8.  Reference set update method 
9.  } 
10.  Rebuild reference set 
11. } 

Fig. 1. Scatter search framework 

The main scatter search loop is shown in lines 2 to 11 of Figure 1.  The input to the first 
execution of the reference set update method (step 3) is the population of solutions generated 
in step 1 and the output is a set of solutions known as the reference set (or RefSet).  Typically, 10 
solutions are chosen from a population of 100.  The first 5 solutions are chosen to be the best 
solutions (in terms of the objective function value) in the population.  The other 5 are chosen to 
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be the most diverse with respect to the solutions in the reference set.  If the diverse solutions 
are chosen sequentially, then the 6th solution is the most diverse with respect to the 5 best 
solutions that were chosen first.  The 7th solution is the most diverse with respect to the first six 
and so on until the 10th one is added to the reference set. 

The inner while-loop (lines 4 to 9) is executed as long as at least one reference solution is new in 
the RefSet.  A solution is considered new if it has not been subjected to the subset generation 
(step 5) and combination (step 6) methods.  If the reference set contains at least one new 
solution, the subset generation method builds a list of all the reference solution subsets that will 
become the input to the combination method.  The subset generation method creates new 
subsets only.  A subset is new if it contains at least one new reference solution.  This avoids the 
application of the combination method to the same subset more than once, which is particularly 
wasteful when the combination method is completely deterministic.  Combination methods that 
contain random elements may be able to produce new trial solutions even when applied more 
than once to the same subset of reference solutions.  However, this is generally discouraged in 
favor of introducing new solutions in the reference set by replacing some of the old ones in the 
rebuilding step (line 10). 

The combination method (step 6) is applied to the subsets of reference solutions generated in 
the previous step.  Most combination methods are designed to produce more than one trial 
solution from the combination of the solutions in a subset.  These trial solutions are given to the 
improvement method (step 7) and the output forms a pool of improved trial solutions that will 
be considered for admission in the reference set (step 8). 

If no new solutions are added to the reference set after the execution of the reference set 
update method, then the process exits the inner while-loop.  The rebuilding step in line 10 is 
optional.  That is, it is possible to implement a scatter search procedure that terminates the first 
time that the reference set does not change.  However, most implementations extend the 
search beyond this point by executing a RefSet rebuilding step.  The rebuilding of the reference 
set entails the elimination of some current reference solutions and the addition of diverse 
solutions.  In most implementations, all solutions except the best are replaced in this step.  The 
diverse solutions to be added may be either population solutions that have not been used or 
new solutions constructed with the generation diversification method.  Note that only 10 
solutions out of 100 are used from the population to build the initial reference set and therefore 
the remaining 90 could be used for rebuilding purposes. 

The process (i.e., the main while-loop in lines 2 to 11) continues as long as the stopping criteria 
are not satisfied.  Possible stopping criteria include number of rebuilding steps or elapsed time.  
When scatter search is applied in the context of optimizing expensive black boxes, a limit on the 
number of calls to the objective function evaluator (i.e., the black box) may also be used as a 
criterion for stopping.  We now expand our description and provide examples of each of the 
scatter search methods. 

3. The Maximum Diversity Problem 
Three of the five scatter search elements (the diversification-generation, the improvement and 
the combination methods) are problem-dependent and should be designed specifically for the 
problem at hand (although it is possible to design “generic” procedures, it is more effective to 
base the design on the specific idiosyncrasies of the problem setting). The other two, the 
reference-set-update and the subset-generation methods, are problem-independent, and 
usually follow a standard implementation.  In this section we describe efficient implementations 
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of the three problem-dependent methods for the MDP.  In the next section we cover the two 
problem-independent methods. 

The definition of distance between solutions is a key design issue in scatter search 
implementations.  Distance is used to measure how diverse one solution is with respect to a set 

of solutions.  Specifically, for the MDP, let r
ix  be the value of the ith variable for the reference 

solution r (i.e., r ∈ RefSet).  Also let t
ix  be the value of the ith variable for the trial solution t.  

Then, the distance between the trial solution t and the solutions in the RefSet in our SS 
implementation is defined as: 

distance(t, RefSet) = ∑∑
= =
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b
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The formula simply counts the number of times that each selected element in the trial solution t 
appears in the reference solutions and subtracts this value from the maximum possible distance 
(i.e., bm).  The maximum distance occurs when no element that is selected in the trial solution t 
appears in any of the reference solutions.  When choosing solutions to rebuild the reference set, 
we select the trial solution that has the maximum distance between itself and the solutions 
currently in the RefSet.  Since the solutions are added one at a time, the distance calculations 
have to be updated before the next solution is selected. 
 
