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Abstract 

The maximally diverse grouping problem (MDGP) is an NP-hard problem that consists of 

forming groups from a given set of elements in such a way that the diversity in the groups is max-

imized.  The MDGP has applications in academics, such as creating diverse teams of students, or 

in design of VLSI circuits.  In this paper we propose a new procedure based on the tabu search me-

thodology to obtain high quality solutions for this optimization problem.  Specifically, our method 

includes a short-term memory component and makes use of the strategic oscillation.  Our experi-

mentation shows that the proposed methods compares favorably with previous metaheuristics. 

1 Introduction 

The maximally diverse grouping problem (MDGP) consists of grouping a given set of M elements into 

G mutually disjoint groups to maximize the diversity in each group. The diversity of each group is 

calculated as the sum of the distances between all the pairs of elements in the group, where the defini-

tion of the distances between elements is customized in each specific application. The objective of the 

MDGP is to maximize the sum of the diversity values of each group.  This NP-hard problem [2] is also 

known as the k-partition problem [2] or the equitable partition problem [4]. The MDGP has a signifi-

cant number of practical applications such as VLSI design of circuits [2], the academic context when 

forming diverse student groups [5] or creating diverse groups of peer reviews in scientific publica-

tions.   

 The MDGP has two variants depending on the size of the groups. In the first variant, MDGP1, the 

set of elements has to be divided into groups with the same size , where . In the second va-

riant, MDGP2, the size of each group must fall in a prefixed interval  where  for 

. MDGP1 can be considered as a special case of MDGP2 for which  for all . 

We target here the general case, MDGP2, simply referring to it as MDGP, and propose an adaptive 

memory programming method [3] to obtain high quality solutions. 

2 Previous Methods 

Weitz and Jelassi [5] developed WJ, a constructive method for solving MDGP, based on the idea of 

avoiding the assignment of similar elements to the same group. Weitz and Lakshminarayanan [6] 

adapted a previous improvement method and called it LC. It is based on exchanges. In each step, the 

method first selects an element  lexicographically. Then, it identifies the group  for which the diver-

sity is maximized if  is added to it. LC searches for the best exchange between  and other element in 

 and applies it only if the current solution improves. The method finishes when no further improve-

ment is possible.  LCW [6], is an evolution of LC in which the element to exchange with  can belong 

to any group and is not limited to belong to the same group  in which we are adding .  Weitz and 

Lakshminarayanan [6] carried out extensive experimentation to compare all previous algorithms for 

the MDGP to conclude that random construction coupled with the LCW improvement method is the 

best procedure overall.  Fan et al. [1] presented LSGA, a hybrid genetic algorithm coupled with the BI 

local search to solve the MDGP. BI follows the best improvement strategy, in which all possible inter-



id-2 MIC 2011: The IX Metaheuristics International Conference 

 

Udine, Italy, July 25–28, 2011 

changes are evaluated and the best one is finally applied (as opposed to the best strategy implemented 

in LCW). To the best of our knowledge, this is the first method for the general version of the MDGP 

(with different group sizes). Extensive experiments were conducted in [1] to compare LSGA with 

LCW starting from a random solution. These experiments showed the effectiveness of LSGA when 

solving MDGP instances with equal and different group sizes. 

3 Tabu Search and Strategic Oscillation 

In this section we describe the elements of our tabu search procedure for the MDGP. It basically con-

sists of three elements: 1) construction of the initial solution, 2) neighborhood search and 3) strategic 

oscillation.  

 Our constructive method GC is based on a greedy evaluation. It starts by randomly selecting  

elements and assigning them to different groups. Then, GC performs  iterations to assign the 

remaining unassigned elements to groups. The iterations are divided into two phases. Let  be the set 

of elements currently assigned to group . In the first phase the unassigned elements are assigned to 

groups with  and it finishes when all groups verify that . In the second phase, the 

unassigned elements are included in groups with  and finishes when all elements are as-

signed to groups. In each iteration, consisting on the two phases described above, an unassigned ele-

ment  is randomly selected to be added to the group where the average distance between all its pairs 

of elements is maximized.  

 As described in Section 2, several improvement methods have been proposed for the MDGP where 

the LC, LCW and BI are the leading ones. We propose the improvement method FI, partially based on 

BI but implementing a first improvement strategy in the neighborhood exploration. FI iteratively eva-

luates the exchanges between elements and applies the first exchange that improves the objective val-

ue (instead the best one selected in BI).  