3.1 Diversification Generation Method 
Duarte and Martí (2007) proposed a GRASP Hybrid (Resende and Ribeiro 2001) for generating 
MDP diverse solutions.  It is based on randomizing D-2, a deterministic destructive heuristic 
developed by Glover et al. (1998).  D-2 starts with the infeasible solution for which xi = 1 for all i.  
That is, all n elements are originally selected.  In order to reduce the set of selected elements to 
m, the procedure performs n-m steps.  At each step, the procedure deselects element i* (i.e., *ix  

is set to zero), where i* is such that: 
 

( ) ( )( )iDMiniD
ixi 1:

*

=
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j
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The randomization of D-2 that is employed within RD-2 consists of selecting i* from a reduced 
candidate list formed by all those elements i such that ( ) ( ) ( )*1 iDiD α+≤ .  The value of α is 
initially set to 0.5 and decreased by 0.1 —to a minimum of 0.1— after a pre-specified CPU time 
is consumed without improving the incumbent.  We set this value to a 20% of the total CPU time 
in our implementation. 
 
3.2 Improvement Method 
The Local Search method LS (Ghosh 1996) scans the set of selected elements in search of the 
best exchange to replace a selected element with an unselected one.  The method performs 
moves as long as the objective value increases and it stops when no improving exchange can be 
found.  The Improved Local Search method, I_LS, (Duarte and Martí 2007) selects the element i* 
( 1* =ix ) that provides the smallest contribution to the objective function value of the current 

solution.  Then, it searches for an element j (xj = 0) to be exchange with element i*.  The first 
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element j that results in an improving move is selected and the exchange is performed without 
examining the remaining unselected elements.  If no improving move can be found to exchange 
element i*, then the selected element with the next smallest contribution is examined.  This 
process continues until no improving exchange can be found. 
 
3.3 Combination Method 
This method consists of the application of the destructive heuristic D-2 (Glover, Kuo and Dhir, 
1998) to the union of the elements in the reference solutions being combined.  The method 
starts with the selection of all elements in the union and then it deselects one element at a time 
until there are only m selected elements remaining.  The element i that is deselected at each 
step is the one with the minimum D(i) value. 
 
4. Problem-independent methods 
We now discuss some generic (i.e., context–independent) implementations of the reference set 
update and the subset generation.  While these designs are not customized for a particular 
problem setting, the solution representation (e.g., binary strings, permutations, real numbers, 
etc.) does play an important role in their development and implementation.  The following two 
subsections have been taken from Laguna (2009). 
 

4.1 Reference Set Update 
The execution of the diversification generation and improvement methods in line 1 of Figure 1 
results in a population P of solutions.  The reference set update method is executed in two 
different parts of the scatter search procedure.  The first time that the method is called, its goal 
is to produce the initial RefSet, consisting of a mix of b (typically 10) high quality and diverse 
solutions drawn from P.  The mix of high quality and diverse solutions could be considered a 
tunable parameter; however, most implementations populate the initial reference set with half 
of the solutions chosen by quality and half chosen by diversity. 

Choosing solutions by quality is straightforward.  From the population P, the best (according to 
the objective function value) b/2 solutions are chosen.  These solutions are added to RefSet and 
deleted from P.  To choose the remaining half, an appropriate measure of distance d(r,p) is 
needed, where r is a reference solution and p is a solution in P.  The distance measure depends 
on the solution representation, but must satisfy the usual conditions for a metric, that is: 
 

d(r,p) = 0  if and only if r = p 
d(r,p) = d(p,r) > 0  if r ≠ p 
d(r,q) + d(q,p) ≥ d(r,p) triangle inequality 

 
For instance, the Euclidean distance is commonly used when solutions are represented by 
continuous variables: 

𝑑𝑑(𝑟𝑟, 𝑝𝑝) = �� (𝑟𝑟𝑖𝑖 − 𝑝𝑝𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
 

Likewise, the Hamming (1950) distance is appropriate for two strings of equal length.  The 
distance is given by the number of positions for which the corresponding symbols are different.  
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In other words, the distance is the number of changes required to transform one string into the 
other: 

𝑑𝑑(𝑟𝑟, 𝑝𝑝) = ∑ 𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1  𝑣𝑣𝑖𝑖 = �0     𝑟𝑟𝑖𝑖 = 𝑝𝑝𝑖𝑖

1     𝑟𝑟𝑖𝑖 ≠ 𝑝𝑝𝑖𝑖
� 

This distance has been typically used for problems whose solution representation is given by 
binary vectors (e.g., the max-cut and knapsack problems) and permutation vectors (e.g., the 
traveling salesman, quadratic assignment and linear ordering problems). 

The distance measure is used to calculate the minimum distance dmin(p) of a population 
solution and all the reference solutions r: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝) = min
𝑟𝑟∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑑𝑑(𝑟𝑟, 𝑝𝑝) 

Then, the next population solution p to be added to RefSet and deleted from P is the one with 
the maximum dmin value.  That is, we want to choose the population solution p* that has the 
maximum minimum distance between itself and all the solutions currently in RefSet: 

𝑝𝑝∗ = �𝑝𝑝: max
𝑝𝑝∈𝑃𝑃

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝)� 

The process is repeated b/2 times to complete the construction of the initial RefSet.  Note that 
after the first calculation of the dmin values, they can be updated as follows.  Let p* be the 
population solution most recently added to the RefSet.  Then, the dmin value for a population 
solution p is given by: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝) = min�𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝), 𝑑𝑑(𝑝𝑝, 𝑝𝑝∗)� 

Alternatively, the diverse solutions for the initial reference set may be chosen by solving the 
maximum diversity problem (MDP) introduced above.  The special version of the MDP that must 
be solved includes a set of elements that have already been chosen (i.e., the high quality 
solutions).  Mathematically, the problem may be formulated as follows: 

Maximize ∑ 𝑑𝑑(𝑝𝑝, 𝑝𝑝′)(𝑝𝑝,𝑝𝑝′ )∈𝑃𝑃:𝑝𝑝≠𝑝𝑝′ 𝑥𝑥𝑝𝑝𝑥𝑥𝑝𝑝′  

Subject to ∑ 𝑥𝑥𝑝𝑝𝑝𝑝∈𝑃𝑃 = 𝑏𝑏 

 𝑥𝑥𝑝𝑝 = 1             ∀ 𝑝𝑝 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 𝑥𝑥𝑝𝑝 = {0,1}      ∀ 𝑝𝑝 ∈ 𝑃𝑃 

The formulation assumes that a subset of high quality solutions in P have already been chosen 
and added to RefSet.  The binary variables indicate whether a population solution p is chosen (xp 
= 1) or not (xp = 0).  The second set of constraints in the formulation force the high-quality 
solutions to be included in the set of b solutions that will become the initial RefSet.  This 
nonlinear programming model has been translated into an integer program for the purpose of 
solving it as well as for showing that the MDP is NP-hard.  Martí, Duarte and Laguna (2009) 
embed the MDP in a scatter search procedure for the max-cut problem.  Instead of solving the 
MDP exactly, they employ the GRASP_C2 procedure developed by Duarte and Martí (2007).  The 
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procedure was modified to account for the high-quality solutions that are chosen before the 
subset of diverse solutions is added to the RefSet.  The procedure is executed for 100 iterations 
and the most diverse RefSet is chosen to initiate the scatter search. 

The reference set update method is also called in step 8 of Figure 1.  This step is performed 
after a set of one or more trial solutions has been generated by the sequential calls to the 
subset generation, combination and improvement methods (see steps 5, 6 and 7 in Figure 1).  
The most common update consists of the selection of the best (according to the objective 
function value) solutions from the union of the reference set and the set of trial solutions 
generated by steps 5-7 in Figure 1.  Other updates have been suggested in order to preserve 
certain amount of diversity in the RefSet.  These advanced updating mechanisms are beyond the 
scope of this tutorial chapter but the interested reader is referred to chapter 5 of Laguna and 
Martí (2003) for a detailed description and to Laguna and Martí (2005) for experimental results. 