 The BI, FI, LC and LCW improvement methods are designed to solve the MDGP1. Starting from a 

feasible solution, they perform exchanges, always generating feasible solutions, until a local optima is 

reached. For the general problem, MDGP2, we extend the neighborhood exploration by adding inser-

tion moves that allow transferring a single element from its current group to another group. We pro-

pose four new variants, T-BI, T-FI, T-LC and T-LCW that consider this extended neighborhood. We 

have also enhanced these improvement procedures by adding a short-term tabu memory in order to 

allow the search to continue beyond the first local optimum. Specifically, exchanged elements cannot 

be moved from their respective groups during tabuTenure iterations. The methods stop after perform-

ing maxIter consecutive iterations without improving the best solution found. 

 We have finally developed a strategic oscillation method [3], which relaxes the constraints of the 

problem for a few iterations with the objective of escaping from the local optimum. Strategic oscilla-

tion explores an enlarged search space including solutions where the group cardinality constraint may 

be violated. The oscillation between feasibility and infeasibility is defined by an integer parameter  

ranging between  and . The method can explore infeasible solutions satisfying 

. To repair infeasible solutions we apply the method used in LSGA: randomly moving elements 

from groups with  to groups with  until all groups verify the cardinality constraints. 

4 Computational Experiments 

This section describes the computational experiments that we performed to test the effectiveness and 

efficiency of the procedures discussed above.  We use 420 instances in our experimentation with dif-

ferent group configurations and sizes. Part of this set was previously introduced in [1] with 

. We have generated other types of instances including larger ones with .  
 In each experiment, we compute for each instance the overall best solution value, BestValue, ob-

tained by the execution of all methods considered.  Then, for each method, we compute the relative 

percentage deviation between the best solution value found by that method and the BestValue.  We 

report the average of this relative percentage deviation (Dev) across all the instances considered in 

each particular experiment.  We report, for each method, the number of instances (#Best) in which the 

value of the best solution obtained with this method matches BestValue. Finally, for multistart me-
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thods, we report (#Const) as the number of constructions. 

 In our first experiment we consider all types of instances with  ranging from  to  totalizing 

180 instances.  We compare constructive methods coupled with local search for the MDGP. This expe-

riment is configured using a factorial design where every constructive procedure (CG, WJ and a ran-

dom construction) is coupled with every improvement method (BI, FI, LC and LCW). In order to test 

the contribution of the memory in the design of the algorithm, we also include in this experiment the 

tabu search variants (T-BI, T-FI, T-LC and T-LCW) with the following search parameters: 

 and . Each multi-start procedure (i.e., 

either constructive + improvement or constructive + tabu) is executed for the same running time for 

each instance. The CPU time is limited according to the instance size: 1 second for instances with 

, 3 seconds for , 20 seconds for , 120 seconds for  and 600 

seconds for .  This experiment concludes that GC coupled with T-LCW with 

 and  outperforms the rest of procedures.  In the second experiment, we test the 

contribution of the strategic oscillation strategy to GC+T-LCW with different values of the  pa-

rameter. This method is referred to as SO. Table 1 shows that there are no significant differences in 

quality between kmax values. We choose   for SO since it presents the largest #Best statistic.  

In the third and final experiment with the 240 instances not used in the previous experiments, we com-

pare our two best procedures (CG+T-LCW and SO) with LSGA [1], and LCW with random restarts 

[6]. Table 2 shows that SO clearly outperforms previous procedures in terms of quality (it exhibits a 

0.04% average deviation while LCW and LSGA present 1.01% and 0.61% respectively). Moreover, 

the number of best known solutions found is 192 for SO while LCW and LSGA only obtain 80 and 82 

respectively. 

kmax Dev #Best #Const 

1 0.13% 111 1293.37 

2 0.12% 100 758.43 

3 0.13% 110 534.48 

4 0.11% 112 415.19 

5 0.10% 110 340.88 

Table 1.  parameter tuning in SO 

Method Dev #Best #Const 

LCW 1.01% 80 - 

LSGA 0.61% 82 7485.85 

CG+T-LCW 0.17% 141 3152.72 

SO 0.04% 192 338.55 

Table 2. Best methods comparison 

Conclusions 

In this paper we present several heuristic procedures to solve the MDGP. The methods have been 

compared to state-of-the-art algorithms and the outcome of our experiments seems quite conclusive in 

regard to the merit of our procedure. We believe that the performance boost that we achieved by ex-

panding search neighborhoods, by including additional moves, and search spaces and by allowing the 

search to visit infeasible solutions is a valuable lesson for future implementations. 
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