 

4.2 Subset Generation 
This method is in charge of proving the input to the combination method.  This input consists of 
a list of subsets of reference solutions.  The most common subset generation consists of creating 
a list of all pairs (i.e., all 2-subsets) of reference solutions for which at least one of the solutions 
is new.  A reference solution is new if it hasn’t been used by the combination method.  The first 
time that this method is called (step 5 in Figure 1), all the reference solutions are new, given 
that the method is operating on the initial RefSet.  Therefore, the execution of the subset 
generation method results in the list of all 2-subsets of reference solutions, consisting of a total 
of (b2-b)/2 pairs.  Because the subset generation method is not based on a sample but rather on 
the universe of all possible pairs, the size of the RefSet in scatter search implementation must be 
moderate (e.g., less than 20).  As mentioned in the introduction, a typical value for b is 10, 
resulting in 45 pairs the first time that the subset generation method is executed. 

When the inner while-loop (steps 5-8 in Figure 1) is executing, the number of new reference 
solutions at the time that the subset generation method is called depends on the strategies 
implemented in the reference set update method.  Nonetheless, the number of new solutions 
decreases with the number of iterations within the inner while-loop.  Suppose that b is set to 10 
and that, after the first iteration of the inner while-loop, 6 solutions are replaced in the 
reference set.  This means that the reference set that will serve as the input to the subset 
generation method will consist of 4 “old” solutions and 6 “new” solutions.  Then, the output of 
the subset generation method will be 39 2-subsets.  In general, if the reference set contains n 
new solutions and m old ones, the number of 2-subsets that the subset generation method 
produces is given by: 

𝑛𝑛𝑛𝑛 +
𝑛𝑛2 − 𝑛𝑛

2
 

The scatter search methodology also considers the generation of subsets with more than two 
elements for the purpose of combining reference solutions.  As described in Laguna and Martí 
(2003), the procedure uses a strategy to expand pairs into subsets of larger size while controlling 
the total number of subsets to be generated.  In other words, the mechanism does not attempt 
to create all 2-subsets, then all 3-subsets, and so on until reaching the b-1-subsets and finally 
the entire RefSet.  This approach would not be practical because there are 1013 subsets in a 
reference set of size b = 10.  Even for a smaller reference set, combining all possible subsets 
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would not effective because many subsets will be very similar.  For example, a subset of size 
four containing solutions 1, 2, 3, and 4 is almost the same as all the subsets with four solutions 
for which the first three solutions are solutions 1, 2 and 3.  And even if the combination of 
subset {1, 2, 3, 5} would generate a different solution than the combination of subset {1, 2, 3, 6}, 
these new trial solutions would likely reside in the same basin of attraction and therefore 
converge to the same local optimum after the application of the improvement method.  Instead, 
the approach selects representative subsets of different sizes by creating subset types: 

• Subset Type 1: all 2-element subsets. 
• Subset Type 2: 3-element subsets derived from the 2-element subsets by augmenting each 2-

element subset to include the best solution not in this subset. 
• Subset Type 3: 4-element subsets derived from the 3-element subsets by augmenting each 3-

element subset to include the best solutions not in this subset. 
• Subset Type 4: the subsets consisting of the best i elements, for i = 5 to b.  

Campos et al. (2001) designed an experiment with the goal of assessing the contribution of 
combining subset types 1 to 4 in the context of the linear ordering problem.  The experiment 
undertook to identify how often, across a set of benchmark problems, the best solutions came 
from combinations of reference solution subsets of various sizes.  The experimental results 
showed that most of the contribution (measured as the percentage of time that the best 
solutions came from a particular subset type) could be attributed to subset type 1.  It was 
acknowledge, however, that the results could change if the subset types were generated in a 
different sequence.  Nonetheless, the experiments indicate that the basic SS that employs only 
subsets of type 1 is quite effective and explains why most implementations do not use subset 
types of higher dimensions. 
 
 
5. Hybridizing Scatter Search with Tabu Search 
Evolutionary approaches, such as scatter search, implicitly make use of memory.  This is evident 
if one examines how the Reference Set Update, Solution Combination and Subset Generation 
Methods operate.  The Reference Set Update Method, in its most basic form, is designed to 
“remember” the best solutions encountered during the search.  Some features of these 
solutions are used to create new trial solutions with the Combination Method.  Hence, this 
method is instrumental in the transmission of information embedded in the reference solutions.  
But we can add extra memory structures to scatter search by hybridizing it with tabu search.  
Specifically, in this section we briefly describe how to design tabu search based procedures to 
implement the diversification generation, the improvement and the combination methods for 
the maximum diversity problem. 
 
5.1 Diversification Generation Method 
The diversification generator within the Tabu Search methodology, MD-2, is also based on the 
destructive procedure D-2.  At each step of the procedure, the element i* to be deselected is 
such that: 
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where ( )( ) ( )( )iDiDrange
ii xixi 1:1:

minmax
==

−=  

 
In this modified distance calculation, f(i) indicates the frequency in which element i has 
appeared in previous solutions and q(i) is the average quality (as measured by the objective 
function value) of past solutions that included element i.  The fmax and qmax are the maximum 
values of f and q over all elements.  The penalty factors β and δ are respectively set to 0.1 and 
0.0001 according to Gallego et al. (2009). 
 
5.2 Improvement Method 
LS_TS (Duarte and Martí 2007) implements a short-term tabu search method also based on 
exchanges.  An iteration of this method begins with a random selection of an element i (xi = 1).  
The probability of selecting element i is inversely proportional to D(i).  The list of unselected 
elements is scanned and the first improving move that exchanges elements i and j (xj = 0) is 
selected.  If no improving move is found, then the least non-improving move is chosen.  The 
chosen exchange is performed and both elements participating in the exchange are classified 
tabu-active for a number of iterations (known as the tabu tenure).  Tabu-active elements are not 
allowed to participate in any exchanges.  The LS_TS method stops if after a number of 
consecutive iterations the incumbent solution is not modified. 
 
5.3 Combination Method 
This method consists of the application of the MD-2 procedure to the union of the elements of 
the reference solutions being combined.  This method uses information about solutions 
generated in the past as well as information associated with those solutions combined in 
previous iterations.  Once we obtain the set of elements selected in the solutions being 
combined, we only need to apply MD-2 with the modified evaluations according to the penalty 
terms: 
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The element with minimum D value is deselected.  The union of elements updated,  iteration are 
performed until the number of selected elements matches m. 
 

6. Experiments with the Maximum Diversity Problem 
In this section we summarize some of the experiments presented in Gallego et al. (2009) for the 
MDP. The scatter search implementation follows the basic framework outlined in Figure 1.  The 
diversification generation, combination and improvement methods are those corresponding to 
the descriptions in Section 3.  All the experiments were conducted on a Pentium 4 computer at 3 
GHz with 3 GB of RAM.  The procedures were coded in Java and executed in the Java Runtime 
Environment 1.5.  We use the same four data sets employed in Duarte and Martí (2007): 

SOM: This data set consists of 20 matrices with random numbers between 0 and 9 
generated from an integer uniform distribution.  The problem sizes are such 
that for n = 100, m = 10, 20, 30 and 40; for n = 200, m = 20, 40, 60 and 80; 
for n = 300, m = 30, 60, 90 and 120; for n = 400, m = 40, 80, 120, and 160; 
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and for n = 500, m = 50, 100, 150 and 200.  These instances were generated 
by Silva, Ochi and Martins (2004). 

GKD: This data set consists of 20 matrices for which the values were calculated as 
the Euclidean distances from randomly generated points with coordinates in 
the 0 to 10 range.  The number of coordinates for each point is also 
randomly generated between 2 and 21.  Glover, Kuo and Dhir (1998) 
developed this data generator and constructed instances with n = 30.  We 
generated instances with n = 500 and m = 50. 

Type I: Diversity values are real numbers uniformly distributed between 0 and 
1000. We generate 30 instances of Type I with n = 500, 2000 and m = 50, 
200. 

Type II: Diversity values are real numbers uniformly distributed between 0 and 10.  
We generate 20 instances of Type II, as described in section 2, with n = 500 
and m = 50. 

The purpose of the first experiment is identifying the most effective method for generating 
subsets of reference solutions that are in turn the input to the combination method.  For this 
experiment, we consider combinations of 2, 3, 4 and 5 solutions.  Our subset generation method 
operates as described in Section 4.  All subsets of size 2 (SG1) are considered.  That is, all pairs of 
reference solutions are added to the list of subsets.  Subsets of size 3 (SG2) are constructed by 
considering each subset of size 2 and adding the best reference solution that is not part of the 
subset.  Subsets of higher dimensions are constructed following the same logic.  That is, subsets 
of size 4 (SG3) are based on subsets of size 3.  Likewise, subsets of size 5 (SG4) are constructed 
by adding a solution to subsets of size 4.  This mechanism avoids the exponential explosion in 
the number of subsets generated had we considered all possible subsets of size 3, 4 and 5.  The 
results of running this experiment on 20 instances (10 problems of each type, I and II, and with n 
= 500 and m = 50) are summarized in Table 1.   We use the outcomes of our experiments to 
calculate the average percent deviation (Average Deviation) of the solutions obtained by each 
procedure when compared to the best solutions during the given experiments.  We also report 
on the number of best solutions (Number of Best) found by each method. 
 

Subset Generation Method Average Deviation Number of Best 
SG1 0.0000% 20 
SG2 0.0017% 19 
SG3 0.0000% 20 
SG4 0.0042% 18 

Table 1. Alternative subset generation methods 
 
The results of this preliminary experiment indicate that there is no additional gain that could be 
realized by generating and combining subsets with more than 2 solutions.  Hence, we perform 
step 2 (see Figure 1) of the scatter search implementation by limiting the subset generation to 
all pairs of reference solutions.  These results are in line with similar experiments for other 
combinatorial optimization problems (Campos, et al. 2001). 
 
The objective of the second experiment is to compare the relative merit of the scatter search 
variants described in Sections 3 and 5 respectively.  We set a time limit of 3 CPU minutes and we 
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run each procedure with and without the improvement method.  The results are summarized in 
Table 2. 
 
Procedure Improvement Average Deviation Number of Best 
Scatter Search No 1.16% 0 
(Section 3) Yes 0.18% 2 
Tabu Search Hybrid No 1.07% 0 
(Section 5) Yes 0.00% 20 

Table 2. Different scatter search designs 

 
The results in Table 2 indicate the advantage of using an improvement method within our 
design.  In terms of average deviation from the best solutions, the improvement method has the 
largest impact in the case of the Base design.  Also, the improvement method makes a 
significant difference in the number of best solutions found in the Tabu Search Hybrid.  In 
general, we conclude that the procedures embedded in the Tabu Search Hybrid variant results 
in the best scatter search configuration.  For the next experiment, the scatter search that we use 
is the one that implements the Tabu Search Hybrid procedures (including the improvement 
method), as described in Section 5. 

In the final experiment we compare the proposed procedure to state-of-the-art methods for 
solving the maximum diversity problem. In particular we consider: 

• KLD (Silva, Ochi and Martins, 2004) with local search (Ghosh, 1996) 
• KLDv2 (Silva, Ochi and Martins, 2004) with local search (Ghosh, 1996) 
• Tabu_D-2 with LS_TS (Duarte and Martí, 2007) 

In this experiment, we observed the solution quality obtained by each method after 30 seconds 
and after 3 minutes of search time.  Table 3 reports the average percentage deviation of the 
solution obtained with each method with respect to the best solution known. 
 

Data Set Time KLD KLDv2 Tabu_D-2 SS 
SOM 30 sec. 1.056% 1.463% 0.138% 0.002% 
 3 min. 0.178% 0.187% 0.095% 0.000% 
GKD 30 sec. 0.000% 0.000% 0.000% 0.000% 
 3 min. 0.000% 0.000% 0.000% 0.000% 
Type II 30 sec. 0.857% 1.083% 0.245% 0.010% 
 3 min. 0.525% 0.607% 0.203% 0.000% 
Type I 30 sec. 9.807% 100.000% 0.453% 0.453% 
 3 min. 9.807% 9.828% 0.331% 0.331% 

Table 3. Comparison of average percent deviation at two times during the search 

 
Table 3 shows the merit of the proposed procedure.  The scatter search implementation 
consistently produces the best solutions with percent deviations that in some cases are orders 
of magnitude smaller than those of the competing methods.  The problem instances in the GKD 
set do not provide a way of differentiating the performance of the methods that we are 
comparing.  They are either easy to solve and all the methods are capable of finding the optimal 
solutions in a very short period of time or the problems are difficult and all the methods are 
attracted to the same local optima 
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7. Conclusions 
Our goal was to introduce the scatter search framework at a level that would make it possible 
for the reader to implement a basic but robust procedure.  A number of extensions are possible 
and some of them have already been explored and reported in the literature.  It is not possible 
within the limited scope of this encyclopedic article to detail completely many of the aspects of 
scatter search that warrant further investigation.  Additional implementation considerations, 
including those associated with intensification and diversification processes, and the design of 
accompanying methods to improve solutions produced by combination strategies are found in 
several of the references listed below. 
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